SlideShare a Scribd company logo
PERTURBATIVE Q.E.D
ON DE SITTER UNIVERSE
  WEST UNIVERSITY OF TIMISOARA
      FACULTY OF PHYSICS
      author: Crucean Cosmin




               1
THE THEORY OF FREE FIELDS ON DE
SITTER UNIVERSE

Dirac field

• De Sitter metric:
                                        1
             ds2 = dt2 − e2ωtdx 2 =         (dt2 − dx 2),   ω > 0,   ωtc = −e−ωt   (1)
                                      (ωtc)2 c


                                                      ˆ
                                        gµν = ηαβ eαeβ
                                               ˆ
                                                   ˆ
                                                 ˆ µ ν                             (2)
• In the Cartesian gauge the nonvanishing tetradic components are:
                                                 ˆ      1     ˆ    ˆ 1
                  e0 = −ωtc, eˆ = −δˆωtc, e0 = − , ei = −δj .
                    ˆ
                    0
                                 i
                                 j
                                        i
                                        j        0            j
                                                                   i
                                                                                   (3)
                                                       ωtc           ωtc



                                               2
• Action for Dirac field
                                            √i ¯ α
                       S [e, ψ] =     d x −g [ψγ ˆ Dαψ − (Dαψ)γ αψ]
                                        4
                                                    ˆ      ˆ
                                                                ˆ
                                             2
                                      ¯
                                    −mψψ ,                                               (4)

where
                                      Dα = eµ Dµ = ∂α + Γα
                                       ˆ    α
                                            ˆ       ˆ    ˆ                               (5)
• In this gauge the Dirac operator reads:
                                                          3iω 0
                              ED = iγ 0∂t + ie−ωtγ i∂i +      γ
                                                           2
                                             0       i       3iω 0
                                    = −iωtc(γ ∂tc + γ ∂i) +     γ                        (6)
                                                              2
• the Dirac equation
                                        (ED − m)ψ = 0                                    (7)
• The fundamental solutions are:
                                             1 πk/2 (1)
                              πp/ω             e Hν− (qe−ωt)ξλ(p )
           Up, λ(t, x ) = i                  2
                                                     (1)                eip·x−2ωt
                            (2π)3/2         λe−πk/2Hν+ (qe−ωt)ξλ(p )
                                                       (2)
                                πp/ω        −λe−πk/2Hν− (qe−ωt)ηλ(p )
             Vp, λ(t, x ) = i                1 πk/2 (2)
                                                                          e−ip·x−2ωt ,   (8)
                              (2π)3/2        2 e Hν+ (qe−ωt)ηλ(p )
                                                  3
• Charge conjugation
                                                           ¯
                             Up, λ(x) → Vp, λ(x) = iγ 2γ 0(Up, λ(x))T .                       (9)
• The orthonormalization relations :
                                   ¯
                         d3x(−g)1/2Up, λ(x)γ 0Up , λ (x) =

                                   ¯
                         d3x(−g)1/2Vp, λ(x)γ 0Vp , λ (x) = δλλ δ 3(p − p )

                                    ¯
                          d3x(−g)1/2Up,λ(x)γ 0Vp ,λ (x) = 0,                                 (10)




         d3p       Up, λ(t, x )Up, λ(t, x ) + Vp, λ(t, x )Vp, λ(t, x ) = e−3ωtδ 3(x − x ).
                                +                           +
                                                                                             (11)
               λ
• The field operator
               ψ(t, x ) = ψ (+)(t, x ) + ψ (−)(t, x )
                         =     d3p       Up, λ(t, x )a(p, λ) + Vp, λ(t, x )b+(p, λ) .        (12)
                                     λ
• Canonic cuantization
               {a(p, λ), a+(p , λ )} = {b(p, λ), b+(p , λ )} = δλλ δ 3(p − p ) ,             (13)
                                                 4
{ψ(t, x ), ψ(t, x )} = e−3ωtγ 0δ 3(x − x ) ,                                 (14)

                   SF (t, t , x − x ) = i 0|T [ψ(x)ψ(x )]|0
                                      = θ(t − t )S (+)(t, t , x − x )
                                        −θ(t − t)S (−)(t, t , x − x ) .                              (15)



                   [ED (x) − m]SF (t, t , x − x ) = −e−3ωtδ 4(x − x ).                               (16)

• Conserved operators

           Pi =: ψ, P iψ :=         d3p pi            [a+(p, λ)a(p, λ) + b+(p, λ)b(p, λ)]            (17)
                                                  λ



          W =: ψ, W ψ :=            d3p           pλ[a+(p, λ)a(p, λ) + b+(p, λ)b(p, λ)] .            (18)
                                              λ


              iω        3   i             +
                                                      ↔
                                                                       +
                                                                                  ↔
           H=           d pp         a (p, λ)         ∂ pi   a(p, λ) + b (p, λ)   ∂ pi   b(p, λ) .   (19)
               2
                                λ
                                                       5
•


                                          [H, P i] = iωP i.                   (20)


Scalar field

• Action of the scalar field
                      ∗            √                     √
               S[φ, φ ] =      4
                              d x −g L =          d x −g ∂ µφ∗∂µφ − m2φ∗φ ,
                                                     4
                                                                              (21)


• The Klein-Gordon equation:
                               1    √
                              √   ∂µ −g g µν ∂ν φ + m2φ = 0 .                 (22)
                               −g


                              ∂t2 − e−2ωt∆ + 3ω∂t + m2 φ(x) = 0 .             (23)
• Solutions of Klein-Gordon equation:
                               1       π e−3ωt/2 −πk/2 (1) p −ωt ip·x
                      fp (x) =                3/2
                                                  e   Hik    e   e ,          (24)
                               2       ω (2π)              ω
                                                 6
9         m
                                  k=      µ2   − ,   4      µ = , m > 3ω/2                     (25)
                                                               ω
• The orthonormalization relations:
                                                            ↔
                                   3         1/2    ∗
                          i       d x (−g)         fp (x)   ∂t fp (x) =
                                                            ↔
                                   3         1/2              ∗
                     −i           d x (−g)         fp (x) ∂t fp (x) = δ 3(p − p ) ,            (26)
                                                            ↔
                                   3         1/2
                          i       d x (−g)         fp (x) ∂t fp (x) = 0 ,                      (27)

                                                 ↔
                                     ∗
                      i       3
                              d   p fp (t, x )   ∂t fp (t, x ) = e−3ωtδ 3(x − x ) .            (28)

• Canonic cuantization
                                                                               ∗
              φ(x) = φ(+)(x) + φ(−)(x) =                    d3p fp (x)a(p ) + fp (x)b+(p ) ,   (29)



                          [a(p ), a†(p )] = [b(p ), b†(p )] = δ 3(p − p ) .                    (30)
•


                                                            7
[φ(t, x ), ∂tφ†(t, x )] = ie−3ωtδ 3(x − x ) .      (31)
• The commutator functions:
                              D(±)(x, x ) = i[φ(±)(x), φ(±)†(x )],           (32)




                                                            ∗
                            D(+)(x, x ) = i      d3p fp (x)fp (x ),

                                                        ∗
                            D(−)(x, x ) = −i       d3p fp (x)fp (x ).        (33)

• G(x, x ) is a Green function of the Klein-Gordon equation if:
                   ∂t2 − e−2ωt∆x + 3ω∂t + m2 G(x, x ) = e−3ωtδ 4(x − x ) .   (34)




                       DR(t, t , x − x ) = θ(t − t )D(t, t , x − x ) ,       (35)
                       DA(t, t , x − x ) = − θ(t − t)D(t, t , x − x ) ,      (36)


                                               8
• The Feynman propagator,
      DF (t, t , x − x ) = i 0|T [φ(x)φ†(x )] |0
                         = θ(t − t )D(+)(t, t , x − x ) − θ(t − t)D(−)(t, t , x − x ) ,
                                                                                          (37)


The electromagnetic field

• The action
                                   √         1           √
                     S[A] =     d4x −g L = −          d4x −g Fµν F µν ,                   (38)
                                             4
Fµν = ∂µAν − ∂ν Aµ

• Field equation                     √
                                 ∂ν ( −g g ναg µβ Fαβ ) = 0 ,                             (39)


• In the Coulomb gauge A0 = 0, (Ai) ; i = 0 ,and chart {tc, x}
                                             ¸
                                      (∂t2c − ∆)Ai = 0                                    (40)



                                              9
• The field operator
                       (+)            (−)
         Ai(x) = Ai (x) + Ai (x)
                 =      d3k          ei(nk , λ)fk (x)a(k, λ) + [ei(nk , λ)fk (x)]∗a∗(k, λ)
                               λ
                                                                                             (41)
                                               1    1
                                   fk (x) =        √ e−iktc+ik·x ,                           (42)
                                            (2π)3/2 2k
• the Hermitian form
                                                  ↔                  ↔
                               3      ∗
               f, g = i       d x f (tc, x ) ∂tc g(tc, x ) ,       f ∂ g = f (∂g) − g(∂f )   (43)


• The orthonormalization relations:
                                           ∗     ∗
                              fk , fk = − fk , fk = δ 3(k − k ) ,                            (44)
                                                ∗
                                          fk , fk = 0 ,                                      (45)
                                                  ↔
                               3      ∗
                        i     d    k fk (tc, x)   ∂tc fk (tc, x ) = δ 3(x − x ) ,            (46)



                                            k · e (nk , λ) = 0 ,                             (47)
                                                      10
e (nk , λ) · e (nk , λ )∗ = δλλ ,                          (48)
                                                         ∗        k ik j
                                    ei(nk , λ) ej (nk , λ) = δij − 2 .                        (49)
                                                                   k
                               λ
• In local frame
                    ·
         Aˆ (x) = e ˆj Aj =
          i         i·
                                   d3k        wˆ k,λ)(x)a(k, λ) + [wˆ k,λ)(x)]∗a∗(k, λ) .
                                               i(                   i(                        (50)
                                         λ
• Conformal transformation
                                         gµν (x) = Ω(x)ηµν ,                                  (51)
                               g µν (x) = Ω−1(x)η µν , ds2 = Ω ds2,
                                                                 c                            (52)



                                     Aµ = Aµ ;       Aµ = Ω−1A µ.                             (53)


• Quantization
                              [a(k, λ), a†(k , λ )] = δλλ δ 3(k − k ) .                       (54)



              [Ai(tc, x ), π j (tc, x )] = [Ai(tc, x ), ∂tc Aj (tc, x )] = i δij (x − x ) ,
                                                                              tr
                                                                                              (55)
                                                    11
• The momentum density
                                  j    √        δL
                                 π =       −g            = ∂tc Aj                      (56)
                                              δ(∂tc Aj )


                            tr          1                q iq j
                           δij (x ) =           d3q δij − 2           eiq·x            (57)
                                      (2π)3               q

• Conserved operators


                        1
                Pl =      δij : Ai, (P l A)j :=      d3k k l       a†(k, λ)a(k, λ) ,   (58)
                        2
                                                               λ


                                        1
                                  H=      δij : Ai, (HA)j :                            (59)
                                        2


                        1
               W =        δij : Ai, (W A)j : =       d3k k         λ a†(k, λ)a(k, λ)   (60)
                        2
                                                               λ

                                                12
[H, P i] = iωP i ,       [H, W] = iωW ,                [W, P i] = 0 ,              (61)



                                                      3  i
                             (Hfk ) (x) = −iω k ∂ki +   f (x)                                         (62)
                                                      2 k

                           iω           3     i     †
                                                              ↔
                        H=           d kk          a (k, λ)   ∂ ki   a(k, λ) ,                        (63)
                            2

• The commutator functions
                              (±)                       (±)      (±) †
                             Dij (x − x ) = i[Ai (x), Aj                   (x )]                      (64)




                   (+)                        3                       ∗          k ik j
                  Dij (x   −x) = i           d k fk (x)fk (x )              δij − 2                   (65)
                                                                                  k


               (+)            i              d3k             k ik j                   )−ik(tc −tc )
              Dij (x   −x)=                             δij − 2            eik·(x−x                   (66)
                            (2π)3            2k               k
                                                   13
• at equal times,
                           (+)                                 1 tr
                      ∂tc Dij (tc − tc, x − x )            =     δij (x − x ) .   (67)
                                                  tc =tc       2

• The transversal Green functions
                                                           tr
                       ∂t2c − ∆x Gij (x − x ) = δ(tc − tc)δij (x − x )            (68)

si ∂iGi· (x) = 0.
¸     ·j
                           R
                          Dij (x − x ) = θ(tc − tc)Dij (x − x ) ,                 (69)
                           A
                          Dij (x − x ) = −θ(tc − tc)Dij (x − x ) ,                (70)
• The Feynman propagator ,
                      F
                     Dij (x − x ) = i 0|T [Ai(x)Aj (x )] |0
                                    (+)                              (−)
                     = θ(tc − tc)Dij (x − x ) − θ(tc − tc)Dij (x − x ) ,          (71)




                                             14
Interaction   between                                 Dirac           field   and
electromagnetic field

• The action for interacting fields:
                                             √
                                          i ¯ α
                    S [e, ψ, A] =        4
                                   d x −g [ψγ ˆ Dαψ − (Dαψ)γ αψ]
                                                   ˆ       ˆ
                                                               ˆ
                                          2
                                    ¯   1            ¯ ˆ ˆ
                                  −mψψ − Fµν F µν − eψγ αAαψ ,                (72)
                                        4

• Equations for fields in interaction
                                         iγ αDαψ − mψ = eγ αAαψ,
                                            ˆ
                                               ˆ
                                                            ˆ
                                                               ˆ
                                1                             ¯ ˆ
                                       ∂µ     (−g)F µν = eeν ψγ αψ.
                                                           α
                                                           ˆ                  (73)
                               (−g)




                                                 15
Interaction  between                             scalar           field             and
electromagnetic field

• The action
                                   √       µ †          1
                                                       2 †
                S[φ, A] =     d x −g (∂ φ ∂µφ − m φ φ) − Fµν F µν
                               4
                                                        4
                            −ie[(∂µφ†)φ − (∂µφ)φ†]Aµ + e2φ†φAµAµ .                  (74)



• Equations for fields in interaction
           1        √                 √
         √     ∂µ −g g ∂ν φ − ie −gφAµ + m2φ = ie(∂µφ)Aµ + e2φAµAµ,
                            µν
           −g
                                    1
                                        ∂µ (−g)F µν = −ie[(∂ ν φ†)φ − (∂ ν φ)φ†]
                                   (−g)
                                                      +2e2φ†φAν .                   (75)




                                           16
The in out fields
• The equation of the interaction fields in the Coulomb gauge
                                                    ¯
                                 (∂t2c − ∆x)A(x) = eψ(x)γψ(x)                (76)
• Solution:
                             ˆ
                      A(x) = A(x) − e                    ¯
                                         d3ydtc DG(x − y)ψ(y)γψ(y),          (77)




                        ˆ
                 A(x) = A(R/A)(x) − e                        ¯
                                           d3ydtc DR/A(x − y)ψ(y)γψ(y),      (78)

                   ˆ
• the free fields , A(R/A)(x) satisfy:
                                             ˆ
                                 lim (A(x) − A(R/A)(x)) = 0.                 (79)
                                t→ ∞

• The fields in/out:
                √                                               ¯
                    z3Ain/out(x) = A(x) + e   d3ydtc DR/A(x − y)ψ(y)γψ(y).   (80)

                                              17
• The in/out fields, final expressions:
             √
                 z3Ain/out(x) = A(x) +           d3ydtc DR/A(x − y)(∂t2c − ∆y )A(y),   (81)



                                                                ↔
                                             3
                     a(k, λ)in/out = i   d xfk (x)e (nk , λ) ∂tc Ain/out(x)            (82)


• The case of interaction with scalar field
                        ˆ + e d4y √−g G(x, y) √ i ∂µ[√−gφ(y)Aµ(y)]
              φ(x) = φ(x)
                                               −g
                       +i[∂µφ(y)]Aµ(y) + eφ(y)Aµ(y)Aµ(y) ,                             (83)




                 ˆ                       √            i   √
          φ(x) = φR/A(x) + e        d y −gDR/A(x, y) √ ∂µ[ −gφ(y)Aµ(y)]
                                     4
                                                      −g
                   +i[∂µφ(y)]Aµ(y) + eφ(y)Aµ(y)Aµ(y) .                                 (84)


                                                   18
• The in/out fields:
           √                               √
             zφin/out(x) = φ(x) −     d y −gDR/A(x, y)[EKG(y) + m2]φ(y).
                                       4
                                                                                (85)

•


                                                              ↔
                                       3            ∗
                    a(p )in/out = i   d    x(−g)1/2fp (x)     ∂t φin/out(x)
                                                               ↔
                    †                  3          1/2
                   b (p )in/out = i   d x(−g)           fp (x) ∂t φin/out(x).   (86)




                                             19
Perturbation theory

• The expression of Green functions
                                                  1        ˆ    ˆ       ˆ
                 G(y1, y2, ..., yn) =                 0|T [φ(y1)φ(y2)...φ(yn), S]|0 ,          (87)
                                             0|S|0


                                            ∞
                            (x)d4 x               (−i)n
          S = T e−i    LI
                                      =1+                  T [LI (x1)...LI (xn)]d4x1...d4xn,   (88)
                                            n=1
                                                   n!
• The interaction Lagrangian
                                            √
                            LI (x) = −ie −g : [(∂µφ†)φ − (∂µφ)φ†]Aµ :                          (89)



             (−i)n                 ˆ    ˆ       ˆ
                              0|T [φ(y1)φ(y2)...φ(yn), LI (x1)...LI (xn)]|0 d4x1...d4xn.       (90)
            n! 0|S|0



                                                      20
• the amplitude:
                               3        1                        ∗
    out, 1(p )|in, 1(p ) = δ (p − p ) −           −g(y) −g(z)fp (y)[EKG(y) + m2]
                                        z
                           × 0|T [φ(y)φ†(z)]|0 [EKG(z) + m2]fp (z)d4yd4z.      (91)


• The scattering amplitude in the first order of perturbation theory
                                                         ↔
                                                ∗
                    Ai→f = −e         −g(x)    fp   (x) ∂µ fp (x) Aµ(x)d4x,            (92)




                    Ai→f = −ie              ¯
                                       −g(x)Up      ,λ (x)γµ A
                                                                 µ
                                                                 ˆ
                                                                     (x)Up,λ (x)d4x,   (93)




                                               21
Coulomb scattering for the charged scalar field

• External field
                                             ˆ
                                             0 Ze −ωt
                                           A =     e                                (94)
                                               |x|
• initial and final states are:
                                 φf (x) = fpf (x),    φi(x) = fpi (x).              (95)


• Scattering amplitude
                −αZ         pi ∞         (2)     (1)           (2)     (1)
    Ai→f   =              −        z Hik (pf z)Hik−1(piz) − Hik (pf z)Hik+1(piz) dz
             8π|pf − pi|2     2 0
               pf ∞       (2)        (1)        (2)        (1)
             +        z Hik−1(pf z)Hik (piz) − Hik+1(pf z)Hik (piz) dz ,            (96)
               2 0


                                                e−ωt
                                             z=      .                              (97)
                                                 ω


                                                 22
• Scattering amplitude in final form
                                                  −αZ
                                    Ai→f =                 B ,
                                                          2 k
                                                                                                       (98)
                                               8π|pf − pi|

                 (pf + pi)                1                           pf             pf
            Bk = √         2iδ(pf − pi) + θ(pi − pf ) h∗k                   − gk
                     pf pi                pi                          pi             pi
                   1               ∗   pi        pi
                + θ(pf − pi) gk            − hk        .                                               (99)
                   pf                  pf       pf

                                   3 1                   2            1 3                 2
               e−πk χik      2 F1  2 , 2 + ik; 1 + ik; χ       2 F1 2 , 2 + ik; 1 + ik; χ
     gk (χ) =                                                −
              sinh2(πk)               1
                                  B( 2 − ik; 1 + ik)                B(− 1 − ik; 1 + ik)
                                                                         2
                                      3 1                  2            1 3                   2
                  eπk χ−ik     2 F1 2 , 2 − ik; 1 − ik; χ         2 F1 2 , 2 − ik; 1 − ik; χ
               +                                               −
                 sinh2(πk)               1
                                    B( 2 + ik; 1 − ik)                B(− 1 + ik; 1 − ik)
                                                                            2
                                      3 1                  2            1 3                  2
                    χik        2 F1 2 , 2 + ik; 1 + ik; χ         2 F1 2 , 2 + ik; 1 + ik; χ
               +                                              −
                 sinh2(πk)                  1
                                       B(− 2 ; 1 + ik)                        1
                                                                          B( 2 ; 1 + ik)
                                      3 1                  2            1 3                   2
                    χ−ik       2 F1 2 , 2 − ik; 1 − ik; χ         2 F1 2 , 2 − ik; 1 − ik; χ
               +                                               −                                  ,
                 sinh2(πk)                  1
                                       B(− 2 ; 1 − ik)                        1
                                                                          B( 2 ; 1 − ik)
                                                                                                      (100)
                                                  23
3 3                                      1 1
             e−πk χ−ik         2 F1    , 2 − ik; 2 − ik; χ2            2 F1 2 , 2 − ik; −ik; χ
                                                                                                 2
    hk (χ) =                         2
                                                              · χ2 −
             sinh2(πk)             B(− 1 + ik; 2 − ik)
                                          2                                 B(−ik; 1 + ik)
                                                                                     2
                                        3 3                 2                   1 1             2
                  eπk χik        2 F1 2 , 2 + ik; 2 + ik; χ              2 F1 2 , 2 + ik; ik; χ
              +                                                 · χ2 −
                sinh2(πk)                   1
                                     B(− 2 − ik; 2 + ik)                      B( 1 − ik; ik)
                                                                                  2
                                        1 1             2            3 3                   2
                   χik           2 F1 2 , 2 + ik; ik; χ       2 F1 2 , 2 + ik; 2 + ik; χ
              +                                            −                                  · χ2
                sinh2(πk)                 B( 1 ; ik)
                                              2                       B(− 1 ; 2 + ik)
                                                                            2
                                        1 1               2            3 3                   2
                   χ−ik          2 F1 2 , 2 − ik; −ik; χ         2 F1 2 , 2 − ik; 2 − ik; χ
              +                                              −                                    · χ2   ,
                sinh2(πk)                     1
                                          B( 2 ; −ik)                          1
                                                                         B(− 2 ; 2 − ik)
                                                                                                         (101)

                          pf        pi
• the notations are χ =   pi   or   pf   .

• The Minkowski limit
                                             (pf + pi)
                                         B∞ = √        2iδ(pf − pi).                                     (102)
                                                 pf pi

• Minkowski case
                                              (Ef + Ei)
                                      BM =              4iδ(Ef − Ei),                                    (103)
                                                 Ef Ei
                                                     24
• Ration of the two amplitudes
                                        δ(pf − pi)  1
                                                   = .                          (104)
                                       2δ(Ef − Ei) 2

• The incident flux
                                                      ↔
                                              ∗
                                   Jµ = −i   fp (x)   ∂µ fp (x) ,               (105)




                      ∗
                               ↔            πpie−3ωt (2) pi −ωt  (1) pi −ωt
         j(t) = −i   fpi (x)   ∂i fpi (x) =        3
                                                     Hik   e    Hik    e    .   (106)
                                            2ω(2π)       ω           ω




                                               25
Coulomb scattering with fermions

• The scattering amplitude
                                     √      ¯              ˆ
                    Ai→f = −ie           −g Upf ,λf (x)γ0A0(x)Upi,λi (x)d4x.                    (107)



                             √                                     ∞
                           pi pf
        Ai→f   = −iαZ              ξλf (pf )ξλi (pi) eπk
                                    +                                      (2)       (1)
                                                                       dzzHν+ (pf z)Hν− (piz)
                      8π|pf − pi|2                             0
                                         ∞
                  +sgn(λf λi)e−πk                (2)       (1)
                                             dzzHν− (pf z)Hν+ (piz)                             (108)
                                     0




                                                 26
• Final form of the amplitude
                                                                                                                                           p2
                                                                                              
                                                                                                                      1           1
          −i αZ                                                  1  pf                  eπk 2F1
                                                                                                       −ik
                                                                                                                      2
                                                                                                                        ,1   − ik; − ik;
                                                                                                                                  2
                                                                                                                                            f
                                                                                                                                           p2
                        +                                                                                                                   i
  Ai→f =               ξ (pf )ξλi (pi) δ(pf − pi) + θ(pi − pf )       i
          4π |pf − pi|2 λf                                       pi      pi           cosh(πk)                         B( 1 , 1 − ik)
                                                                                                                          2 2

                                                 p2
                                                       
                               3          3       f
                  e−πk 2F1 2 , 1 + ik; 2 + ik; p2 
           1+ik                                                                        1−ik
       pf                                         i                    1         pi
  −i                                                     + θ(pf − pi)      i
       pi       cosh(πk)       B(− 1 , 3 + ik)
                                      2 2
                                                                      pf        pf
                                       p2                                                   p2
                                                                                               
                   3         3                                        1             1
      e−πk 2F1 2 , 1 − ik; 2 − ik; p2                    ieπk 2F1 2 , 1 + ik; 2 + ik; p2 
                                        i           ik                                       i
                                        f     pi                                             f
  ×                     1 3               −                                1 1
    cosh(πk)       B(− 2 , 2 − ik)            pf       cosh(πk)         B( 2 , 2 + ik)
                                                                                       ik
                                                1    pf                                       e−πk
  +sgn(λf λi)δ(pf − pi) + sgn(λf λi)θ(pi − pf )    i
                                                pi   pi                                     cosh(πk)
                                  p2                                                                         p2
                                                                                                                  
             1            1                                                            3           3
      2 F1   2
               ,1   + ik; + ik;
                          2
                                   f
                                  p2       pf
                                                        1−ik
                                                                  eπk 2F1   − ik; − ik;2
                                                                                         ,1        2
                                                                                                              f
                                                                                                             p2
                                   i                                                                          i
  ×                                     −i                                                                        
              B( 2 , 1
                 1
                     2
                         + ik)             pi                  cosh(πk)   B(− 1 , 3 − ik)
                                                                              2 2
                                                                                                       2
                                                                                                    pi
                                                                                3            3
                                 1  pi
                                                1+ik
                                                           e   πk        2 F1   2
                                                                                  ,1   + ik; 2 + ik; p2
                                                                                                       f
  +sgn(λf λi)θ(pf − pi)             i
                                 pf   pf                cosh(πk)                B(− 1 , 3 + ik)
                                                                                    2 2

                                                                    p2
                                                                         
                                       1            1
     pi
               −ik
                       e−πk 2F1        2
                                         ,1   − ik; − ik;
                                                    2
                                                                     i
                                                                    p2
                                                                     f
  −i                                                                      .                                                               (109)
     pf              cosh(πk)           B( 1 , 1
                                           2 2
                                                   − ik)


                                                                             27
• The incident flux
              eωt ¯                               πpie−3ωt (2) pi −ωt       (1) pi −ωt
        j=          Upi, λi (x)(piγ)Upi, λi (x) =      3 4ω
                                                              Hν−   e     Hν−     e
             | pi |                               (2π)            ω             ω
                                                     (2) pi −ωt     (1) pi −ωt
                                                  +Hν+        e   Hν+     e              (110)
                                                            ω           ω


                                      √      ¯             ˆ
                      Ai→f = −ie          −g Upf ,λf (x)γ0A0(x)Vpi,λi (x)d4x             (111)




                                                28
References
            ˘
 [1] I.I.Cotaescu, Phys. Rev. D 65, 084008 (2002)
            ˘
 [2] I.I.Cotaescu, R.Racoceanu and C.Crucean, Mod.Phys.Lett A 21, 1313 (2006)
 [3] C.Crucean, Mod.Phys.Lett A 22, 2573 (2007)
 [4] C.Crucean and R.Racoceanu, Int.J.Mod.Phys. A 23, 1075 (2008)
            ˘
 [5] I.I.Cotaescu and C.Crucean, Int.J.Mod.Phys. A 23, 1351 (2008)
            ˘
 [6] I.I.Cotaescu, C.Crucean, A.Pop, Int.J.Mod.Phys. A 23 (2008)
              ˘
 [7] I. I. Cotaescu and C. Crucean, Int.J.Mod.Phys. A 23 (2008)
 [8] C.Crucean, Mod.Phys.Lett A 25, (2010)
            ˘
 [9] I.I.Cotaescu and C.Crucean, qr-qc/0806.2515
[10] C.Crucean, R.Racoceanu and A.Pop, Phys.Lett.B 665, 409 (2008)
[11] C.Crucean, math-ph/0912.3659, (2009)




                                              29

More Related Content

What's hot

One way to see higher dimensional surface
One way to see higher dimensional surfaceOne way to see higher dimensional surface
One way to see higher dimensional surface
Kenta Oono
 
2003 Ames.Models
2003 Ames.Models2003 Ames.Models
2003 Ames.Models
pinchung
 
Chapter 5 (maths 3)
Chapter 5 (maths 3)Chapter 5 (maths 3)
Chapter 5 (maths 3)
Prathab Harinathan
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
kazuhase2011
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
Henry Romero
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
Delta Pi Systems
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
Kyro Fitkry
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet All
Moe Han
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
UrbanX4
 
Proximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportProximal Splitting and Optimal Transport
Proximal Splitting and Optimal Transport
Gabriel Peyré
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
SEENET-MTP
 
Cosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsCosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical Simulations
Ian Huston
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
Gabriel Peyré
 
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Alex (Oleksiy) Varfolomiyev
 
Cheat Sheet
Cheat SheetCheat Sheet
Cheat Sheet
guest742ba8
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
Chalio Solano
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
A Jorge Garcia
 
Special second order non symmetric fitted method for singular
Special second order non symmetric fitted method for singularSpecial second order non symmetric fitted method for singular
Special second order non symmetric fitted method for singular
Alexander Decker
 
Chapter 4 (maths 3)
Chapter 4 (maths 3)Chapter 4 (maths 3)
Chapter 4 (maths 3)
Prathab Harinathan
 

What's hot (19)

One way to see higher dimensional surface
One way to see higher dimensional surfaceOne way to see higher dimensional surface
One way to see higher dimensional surface
 
2003 Ames.Models
2003 Ames.Models2003 Ames.Models
2003 Ames.Models
 
Chapter 5 (maths 3)
Chapter 5 (maths 3)Chapter 5 (maths 3)
Chapter 5 (maths 3)
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet All
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
Proximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportProximal Splitting and Optimal Transport
Proximal Splitting and Optimal Transport
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
Cosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsCosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical Simulations
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
 
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
 
Cheat Sheet
Cheat SheetCheat Sheet
Cheat Sheet
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
 
Special second order non symmetric fitted method for singular
Special second order non symmetric fitted method for singularSpecial second order non symmetric fitted method for singular
Special second order non symmetric fitted method for singular
 
Chapter 4 (maths 3)
Chapter 4 (maths 3)Chapter 4 (maths 3)
Chapter 4 (maths 3)
 

Viewers also liked

A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...
A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...
A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...
SEENET-MTP
 
R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...
R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...
R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...
SEENET-MTP
 
B. Sazdović: Canonical Approach to Closed String Non-commutativity
B. Sazdović: Canonical Approach to Closed String Non-commutativityB. Sazdović: Canonical Approach to Closed String Non-commutativity
B. Sazdović: Canonical Approach to Closed String Non-commutativity
SEENET-MTP
 
N. Kroo, On the changing world of science
N. Kroo, On the changing world of scienceN. Kroo, On the changing world of science
N. Kroo, On the changing world of science
SEENET-MTP
 
R. Doran, Galileo Teacher Training Program - Helping Teachers Build the Schoo...
R. Doran, Galileo Teacher Training Program - Helping Teachers Build the Schoo...R. Doran, Galileo Teacher Training Program - Helping Teachers Build the Schoo...
R. Doran, Galileo Teacher Training Program - Helping Teachers Build the Schoo...
SEENET-MTP
 
I. Doršner, Leptoquark Mass Limit in SU(5)
I. Doršner, Leptoquark Mass Limit in SU(5)I. Doršner, Leptoquark Mass Limit in SU(5)
I. Doršner, Leptoquark Mass Limit in SU(5)
SEENET-MTP
 
S. Ignjatović, On Some Models of the Exotic Hadron States
S. Ignjatović, On Some Models of the Exotic Hadron StatesS. Ignjatović, On Some Models of the Exotic Hadron States
S. Ignjatović, On Some Models of the Exotic Hadron States
SEENET-MTP
 
M. Serone, The Composite Higgs Paradigm
M. Serone, The Composite Higgs ParadigmM. Serone, The Composite Higgs Paradigm
M. Serone, The Composite Higgs Paradigm
SEENET-MTP
 
G. Zaharijas, Indirect Searches for Dark Matter with the Fermi Large Area Tel...
G. Zaharijas, Indirect Searches for Dark Matter with the Fermi Large Area Tel...G. Zaharijas, Indirect Searches for Dark Matter with the Fermi Large Area Tel...
G. Zaharijas, Indirect Searches for Dark Matter with the Fermi Large Area Tel...
SEENET-MTP
 

Viewers also liked (9)

A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...
A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...
A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...
 
R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...
R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...
R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...
 
B. Sazdović: Canonical Approach to Closed String Non-commutativity
B. Sazdović: Canonical Approach to Closed String Non-commutativityB. Sazdović: Canonical Approach to Closed String Non-commutativity
B. Sazdović: Canonical Approach to Closed String Non-commutativity
 
N. Kroo, On the changing world of science
N. Kroo, On the changing world of scienceN. Kroo, On the changing world of science
N. Kroo, On the changing world of science
 
R. Doran, Galileo Teacher Training Program - Helping Teachers Build the Schoo...
R. Doran, Galileo Teacher Training Program - Helping Teachers Build the Schoo...R. Doran, Galileo Teacher Training Program - Helping Teachers Build the Schoo...
R. Doran, Galileo Teacher Training Program - Helping Teachers Build the Schoo...
 
I. Doršner, Leptoquark Mass Limit in SU(5)
I. Doršner, Leptoquark Mass Limit in SU(5)I. Doršner, Leptoquark Mass Limit in SU(5)
I. Doršner, Leptoquark Mass Limit in SU(5)
 
S. Ignjatović, On Some Models of the Exotic Hadron States
S. Ignjatović, On Some Models of the Exotic Hadron StatesS. Ignjatović, On Some Models of the Exotic Hadron States
S. Ignjatović, On Some Models of the Exotic Hadron States
 
M. Serone, The Composite Higgs Paradigm
M. Serone, The Composite Higgs ParadigmM. Serone, The Composite Higgs Paradigm
M. Serone, The Composite Higgs Paradigm
 
G. Zaharijas, Indirect Searches for Dark Matter with the Fermi Large Area Tel...
G. Zaharijas, Indirect Searches for Dark Matter with the Fermi Large Area Tel...G. Zaharijas, Indirect Searches for Dark Matter with the Fermi Large Area Tel...
G. Zaharijas, Indirect Searches for Dark Matter with the Fermi Large Area Tel...
 

Similar to Cosmin Crucean: Perturbative QED on de Sitter Universe.

近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定
Kosei ABE
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
Sebastian De Haro
 
Example triple integral
Example triple integralExample triple integral
Example triple integral
Zulaikha Ahmad
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
ketanaka
 
Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial Processes
SSA KPI
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
zabidah awang
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyan
Grigor Alaverdyan
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
zabidah awang
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Rousseau
RousseauRousseau
Rousseau
eric_gautier
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
VjekoslavKovac1
 
Unconditionally stable fdtd methods
Unconditionally stable fdtd methodsUnconditionally stable fdtd methods
Unconditionally stable fdtd methods
physics Imposible
 
Fdtd
FdtdFdtd
The convenience yield implied by quadratic volatility smiles presentation [...
The convenience yield implied by quadratic volatility smiles   presentation [...The convenience yield implied by quadratic volatility smiles   presentation [...
The convenience yield implied by quadratic volatility smiles presentation [...
yigalbt
 
test
testtest
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
SEENET-MTP
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
Rumah Belajar
 
Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3
Sebastian De Haro
 

Similar to Cosmin Crucean: Perturbative QED on de Sitter Universe. (20)

近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
Example triple integral
Example triple integralExample triple integral
Example triple integral
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
 
Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial Processes
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyan
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
Rousseau
RousseauRousseau
Rousseau
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Unconditionally stable fdtd methods
Unconditionally stable fdtd methodsUnconditionally stable fdtd methods
Unconditionally stable fdtd methods
 
Fdtd
FdtdFdtd
Fdtd
 
The convenience yield implied by quadratic volatility smiles presentation [...
The convenience yield implied by quadratic volatility smiles   presentation [...The convenience yield implied by quadratic volatility smiles   presentation [...
The convenience yield implied by quadratic volatility smiles presentation [...
 
test
testtest
test
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3
 

More from SEENET-MTP

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
SEENET-MTP
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
SEENET-MTP
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
SEENET-MTP
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
SEENET-MTP
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
SEENET-MTP
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
SEENET-MTP
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
SEENET-MTP
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
SEENET-MTP
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
SEENET-MTP
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
SEENET-MTP
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
SEENET-MTP
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
SEENET-MTP
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
SEENET-MTP
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
SEENET-MTP
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
SEENET-MTP
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
SEENET-MTP
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
SEENET-MTP
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
SEENET-MTP
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
SEENET-MTP
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"
SEENET-MTP
 

More from SEENET-MTP (20)

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"
 

Recently uploaded

BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
Nguyen Thanh Tu Collection
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
Himanshu Rai
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
Katrina Pritchard
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Fajar Baskoro
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience
Wahiba Chair Training & Consulting
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
paigestewart1632
 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
Jyoti Chand
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
iammrhaywood
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
heathfieldcps1
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 

Recently uploaded (20)

BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 

Cosmin Crucean: Perturbative QED on de Sitter Universe.

  • 1. PERTURBATIVE Q.E.D ON DE SITTER UNIVERSE WEST UNIVERSITY OF TIMISOARA FACULTY OF PHYSICS author: Crucean Cosmin 1
  • 2. THE THEORY OF FREE FIELDS ON DE SITTER UNIVERSE Dirac field • De Sitter metric: 1 ds2 = dt2 − e2ωtdx 2 = (dt2 − dx 2), ω > 0, ωtc = −e−ωt (1) (ωtc)2 c ˆ gµν = ηαβ eαeβ ˆ ˆ ˆ µ ν (2) • In the Cartesian gauge the nonvanishing tetradic components are: ˆ 1 ˆ ˆ 1 e0 = −ωtc, eˆ = −δˆωtc, e0 = − , ei = −δj . ˆ 0 i j i j 0 j i (3) ωtc ωtc 2
  • 3. • Action for Dirac field √i ¯ α S [e, ψ] = d x −g [ψγ ˆ Dαψ − (Dαψ)γ αψ] 4 ˆ ˆ ˆ 2 ¯ −mψψ , (4) where Dα = eµ Dµ = ∂α + Γα ˆ α ˆ ˆ ˆ (5) • In this gauge the Dirac operator reads: 3iω 0 ED = iγ 0∂t + ie−ωtγ i∂i + γ 2 0 i 3iω 0 = −iωtc(γ ∂tc + γ ∂i) + γ (6) 2 • the Dirac equation (ED − m)ψ = 0 (7) • The fundamental solutions are: 1 πk/2 (1) πp/ω e Hν− (qe−ωt)ξλ(p ) Up, λ(t, x ) = i 2 (1) eip·x−2ωt (2π)3/2 λe−πk/2Hν+ (qe−ωt)ξλ(p ) (2) πp/ω −λe−πk/2Hν− (qe−ωt)ηλ(p ) Vp, λ(t, x ) = i 1 πk/2 (2) e−ip·x−2ωt , (8) (2π)3/2 2 e Hν+ (qe−ωt)ηλ(p ) 3
  • 4. • Charge conjugation ¯ Up, λ(x) → Vp, λ(x) = iγ 2γ 0(Up, λ(x))T . (9) • The orthonormalization relations : ¯ d3x(−g)1/2Up, λ(x)γ 0Up , λ (x) = ¯ d3x(−g)1/2Vp, λ(x)γ 0Vp , λ (x) = δλλ δ 3(p − p ) ¯ d3x(−g)1/2Up,λ(x)γ 0Vp ,λ (x) = 0, (10) d3p Up, λ(t, x )Up, λ(t, x ) + Vp, λ(t, x )Vp, λ(t, x ) = e−3ωtδ 3(x − x ). + + (11) λ • The field operator ψ(t, x ) = ψ (+)(t, x ) + ψ (−)(t, x ) = d3p Up, λ(t, x )a(p, λ) + Vp, λ(t, x )b+(p, λ) . (12) λ • Canonic cuantization {a(p, λ), a+(p , λ )} = {b(p, λ), b+(p , λ )} = δλλ δ 3(p − p ) , (13) 4
  • 5. {ψ(t, x ), ψ(t, x )} = e−3ωtγ 0δ 3(x − x ) , (14) SF (t, t , x − x ) = i 0|T [ψ(x)ψ(x )]|0 = θ(t − t )S (+)(t, t , x − x ) −θ(t − t)S (−)(t, t , x − x ) . (15) [ED (x) − m]SF (t, t , x − x ) = −e−3ωtδ 4(x − x ). (16) • Conserved operators Pi =: ψ, P iψ := d3p pi [a+(p, λ)a(p, λ) + b+(p, λ)b(p, λ)] (17) λ W =: ψ, W ψ := d3p pλ[a+(p, λ)a(p, λ) + b+(p, λ)b(p, λ)] . (18) λ iω 3 i + ↔ + ↔ H= d pp a (p, λ) ∂ pi a(p, λ) + b (p, λ) ∂ pi b(p, λ) . (19) 2 λ 5
  • 6. [H, P i] = iωP i. (20) Scalar field • Action of the scalar field ∗ √ √ S[φ, φ ] = 4 d x −g L = d x −g ∂ µφ∗∂µφ − m2φ∗φ , 4 (21) • The Klein-Gordon equation: 1 √ √ ∂µ −g g µν ∂ν φ + m2φ = 0 . (22) −g ∂t2 − e−2ωt∆ + 3ω∂t + m2 φ(x) = 0 . (23) • Solutions of Klein-Gordon equation: 1 π e−3ωt/2 −πk/2 (1) p −ωt ip·x fp (x) = 3/2 e Hik e e , (24) 2 ω (2π) ω 6
  • 7. 9 m k= µ2 − , 4 µ = , m > 3ω/2 (25) ω • The orthonormalization relations: ↔ 3 1/2 ∗ i d x (−g) fp (x) ∂t fp (x) = ↔ 3 1/2 ∗ −i d x (−g) fp (x) ∂t fp (x) = δ 3(p − p ) , (26) ↔ 3 1/2 i d x (−g) fp (x) ∂t fp (x) = 0 , (27) ↔ ∗ i 3 d p fp (t, x ) ∂t fp (t, x ) = e−3ωtδ 3(x − x ) . (28) • Canonic cuantization ∗ φ(x) = φ(+)(x) + φ(−)(x) = d3p fp (x)a(p ) + fp (x)b+(p ) , (29) [a(p ), a†(p )] = [b(p ), b†(p )] = δ 3(p − p ) . (30) • 7
  • 8. [φ(t, x ), ∂tφ†(t, x )] = ie−3ωtδ 3(x − x ) . (31) • The commutator functions: D(±)(x, x ) = i[φ(±)(x), φ(±)†(x )], (32) ∗ D(+)(x, x ) = i d3p fp (x)fp (x ), ∗ D(−)(x, x ) = −i d3p fp (x)fp (x ). (33) • G(x, x ) is a Green function of the Klein-Gordon equation if: ∂t2 − e−2ωt∆x + 3ω∂t + m2 G(x, x ) = e−3ωtδ 4(x − x ) . (34) DR(t, t , x − x ) = θ(t − t )D(t, t , x − x ) , (35) DA(t, t , x − x ) = − θ(t − t)D(t, t , x − x ) , (36) 8
  • 9. • The Feynman propagator, DF (t, t , x − x ) = i 0|T [φ(x)φ†(x )] |0 = θ(t − t )D(+)(t, t , x − x ) − θ(t − t)D(−)(t, t , x − x ) , (37) The electromagnetic field • The action √ 1 √ S[A] = d4x −g L = − d4x −g Fµν F µν , (38) 4 Fµν = ∂µAν − ∂ν Aµ • Field equation √ ∂ν ( −g g ναg µβ Fαβ ) = 0 , (39) • In the Coulomb gauge A0 = 0, (Ai) ; i = 0 ,and chart {tc, x} ¸ (∂t2c − ∆)Ai = 0 (40) 9
  • 10. • The field operator (+) (−) Ai(x) = Ai (x) + Ai (x) = d3k ei(nk , λ)fk (x)a(k, λ) + [ei(nk , λ)fk (x)]∗a∗(k, λ) λ (41) 1 1 fk (x) = √ e−iktc+ik·x , (42) (2π)3/2 2k • the Hermitian form ↔ ↔ 3 ∗ f, g = i d x f (tc, x ) ∂tc g(tc, x ) , f ∂ g = f (∂g) − g(∂f ) (43) • The orthonormalization relations: ∗ ∗ fk , fk = − fk , fk = δ 3(k − k ) , (44) ∗ fk , fk = 0 , (45) ↔ 3 ∗ i d k fk (tc, x) ∂tc fk (tc, x ) = δ 3(x − x ) , (46) k · e (nk , λ) = 0 , (47) 10
  • 11. e (nk , λ) · e (nk , λ )∗ = δλλ , (48) ∗ k ik j ei(nk , λ) ej (nk , λ) = δij − 2 . (49) k λ • In local frame · Aˆ (x) = e ˆj Aj = i i· d3k wˆ k,λ)(x)a(k, λ) + [wˆ k,λ)(x)]∗a∗(k, λ) . i( i( (50) λ • Conformal transformation gµν (x) = Ω(x)ηµν , (51) g µν (x) = Ω−1(x)η µν , ds2 = Ω ds2, c (52) Aµ = Aµ ; Aµ = Ω−1A µ. (53) • Quantization [a(k, λ), a†(k , λ )] = δλλ δ 3(k − k ) . (54) [Ai(tc, x ), π j (tc, x )] = [Ai(tc, x ), ∂tc Aj (tc, x )] = i δij (x − x ) , tr (55) 11
  • 12. • The momentum density j √ δL π = −g = ∂tc Aj (56) δ(∂tc Aj ) tr 1 q iq j δij (x ) = d3q δij − 2 eiq·x (57) (2π)3 q • Conserved operators 1 Pl = δij : Ai, (P l A)j := d3k k l a†(k, λ)a(k, λ) , (58) 2 λ 1 H= δij : Ai, (HA)j : (59) 2 1 W = δij : Ai, (W A)j : = d3k k λ a†(k, λ)a(k, λ) (60) 2 λ 12
  • 13. [H, P i] = iωP i , [H, W] = iωW , [W, P i] = 0 , (61) 3 i (Hfk ) (x) = −iω k ∂ki + f (x) (62) 2 k iω 3 i † ↔ H= d kk a (k, λ) ∂ ki a(k, λ) , (63) 2 • The commutator functions (±) (±) (±) † Dij (x − x ) = i[Ai (x), Aj (x )] (64) (+) 3 ∗ k ik j Dij (x −x) = i d k fk (x)fk (x ) δij − 2 (65) k (+) i d3k k ik j )−ik(tc −tc ) Dij (x −x)= δij − 2 eik·(x−x (66) (2π)3 2k k 13
  • 14. • at equal times, (+) 1 tr ∂tc Dij (tc − tc, x − x ) = δij (x − x ) . (67) tc =tc 2 • The transversal Green functions tr ∂t2c − ∆x Gij (x − x ) = δ(tc − tc)δij (x − x ) (68) si ∂iGi· (x) = 0. ¸ ·j R Dij (x − x ) = θ(tc − tc)Dij (x − x ) , (69) A Dij (x − x ) = −θ(tc − tc)Dij (x − x ) , (70) • The Feynman propagator , F Dij (x − x ) = i 0|T [Ai(x)Aj (x )] |0 (+) (−) = θ(tc − tc)Dij (x − x ) − θ(tc − tc)Dij (x − x ) , (71) 14
  • 15. Interaction between Dirac field and electromagnetic field • The action for interacting fields: √ i ¯ α S [e, ψ, A] = 4 d x −g [ψγ ˆ Dαψ − (Dαψ)γ αψ] ˆ ˆ ˆ 2 ¯ 1 ¯ ˆ ˆ −mψψ − Fµν F µν − eψγ αAαψ , (72) 4 • Equations for fields in interaction iγ αDαψ − mψ = eγ αAαψ, ˆ ˆ ˆ ˆ 1 ¯ ˆ ∂µ (−g)F µν = eeν ψγ αψ. α ˆ (73) (−g) 15
  • 16. Interaction between scalar field and electromagnetic field • The action √ µ † 1 2 † S[φ, A] = d x −g (∂ φ ∂µφ − m φ φ) − Fµν F µν 4 4 −ie[(∂µφ†)φ − (∂µφ)φ†]Aµ + e2φ†φAµAµ . (74) • Equations for fields in interaction 1 √ √ √ ∂µ −g g ∂ν φ − ie −gφAµ + m2φ = ie(∂µφ)Aµ + e2φAµAµ, µν −g 1 ∂µ (−g)F µν = −ie[(∂ ν φ†)φ − (∂ ν φ)φ†] (−g) +2e2φ†φAν . (75) 16
  • 17. The in out fields • The equation of the interaction fields in the Coulomb gauge ¯ (∂t2c − ∆x)A(x) = eψ(x)γψ(x) (76) • Solution: ˆ A(x) = A(x) − e ¯ d3ydtc DG(x − y)ψ(y)γψ(y), (77) ˆ A(x) = A(R/A)(x) − e ¯ d3ydtc DR/A(x − y)ψ(y)γψ(y), (78) ˆ • the free fields , A(R/A)(x) satisfy: ˆ lim (A(x) − A(R/A)(x)) = 0. (79) t→ ∞ • The fields in/out: √ ¯ z3Ain/out(x) = A(x) + e d3ydtc DR/A(x − y)ψ(y)γψ(y). (80) 17
  • 18. • The in/out fields, final expressions: √ z3Ain/out(x) = A(x) + d3ydtc DR/A(x − y)(∂t2c − ∆y )A(y), (81) ↔ 3 a(k, λ)in/out = i d xfk (x)e (nk , λ) ∂tc Ain/out(x) (82) • The case of interaction with scalar field ˆ + e d4y √−g G(x, y) √ i ∂µ[√−gφ(y)Aµ(y)] φ(x) = φ(x) −g +i[∂µφ(y)]Aµ(y) + eφ(y)Aµ(y)Aµ(y) , (83) ˆ √ i √ φ(x) = φR/A(x) + e d y −gDR/A(x, y) √ ∂µ[ −gφ(y)Aµ(y)] 4 −g +i[∂µφ(y)]Aµ(y) + eφ(y)Aµ(y)Aµ(y) . (84) 18
  • 19. • The in/out fields: √ √ zφin/out(x) = φ(x) − d y −gDR/A(x, y)[EKG(y) + m2]φ(y). 4 (85) • ↔ 3 ∗ a(p )in/out = i d x(−g)1/2fp (x) ∂t φin/out(x) ↔ † 3 1/2 b (p )in/out = i d x(−g) fp (x) ∂t φin/out(x). (86) 19
  • 20. Perturbation theory • The expression of Green functions 1 ˆ ˆ ˆ G(y1, y2, ..., yn) = 0|T [φ(y1)φ(y2)...φ(yn), S]|0 , (87) 0|S|0 ∞ (x)d4 x (−i)n S = T e−i LI =1+ T [LI (x1)...LI (xn)]d4x1...d4xn, (88) n=1 n! • The interaction Lagrangian √ LI (x) = −ie −g : [(∂µφ†)φ − (∂µφ)φ†]Aµ : (89) (−i)n ˆ ˆ ˆ 0|T [φ(y1)φ(y2)...φ(yn), LI (x1)...LI (xn)]|0 d4x1...d4xn. (90) n! 0|S|0 20
  • 21. • the amplitude: 3 1 ∗ out, 1(p )|in, 1(p ) = δ (p − p ) − −g(y) −g(z)fp (y)[EKG(y) + m2] z × 0|T [φ(y)φ†(z)]|0 [EKG(z) + m2]fp (z)d4yd4z. (91) • The scattering amplitude in the first order of perturbation theory ↔ ∗ Ai→f = −e −g(x) fp (x) ∂µ fp (x) Aµ(x)d4x, (92) Ai→f = −ie ¯ −g(x)Up ,λ (x)γµ A µ ˆ (x)Up,λ (x)d4x, (93) 21
  • 22. Coulomb scattering for the charged scalar field • External field ˆ 0 Ze −ωt A = e (94) |x| • initial and final states are: φf (x) = fpf (x), φi(x) = fpi (x). (95) • Scattering amplitude −αZ pi ∞ (2) (1) (2) (1) Ai→f = − z Hik (pf z)Hik−1(piz) − Hik (pf z)Hik+1(piz) dz 8π|pf − pi|2 2 0 pf ∞ (2) (1) (2) (1) + z Hik−1(pf z)Hik (piz) − Hik+1(pf z)Hik (piz) dz , (96) 2 0 e−ωt z= . (97) ω 22
  • 23. • Scattering amplitude in final form −αZ Ai→f = B , 2 k (98) 8π|pf − pi| (pf + pi) 1 pf pf Bk = √ 2iδ(pf − pi) + θ(pi − pf ) h∗k − gk pf pi pi pi pi 1 ∗ pi pi + θ(pf − pi) gk − hk . (99) pf pf pf 3 1 2 1 3 2 e−πk χik 2 F1 2 , 2 + ik; 1 + ik; χ 2 F1 2 , 2 + ik; 1 + ik; χ gk (χ) = − sinh2(πk) 1 B( 2 − ik; 1 + ik) B(− 1 − ik; 1 + ik) 2 3 1 2 1 3 2 eπk χ−ik 2 F1 2 , 2 − ik; 1 − ik; χ 2 F1 2 , 2 − ik; 1 − ik; χ + − sinh2(πk) 1 B( 2 + ik; 1 − ik) B(− 1 + ik; 1 − ik) 2 3 1 2 1 3 2 χik 2 F1 2 , 2 + ik; 1 + ik; χ 2 F1 2 , 2 + ik; 1 + ik; χ + − sinh2(πk) 1 B(− 2 ; 1 + ik) 1 B( 2 ; 1 + ik) 3 1 2 1 3 2 χ−ik 2 F1 2 , 2 − ik; 1 − ik; χ 2 F1 2 , 2 − ik; 1 − ik; χ + − , sinh2(πk) 1 B(− 2 ; 1 − ik) 1 B( 2 ; 1 − ik) (100) 23
  • 24. 3 3 1 1 e−πk χ−ik 2 F1 , 2 − ik; 2 − ik; χ2 2 F1 2 , 2 − ik; −ik; χ 2 hk (χ) = 2 · χ2 − sinh2(πk) B(− 1 + ik; 2 − ik) 2 B(−ik; 1 + ik) 2 3 3 2 1 1 2 eπk χik 2 F1 2 , 2 + ik; 2 + ik; χ 2 F1 2 , 2 + ik; ik; χ + · χ2 − sinh2(πk) 1 B(− 2 − ik; 2 + ik) B( 1 − ik; ik) 2 1 1 2 3 3 2 χik 2 F1 2 , 2 + ik; ik; χ 2 F1 2 , 2 + ik; 2 + ik; χ + − · χ2 sinh2(πk) B( 1 ; ik) 2 B(− 1 ; 2 + ik) 2 1 1 2 3 3 2 χ−ik 2 F1 2 , 2 − ik; −ik; χ 2 F1 2 , 2 − ik; 2 − ik; χ + − · χ2 , sinh2(πk) 1 B( 2 ; −ik) 1 B(− 2 ; 2 − ik) (101) pf pi • the notations are χ = pi or pf . • The Minkowski limit (pf + pi) B∞ = √ 2iδ(pf − pi). (102) pf pi • Minkowski case (Ef + Ei) BM = 4iδ(Ef − Ei), (103) Ef Ei 24
  • 25. • Ration of the two amplitudes δ(pf − pi) 1 = . (104) 2δ(Ef − Ei) 2 • The incident flux ↔ ∗ Jµ = −i fp (x) ∂µ fp (x) , (105) ∗ ↔ πpie−3ωt (2) pi −ωt (1) pi −ωt j(t) = −i fpi (x) ∂i fpi (x) = 3 Hik e Hik e . (106) 2ω(2π) ω ω 25
  • 26. Coulomb scattering with fermions • The scattering amplitude √ ¯ ˆ Ai→f = −ie −g Upf ,λf (x)γ0A0(x)Upi,λi (x)d4x. (107) √ ∞ pi pf Ai→f = −iαZ ξλf (pf )ξλi (pi) eπk + (2) (1) dzzHν+ (pf z)Hν− (piz) 8π|pf − pi|2 0 ∞ +sgn(λf λi)e−πk (2) (1) dzzHν− (pf z)Hν+ (piz) (108) 0 26
  • 27. • Final form of the amplitude p2  1 1 −i αZ 1  pf eπk 2F1 −ik 2 ,1 − ik; − ik; 2 f p2 + i Ai→f = ξ (pf )ξλi (pi) δ(pf − pi) + θ(pi − pf ) i 4π |pf − pi|2 λf pi pi cosh(πk) B( 1 , 1 − ik) 2 2 p2  3 3 f e−πk 2F1 2 , 1 + ik; 2 + ik; p2  1+ik 1−ik pf i 1 pi −i + θ(pf − pi) i pi cosh(πk) B(− 1 , 3 + ik) 2 2 pf pf p2 p2  3 3 1 1 e−πk 2F1 2 , 1 − ik; 2 − ik; p2 ieπk 2F1 2 , 1 + ik; 2 + ik; p2  i ik i f pi f × 1 3 − 1 1 cosh(πk) B(− 2 , 2 − ik) pf cosh(πk) B( 2 , 2 + ik) ik 1 pf e−πk +sgn(λf λi)δ(pf − pi) + sgn(λf λi)θ(pi − pf ) i pi pi cosh(πk) p2 p2  1 1 3 3 2 F1 2 ,1 + ik; + ik; 2 f p2 pf 1−ik eπk 2F1 − ik; − ik;2 ,1 2 f p2 i i × −i  B( 2 , 1 1 2 + ik) pi cosh(πk) B(− 1 , 3 − ik) 2 2 2  pi 3 3 1  pi 1+ik e πk 2 F1 2 ,1 + ik; 2 + ik; p2 f +sgn(λf λi)θ(pf − pi) i pf pf cosh(πk) B(− 1 , 3 + ik) 2 2 p2  1 1 pi −ik e−πk 2F1 2 ,1 − ik; − ik; 2 i p2 f −i  . (109) pf cosh(πk) B( 1 , 1 2 2 − ik) 27
  • 28. • The incident flux eωt ¯ πpie−3ωt (2) pi −ωt (1) pi −ωt j= Upi, λi (x)(piγ)Upi, λi (x) = 3 4ω Hν− e Hν− e | pi | (2π) ω ω (2) pi −ωt (1) pi −ωt +Hν+ e Hν+ e (110) ω ω √ ¯ ˆ Ai→f = −ie −g Upf ,λf (x)γ0A0(x)Vpi,λi (x)d4x (111) 28
  • 29. References ˘ [1] I.I.Cotaescu, Phys. Rev. D 65, 084008 (2002) ˘ [2] I.I.Cotaescu, R.Racoceanu and C.Crucean, Mod.Phys.Lett A 21, 1313 (2006) [3] C.Crucean, Mod.Phys.Lett A 22, 2573 (2007) [4] C.Crucean and R.Racoceanu, Int.J.Mod.Phys. A 23, 1075 (2008) ˘ [5] I.I.Cotaescu and C.Crucean, Int.J.Mod.Phys. A 23, 1351 (2008) ˘ [6] I.I.Cotaescu, C.Crucean, A.Pop, Int.J.Mod.Phys. A 23 (2008) ˘ [7] I. I. Cotaescu and C. Crucean, Int.J.Mod.Phys. A 23 (2008) [8] C.Crucean, Mod.Phys.Lett A 25, (2010) ˘ [9] I.I.Cotaescu and C.Crucean, qr-qc/0806.2515 [10] C.Crucean, R.Racoceanu and A.Pop, Phys.Lett.B 665, 409 (2008) [11] C.Crucean, math-ph/0912.3659, (2009) 29