SlideShare a Scribd company logo
CHAPTER                           1                                                                                      Limits

                                                                                                                                            x3 – 4 x 2 + x + 6
                           1.1 Concepts Review                                                                                 9.     lim
                                                                                                                                     x → –1       x +1
                               1. L; c                                                                                                          ( x + 1)( x 2 – 5 x + 6)
                                                                                                                                     = lim
                                                                                                                                         x → –1           x +1
                               2. 6
                                                                                                                                     = lim ( x 2 – 5 x + 6)
                                                                                                                                         x → –1
                               3. L; right
                                                                                                                                     = (–1) – 5(–1) + 6
                                                                                                                                              2

                               4. lim f ( x) = M                                                                                     = 12
                                     x →c

                                                                                                                                             x 4 + 2 x3 – x 2
                                                                                                                              10. lim
                           Problem Set 1.1                                                                                           x →0       x2
                                                                                                                                     = lim( x 2 + 2 x –1) = –1
                               1. lim( x – 5) = –2                                                                                       x →0
                                     x →3


                               2. lim (1 – 2t ) = 3                                                                                       x2 – t 2            ( x + t )( x – t )
                                     t → –1
                                                                                                                              11.     lim            = lim
                                                                                                                                     x→–t x + t        x→ – t      x+t
                                                                                                                                     = lim ( x – t )
                               3.     lim ( x 2 + 2 x − 1) = (−2) 2 + 2(−2) − 1 = −1                                                     x→ –t
                                     x →−2                                                                                           = –t – t = –2t

                               4.     lim ( x 2 + 2t − 1) = (−2) 2 + 2t − 1 = 3 + 2t                                                       x2 – 9
                                     x →−2                                                                                    12.     lim
                                                                                                                                      x →3 x – 3

                                              (
                               5. lim t 2 − 1 =
                                     t →−1
                                                     ) ( ( −1) − 1) = 0
                                                                 2
                                                                                                                                     = lim
                                                                                                                                        x →3
                                                                                                                                             ( x – 3)( x + 3)
                                                                                                                                                   x–3
                                                                                                                                     = lim( x + 3)
                                              (
                               6. lim t 2 − x 2 =
                                     t →−1
                                                       ) ( ( −1)     2
                                                                             )
                                                                         − x2 = 1 − x2                                                   x →3
                                                                                                                                     =3+3=6

                                         x2 – 4       ( x – 2)( x + 2)                                                                          (t + 4)(t − 2) 4
                               7. lim           = lim                                                                         13.     lim
                                     x→2 x – 2    x→2       x–2                                                                       t →2          (3t − 6) 2
                                                = lim( x + 2)
                                                        x→2                                                                                     (t − 2) 2 t + 4
                                                                                                                                     = lim
                                                     =2+2=4                                                                              t →2       9(t − 2) 2

                                            t 2 + 4t – 21                                                                                           t+4
                               8.     lim                                                                                            = lim
                                                                                                                                         t →2        9
                                     t → –7      t+7
                                               (t + 7)(t – 3)                                                                               2+4    6
                                     = lim                                                                                           =          =
                                        t → –7      t+7                                                                                      9    9
                                     = lim (t – 3)
                                        t → –7
                                                                                                                                                    (t − 7)3
                                     = –7 – 3 = –10                                                                           14.        lim
                                                                                                                                       t →7+         t −7
                                                                                                                                                    (t − 7) t − 7
                                                                                                                                      = lim
                                                                                                                                         t →7   +        t −7
                                                                                                                                      = lim          t −7
                                                                                                                                         t →7+

                                                                                                                                     = 7−7 = 0




                           Instructor’s Resource Manual                                                                                                                       Section 1.1                 63
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form
or by any means, without permission in writing from the publisher.
x 4 –18 x 2 + 81                     ( x 2 – 9) 2                                               1 − cos t
           15. lim                                 = lim                                                           lim              =0
                   x →3                    2          x →3                2                                        t →0      2t
                                ( x – 3)                       ( x – 3)
                             ( x – 3) 2 ( x + 3) 2                                                                                       ( x − sin x ) 2 / x 2
                   = lim                       2
                                                           = lim( x + 3)2 = (3 + 3) 2                      21.              x
                      x →3         ( x – 3)                  x →3
                                                                                                                       1.                0.0251314
                   = 36
                                                                                                                       0.1                2.775 × 10−6
                          (3u + 4)(2u – 2)3                        8(3u + 4)(u –1)3                                    0.01               2.77775 × 10−10
           16. lim                                     = lim
                   u →1          (u –1) 2                   u →1        (u –1) 2                                       0.001              2.77778 × 10−14
                   = lim 8(3u + 4)(u – 1) = 8[3(1) + 4](1 – 1) = 0
                      u →1                                                                                             –1.               0.0251314
                                                                                                                       –0.1              2.775 × 10−6
                         (2 + h) 2 − 4       4 + 4h + h 2 − 4
           17.       lim               = lim                                                                           –0.01              2.77775 × 10−10
                     h→0      h          h→0        h
                             h 2 + 4h                                                                                  –0.001             2.77778 × 10−14
                     = lim            = lim(h + 4) = 4
                        h →0     h      h →0                                                                               ( x – sin x) 2
                                                                                                                   lim                          =0
                                                                                                                   x →0             x2
                         ( x + h) 2 − x 2        x 2 + 2 xh + h 2 − x 2
           18.       lim                  = lim                                                                                                           2       2
                     h→0        h           h →0           h                                               22.              x                  (1 − cos x ) / x

                             h 2 + 2 xh                                                                                1.                0.211322
                     = lim              = lim(h + 2 x) = 2 x
                        h →0      h       h →0                                                                         0.1               0.00249584
                                                                                                                       0.01              0.0000249996
           19.              x                      sin x                                                               0.001             2.5 × 10−7
                                                    2x
                       1.             0.420735
                                                                                                                       –1.               0.211322
                       0.1            0.499167
                                                                                                                       –0.1              0.00249584
                       0.01           0.499992                                                                         –0.01             0.0000249996
                       0.001          0.49999992                                                                       –0.001            2.5 × 10−7
                                                                                                                           (1 – cos x) 2
                       –1.            0.420735                                                                     lim                          =0
                                                                                                                   x →0             x2
                       –0.1           0.499167
                                                                                                                                           2
                                                                                                           23.              t            (t − 1) /(sin(t − 1))
                       –0.01          0.499992
                       –0.001         0.49999992                                                                       2.                3.56519
                                                                                                                       1.1               2.1035
                       sin x
                   lim       = 0.5                                                                                     1.01
                   x →0 2 x                                                                                                              2.01003
                                                                                                                       1.001             2.001
                                                    1− cos t
           20.              t                         2t
                       1.             0.229849                                                                         0                 1.1884
                       0.1            0.0249792                                                                        0.9               1.90317
                       0.01           0.00249998                                                                       0.99              1.99003
                                                                                                                       0.999             1.999
                       0.001          0.00024999998
                                                                                                                            t −12
                                                                                                                   lim              =2
                       –1.            –0.229849                                                                    t →1 sin(t  − 1)
                       –0.1           –0.0249792
                       –0.01          –0.00249998
                       –0.001         –0.00024999998




        64           Section 1.1                                                                                                                  Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form
or by any means, without permission in writing from the publisher.
27.                 x                 ( x − π / 4) 2 /(tan x − 1) 2
                                                              x −sin( x − 3) − 3
                             24.              x                     x −3
                                                                                                                                          1. + π
                                                                                                                                               4
                                                                                                                                                                    0.0320244
                                                                                                                                                   π
                                         4.              0.158529                                                                         0.1 +    4                0.201002
                                                                                                                                                       π
                                         3.1             0.00166583                                                                       0.01 +       4            0.245009
                                                                                                                                                           π
                                         3.01            0.0000166666                                                                     0.001 +           4       0.2495
                                         3.001           1.66667 × 10−7
                                                                                                                                          −1. + π
                                                                                                                                                4                   0.674117
                                         2.              0.158529                                                                         −0.1 + π
                                                                                                                                                 4                  0.300668
                                         2.9             0.00166583                                                                       −0.01 + π
                                                                                                                                                  4                 0.255008
                                         2.99            0.0000166666                                                                     −0.001 + π
                                                                                                                                                   4                0.2505
                                         2.999           1.66667 × 10−7
                                                                                                                                      lim
                                                                                                                                                (x − )      π 2
                                                                                                                                                            4
                                                                                                                                                                    = 0.25
                                     lim
                                          x – sin( x – 3) – 3
                                                              =0                                                                     x→ π
                                                                                                                                           4   (tan x − 1)2
                                     x →3        x–3
                                                                                                                              28.                 u                 (2 − 2sin u ) / 3u
                             25.               x              (1 + sin( x − 3π / 2)) /( x − π )
                                                                                                                                          1. + π                    0.11921
                                      1. + π                                       0.4597                                                      2
                                                                                                                                          0.1 + π                   0.00199339
                                      0.1 + π                                      0.0500
                                                                                                                                                2
                                                                                                                                          0.01 + π                  0.0000210862
                                      0.01 + π
                                                                                                                                                 2
                                                                                   0.0050                                                 0.001 +          π
                                                                                                                                                                    2.12072 × 10−7
                                                                                                                                                            2
                                      0.001 + π                                    0.0005
                                                                                                                                          −1. + π
                                                                                                                                                2                   0.536908
                                      –1. + π                                    –0.4597                                                  −0.1 +       π
                                                                                                                                                        2           0.00226446
                                      –0.1 + π                                   –0.0500                                                  −0.01 +           π
                                                                                                                                                                    0.0000213564
                                                                                                                                                            2
                                      –0.01 + π                                  –0.0050                                                  −0.001 +              π
                                                                                                                                                                    2.12342 × 10−7
                                                                                                                                                                2
                                      –0.001 + π                                 –0.0005                                                  2 − 2sin u
                                                                                                                                     lim             =0
                                            1 + sin ( x − 32π )                                                                      u→ π     3u
                                                                                                                                        2
                                     lim                            =0
                                     x →π              x−π
                                                                                                                              29. a.            lim f ( x) = 2
                                                                                                                                               x → –3
                             26.              t              (1 − cot t ) /(1 / t )
                                                                                                                                     b. f(–3) = 1
                                              1.               0.357907
                                            0.1              –0.896664                                                               c.        f(–1) does not exist.
                                            0.01             –0.989967
                                                                                                                                                                     5
                                          0.001                  –0.999                                                              d.         lim f ( x) =
                                                                                                                                               x → –1                2

                                            –1.                –1.64209                                                              e.         f(1) = 2
                                            –0.1               –1.09666                                                              f.        lim f(x) does not exist.
                                                                                                                                               x→1
                                          –0.01                –1.00997
                                         –0.001                  –1.001                                                              g.         lim f ( x) = 2
                                                                                                                                               x →1–
                                            1 – cot t
                                     lim           1
                                                        = –1
                                     t →0
                                                   t                                                                                 h.         lim f ( x) = 1
                                                                                                                                               x →1+


                                                                                                                                                                         5
                                                                                                                                     i.         lim f ( x ) =
                                                                                                                                                       +                 2
                                                                                                                                               x →−1




                           Instructor’s Resource Manual                                                                                                                            Section 1.1            65
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form
or by any means, without permission in writing from the publisher.
30. a.         lim f ( x) does not exist.                                                              b.     lim f ( x) does not exist.
                         x → –3                                                                                           x →1

                  b.      f(–3) = 1                                                                               c.      f(1) = 2
                  c.      f(–1) = 1                                                                               d.      lim f ( x) = 2
                                                                                                                          x →1+
                  d.      lim f ( x) = 2
                         x → –1
                                                                                                           34.
                  e.      f(1) = 1

                  f.     lim f ( x) does not exist.
                         x →1


                  g.      lim f ( x) = 1
                         x →1–

                  h.      lim f ( x) does not exist.
                         x →1+


                  i.       lim f ( x ) = 2
                         x →−1+
                                                                                                                  a.     lim g ( x) = 0
           31. a.        f(–3) = 2                                                                                        x →1

                  b.      f(3) is undefined.                                                                      b. g(1) does not exist.
                  c.        lim f ( x) = 2
                          x → –3−                                                                                 c.      lim g ( x ) = 1
                                                                                                                          x→2

                  d.       lim f ( x) = 4
                         x → –3+                                                                                  d.      lim g ( x ) = 1
                                                                                                                          x → 2+

                  e.      lim f ( x) does not exist.
                         x → –3
                                                                                                           35.      f ( x) = x – ⎡[ x ]⎤
                                                                                                                                 ⎣ ⎦
                  f.      lim f ( x) does not exist.
                         x →3+

           32. a.          lim f ( x) = −2
                         x → –1−

                  b.        lim f ( x) = −2
                          x → –1+

                  c.       lim f ( x) = −2
                          x → –1

                  d. f (–1) = –2

                  e.     lim f ( x) = 0
                         x →1                                                                                     a.     f(0) = 0

                  f.     f (1) = 0                                                                                b.      lim f ( x) does not exist.
                                                                                                                          x →0
           33.
                                                                                                                  c.      lim f ( x ) = 1
                                                                                                                          x →0 –


                                                                                                                                           1
                                                                                                                  d.      lim f ( x) =
                                                                                                                          x→ 1             2
                                                                                                                             2




                  a.      lim f ( x) = 0
                         x →0




        66             Section 1.1                                                                                                             Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form
or by any means, without permission in writing from the publisher.
x                                                                     41. lim f ( x) exists for a = –1, 0, 1.
                                 36.         f ( x) =                                                                                x→a
                                                        x
                                                                                                                              42. The changed values will not change lim f ( x) at
                                                                                                                                                                                              x→a

                                                                                                                                     any a. As x approaches a, the limit is still a 2 .

                                                                                                                                                        x −1
                                                                                                                              43. a.          lim               does not exist.
                                                                                                                                              x →1      x −1
                                                                                                                                                         x −1                          x −1
                                                                                                                                              lim               = −1 and lim                  =1
                                                                                                                                              x →1  −    x −1                     +
                                                                                                                                                                               x →1    x −1

                                                                                                                                                         x −1
                                                                                                                                     b.       lim               = −1
                                     a.      f (0) does not exist.                                                                            x →1  −    x −1

                                     b.      lim f ( x) does not exist.                                                                                  x2 − x − 1 − 1
                                             x →0                                                                                    c.       lim                         = −3
                                                                                                                                              x →1−            x −1
                                     c.      lim f ( x ) = –1
                                             x →0 –
                                                                                                                                                   ⎡ 1       1 ⎤
                                                                                                                                     d.        lim ⎢     −      ⎥ does not exist.
                                                                                                                                                  − x −1   x −1 ⎥
                                     d.      lim f ( x) = 1                                                                                   x →1 ⎢
                                                                                                                                                   ⎣            ⎦
                                             x→ 1
                                                  2


                                                                                                                              44. a.          lim         x− x =0
                                      x2 − 1                                                                                                  x →1+
                              37. lim        does not exist.
                                  x →1 x − 1

                                                                                                                                                          1
                                             x2 − 1                x2 − 1                                                            b.       lim           does not exist.
                                       lim          = −2 and lim          =2                                                                  x →0   +    x
                                     x →1−    x −1           x →1+ x − 1

                                                                                                                                                                1/ x
                                                 x+2− 2                                                                              c.       lim x(−1)                =0
                              38. lim                                                                                                         x → 0+
                                     x →0          x
                                                                                                                                                                   1/ x
                                                 ( x + 2 − 2)( x + 2 + 2)                                                            d.       lim x (−1)                  =0
                                     = lim                                                                                                    x →0+
                                          x →0          x( x + 2 + 2)
                                                      x+2−2                              x                                    45. a) 1                                      b) 0
                                     = lim                           = lim
                                          x →0   x( x + 2 + 2)           x →0   x( x + 2 + 2)
                                                                                                                                     c)       −1                            d)        −1
                                                        1                   1
                                                                            2                1
                                     = lim                 =        =    =                                                    46. a) Does not exist                         b) 0
                                          x →0      x+2+ 2   0+2 + 2 2 2   4
                                                                                                                                     c)     1                               d) 0.556
                              39. a.         lim f ( x) does not exist.
                                             x →1
                                                                                                                              47. lim x does not exist since                          x is not defined
                                                                                                                                     x →0
                                     b.      lim f ( x) = 0
                                             x →0                                                                                    for x < 0.

                              40.                                                                                             48.     lim x x = 1
                                                                                                                                     x → 0+


                                                                                                                              49. lim           x =0
                                                                                                                                     x →0


                                                                                                                                                x
                                                                                                                              50. lim x = 1
                                                                                                                                     x →0


                                                                                                                                         sin 2 x 1
                                                                                                                              51. lim           =
                                                                                                                                     x →0 4 x     2




                           Instructor’s Resource Manual                                                                                                                          Section 1.2              67
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form
or by any means, without permission in writing from the publisher.
sin 5 x 5                                                                        7. If x is within 0.001 of 2, then 2x is within 0.002
           52. lim                 =                                                                            of 4.
                   x →0       3x     3

                       ⎛1⎞
           53. lim cos ⎜ ⎟ does not exist.
               x →0    ⎝ x⎠

                         ⎛1⎞
           54. lim x cos ⎜ ⎟ = 0
               x →0      ⎝ x⎠

                               x3 − 1
           55. lim                            =6
                   x →1      2x + 2 − 2                                                                      8. If x is within 0.0005 of 2, then x2 is within 0.002
                                                                                                                of 4.
                            x sin 2 x
           56. lim                       =2
                   x →0     sin( x 2 )

                             x2 – x – 2
           57.      lim                 = –3
                   x →2–       x–2

                                  2
           58. lim                1/( x −1)
                                              =0
                   x →1 +
                            1+ 2
                                                                                                             9. If x is within 0.0019 of 2, then                   8 x is within
           59. lim x ; The computer gives a value of 0, but                                                     0.002 of 4.
                   x →0

                    lim        x does not exist.
                   x →0−




        1.2 Concepts Review
             1. L – ε ; L + ε

             2. 0 < x – a < δ ; f ( x) – L < ε                                                                                                                 8
                                                                                                           10. If x is within 0.001 of 2, then                   is within 0.002
                   ε                                                                                                                                           x
             3.                                                                                                   of 4.
                   3

             4. ma + b



        Problem Set 1.2

             1. 0 < t – a < δ ⇒ f (t ) – M < ε

             2. 0 < u – b < δ ⇒ g (u ) – L < ε                                                             11. 0 < x – 0 < δ ⇒ (2 x – 1) – (–1) < ε
                                                                                                                   2x – 1+ 1 < ε ⇔ 2x < ε
             3. 0 < z – d < δ ⇒ h( z ) – P < ε                                                                     ⇔ 2 x <ε
                                                                                                                               ε
             4. 0 < y – e < δ ⇒ φ ( y ) – B < ε                                                                    ⇔ x <
                                                                                                                               2
             5. 0 < c – x < δ ⇒ f ( x) – L < ε
                                                                                                                      ε
                                                                                                                   δ = ;0 < x –0 <δ
                                                                                                                        2
             6. 0 < t – a < δ ⇒ g (t ) – D < ε
                                                                                                                   (2 x – 1) – (–1) = 2 x = 2 x < 2δ = ε



        68             Section 1.2                                                                                                           Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form
or by any means, without permission in writing from the publisher.
12. 0 < x + 21 < δ ⇒ (3x – 1) – (–64) < ε                                                                                         2 x 2 – 11x + 5
                                                                                                                              15. 0 < x – 5 < δ ⇒                               –9 <ε
                                      3 x – 1 + 64 < ε ⇔ 3 x + 63 < ε                                                                                                 x–5
                                     ⇔ 3( x + 21) < ε                                                                                 2 x 2 – 11x + 5         (2 x – 1)( x – 5)
                                                                                                                                                      –9 <ε ⇔                   –9 <ε
                                     ⇔ 3 x + 21 < ε                                                                                         x–5                     x–5
                                                        ε                                                                            ⇔ 2x – 1 – 9 < ε
                                     ⇔ x + 21 <
                                                        3
                                                                                                                                     ⇔ 2( x – 5) < ε

                                        ε                                                                                                              ε
                                     δ = ; 0 < x + 21 < δ                                                                            ⇔ x–5 <
                                           3                                                                                                            2
                                      (3 x – 1) – (–64) = 3 x + 63 = 3 x + 21 < 3δ = ε
                                                                                                                                        ε
                                                                                                                                     δ = ;0 < x –5 <δ
                                                                                                                                              2
                                                  x 2 – 25
                              13. 0 < x – 5 < δ ⇒          – 10 < ε                                                                   2 x – 11x + 5
                                                                                                                                          2
                                                                                                                                                         (2 x – 1)( x – 5)
                                                    x–5                                                                                             –9 =                   –9
                                                                                                                                          x–5                  x–5
                                      x 2 – 25            ( x – 5)( x + 5)                                                           = 2 x – 1 – 9 = 2( x – 5) = 2 x – 5 < 2δ = ε
                                               – 10 < ε ⇔                  – 10 < ε
                                        x–5                     x–5
                                     ⇔ x + 5 – 10 < ε                                                                         16. 0 < x – 1 < δ ⇒                  2x – 2 < ε
                                     ⇔ x–5 <ε
                                                                                                                                         2x – 2 < ε

                                     δ = ε; 0 < x – 5 < δ                                                                                  ( 2 x – 2 )( 2 x + 2 )
                                                                                                                                     ⇔                                         <ε
                                                                                                                                                           2x + 2
                                        2
                                      x – 25        ( x – 5)( x + 5)
                                             – 10 =                  – 10 = x + 5 – 10
                                       x–5                x–5                                                                                     2x – 2
                                                                                                                                     ⇔                        <ε
                                     = x–5 <δ =ε                                                                                                  2x + 2
                                                                                                                                                    x –1
                                                                                                                                     ⇔2                        <ε
                                                  2x – x           2                                                                               2x + 2
                              14. 0 < x – 0 < δ ⇒        − (−1) < ε
                                                    x
                                                                                                                                             2ε
                                      2 x2 – x          x(2 x – 1)                                                                   δ=         ; 0 < x –1 < δ
                                               +1 < ε ⇔            +1 < ε                                                                   2
                                          x                 x                                                                                         ( 2 x – 2)( 2 x + 2)
                                                                                                                                         2x − 2 =
                                     ⇔ 2x – 1 +1 < ε                                                                                                          2x + 2
                                     ⇔ 2x < ε                                                                                                 2x – 2
                                                                                                                                     =
                                     ⇔ 2 x <ε                                                                                              2x + 2
                                                 ε                                                                                       2 x –1   2 x – 1 2δ
                                     ⇔ x <                                                                                                      ≤        <   =ε
                                                 2                                                                                       2x + 2       2    2

                                        ε                                                                                                                          2x – 1
                                     δ = ;0 < x –0 <δ                                                                         17. 0 < x – 4 < δ ⇒                           – 7 <ε
                                            2                                                                                                                       x–3
                                      2 x2 – x          x(2 x – 1)
                                               − (−1) =            + 1 = 2x – 1+ 1                                                       2x – 1                          2 x – 1 – 7( x – 3)
                                          x                 x                                                                                        – 7 <ε ⇔                                       <ε
                                                                                                                                          x–3                                     x–3
                                     = 2 x = 2 x < 2δ = ε
                                                                                                                                           ( 2 x – 1 – 7( x – 3))( 2 x – 1 + 7( x – 3))
                                                                                                                                     ⇔                                                                    <ε
                                                                                                                                                            x – 3( 2 x – 1 + 7( x – 3))
                                                                                                                                                     2 x – 1 – (7 x – 21)
                                                                                                                                     ⇔                                               <ε
                                                                                                                                                  x – 3( 2 x – 1 + 7( x – 3))
                                                                                                                                                            –5( x – 4)
                                                                                                                                     ⇔                                               <ε
                                                                                                                                                  x – 3( 2 x – 1 + 7( x – 3))



                           Instructor’s Resource Manual                                                                                                                       Section 1.2                 69
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form
or by any means, without permission in writing from the publisher.
⇔ x−4 ⋅
                                                       5
                                                                             <ε                                                             10 x3 – 26 x 2 + 22 x – 6
                                                                                                           19. 0 < x – 1 < δ ⇒                                               –4 <ε
                                     x − 3( 2 x − 1 + 7( x − 3))                                                                                       ( x – 1) 2
                                                                                                                    10 x3 – 26 x 2 + 22 x – 6
                  To bound
                                                       5
                                                                             , agree that                                                            –4 <ε
                                     x – 3( 2 x – 1 + 7( x – 3))                                                              ( x –1)2
                         1                  1          7      9                                                          (10 x – 6)( x – 1)2
                   δ ≤ . If δ ≤ , then                   < x < , so                                                ⇔                             –4 <ε
                         2                  2          2      2                                                                ( x – 1)2
                                                   5                                                               ⇔ 10 x – 6 – 4 < ε
                   0.65 <                                              < 1.65 and
                                x – 3( 2 x – 1 + 7( x – 3))
                                                                                                                   ⇔ 10( x – 1) < ε
                                                           5
                  hence x − 4 ⋅                                                   <ε                               ⇔ 10 x – 1 < ε
                                            x − 3( 2 x − 1 + 7( x − 3))
                                                                                                                                    ε
                                        ε                                                                          ⇔ x –1 <
                   ⇔ x–4 <                                                                                                         10
                             1.65
                  For whatever ε is chosen, let δ be the smaller of
                                                                                                                          ε
                                                                                                                   δ=         ; 0 < x –1 < δ
                  1        ε                                                                                             10
                     and      .
                  2      1.65                                                                                       10 x3 – 26 x 2 + 22 x – 6                 (10 x – 6)( x – 1) 2
                                                                                                                                                     –4 =                              –4
                          ⎧1    ε ⎫                                                                                           ( x – 1) 2                             ( x – 1) 2
                  δ = min ⎨ ,       ⎬, 0 < x – 4 < δ
                          ⎩ 2 1. 65 ⎭                                                                              = 10 x − 6 − 4 = 10( x − 1)
                      2x −1                                              5                                         = 10 x − 1 < 10δ = ε
                           − 7 = x−4 ⋅
                     x −3                     x − 3( 2 x − 1 + 7( x − 3))
                  < x – 4 (1.65) < 1. 65δ ≤ ε                                                              20. 0 < x – 1 < δ ⇒ (2 x 2 + 1) – 3 < ε
                             1              1      ε
                  since δ = only when ≤               so 1.65δ ≤ ε .
                             2              2 1. 65                                                                2 x2 + 1 – 3 = 2 x2 – 2 = 2 x + 1 x – 1

                                                                                                                  To bound 2 x + 2 , agree that δ ≤ 1 .
                                                14 x 2 – 20 x + 6
           18. 0 < x – 1 < δ ⇒                                    –8 < ε
                                                       x –1                                                         x – 1 < δ implies
                                                                                                                   2x + 2 = 2x – 2 + 4
                   14 x 2 – 20 x + 6         2(7 x – 3)( x – 1)
                                     –8 <ε ⇔                    –8 <ε                                              ≤ 2x – 2 + 4
                          x –1                     x –1
                                                                                                                  <2+4=6
                   ⇔ 2(7 x – 3) – 8 < ε
                                                                                                                      ε          ⎧ ε⎫
                   ⇔ 14( x – 1) < ε                                                                                δ ≤ ; δ = min ⎨1, ⎬; 0 < x – 1 < δ
                                                                                                                         6                 ⎩ 6⎭
                   ⇔ 14 x – 1 < ε
                                                                                                                   (2 x + 1) – 3 = 2 x 2 – 2
                                                                                                                         2
                                    ε
                   ⇔ x –1 <                                                                                                            ⎛ε ⎞
                                   14                                                                              = 2x + 2 x −1 < 6 ⋅ ⎜ ⎟ = ε
                                                                                                                                       ⎝6⎠
                          ε
                   δ=         ; 0 < x –1 < δ
                         14
                   14 x 2 – 20 x + 6      2(7 x – 3)( x – 1)
                                     –8 =                    –8
                          x –1                  x –1
                   = 2(7 x – 3) – 8
                   = 14( x – 1) = 14 x – 1 < 14δ = ε




        70           Section 1.2                                                                                                             Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form
or by any means, without permission in writing from the publisher.
21. 0 < x + 1 < δ ⇒ ( x 2 – 2 x – 1) – 2 < ε                                                                                  ⎛1⎞
                                                                                                                              25. For all x ≠ 0 , 0 ≤ sin 2 ⎜ ⎟ ≤ 1 so
                                                                                                                                                            ⎝x⎠
                                      x2 – 2 x – 1 – 2 = x2 – 2 x – 3 = x + 1 x – 3                                                         ⎛ 1⎞
                                                                                                                                  x 4 sin 2 ⎜ ⎟ ≤ x 4 for all x ≠ 0 . By Problem 18,
                                     To bound x – 3 , agree that δ ≤ 1 .                                                                    ⎝ x⎠
                                                                                                                                          4
                                      x + 1 < δ implies                                                                            lim x = 0, so, by Problem 20,
                                                                                                                                     x→0
                                      x – 3 = x + 1 – 4 ≤ x + 1 + –4 < 1 + 4 = 5                                                          4   2 ⎛ 1⎞
                                                                                                                                     lim x sin ⎜ ⎟ = 0.
                                        ε          ⎧ ε⎫                                                                              x→0        ⎝ x⎠
                                     δ ≤ ; δ = min ⎨1, ⎬ ; 0 < x + 1 < δ
                                             5              ⎩ 5⎭
                                      ( x – 2 x – 1) – 2 = x 2 – 2 x – 3
                                         2                                                                                    26. 0 < x < δ ⇒              x –0 =           x = x <ε

                                                                                                                                     For x > 0, ( x ) = x.
                                                                                                                                                     2
                                                                ε
                                     = x +1 x – 3 < 5⋅              =ε
                                                                5                                                                       x < ε ⇔ ( x )2 = x < ε 2
                                                                                                                                     δ = ε 2; 0 < x < δ ⇒ x < δ = ε 2 = ε
                              22. 0 < x < δ ⇒ x 4 – 0 = x 4 < ε

                                      x 4 = x x3 . To bound x3 , agree that                                                   27.     lim x : 0 < x < δ ⇒ x – 0 < ε
                                                                                                                                     x →0 +

                                     δ ≤ 1. x < δ ≤ 1 implies x3 = x ≤ 1 so
                                                                                       3                                             For x ≥ 0 , x = x .
                                                                                                                                     δ = ε; 0 < x < δ ⇒ x – 0 = x = x < δ = ε
                                     δ ≤ ε.
                                                                                                                                     Thus, lim+ x = 0.
                                     δ = min{1, ε }; 0 < x < δ ⇒ x 4 = x x3 < ε ⋅1                                                            x→0
                                     =ε                                                                                                lim x : 0 < 0 – x < δ ⇒ x – 0 < ε
                                                                                                                                     x →0 –
                              23. Choose ε > 0. Then since lim f ( x) = L, there is                                                  For x < 0, x = – x; note also that                   x = x
                                                                           x →c
                                     some δ1 > 0 such that                                                                           since x ≥ 0.
                                     0 < x – c < δ1 ⇒ f ( x ) – L < ε .                                                              δ = ε ;0 < − x < δ ⇒ x = x = − x < δ = ε
                                     Since lim f (x) = M, there is some δ 2 > 0 such                                                 Thus, lim– x = 0,
                                                 x→c                                                                                          x→0
                                     that 0 < x − c < δ 2 ⇒ f ( x) − M < ε .                                                         since lim x = lim x = 0, lim x = 0.
                                     Let δ = min{δ1 , δ2 } and choose x 0 such that                                                           x →0 +         x →0 –             x →0

                                     0 < x0 – c < δ .                                                                         28. Choose ε > 0. Since lim g( x) = 0 there is some
                                     Thus, f ( x0 ) – L < ε ⇒ −ε < f ( x0 ) − L < ε                                                                                  x→ a
                                                                                                                                     δ1 > 0 such that
                                     ⇒ − f ( x0 ) − ε < − L < − f ( x0 ) + ε                                                                                                     ε.
                                                                                                                                     0 < x – a < δ1 ⇒ g(x ) − 0 <
                                     ⇒ f ( x0 ) − ε < L < f ( x0 ) + ε .                                                                                                         B
                                     Similarly,                                                                                      Let δ = min{1, δ1} , then f ( x) < B for
                                      f ( x0 ) − ε < M < f ( x0 ) + ε .                                                               x − a < δ or x − a < δ ⇒ f ( x) < B. Thus,
                                     Thus,                                                                                            x − a < δ ⇒ f ( x) g ( x) − 0 = f ( x) g ( x)
                                     −2ε < L − M < 2ε . As ε ⇒ 0, L − M → 0, so
                                                                                                                                                                 ε
                                     L = M.                                                                                          = f ( x) g ( x) < B ⋅            = ε so lim f ( x)g(x) = 0.
                                                                                                                                                                 B              x→ a
                              24. Since lim G(x) = 0, then given any ε > 0, we
                                                 x→c
                                     can find δ > 0 such that whenever
                                      x – c < δ , G ( x) < ε .

                                     Take any ε > 0 and the corresponding δ that
                                     works for G(x), then x – c < δ implies
                                      F ( x) – 0 = F ( x) ≤ G ( x ) < ε since
                                      lim G(x) = 0.
                                     x→c
                                     Thus, lim F( x) = 0.
                                                 x→c



                           Instructor’s Resource Manual                                                                                                                       Section 1.2                 71
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form
or by any means, without permission in writing from the publisher.
29. Choose ε > 0. Since lim f ( x) = L, there is a                                           1.3 Concepts Review
                                                  x→ a
                  δ > 0 such that for 0 < x – a < δ , f ( x) – L < ε .                                       1. 48
                  That is, for
                                                                                                             2. 4
                  a − δ < x < a or a < x < a + δ ,
                  L − ε < f ( x) < L + ε .                                                                   3. – 8; – 4 + 5c
                  Let f(a) = A,
                  M = max { L − ε , L + ε , A } , c = a – δ,                                                 4. 0

                  d = a + δ. Then for x in (c, d), f ( x) ≤ M , since
                  either x = a, in which case
                                                                                                        Problem Set 1.3
                   f ( x) = f (a ) = A ≤ M or 0 < x – a < δ so                                               1. lim (2 x + 1)                         4
                                                                                                                   x→1
                   L − ε < f ( x) < L + ε and f ( x) < M .
                                                                                                                   = lim 2 x + lim 1                  3
                                                                                                                      x→1           x→1
           30. Suppose that L > M. Then L – M = α > 0. Now                                                         = 2 lim x + lim 1                  2,1
                                α                                                                                       x →1        x→1
                  take ε <     and δ = min{δ1 , δ 2} where                                                        = 2(1) + 1 = 3
                            2
                   0 < x – a < δ1 ⇒ f ( x) – L < ε and                                                       2.     lim (3x 2 – 1)                                      5
                                                                                                                   x→ –1
                   0 < x – a < δ 2 ⇒ g ( x) – M < ε .
                                                                                                                   = lim 3x 2 – lim 1                                   3
                  Thus, for 0 < x – a < δ ,                                                                           x→ –1              x→–1
                                                                                                                   = 3 lim x 2 – lim 1                                  8
                   L – ε < f(x) < L + ε and M – ε < g(x) < M + ε.                                                       x→ –1            x→–1
                  Combine the inequalities and use the fact                                                           ⎛       ⎞
                                                                                                                                     2
                  that f ( x) ≤ g ( x) to get                                                                      = 3⎜ lim x ⎟ – lim 1                              2, 1
                                                                                                                      ⎝ x→ –1 ⎠  x →–1
                  L – ε < f(x) ≤ g(x) < M + ε which leads to                                                                  2
                                                                                                                   = 3(–1) – 1 = 2
                  L – ε < M + ε or L – M < 2ε.
                  However,                                                                                   3. lim [(2 x +1)( x – 3)]                                               6
                  L – M = α > 2ε                                                                                   x→0
                   which is a contradiction.                                                                       = lim (2 x +1) ⋅ lim (x – 3)                                   4, 5
                                                                                                                      x→ 0                x→ 0
                   Thus L ≤ M .
                                                                                                                    ⎛                ⎞ ⎛                ⎞
                                                                                                                  = ⎜ lim 2 x + lim 1⎟ ⋅ ⎜ lim x – lim 3⎟                            3
           31. (b) and (c) are equivalent to the definition of                                                      ⎝ x→ 0      x→ 0 ⎠ ⎝ x→0       x→ 0 ⎠
               limit.                                                                                               ⎛                 ⎞ ⎛               ⎞
                                                                                                                  = ⎜ 2 lim x + lim 1⎟ ⋅ ⎜ lim x – lim 3⎟                         2, 1
                                                                                                                    ⎝ x →0      x→ 0  ⎠ ⎝ x→0      x→ 0 ⎠
           32. For every ε > 0 and δ > 0 there is some x with
                                                                                                                  = [2(0) +1](0 – 3) = –3
               0 < x – c < δ such that f ( x ) – L > ε .
                                                                                                             4.     lim [(2 x 2 + 1)(7 x 2 + 13)]                                        6
                                        x 3 – x 2 – 2x – 4                                                         x→ 2
           33. a.        g(x) =
                                    x 4 – 4x 3 + x 2 + x + 6                                                       = lim (2 x 2 + 1) ⋅ lim (7 x 2 + 13)                              4, 3
                                                                                                                      x→ 2                   x→ 2
                                                         x+6                                                         ⎛                    ⎞ ⎛                    ⎞
                  b. No, because                                             + 1 has                               = ⎜ 2 lim x 2 + lim 1⎟ ⋅ ⎜ 7 lim x 2 + lim 13 ⎟ 8,1
                                      x – 4x + x 2 + x + 6
                                              4          3
                                                                                                                     ⎝ x→ 2        x→ 2 ⎠ ⎝ x→ 2         x→ 2 ⎠
                         an asymptote at x ≈ 3.49.
                                                                                                                     ⎡ ⎛       ⎞
                                                                                                                                 2   ⎤⎡ ⎛        ⎞
                                                                                                                                                   2   ⎤
                                                                                                                   = ⎢2⎜ lim x ⎟ + 1⎥ ⎢7⎜ lim x ⎟ + 13⎥            2
                                1                                                                                    ⎢ ⎝ x→ 2 ⎠      ⎥⎢ ⎝ x→ 2 ⎠       ⎥
                  c.     If δ ≤   , then 2.75 < x < 3                                                                ⎣               ⎦⎣                ⎦
                                4
                         or 3 < x < 3.25 and by graphing                                                           = [2( 2 ) 2 + 1][7( 2 ) 2 + 13] = 135
                                                x3 − x 2 − 2 x − 4
                          y = g ( x) =
                                       x 4 − 4 x3 + x 2 + x + 6
                         on the interval [2.75, 3.25], we see that
                                    x3 – x 2 – 2 x – 4
                         0<                            <3
                              x 4 – 4 x3 + x 2 + x + 6
                         so m must be at least three.


        72             Section 1.3                                                                                                           Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form
or by any means, without permission in writing from the publisher.
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1
solucionario de purcell 1

More Related Content

What's hot

solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0
José Encalada
 
Ejercicios de limites indeterminados
Ejercicios de limites indeterminadosEjercicios de limites indeterminados
Ejercicios de limites indeterminados
tinardo
 
Metodo de multiplicadores de lagrange ejercicios
Metodo de multiplicadores de lagrange ejerciciosMetodo de multiplicadores de lagrange ejercicios
Metodo de multiplicadores de lagrange ejercicios
proyecto formativo
 
Respuestas algebra de baldor(2)
Respuestas   algebra de baldor(2)Respuestas   algebra de baldor(2)
Respuestas algebra de baldor(2)
De Fieston
 
Factorizacion ejercicios
Factorizacion ejerciciosFactorizacion ejercicios
Factorizacion ejerciciossitayanis
 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3
José Encalada
 
07 Integrales indefinidas
07 Integrales indefinidas07 Integrales indefinidas
07 Integrales indefinidas
www.cathedratic.com
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
Kyro Fitkry
 
Algebra baldor 100% resuelta
Algebra baldor 100% resueltaAlgebra baldor 100% resuelta
Algebra baldor 100% resuelta
publicalotodo
 
Ejercicios con respuestas. Calculo Integral Facultad de ingeniería.
Ejercicios con respuestas. Calculo Integral Facultad de ingeniería. Ejercicios con respuestas. Calculo Integral Facultad de ingeniería.
Ejercicios con respuestas. Calculo Integral Facultad de ingeniería. Alexis Legazpi
 
Inecuaciones lineales
Inecuaciones linealesInecuaciones lineales
Inecuaciones lineales
enrique0975
 
Tabla de integrales
Tabla de integralesTabla de integrales
Tabla de integrales
Alejandra Luna
 
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomios
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomiosEjercicios resueltos de fracciones algebraicas, logaritmos y polinomios
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomiosBelén Vidal Moreno
 
Logaritmos resueltos
Logaritmos resueltosLogaritmos resueltos
Logaritmos resueltos
Hector R. Chavarria
 
Guía racionalizacion complementaria
Guía racionalizacion complementariaGuía racionalizacion complementaria
Guía racionalizacion complementariaYanira Castro
 
EJERCISIOS PALAFOXC /7-21/
EJERCISIOS PALAFOXC /7-21/EJERCISIOS PALAFOXC /7-21/
EJERCISIOS PALAFOXC /7-21/Neftali Acosta
 
Todas identidades y funciones trigonometricas completa
Todas identidades y funciones trigonometricas completaTodas identidades y funciones trigonometricas completa
Todas identidades y funciones trigonometricas completa
Universidad Técnica de Manabí
 
Derivadas ejercicos 1
Derivadas   ejercicos 1Derivadas   ejercicos 1
Derivadas ejercicos 1roberteello
 

What's hot (20)

solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0
 
Ejercicios de limites indeterminados
Ejercicios de limites indeterminadosEjercicios de limites indeterminados
Ejercicios de limites indeterminados
 
Metodo de multiplicadores de lagrange ejercicios
Metodo de multiplicadores de lagrange ejerciciosMetodo de multiplicadores de lagrange ejercicios
Metodo de multiplicadores de lagrange ejercicios
 
Respuestas algebra de baldor(2)
Respuestas   algebra de baldor(2)Respuestas   algebra de baldor(2)
Respuestas algebra de baldor(2)
 
Factorizacion ejercicios
Factorizacion ejerciciosFactorizacion ejercicios
Factorizacion ejercicios
 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3
 
07 Integrales indefinidas
07 Integrales indefinidas07 Integrales indefinidas
07 Integrales indefinidas
 
Solucionario de baldor
Solucionario de baldorSolucionario de baldor
Solucionario de baldor
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
Algebra baldor 100% resuelta
Algebra baldor 100% resueltaAlgebra baldor 100% resuelta
Algebra baldor 100% resuelta
 
Ejercicios con respuestas. Calculo Integral Facultad de ingeniería.
Ejercicios con respuestas. Calculo Integral Facultad de ingeniería. Ejercicios con respuestas. Calculo Integral Facultad de ingeniería.
Ejercicios con respuestas. Calculo Integral Facultad de ingeniería.
 
Inecuaciones lineales
Inecuaciones linealesInecuaciones lineales
Inecuaciones lineales
 
Tabla de integrales
Tabla de integralesTabla de integrales
Tabla de integrales
 
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomios
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomiosEjercicios resueltos de fracciones algebraicas, logaritmos y polinomios
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomios
 
Logaritmos resueltos
Logaritmos resueltosLogaritmos resueltos
Logaritmos resueltos
 
Guía racionalizacion complementaria
Guía racionalizacion complementariaGuía racionalizacion complementaria
Guía racionalizacion complementaria
 
EJERCISIOS PALAFOXC /7-21/
EJERCISIOS PALAFOXC /7-21/EJERCISIOS PALAFOXC /7-21/
EJERCISIOS PALAFOXC /7-21/
 
Capitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na EdicionCapitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na Edicion
 
Todas identidades y funciones trigonometricas completa
Todas identidades y funciones trigonometricas completaTodas identidades y funciones trigonometricas completa
Todas identidades y funciones trigonometricas completa
 
Derivadas ejercicos 1
Derivadas   ejercicos 1Derivadas   ejercicos 1
Derivadas ejercicos 1
 

Similar to solucionario de purcell 1

πιασαμε τα ορια
πιασαμε τα ορια πιασαμε τα ορια
πιασαμε τα ορια
Μαυρουδης Μακης
 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)
Eko Wijayanto
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
Matthew Leingang
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
Matthew Leingang
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
Drradz Maths
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
Drradz Maths
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
Zerick Lucernas
 
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
MarcelloSantosChaves
 
Solutions on log examples
Solutions on log examplesSolutions on log examples
Solutions on log examplesKristino Ikaw
 
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)Matthew Leingang
 
Profº Marcelo Santos Chaves Cálculo I (limites trigonométricos)
Profº Marcelo Santos Chaves   Cálculo I (limites trigonométricos)Profº Marcelo Santos Chaves   Cálculo I (limites trigonométricos)
Profº Marcelo Santos Chaves Cálculo I (limites trigonométricos)
MarcelloSantosChaves
 
Ecuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoEcuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoterzaga
 
Integral table
Integral tableIntegral table
Integral table
bags07
 
Derivatives Lesson Oct 15
Derivatives Lesson  Oct 15Derivatives Lesson  Oct 15
Derivatives Lesson Oct 15ingroy
 

Similar to solucionario de purcell 1 (20)

πιασαμε τα ορια
πιασαμε τα ορια πιασαμε τα ορια
πιασαμε τα ορια
 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)
 
1st 2practice
1st 2practice1st 2practice
1st 2practice
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
 
1202 ch 12 day 2
1202 ch 12 day 21202 ch 12 day 2
1202 ch 12 day 2
 
Limits
LimitsLimits
Limits
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
 
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
 
Solutions on log examples
Solutions on log examplesSolutions on log examples
Solutions on log examples
 
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
 
1201 ch 12 day 1
1201 ch 12 day 11201 ch 12 day 1
1201 ch 12 day 1
 
Profº Marcelo Santos Chaves Cálculo I (limites trigonométricos)
Profº Marcelo Santos Chaves   Cálculo I (limites trigonométricos)Profº Marcelo Santos Chaves   Cálculo I (limites trigonométricos)
Profº Marcelo Santos Chaves Cálculo I (limites trigonométricos)
 
Ecuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoEcuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo grado
 
Day 01
Day 01Day 01
Day 01
 
Integral table
Integral tableIntegral table
Integral table
 
Derivatives Lesson Oct 15
Derivatives Lesson  Oct 15Derivatives Lesson  Oct 15
Derivatives Lesson Oct 15
 
Lista de derivadas e integrais
Lista de derivadas e integraisLista de derivadas e integrais
Lista de derivadas e integrais
 

More from José Encalada

Determinacion Del Punto De Ebullicion
Determinacion Del Punto De EbullicionDeterminacion Del Punto De Ebullicion
Determinacion Del Punto De EbullicionJosé Encalada
 
Propiedades Quimicas De Los Elementos
Propiedades Quimicas De Los ElementosPropiedades Quimicas De Los Elementos
Propiedades Quimicas De Los ElementosJosé Encalada
 
Determinacion De La Densidad
Determinacion De La DensidadDeterminacion De La Densidad
Determinacion De La DensidadJosé Encalada
 
Materiales De Laboratorio
Materiales De LaboratorioMateriales De Laboratorio
Materiales De LaboratorioJosé Encalada
 
Ayudas%2 Bcifras%2 Bsignificativas
Ayudas%2 Bcifras%2 BsignificativasAyudas%2 Bcifras%2 Bsignificativas
Ayudas%2 Bcifras%2 BsignificativasJosé Encalada
 
Rubrica Para Elaboracion De Proyectos De Curso
Rubrica Para Elaboracion De Proyectos De CursoRubrica Para Elaboracion De Proyectos De Curso
Rubrica Para Elaboracion De Proyectos De CursoJosé Encalada
 
Funciones De Dos Variables
Funciones De Dos VariablesFunciones De Dos Variables
Funciones De Dos VariablesJosé Encalada
 
Funciones De Dos Variables
Funciones De Dos VariablesFunciones De Dos Variables
Funciones De Dos VariablesJosé Encalada
 

More from José Encalada (14)

Determinacion Del Punto De Ebullicion
Determinacion Del Punto De EbullicionDeterminacion Del Punto De Ebullicion
Determinacion Del Punto De Ebullicion
 
Propiedades Quimicas De Los Elementos
Propiedades Quimicas De Los ElementosPropiedades Quimicas De Los Elementos
Propiedades Quimicas De Los Elementos
 
Determinacion De La Densidad
Determinacion De La DensidadDeterminacion De La Densidad
Determinacion De La Densidad
 
Materiales De Laboratorio
Materiales De LaboratorioMateriales De Laboratorio
Materiales De Laboratorio
 
Diapositivas C11
Diapositivas C11Diapositivas C11
Diapositivas C11
 
Etilenglicol
EtilenglicolEtilenglicol
Etilenglicol
 
eteretilico
eteretilicoeteretilico
eteretilico
 
Pendiente
PendientePendiente
Pendiente
 
Ayudas%2 Bcifras%2 Bsignificativas
Ayudas%2 Bcifras%2 BsignificativasAyudas%2 Bcifras%2 Bsignificativas
Ayudas%2 Bcifras%2 Bsignificativas
 
Rubrica Para Elaboracion De Proyectos De Curso
Rubrica Para Elaboracion De Proyectos De CursoRubrica Para Elaboracion De Proyectos De Curso
Rubrica Para Elaboracion De Proyectos De Curso
 
Funciones De Dos Variables
Funciones De Dos VariablesFunciones De Dos Variables
Funciones De Dos Variables
 
Corordenadas Polares
Corordenadas PolaresCorordenadas Polares
Corordenadas Polares
 
Funciones De Dos Variables
Funciones De Dos VariablesFunciones De Dos Variables
Funciones De Dos Variables
 
Corordenadas Polares
Corordenadas PolaresCorordenadas Polares
Corordenadas Polares
 

solucionario de purcell 1

  • 1. CHAPTER 1 Limits x3 – 4 x 2 + x + 6 1.1 Concepts Review 9. lim x → –1 x +1 1. L; c ( x + 1)( x 2 – 5 x + 6) = lim x → –1 x +1 2. 6 = lim ( x 2 – 5 x + 6) x → –1 3. L; right = (–1) – 5(–1) + 6 2 4. lim f ( x) = M = 12 x →c x 4 + 2 x3 – x 2 10. lim Problem Set 1.1 x →0 x2 = lim( x 2 + 2 x –1) = –1 1. lim( x – 5) = –2 x →0 x →3 2. lim (1 – 2t ) = 3 x2 – t 2 ( x + t )( x – t ) t → –1 11. lim = lim x→–t x + t x→ – t x+t = lim ( x – t ) 3. lim ( x 2 + 2 x − 1) = (−2) 2 + 2(−2) − 1 = −1 x→ –t x →−2 = –t – t = –2t 4. lim ( x 2 + 2t − 1) = (−2) 2 + 2t − 1 = 3 + 2t x2 – 9 x →−2 12. lim x →3 x – 3 ( 5. lim t 2 − 1 = t →−1 ) ( ( −1) − 1) = 0 2 = lim x →3 ( x – 3)( x + 3) x–3 = lim( x + 3) ( 6. lim t 2 − x 2 = t →−1 ) ( ( −1) 2 ) − x2 = 1 − x2 x →3 =3+3=6 x2 – 4 ( x – 2)( x + 2) (t + 4)(t − 2) 4 7. lim = lim 13. lim x→2 x – 2 x→2 x–2 t →2 (3t − 6) 2 = lim( x + 2) x→2 (t − 2) 2 t + 4 = lim =2+2=4 t →2 9(t − 2) 2 t 2 + 4t – 21 t+4 8. lim = lim t →2 9 t → –7 t+7 (t + 7)(t – 3) 2+4 6 = lim = = t → –7 t+7 9 9 = lim (t – 3) t → –7 (t − 7)3 = –7 – 3 = –10 14. lim t →7+ t −7 (t − 7) t − 7 = lim t →7 + t −7 = lim t −7 t →7+ = 7−7 = 0 Instructor’s Resource Manual Section 1.1 63 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 2. x 4 –18 x 2 + 81 ( x 2 – 9) 2 1 − cos t 15. lim = lim lim =0 x →3 2 x →3 2 t →0 2t ( x – 3) ( x – 3) ( x – 3) 2 ( x + 3) 2 ( x − sin x ) 2 / x 2 = lim 2 = lim( x + 3)2 = (3 + 3) 2 21. x x →3 ( x – 3) x →3 1. 0.0251314 = 36 0.1 2.775 × 10−6 (3u + 4)(2u – 2)3 8(3u + 4)(u –1)3 0.01 2.77775 × 10−10 16. lim = lim u →1 (u –1) 2 u →1 (u –1) 2 0.001 2.77778 × 10−14 = lim 8(3u + 4)(u – 1) = 8[3(1) + 4](1 – 1) = 0 u →1 –1. 0.0251314 –0.1 2.775 × 10−6 (2 + h) 2 − 4 4 + 4h + h 2 − 4 17. lim = lim –0.01 2.77775 × 10−10 h→0 h h→0 h h 2 + 4h –0.001 2.77778 × 10−14 = lim = lim(h + 4) = 4 h →0 h h →0 ( x – sin x) 2 lim =0 x →0 x2 ( x + h) 2 − x 2 x 2 + 2 xh + h 2 − x 2 18. lim = lim 2 2 h→0 h h →0 h 22. x (1 − cos x ) / x h 2 + 2 xh 1. 0.211322 = lim = lim(h + 2 x) = 2 x h →0 h h →0 0.1 0.00249584 0.01 0.0000249996 19. x sin x 0.001 2.5 × 10−7 2x 1. 0.420735 –1. 0.211322 0.1 0.499167 –0.1 0.00249584 0.01 0.499992 –0.01 0.0000249996 0.001 0.49999992 –0.001 2.5 × 10−7 (1 – cos x) 2 –1. 0.420735 lim =0 x →0 x2 –0.1 0.499167 2 23. t (t − 1) /(sin(t − 1)) –0.01 0.499992 –0.001 0.49999992 2. 3.56519 1.1 2.1035 sin x lim = 0.5 1.01 x →0 2 x 2.01003 1.001 2.001 1− cos t 20. t 2t 1. 0.229849 0 1.1884 0.1 0.0249792 0.9 1.90317 0.01 0.00249998 0.99 1.99003 0.999 1.999 0.001 0.00024999998 t −12 lim =2 –1. –0.229849 t →1 sin(t − 1) –0.1 –0.0249792 –0.01 –0.00249998 –0.001 –0.00024999998 64 Section 1.1 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 3. 27. x ( x − π / 4) 2 /(tan x − 1) 2 x −sin( x − 3) − 3 24. x x −3 1. + π 4 0.0320244 π 4. 0.158529 0.1 + 4 0.201002 π 3.1 0.00166583 0.01 + 4 0.245009 π 3.01 0.0000166666 0.001 + 4 0.2495 3.001 1.66667 × 10−7 −1. + π 4 0.674117 2. 0.158529 −0.1 + π 4 0.300668 2.9 0.00166583 −0.01 + π 4 0.255008 2.99 0.0000166666 −0.001 + π 4 0.2505 2.999 1.66667 × 10−7 lim (x − ) π 2 4 = 0.25 lim x – sin( x – 3) – 3 =0 x→ π 4 (tan x − 1)2 x →3 x–3 28. u (2 − 2sin u ) / 3u 25. x (1 + sin( x − 3π / 2)) /( x − π ) 1. + π 0.11921 1. + π 0.4597 2 0.1 + π 0.00199339 0.1 + π 0.0500 2 0.01 + π 0.0000210862 0.01 + π 2 0.0050 0.001 + π 2.12072 × 10−7 2 0.001 + π 0.0005 −1. + π 2 0.536908 –1. + π –0.4597 −0.1 + π 2 0.00226446 –0.1 + π –0.0500 −0.01 + π 0.0000213564 2 –0.01 + π –0.0050 −0.001 + π 2.12342 × 10−7 2 –0.001 + π –0.0005 2 − 2sin u lim =0 1 + sin ( x − 32π ) u→ π 3u 2 lim =0 x →π x−π 29. a. lim f ( x) = 2 x → –3 26. t (1 − cot t ) /(1 / t ) b. f(–3) = 1 1. 0.357907 0.1 –0.896664 c. f(–1) does not exist. 0.01 –0.989967 5 0.001 –0.999 d. lim f ( x) = x → –1 2 –1. –1.64209 e. f(1) = 2 –0.1 –1.09666 f. lim f(x) does not exist. x→1 –0.01 –1.00997 –0.001 –1.001 g. lim f ( x) = 2 x →1– 1 – cot t lim 1 = –1 t →0 t h. lim f ( x) = 1 x →1+ 5 i. lim f ( x ) = + 2 x →−1 Instructor’s Resource Manual Section 1.1 65 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 4. 30. a. lim f ( x) does not exist. b. lim f ( x) does not exist. x → –3 x →1 b. f(–3) = 1 c. f(1) = 2 c. f(–1) = 1 d. lim f ( x) = 2 x →1+ d. lim f ( x) = 2 x → –1 34. e. f(1) = 1 f. lim f ( x) does not exist. x →1 g. lim f ( x) = 1 x →1– h. lim f ( x) does not exist. x →1+ i. lim f ( x ) = 2 x →−1+ a. lim g ( x) = 0 31. a. f(–3) = 2 x →1 b. f(3) is undefined. b. g(1) does not exist. c. lim f ( x) = 2 x → –3− c. lim g ( x ) = 1 x→2 d. lim f ( x) = 4 x → –3+ d. lim g ( x ) = 1 x → 2+ e. lim f ( x) does not exist. x → –3 35. f ( x) = x – ⎡[ x ]⎤ ⎣ ⎦ f. lim f ( x) does not exist. x →3+ 32. a. lim f ( x) = −2 x → –1− b. lim f ( x) = −2 x → –1+ c. lim f ( x) = −2 x → –1 d. f (–1) = –2 e. lim f ( x) = 0 x →1 a. f(0) = 0 f. f (1) = 0 b. lim f ( x) does not exist. x →0 33. c. lim f ( x ) = 1 x →0 – 1 d. lim f ( x) = x→ 1 2 2 a. lim f ( x) = 0 x →0 66 Section 1.1 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 5. x 41. lim f ( x) exists for a = –1, 0, 1. 36. f ( x) = x→a x 42. The changed values will not change lim f ( x) at x→a any a. As x approaches a, the limit is still a 2 . x −1 43. a. lim does not exist. x →1 x −1 x −1 x −1 lim = −1 and lim =1 x →1 − x −1 + x →1 x −1 x −1 b. lim = −1 a. f (0) does not exist. x →1 − x −1 b. lim f ( x) does not exist. x2 − x − 1 − 1 x →0 c. lim = −3 x →1− x −1 c. lim f ( x ) = –1 x →0 – ⎡ 1 1 ⎤ d. lim ⎢ − ⎥ does not exist. − x −1 x −1 ⎥ d. lim f ( x) = 1 x →1 ⎢ ⎣ ⎦ x→ 1 2 44. a. lim x− x =0 x2 − 1 x →1+ 37. lim does not exist. x →1 x − 1 1 x2 − 1 x2 − 1 b. lim does not exist. lim = −2 and lim =2 x →0 + x x →1− x −1 x →1+ x − 1 1/ x x+2− 2 c. lim x(−1) =0 38. lim x → 0+ x →0 x 1/ x ( x + 2 − 2)( x + 2 + 2) d. lim x (−1) =0 = lim x →0+ x →0 x( x + 2 + 2) x+2−2 x 45. a) 1 b) 0 = lim = lim x →0 x( x + 2 + 2) x →0 x( x + 2 + 2) c) −1 d) −1 1 1 2 1 = lim = = = 46. a) Does not exist b) 0 x →0 x+2+ 2 0+2 + 2 2 2 4 c) 1 d) 0.556 39. a. lim f ( x) does not exist. x →1 47. lim x does not exist since x is not defined x →0 b. lim f ( x) = 0 x →0 for x < 0. 40. 48. lim x x = 1 x → 0+ 49. lim x =0 x →0 x 50. lim x = 1 x →0 sin 2 x 1 51. lim = x →0 4 x 2 Instructor’s Resource Manual Section 1.2 67 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 6. sin 5 x 5 7. If x is within 0.001 of 2, then 2x is within 0.002 52. lim = of 4. x →0 3x 3 ⎛1⎞ 53. lim cos ⎜ ⎟ does not exist. x →0 ⎝ x⎠ ⎛1⎞ 54. lim x cos ⎜ ⎟ = 0 x →0 ⎝ x⎠ x3 − 1 55. lim =6 x →1 2x + 2 − 2 8. If x is within 0.0005 of 2, then x2 is within 0.002 of 4. x sin 2 x 56. lim =2 x →0 sin( x 2 ) x2 – x – 2 57. lim = –3 x →2– x–2 2 58. lim 1/( x −1) =0 x →1 + 1+ 2 9. If x is within 0.0019 of 2, then 8 x is within 59. lim x ; The computer gives a value of 0, but 0.002 of 4. x →0 lim x does not exist. x →0− 1.2 Concepts Review 1. L – ε ; L + ε 2. 0 < x – a < δ ; f ( x) – L < ε 8 10. If x is within 0.001 of 2, then is within 0.002 ε x 3. of 4. 3 4. ma + b Problem Set 1.2 1. 0 < t – a < δ ⇒ f (t ) – M < ε 2. 0 < u – b < δ ⇒ g (u ) – L < ε 11. 0 < x – 0 < δ ⇒ (2 x – 1) – (–1) < ε 2x – 1+ 1 < ε ⇔ 2x < ε 3. 0 < z – d < δ ⇒ h( z ) – P < ε ⇔ 2 x <ε ε 4. 0 < y – e < δ ⇒ φ ( y ) – B < ε ⇔ x < 2 5. 0 < c – x < δ ⇒ f ( x) – L < ε ε δ = ;0 < x –0 <δ 2 6. 0 < t – a < δ ⇒ g (t ) – D < ε (2 x – 1) – (–1) = 2 x = 2 x < 2δ = ε 68 Section 1.2 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 7. 12. 0 < x + 21 < δ ⇒ (3x – 1) – (–64) < ε 2 x 2 – 11x + 5 15. 0 < x – 5 < δ ⇒ –9 <ε 3 x – 1 + 64 < ε ⇔ 3 x + 63 < ε x–5 ⇔ 3( x + 21) < ε 2 x 2 – 11x + 5 (2 x – 1)( x – 5) –9 <ε ⇔ –9 <ε ⇔ 3 x + 21 < ε x–5 x–5 ε ⇔ 2x – 1 – 9 < ε ⇔ x + 21 < 3 ⇔ 2( x – 5) < ε ε ε δ = ; 0 < x + 21 < δ ⇔ x–5 < 3 2 (3 x – 1) – (–64) = 3 x + 63 = 3 x + 21 < 3δ = ε ε δ = ;0 < x –5 <δ 2 x 2 – 25 13. 0 < x – 5 < δ ⇒ – 10 < ε 2 x – 11x + 5 2 (2 x – 1)( x – 5) x–5 –9 = –9 x–5 x–5 x 2 – 25 ( x – 5)( x + 5) = 2 x – 1 – 9 = 2( x – 5) = 2 x – 5 < 2δ = ε – 10 < ε ⇔ – 10 < ε x–5 x–5 ⇔ x + 5 – 10 < ε 16. 0 < x – 1 < δ ⇒ 2x – 2 < ε ⇔ x–5 <ε 2x – 2 < ε δ = ε; 0 < x – 5 < δ ( 2 x – 2 )( 2 x + 2 ) ⇔ <ε 2x + 2 2 x – 25 ( x – 5)( x + 5) – 10 = – 10 = x + 5 – 10 x–5 x–5 2x – 2 ⇔ <ε = x–5 <δ =ε 2x + 2 x –1 ⇔2 <ε 2x – x 2 2x + 2 14. 0 < x – 0 < δ ⇒ − (−1) < ε x 2ε 2 x2 – x x(2 x – 1) δ= ; 0 < x –1 < δ +1 < ε ⇔ +1 < ε 2 x x ( 2 x – 2)( 2 x + 2) 2x − 2 = ⇔ 2x – 1 +1 < ε 2x + 2 ⇔ 2x < ε 2x – 2 = ⇔ 2 x <ε 2x + 2 ε 2 x –1 2 x – 1 2δ ⇔ x < ≤ < =ε 2 2x + 2 2 2 ε 2x – 1 δ = ;0 < x –0 <δ 17. 0 < x – 4 < δ ⇒ – 7 <ε 2 x–3 2 x2 – x x(2 x – 1) − (−1) = + 1 = 2x – 1+ 1 2x – 1 2 x – 1 – 7( x – 3) x x – 7 <ε ⇔ <ε x–3 x–3 = 2 x = 2 x < 2δ = ε ( 2 x – 1 – 7( x – 3))( 2 x – 1 + 7( x – 3)) ⇔ <ε x – 3( 2 x – 1 + 7( x – 3)) 2 x – 1 – (7 x – 21) ⇔ <ε x – 3( 2 x – 1 + 7( x – 3)) –5( x – 4) ⇔ <ε x – 3( 2 x – 1 + 7( x – 3)) Instructor’s Resource Manual Section 1.2 69 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 8. ⇔ x−4 ⋅ 5 <ε 10 x3 – 26 x 2 + 22 x – 6 19. 0 < x – 1 < δ ⇒ –4 <ε x − 3( 2 x − 1 + 7( x − 3)) ( x – 1) 2 10 x3 – 26 x 2 + 22 x – 6 To bound 5 , agree that –4 <ε x – 3( 2 x – 1 + 7( x – 3)) ( x –1)2 1 1 7 9 (10 x – 6)( x – 1)2 δ ≤ . If δ ≤ , then < x < , so ⇔ –4 <ε 2 2 2 2 ( x – 1)2 5 ⇔ 10 x – 6 – 4 < ε 0.65 < < 1.65 and x – 3( 2 x – 1 + 7( x – 3)) ⇔ 10( x – 1) < ε 5 hence x − 4 ⋅ <ε ⇔ 10 x – 1 < ε x − 3( 2 x − 1 + 7( x − 3)) ε ε ⇔ x –1 < ⇔ x–4 < 10 1.65 For whatever ε is chosen, let δ be the smaller of ε δ= ; 0 < x –1 < δ 1 ε 10 and . 2 1.65 10 x3 – 26 x 2 + 22 x – 6 (10 x – 6)( x – 1) 2 –4 = –4 ⎧1 ε ⎫ ( x – 1) 2 ( x – 1) 2 δ = min ⎨ , ⎬, 0 < x – 4 < δ ⎩ 2 1. 65 ⎭ = 10 x − 6 − 4 = 10( x − 1) 2x −1 5 = 10 x − 1 < 10δ = ε − 7 = x−4 ⋅ x −3 x − 3( 2 x − 1 + 7( x − 3)) < x – 4 (1.65) < 1. 65δ ≤ ε 20. 0 < x – 1 < δ ⇒ (2 x 2 + 1) – 3 < ε 1 1 ε since δ = only when ≤ so 1.65δ ≤ ε . 2 2 1. 65 2 x2 + 1 – 3 = 2 x2 – 2 = 2 x + 1 x – 1 To bound 2 x + 2 , agree that δ ≤ 1 . 14 x 2 – 20 x + 6 18. 0 < x – 1 < δ ⇒ –8 < ε x –1 x – 1 < δ implies 2x + 2 = 2x – 2 + 4 14 x 2 – 20 x + 6 2(7 x – 3)( x – 1) –8 <ε ⇔ –8 <ε ≤ 2x – 2 + 4 x –1 x –1 <2+4=6 ⇔ 2(7 x – 3) – 8 < ε ε ⎧ ε⎫ ⇔ 14( x – 1) < ε δ ≤ ; δ = min ⎨1, ⎬; 0 < x – 1 < δ 6 ⎩ 6⎭ ⇔ 14 x – 1 < ε (2 x + 1) – 3 = 2 x 2 – 2 2 ε ⇔ x –1 < ⎛ε ⎞ 14 = 2x + 2 x −1 < 6 ⋅ ⎜ ⎟ = ε ⎝6⎠ ε δ= ; 0 < x –1 < δ 14 14 x 2 – 20 x + 6 2(7 x – 3)( x – 1) –8 = –8 x –1 x –1 = 2(7 x – 3) – 8 = 14( x – 1) = 14 x – 1 < 14δ = ε 70 Section 1.2 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 9. 21. 0 < x + 1 < δ ⇒ ( x 2 – 2 x – 1) – 2 < ε ⎛1⎞ 25. For all x ≠ 0 , 0 ≤ sin 2 ⎜ ⎟ ≤ 1 so ⎝x⎠ x2 – 2 x – 1 – 2 = x2 – 2 x – 3 = x + 1 x – 3 ⎛ 1⎞ x 4 sin 2 ⎜ ⎟ ≤ x 4 for all x ≠ 0 . By Problem 18, To bound x – 3 , agree that δ ≤ 1 . ⎝ x⎠ 4 x + 1 < δ implies lim x = 0, so, by Problem 20, x→0 x – 3 = x + 1 – 4 ≤ x + 1 + –4 < 1 + 4 = 5 4 2 ⎛ 1⎞ lim x sin ⎜ ⎟ = 0. ε ⎧ ε⎫ x→0 ⎝ x⎠ δ ≤ ; δ = min ⎨1, ⎬ ; 0 < x + 1 < δ 5 ⎩ 5⎭ ( x – 2 x – 1) – 2 = x 2 – 2 x – 3 2 26. 0 < x < δ ⇒ x –0 = x = x <ε For x > 0, ( x ) = x. 2 ε = x +1 x – 3 < 5⋅ =ε 5 x < ε ⇔ ( x )2 = x < ε 2 δ = ε 2; 0 < x < δ ⇒ x < δ = ε 2 = ε 22. 0 < x < δ ⇒ x 4 – 0 = x 4 < ε x 4 = x x3 . To bound x3 , agree that 27. lim x : 0 < x < δ ⇒ x – 0 < ε x →0 + δ ≤ 1. x < δ ≤ 1 implies x3 = x ≤ 1 so 3 For x ≥ 0 , x = x . δ = ε; 0 < x < δ ⇒ x – 0 = x = x < δ = ε δ ≤ ε. Thus, lim+ x = 0. δ = min{1, ε }; 0 < x < δ ⇒ x 4 = x x3 < ε ⋅1 x→0 =ε lim x : 0 < 0 – x < δ ⇒ x – 0 < ε x →0 – 23. Choose ε > 0. Then since lim f ( x) = L, there is For x < 0, x = – x; note also that x = x x →c some δ1 > 0 such that since x ≥ 0. 0 < x – c < δ1 ⇒ f ( x ) – L < ε . δ = ε ;0 < − x < δ ⇒ x = x = − x < δ = ε Since lim f (x) = M, there is some δ 2 > 0 such Thus, lim– x = 0, x→c x→0 that 0 < x − c < δ 2 ⇒ f ( x) − M < ε . since lim x = lim x = 0, lim x = 0. Let δ = min{δ1 , δ2 } and choose x 0 such that x →0 + x →0 – x →0 0 < x0 – c < δ . 28. Choose ε > 0. Since lim g( x) = 0 there is some Thus, f ( x0 ) – L < ε ⇒ −ε < f ( x0 ) − L < ε x→ a δ1 > 0 such that ⇒ − f ( x0 ) − ε < − L < − f ( x0 ) + ε ε. 0 < x – a < δ1 ⇒ g(x ) − 0 < ⇒ f ( x0 ) − ε < L < f ( x0 ) + ε . B Similarly, Let δ = min{1, δ1} , then f ( x) < B for f ( x0 ) − ε < M < f ( x0 ) + ε . x − a < δ or x − a < δ ⇒ f ( x) < B. Thus, Thus, x − a < δ ⇒ f ( x) g ( x) − 0 = f ( x) g ( x) −2ε < L − M < 2ε . As ε ⇒ 0, L − M → 0, so ε L = M. = f ( x) g ( x) < B ⋅ = ε so lim f ( x)g(x) = 0. B x→ a 24. Since lim G(x) = 0, then given any ε > 0, we x→c can find δ > 0 such that whenever x – c < δ , G ( x) < ε . Take any ε > 0 and the corresponding δ that works for G(x), then x – c < δ implies F ( x) – 0 = F ( x) ≤ G ( x ) < ε since lim G(x) = 0. x→c Thus, lim F( x) = 0. x→c Instructor’s Resource Manual Section 1.2 71 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 10. 29. Choose ε > 0. Since lim f ( x) = L, there is a 1.3 Concepts Review x→ a δ > 0 such that for 0 < x – a < δ , f ( x) – L < ε . 1. 48 That is, for 2. 4 a − δ < x < a or a < x < a + δ , L − ε < f ( x) < L + ε . 3. – 8; – 4 + 5c Let f(a) = A, M = max { L − ε , L + ε , A } , c = a – δ, 4. 0 d = a + δ. Then for x in (c, d), f ( x) ≤ M , since either x = a, in which case Problem Set 1.3 f ( x) = f (a ) = A ≤ M or 0 < x – a < δ so 1. lim (2 x + 1) 4 x→1 L − ε < f ( x) < L + ε and f ( x) < M . = lim 2 x + lim 1 3 x→1 x→1 30. Suppose that L > M. Then L – M = α > 0. Now = 2 lim x + lim 1 2,1 α x →1 x→1 take ε < and δ = min{δ1 , δ 2} where = 2(1) + 1 = 3 2 0 < x – a < δ1 ⇒ f ( x) – L < ε and 2. lim (3x 2 – 1) 5 x→ –1 0 < x – a < δ 2 ⇒ g ( x) – M < ε . = lim 3x 2 – lim 1 3 Thus, for 0 < x – a < δ , x→ –1 x→–1 = 3 lim x 2 – lim 1 8 L – ε < f(x) < L + ε and M – ε < g(x) < M + ε. x→ –1 x→–1 Combine the inequalities and use the fact ⎛ ⎞ 2 that f ( x) ≤ g ( x) to get = 3⎜ lim x ⎟ – lim 1 2, 1 ⎝ x→ –1 ⎠ x →–1 L – ε < f(x) ≤ g(x) < M + ε which leads to 2 = 3(–1) – 1 = 2 L – ε < M + ε or L – M < 2ε. However, 3. lim [(2 x +1)( x – 3)] 6 L – M = α > 2ε x→0 which is a contradiction. = lim (2 x +1) ⋅ lim (x – 3) 4, 5 x→ 0 x→ 0 Thus L ≤ M . ⎛ ⎞ ⎛ ⎞ = ⎜ lim 2 x + lim 1⎟ ⋅ ⎜ lim x – lim 3⎟ 3 31. (b) and (c) are equivalent to the definition of ⎝ x→ 0 x→ 0 ⎠ ⎝ x→0 x→ 0 ⎠ limit. ⎛ ⎞ ⎛ ⎞ = ⎜ 2 lim x + lim 1⎟ ⋅ ⎜ lim x – lim 3⎟ 2, 1 ⎝ x →0 x→ 0 ⎠ ⎝ x→0 x→ 0 ⎠ 32. For every ε > 0 and δ > 0 there is some x with = [2(0) +1](0 – 3) = –3 0 < x – c < δ such that f ( x ) – L > ε . 4. lim [(2 x 2 + 1)(7 x 2 + 13)] 6 x 3 – x 2 – 2x – 4 x→ 2 33. a. g(x) = x 4 – 4x 3 + x 2 + x + 6 = lim (2 x 2 + 1) ⋅ lim (7 x 2 + 13) 4, 3 x→ 2 x→ 2 x+6 ⎛ ⎞ ⎛ ⎞ b. No, because + 1 has = ⎜ 2 lim x 2 + lim 1⎟ ⋅ ⎜ 7 lim x 2 + lim 13 ⎟ 8,1 x – 4x + x 2 + x + 6 4 3 ⎝ x→ 2 x→ 2 ⎠ ⎝ x→ 2 x→ 2 ⎠ an asymptote at x ≈ 3.49. ⎡ ⎛ ⎞ 2 ⎤⎡ ⎛ ⎞ 2 ⎤ = ⎢2⎜ lim x ⎟ + 1⎥ ⎢7⎜ lim x ⎟ + 13⎥ 2 1 ⎢ ⎝ x→ 2 ⎠ ⎥⎢ ⎝ x→ 2 ⎠ ⎥ c. If δ ≤ , then 2.75 < x < 3 ⎣ ⎦⎣ ⎦ 4 or 3 < x < 3.25 and by graphing = [2( 2 ) 2 + 1][7( 2 ) 2 + 13] = 135 x3 − x 2 − 2 x − 4 y = g ( x) = x 4 − 4 x3 + x 2 + x + 6 on the interval [2.75, 3.25], we see that x3 – x 2 – 2 x – 4 0< <3 x 4 – 4 x3 + x 2 + x + 6 so m must be at least three. 72 Section 1.3 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.