SlideShare a Scribd company logo
1 of 112
1
Matrices II
SOLO HERMELIN
Updated: 20.07.07http://www.solohermelin.com
2
SOLO Matrices
Table of Content
Singular Values
Definitions
Domain and Codomain of a Matrix A
Properties of Square Orthogonal Matrices
Definition of the Singular Values
Geometric Interpretation of Singular Values
Properties of Singular Values
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Householder Transformation
Projection of a vector on a vector .b

a

111
min&min
1
nxmxnxmxn
x
xbxAd
nx

 −=
Computation of Moore-Penrose Pseudoinverse Matrix, A †
Properties of Moore-Penrose Pseudoinverse Matrix, A †
Description of Projections Related to Moore-Penrose Pseudoinverse
Particular case (1) r = n ≤ m:
Particular case (2) r = m ≤ n:
3
SOLO Matrices
Table of Content (continue – 1)
General Solution of Amxn Xnxp = Bmxp
Particular case (1) r = m ≤ n
Particular case (2) r = n ≤ n
General Solution of YpxmAmxn = Cpxn
Particular case (1) r = m ≤ n
Particular case (2) r = n ≤ n
Inverse of Partitioned Matrices
Matrix Inverse Lemmas Identities
Matrix Schwarz Inequality
Trace of a Square Matrix
References
4
SOLO Matrices
Singular Values
Definitions:
Any complex matrix A with n rows (r1, r2,…,rn) and m columns (c1,c2,…,cm)
[ ]m
n
nxm ccc
r
r
r
A ,,, 21
2
1


=














=
can be considered as a linear function (or mapping or transformation) for a
m-dimensional domain to a n-dimensional codomain.
( ) ( ){ }AcodomyAdomxxAyA nxmxnxm ∈⇒∈= 11;:
In the same way its conjugate transpose:
[ ]H
n
HH
H
m
H
H
H
mxn
rrr
c
c
c
A ,,, 21
2
1


=














=
is a linear function (or mapping or transformation) for an-dimensional codomain to
a m-dimensional domain.
( ) ( ){ }AcdomxAcodomyyAxA mxnx
HH
mxn ∈⇒∈= 111111 ;:
Table of Contents
5
SOLO Matrices
Domain and Codomain of a Matrix A
The domain of A can be decomposed into orthogonal subspaces:
( ) ( ) ( )ANARAdom H
⊥
⊕= ( )H
AR
( )AN
( )H
AN
( )AR
xAy =
11 yAx H
=
( )Adomxmx
∈1
11mxx
( )Acodomy nx
∈11
1nxyR (AH
) – is the row space of AH
(dimension r)
N (A) – is the null-space of A (x∈ N (A) ⇔ A x = 0)
or the kernel of A (ker (A)) (dimension m-r)
The codomain of A (domain of AH
) can be decomposed into orthogonal subspaces:
( ) ( ) ( )H
ANARAcodom
⊥
⊕=
R (A) – is the column space of A (dimension r)
N (AH
) – is the null-space of AH
(dimension n-r)
Singular Values
Table of Contents
6
SOLO
Hermitian = Symmetric if A has real components
Hermitian Matrix: AH
= A, Symmetric Matrix: AT
= A
Matrices
Properties of Square Orthogonal Matrices
Use Pease, “Methods of Matrix Algebra”, Mathematics in Science and Engineering
Vol.16, Academic Press 1965
Definitions:
Adjoint Operation (H):
AH
= (A*)T
(* is complex conjugate and T is transpose of the matrix)
Skew-Hermitian = Anti-Symmetric if A has real components.
Skew-Hermitian: AH
= -A, Anti-Symmetric Matrix: AT
=-A
Unitary Matrix: UH
= U-1,
Orthonormal Matix: OT
= O-1
Unitary = Orthonormal if A has real components.
Charles Hermite
1822 - 1901
7
SOLO Matrices
Properties of Square Orthogonal Matrices (continue – 1)
Lemma1:
All the eigenvalues of a hermitian matrix H are real and the eigenvectors are orthogonal.
Proof of Lemma1:
Pre-multiply by :iii xHx λ=
H
ix i
H
iii
H
i xxHxx λ=
and take the conjugate transpose: ( ) i
H
iii
HH
i
H
i
H
i xxxHxHxx
*
λ==
This proves that the eigenvalues of H are real.
Subtract those two equations: ( ) 00
**
≠=→=− i
H
iiii
H
iii xxsincexx λλλλ
From ( ) H
ij
H
jj
H
j
HH
j
H
j xxHxHxHx λλ ====
*
Pre-multiply by and post-multiply by and subtractiii xHx λ=
H
jx H
ij
H
j xHx λ= ix
( ) 0=−→




=
=
i
H
jji
i
H
jji
H
j
i
H
jii
H
j
xx
xxHxx
xxHxx
λλ
λ
λ
0=→≠ i
H
jji xxλλIf
If we can use the Gram-Schmidt procedure to obtain an eigenvector
orthogonal to .
ji λλ = jx~
ix ( )
( ) i
i
H
i
j
H
i
jj x
xx
xx
xx −=~
8
SOLO Matrices
Properties of Square Orthogonal Matrices (continue – 2)
Lemma1:
All the eigenvalues of a hermitian matrix H are real and the eigenvectors are orthogonal.
Proof of Lemma1 (continue – 1):
( ) 0=−→




=
=
i
H
jji
i
H
jji
H
j
i
H
jii
H
j
xx
xxHxx
xxHxx
λλ
λ
λ
0=→≠ i
H
jji xxλλIf
If we can use the Gram-Schmidt procedure to obtain an eigenvector
orthogonal to .
ji λλ = jx~
ix
( )
( ) i
i
H
i
j
H
i
jj x
xx
xx
xx −=~
we can see that
( )
( ) 0~ =−= i
H
i
i
H
i
j
H
i
j
H
ij
H
i xx
xx
xx
xxxx
( )
( )
( )
( )
( )
( ) jii
i
H
i
j
H
i
jiii
i
H
i
j
H
i
jji
i
H
i
j
H
i
jj
xx
xx
xx
xx
xx
xx
xxH
xx
xx
xHxH ~~ λλλλ =








−=−=−=
q.e.d.
9
SOLO Matrices
Properties of Square Orthogonal Matrices (continue – 3)
Lemma2:
Any hermitian matrix H can be factored in H = U Λ UH
where Λ=diag (λ1,λ2,…,λn) and U is unitary i.e. U UH
= UH
U = In.
Proof of Lemma2:
Let normalize the orthogonal eigenvectors of H ;i.e. iii
xxu /:=
or H U = U Λ where U = [u1,u2,…,un]
Because U is a square matrix having orthonormal columns, and is a square matrix,
U is also a unitary matrix satisfying UH
U=U UH
=In. q.e.d.
[ ] [ ]












=
000
00
00
,,,,,, 2
1
2121





λ
λ
nn uuuuuuH
10
SOLO Matrices
Properties of Square Orthogonal Matrices (continue – 4)
Lemma3:
A AH
and AH
A are hermitian matrices that have the same nonzero real positive
eigenvalues.
Proof of Lemma3:
q.e.d.
( ) ( ) HHHHHH
AAAAAA == i.e. A AH
is hermitian, therefore the eigenvalues λi (A AH
)
are real and positive according to Lemma 1.
Suppose ui is a normalized eigenvector of λi (A AH
) ≠0
( ) i
H
ii
H
uAAuAA λ=
Pre-multiply by AH
and define
( )
i
H
H
i
i uA
AA
v
λ
1
:=
( ) ( )
( )
( )
( )
( ) ( ) i
H
ii
H
H
i
i
H
H
i
H
i
i
H
H
i
HH
ii
HH
vAAvAA
AA
uA
AA
AA
uA
AAuAAAuAAA
λ
λ
λ
λ
λ
=→
→=→=
we get
We can see that νi is the eigenvector of AH
A and λi (A AH
) is the corresponding
eigenvalue, meaning that both AH
A and A AH
have the same nonzero eigenvalues.
From ( ) ( ) ( ) ( ) ( ) ( ) 02
2
>==→=→=
i
i
i
H
i
i
H
iH
ii
H
i
H
ii
HH
ii
H
ii
H
v
vA
vv
vAvA
AAvvAAvAAvvAAvAA λλλ
Therefore we can define ( ) 0: >= H
ii
AAλσ
11
SOLO Matrices
Properties of Square Orthogonal Matrices (continue – 5)
Lemma4:
If U is a unitary matrix then all its eigenvalues have unit modulus. .
Proof of Lemma4:
form the inner product
IUUUU HH
==
Consider the set of eigenvalues x1, x2, …, xn which we know to be complete and
iii xUx λ=
nixxIxxUxUxxx iiii
H
ii
H
ii
HH
ii
H
iii ,11
**
=∀==→=== λλλλλ
q.e.d.
12
SOLO Matrices
Properties of Square Orthogonal Matrices (continue – 6)
Proof of Lemma5:
Lemma5:
Every unitary matrix U can be expressed as an exponential matrix:
where H is hermitian (jH is skew-hermitian)
jH
eU =
Since the eigenvalues of U have unit modulus; i.e. we can writenii ,11 =∀=λ
niej Hij
HiHii ,1sincos =∀=+= λ
λλλ
( ){ } jHjjj
eSeeediagSU HnHH
== −1
,,, 21 λλλ

( ){ } 1
21 ,,, −
= SdiagSH HnHH λλλ where:
q.e.d.
13
SOLO Matrices
Properties of Square Orthogonal Matrices (continue – 7)
Table of Contents
Decomposition of Square Matrices:
( ) ( ) ( ) ( )



−
−
++=−++= HHHH
AA
j
jAAAAAAA
22
1
2
1
2
1
( ) ( )H
H
H
AAAA +=



+
2
1
2
1
( ) ( ) ( )HH
H
H
AAAAAA −−=−=





−
2
1
2
1
2
1
here: Hermitian
Skew-Hermitian
( ) ( ) ( )HH
H
H
AA
j
AA
j
AA
j
−
−
=−=



−
−
222
Hermitian
( ) ( )





−
−
++= HH
AA
j
jAAA
22
1 the matrix generalization of the decomposition of
a complex number in the real and imaginary part.
14
SOLO Matrices
Lemma6:
(6.1) Every complex nxm matrix of rank can be factored into:
Definition of the Singular Values
( )
[ ] ( )
( ) ( ) ( ) ( )















Σ
=Σ=
−
−
−−−
−
H
H
rmxrnxrrn
rmrxH
mxmnxmnxnnxm
xmrm
rxmrxr
rnnxnxr
V
V
UUVUA
2
11
21
00
0



where ( ) 0,,, 21211 >≥≥≥=Σ rrdiagrxr
σσσσσσ 
Unxn and Vmxm are unitary matrices, i.e.:
[ ] [ ]
( ) ( )






=








==








=
−− rnxrn
rxr
H
H
H
H
H
H
I
I
UU
U
U
UU
U
U
UUUU
0
0
21
2
1
2
1
21
[ ] [ ]
( ) ( )






=








==








=
−− rmxrm
rxr
H
H
H
H
H
H
I
I
VV
V
V
VV
V
V
VVVV
0
0
21
2
1
2
1
21
(6.2) σi i=1,…,r are the positive square roots of the nonzero eigenvalues of AH
A or
A AH
and are called the singular values of A.
(6.3) The dyadic expansion of A is: where ui and vi are the columns of U1
and V1 respectively.
∑=
=
r
i
H
iii vuA
1
σ
Singular Values
15
SOLO Matrices
Lemma6 (continue – 1):
Definition of the Singular Values
(6.5) The columns of V are orthonormal eigenvectors of AH
A: [ ] [ ] ( )
( ) ( ) ( ) 






Σ
=
−−−
−
rmxrmxrrm
rmrxH rxr
VVVVAA
00
0
2
1
2121



i.e. the columns of V1 are the eigenvectors of the nonzero eigenvalues, and the
columns of V2 are the eigenvectors of the zero eigenvalues of AH
A.
(6.6) The following relations exist between U1 and V1
1
111
1
111
−
−
Σ=
Σ=
rxrnxrmxr
rxrmxrnxr
UAV
VAU
H
nxm
nxm
i.e. the columns of U1 are the eigenvectors of the nonzero eigenvalues, and the
columns of U2 are the eigenvectors of the zero eigenvalues of A AH
.
(6.4) The columns of U are orthonormal eigenvectors of A AH
: [ ] [ ] ( )
( ) ( ) ( ) 






Σ
=
−−−
−
rmxrnxrrn
rmrxH rxr
UUUUAA
00
0
2
1
2121



Singular Values
16
SOLO Matrices
Lemma6 (continue – 2):
Definition of the Singular Values
( )H
AR
( )AN
( )H
AN
( )AR
xAy =
11
yAx H
=
( )Adomxmx ∈1
11mx
x
( )Acodomy nx
∈11
1nxy
(6.7) The columns U1 of form an orthonormal basis for
the column space of A: ( ) ( )ARUR =1
The columns of U2 form an orthonormal basis for
the nullspace of AH
: ( ) ( ) ( )HH
AANUR ker2 ==
The columns of V1 form an orthonormal basis for the column space of AH
:
( ) ( )H
ARVR =1
The columns of V2 form an orthonormal basis for the nullspace of A:
( ) ( ) ( )AANVR ker2 ==
Singular Values
17
SOLO Matrices
Lemma6 (continue – 3):
Proof of Lemma 6:
Definition of the Singular Values
and
From Lemma 3 we have ( )
[ ] ( )
( ) ( ) ( ) ( ) 














 Σ
=Λ=
−
−
−−−
−
H
H
rnxrnxrrn
rnrxH
nxnnxn
H
mxnnxm
xnrn
rxnrxr
rnnxnxrnxn
U
U
UUUUAA
2
1
2
1
211
00
0
( )
[ ] ( )
( ) ( ) ( ) ( ) 














 Σ
=Λ=
−
−
−−−
−
H
H
rmxrmxrrm
rmrxH
mxmmxmnxm
H
mxn
xmrm
rxmrxr
rmmxmxrmxm
V
V
VVVVAA
2
1
2
1
212
00
0
where ( ) 0,,, 21211 >≥≥≥=Σ rrdiagrxr
σσσσσσ 
and ( ) ( ) riAAAA H
i
H
ii
,,2,10: =>== λλσ
Those equations can be rewritten as: [ ] [ ]
[ ] [ ]0
0
1121
1121
Σ=
Σ=
VVVAA
UUUAA
H
H
or
0
0
2
2
111
111
=
=
Σ=
Σ=
VAA
UAA
VVAA
UUAA
H
H
H
H
H
U2
H
V2
( )
( ) 00
00
22222
22222
=→==
=→==
VAVAVAVAAV
UAUAUAUAAU
HHH
HHHHHH
Singular Values
18
SOLO Matrices
Lemma6 (continue – 4):
Proof of Lemma 6 (continue – 1):
Definition of the Singular Values
02 =UAH
The columns of U2 form an orthonormal basis for the nullspace of AH
:
( ) ( ) ( )HH
AANUR ker2 ==
02 =VA The columns of V2 form an orthonormal basis for the nullspace of A:
( ) ( ) ( )AANVR ker2 ==
111 Σ= UUAA H
The columns U1 of form an orthonormal basis for the column space of A:
( ) ( )ARUR =1
111 Σ= VVAAH
The columns of V1 form an orthonormal basis for the column space of AH
:
( ) ( )H
ARVR =1
( )H
AR
( )AN
( )H
AN
( )AR
xAy =
11 yAx H
=
( )Adomxmx ∈1
11mx
x
( )Acodomy nx
∈11
1nx
y
Singular Values
19
SOLO Matrices
Lemma6 (continue – 5):
Proof of Lemma 6 (continue – 2):
Definition of the Singular Values
( )H
AR
( )AN
( )H
AN
( )AR
xAy =
11 yAx H
=
( )Adomxmx ∈1
11mx
x
( )Acodomy nx
∈11
1nx
y
From
( )
riuAuA
AA
v i
H
i
i
H
H
i
i
,,2,1
11
: ===
σλ
we have [ ] [ ]














=
r
r
H
r uuuAvvv
σ
σ
σ
/100
0/10
00/1
2
1
2121





or 1
111
−
Σ= UAV H
11
1
1
2
11
1
111
2
111
Σ=ΣΣ=Σ= −
Σ=
−
UUUAAVA
UUAA
H
H
riuuuAAvA iiii
i
i
H
i
i
,,2,1
11 2
==== σσ
σσ
from which 1
111
−
Σ= VAU rivAu i
i
i
,,2,1
1
==
σ
111
Σ=VAU
H
Singular Values
20
SOLO Matrices
Lemma6 (continue – 6):
Proof of Lemma 6 (continue – 3):
Definition of the Singular Values
( )H
AR
( )AN
( )H
AN
( )AR
xAy =
11 yAx H
=
( )Adomxmx ∈1
11mx
x
( )Acodomy nx
∈11
1nx
y
Using and let compute AH
A V111
Σ=VAU
H
02 =VA
( )
( )
[ ] ( )
( ) ( ) ( )
( )
( ) ( ) ( ) 






 Σ
=








=








=
−−−
−
−−−
−
−
−
rmxrnxrrn
rmrx
nxm
H
nxm
H
nxm
H
nxm
H
nxmH
H
mxmnxm
H
nxn
rxr
rmmxxrrnmxrxrrn
rmmxrxnmxrrxn
rmmxmxr
xnrn
rxn
VAUVAU
VAUVAU
VVA
U
U
VAU
00
01
2212
2111
21
2
1
From this equation we obtain:
( )
[ ] ( )
( ) ( ) ( ) ( )
∑=
−−−
−
=Σ=















 Σ
=
−
−
r
i
H
iii
H
H
H
rmxrnxrrn
rmrx
nxm
vuVU
V
V
UUA
rxmrxrnxr
xmrm
rxmrxr
rnnxnxr
1
111
2
11
21
00
0
σ
Singular Values
Table of Contents
21
SOLO Matrices
Let perform the following transformations in
the domain and codomain :
Geometric Interpretation of Singular Values
Suppose, first, that A is square and r = n = m, and consider the spherical hypersurface
in the domain of A for which:
1v 1x
2
x
2
v
1=x
111 vAv =σ
111
xAx =λ
222 xAx =λ
222
vAv =σ
The Indicator Ellipsoid of a 2 x 2 Matrix11
11
nxnxnnx
mxmxmmx
Uy
Vx
η
ς
=
=
Because y = A x: ( ) ςςςη Σ=Σ=== UVVUVAUy H
From which: 11 mxnxmnx
ςη Σ=
1
1
22
2
2
2
===== ∑=
r
i
i
HHH
VVxxx ςςςς
From we have and the mapping of the spherical
hypersurface, in the codomain of A is the hypersurface of an ellipsoid:
11 mxnxmnx
ςη Σ= iii
σης /=
1
1
2
=







∑=
r
i i
i
σ
η
This ellipsoid is called the indicator ellipsoid of A and the singular values are
the lengths of the principal axes of this ellipsoid.
Singular Values
22
SOLO Matrices
If the square matrix A is singular, i.e., r < n = m, the indicator ellipsoid shrinks
to zero in the directions of the principal axes vi for which σi = 0. In this case:
Geometric Interpretation of Singular Values (continue – 1)
01 1
1
2
===<







+
=
∑ nr
r
i i
i
ηη
σ
η

If the general case of nonsquare matrices with r < n ≠ m, if we choose the
cylindrical hypersurface that has a circular hypersurface projection in R (AH
):
01 1
1
2
==== +
=
∑ mr
r
i
i
ςςς 
then its mapping will be the surface of the ellipsoid in R (A).
01 1
1
2
====







+
=
∑ nr
r
i i
i
ηη
σ
η
 ( )H
AR
( )AN
( )H
AN
( )AR
Singular Values
Table of Contents
23
SOLO Matrices
Properties of Singular Values
(1) The maximum singular value of Anxm is:
[ ] [ ]
2
2
02121
maxmaxmaxmax:
22 x
xA
xAxAAA
xxx
i
i ≠=≤
==== σσ
(2) The minimum singular value of Anxm is:
[ ] [ ]
2
2
02121
minminminmin:
22 x
xA
xAxAAA
xxx
i
i ≠=≤
==== σσ
Proof of (1) and (2)
Using x = V ζ we can write:
( ) ∑=
=
=Σ=Σ===
m
i
ii
H
xV
HHHHH
xVVxxAAxxAxAxA
1
22222
2
ςσςς
ς
1
1
22
2
≤==== ∑=
= m
i
i
H
xV
HHH
xVVxxxx ςςς
ς
To obtain the maximum/minimum of that satisfy the condition
we construct the Hamiltonian by adjoin the constraint to the extremum problem:
2
2
xA 1
2
2
≤x
( ) 





−+±= ∑∑ ==
1:,
1
2
1
22
m
i
i
m
i
ii
H ςλςσλς
+ for maximum
- for minimum
Singular Values
24
SOLO Matrices
Properties of Singular Values
Proof of maximum/minimum singular value of Anxm (continue – 1)
The necessary conditions for extremum are:
( ) 





−+±= ∑∑ ==
1:,
1
2
1
22
m
i
i
m
i
ii
H ςλςσλς
+ for maximum
- for minimum
( ) mi
H
ii
i
,,2,102
2
==+±=
∂
∂
ςλσ
ς
Kuhn-Tucker
Condition
( ) mi
minimumfor
maximumforH
i
i
,,2,1
0
0
2
2
2
2
=



>
<
+±=
∂
∂
λσ
ς
Maximization problem solution: ( ) [ ]AH 22
1,max σσλς ==
with
0
10,1
2
1
1
2
21
<−=
=⇒==== ∑=
σλ
ςςςς
m
i
im

Kuhn-Tucker Condition
Minimization problem solution: ( ) [ ]AH m
22
,min σσλς ==
with
0
10,1
2
1
2
11
≥=
=⇒==== ∑=
−
m
m
i
imm
σλ
ςςςς 
Kuhn-Tucker Condition
Singular Values
25
SOLO Matrices
Properties of Singular Values
Proof of maximum/minimum singular value of Anxm (continue – 2)
For any x ≠ 0 we have:
[ ] [ ] ( ) 0max
max
2
2
2
2
2
≤
−
=−=−
xx
xIAAx
AA
xx
xAAx
A
x
xA
H
HH
H
H
HH
λ
λσ
The inequality holds because (AH
A-I λmax [AH
A]) is non-positive definite.
We can see that the equality is satisfied for x = eigenvector (AH
A) that corresponds
to λmax [AH
A], therefore:
[ ] 0max
2
2
0
=








−
≠
A
x
xA
x
σ
In the same way, or any x ≠ 0 we have:
[ ] [ ] ( ) 0min
min
2
2
2
2
2
≥
−
=−=−
xx
xIAAx
AA
xx
xAAx
A
x
xA
H
HH
H
H
HH
λ
λσ
We can see that the equality is satisfied for x = eigenvector (AH
A) that corresponds
to λmin [AH
A], therefore:
[ ] 0min
2
2
0
=








−
≠
A
x
xA
x
σ
[ ]A
x
xA
x
σ=
≠
2
2
0
max
[ ]A
x
xA
x
σ=
≠
2
2
0
min
Singular Values
26
SOLO Matrices
Properties of Singular Values
(3) is a norm of Anxm, because it satisfies the norm properties:[ ]Aσ
(3.1) is non-negative and if and only if A = 0.
Proof of (3.1):
From Lemma 3:
[ ]Aσ [ ] 0=Aσ [ ] 00 =⇔= AAσ
(3.2) Multiplication by a complex constant α: [ ] [ ]AA σαασ =
(3.3) Triangle Inequalities:
(3.4) Schwarz Inequality:
[ ] [ ] [ ] [ ] [ ]BABABA σσσσσ +≤+≤−
[ ] [ ] [ ]BABA σσσ ≤
[ ] 0≥Aσ
[ ] 000 =Σ=⇔=Σ⇔= H
VUAAσ
Proof of (3.2):
[ ] ( ) [ ]AAAA
xx
σαααασ ===
≤≤ 2121 22
maxmax
Singular Values
27
SOLO Matrices
Properties of Singular Values
(3) is a norm of Anxm, because it satisfies the norm properties:[ ]Aσ
(3.1) is non-negative and if and only if A = 0.[ ]Aσ [ ] 0=Aσ [ ] 00 =⇔= AAσ
(3.2) Multiplication by a complex constant α: [ ] [ ]AA σαασ =
(3.3) Triangle Inequalities:
(3.4) Schwarz Inequality:
[ ] [ ] [ ] [ ] [ ]BABABA σσσσσ +≤+≤−
[ ] [ ] [ ]BABA σσσ ≤
Proof of (3.3): [ ] ( ) ( )
[ ] [ ]BAxBxA
xBxAxBABA
xx
xx
σσ
σ
+=+≤
+≤+=+
≤≤
≤≤
2121
22121
22
22
maxmax
maxmax
[ ] ( )[ ] [ ] [ ]BBABBAA σσσσ ++≤−+=From which
[ ] [ ] [ ]BABA +≤− σσσ
In the same way [ ] [ ] [ ]BAAB +≤− σσσ
[ ] [ ] [ ]BABA +≤− σσσ
Proof of (3.4):
[ ]
( ) ( )
[ ] [ ]BA
x
xB
y
yA
x
xB
xB
xBA
x
xBA
BA
xy
xx
σσ
σ
=≤
==
≠≠
≠≠
2
2
0
2
2
0
2
2
2
2
0
2
2
0
maxmax
maxmax
Hermann Amandus
Schwarz
1843 - 1921
Singular Values
28
SOLO Matrices
Properties of Singular Values
(4) The absolute value of the eigenvalues of a square matrix Anxn are bounded between
the minimum and the maximum singular values:
[ ] [ ] [ ] niAAA i
,,2,1 =≤≤ σλσ
Proof of (4):
We have: [ ] [ ] 0
2
2
≠∀≤≤ xA
x
xA
A σσ
If xi is any normalized eigenvector: A xi = λi xi, then
ni
x
x
x
x
x
xA
i
i
ii
i
ii
i
i
,,2,1
2
2
2
2
2
2
==== λ
λλ
Therefore: [ ] [ ] [ ] niAAA i
,,2,1 =≤≤ σλσ
Singular Values
29
SOLO Matrices
Properties of Singular Values
(5) A square matrix Anxn is singular iff its minimal singular value is zero.
[ ] 0=⇔ ASingularA σ
Proof of (5):
( ) [ ] [ ]AAVdiagUA n
H
n
σσσσσσσσ =≥≥≥==  2121
,,,
Therefore: [ ] [ ] [ ] 00det ==⇔=⇔ AAASingularA nσσ
( )[ ] [ ] ∏=
==
n
i
i
H
n VdiagUA
11
21
1
det,,,detdetdet σσσσ


(6) For a nonsingular square matrix Anxn we have
[ ]
[ ]
[ ]
[ ]11
1
&
1
−−
==⇔
A
A
A
ArNonsingulaA
σ
σ
σ
σ
Proof of (6):
( ) ( ) H
n
H
n UdiagVAVdiagUA σσσσσσ /1,,/1,/1,,, 21
1
21  =⇒= −
[ ] [ ] [ ] [ ]1
1
1
21
/1/10 −−
=≥≥=⇒>=≥≥≥= AAAA nn
σσσσσσσσσ 
Hence: [ ]
[ ]
[ ]
[ ]11
1
&
1
−−
==
A
A
A
A
σ
σ
σ
σ
Singular Values
30
SOLO Matrices
Properties of Singular Values
(7) If the square matrix (A+B) is singular then the maximum singular values of A
and of B are greater or equal than the minimum singular value of B and A,
respectively. The opposite is not true.
( ) [ ] [ ] [ ] [ ]ABBASingularBA σσσσ ≥≥⇒+ &
Proof of (7):
If (A+B) is singular, there exists a normalized eigenvector u (║u║2=1), s.t.:
( ) 22
0 uBuAuBuAuBA =⇒−=⇒=+
From this equation we obtain:
[ ] [ ]BxBuBuAxAA
xx
σσ =≥=≥=
≤≤ 212221 22
minmax
[ ] [ ]AxAuAuBxBB
xx
σσ =≥=≥=
≤≤ 212221 22
minmax
To prove that the opposite is not true, consider a counterexample:
[ ] [ ] [ ] [ ] 15&34
30
05
10
04
=>==>=




−
=





= ABBABA σσσσ
The right side is satisfied, but is nonsingular.( ) 




−
=+
40
01
BA
Singular Values
31
SOLO Matrices
Properties of Singular Values
( ) [ ] [ ] [ ] [ ]ABBASingularBA σσσσ ≥≥⇒+ &
Proof of (8):
(8) A sufficient condition that the square matrix (A+B) is nonsingular is:
We just proved:
( ) [ ] [ ] [ ] [ ]ABorBAingularonsNBA σσσσ <<⇒+
The proof follows directly from property (7). If (A+B) is singular then
[ ] [ ] [ ] [ ]ABBA σσσσ ≥≥ & ; hence if
then (A+B) is nonsingular.
[ ] [ ] [ ] [ ]ABorBA σσσσ <<
(7) If the square matrix (A+B) is singular then the maximum singular values of A
and of B are greater or equal than the minimum singular value of B and A,
respectively. The opposite is not true.
Singular Values
32
SOLO
To prove this we will consider the following three cases:
- (A+B) singular,
- (A+B) nonsingular but A and B are singular,
- (A+B) nonsingular but A or B, or both are nonsingular.
Matrices
Properties of Singular Values
(9) The minimum singular value of a square matrix (A+B) satisfies the inequalities:
[ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( )ABBABAABBA σσσσσσσσσ ++≤+≤−− ,min,max
Proof of (9):
(9.1) - (A+B) singular
According to property (5) [ ] 0=+ BAσ
Since (A+B) is singular use property (7)
[ ] [ ] [ ] [ ] [ ]BABAAB +=≤−⇒≥ σσσσσ 0
[ ] [ ] [ ] [ ] [ ]BAABBA +=≤−⇒≥ σσσσσ 0
This completes the proof when (A+B) is singular.
Singular Values
33
SOLO
(9.2) - (A+B) nonsingular but A and B are singular,
Matrices
Properties of Singular Values
(9) The minimum singular value of a square matrix (A+B) satisfies the inequalities:
[ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( )ABBABAABBA σσσσσσσσσ ++≤+≤−− ,min,max
Proof of (9) (continue – 1):
( )  ( ) 22
0
uBuBAuBuBuAuBA =+⇒=+=+
If A is singular, ,there exists a normalized eigenvector u (║u║2=1), s.t. A u=0:[ ] 0=Aσ
[ ] ( ) ( ) [ ] [ ] [ ]ABBxBuBuBAxBABA
xx
σσσσ +==≤=+≤+=+
≤≤ 212221 22
maxmin
and
[ ] [ ] [ ] [ ] [ ]BABABA σσσσσ +≤+<−
In the same way for (A+B) nonsingular and B singular:
[ ] [ ] [ ] [ ] [ ]ABBAAB σσσσσ +≤+<−
This completes the proof when (A+B) is nonsingular but A and B are singular.
Singular Values
34
SOLO
(9.3) - (A+B) nonsingular but A or B, or both are nonsingular.
Matrices
Properties of Singular Values
(9) The minimum singular value of a square matrix (A+B) satisfies the inequalities:
[ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( )ABBABAABBA σσσσσσσσσ ++≤+≤−− ,min,max
Proof of (9) (continue – 2):
BAC +=:Suppose that (A+B) and A are nonsingular, and define:
Pre-multiply by C-1
and post-multiply by A-1
:
1111 −−−−
+= ABCCA
Let take any norm of this equation and write triangle an Schwarz inequalities:
BACABC
ABCCAABCC
1111
1111111
−−−−
−−−−−−−
≤
−≤≤−
BACCABACC 1111111 −−−−−−−
−≤≤−
( )
B
ABA
B
A
+≤
+
≤− −−− 111
111
Using property (3), we can define , and because property (6) the previous
equation is equivalent to:
[ ]** σ=
[ ] [ ] [ ] [ ] [ ]BABABA σσσσσ +≤+<−
If B is nonsingular in the same way we can prove that:
[ ] [ ] [ ] [ ] [ ]ABBAAB σσσσσ +≤+<−
This completes the proof when (A+B) is nonsingular but A or B, or both are nonsingular.
Singular Values
35
SOLO
Using this and property (3.3):
Matrices
Properties of Singular Values
(10) If the square matrix A is a big matrix relative to the square matrix B, then (A+B)
can be approximated by A:
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ABAABABABAIf σσσσσσσσ ≈+≈+≤+⇒>> &
Proof of (10):
We have: [ ] [ ] [ ] [ ]BBAA σσσσ ≥>>≥
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ABAABABABAA σσσσσσσσσ ≈+⇒≈+≤+≤−≈
[ ] [ ] [ ] [ ] [ ]BABABA σσσσσ +≤+≤−
Using: and property (9):[ ] [ ] [ ] [ ]BBAA σσσσ ≥>>≥
[ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( )ABBABAABBA σσσσσσσσσ ++≤+≤−− ,min,max
we have:
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ABAABABABAA σσσσσσσσσ ≈+⇒≈+≤+≤−≈
Singular Values
36
SOLO Matrices
Properties of Singular Values
(11) Multiplicative Inequalities for square matrices:
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABABABABABA σσσσσσσσσσ ≤≤≤≤ &
Proof of (11):
The proof is given in the following steps:
(11.1) is the Schwarz inequality of property (3)[ ] [ ] [ ]BABA σσσ ≤
(11.2) prove that :[ ] [ ] [ ]BABA σσσ ≤
If A or B is singular ( or is zero) then A B is singular ( det [A B] =
det [A].
det [B]=0 and ) and we have equality.
[ ]Aσ [ ]Bσ
[ ] 0=BAσ
If A or B is nonsingular then A B is nonsingular ( det [A B] =
det [A].
det [B]≠0 ) and:
( ) ( ) 11111111 −−−−−−−−
≤=== ABABBAABBA
We define , and use the property (6):[ ]** σ= [ ]
[ ]
[ ]
[ ]11
1
&
1
−−
==
A
A
A
A
σ
σ
σ
σ
to obtain: [ ] [ ]
( )
[ ]BA
BABA
BA σσσ ≤≤= −−− 111
111
This result is opposite to Schwarz inequality, proving that is not a norm.[ ]Aσ
Singular Values
37
SOLO Matrices
Properties of Singular Values
(11) Multiplicative Inequalities for square matrices:
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABABABABABA σσσσσσσσσσ ≤≤≤≤ &
Proof of (11) (continue – 1):
(11.3) prove that :
If A is singular then:
[ ] [ ] [ ] [ ] [ ]BABAorBA σσσσσ ≤
[ ] [ ] [ ]BABA σσσ ≤= 0
If A is nonsingular then:
[ ] [ ] [ ] [ ]
[ ]
[ ]
[ ]
[ ] [ ]BAB
A
BA
A
BAABAAB σσ
σ
σ
σ
σσσσ ≤⇒=≤= −− 1111
If B is singular then: [ ] [ ] [ ]BABA σσσ ≤= 0
If B is nonsingular then:
[ ] [ ] [ ] [ ] [ ]
[ ]
[ ] [ ] [ ]BABA
B
BA
BBABBAA σσσ
σ
σ
σσσσ ≤⇒=≤= −− 11
Singular Values
38
SOLO Matrices
Properties of Singular Values
(11) Multiplicative Inequalities for square matrices:
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABABABABABA σσσσσσσσσσ ≤≤≤≤ &
Proof of (11) (continue – 2):
(11.4) prove that :
If A or B are singular then A B is singular, and:
[ ] [ ] [ ] [ ] [ ]BABAorBA σσσσσ ≤
[ ] [ ] [ ] [ ] [ ]( )BAorBABA σσσσσ ≤= 0
If B is nonsingular then:
[ ] [ ] [ ] [ ] [ ]
[ ]
[ ] [ ] [ ]BABA
B
BA
BBABBAA σσσ
σ
σ
σσσσ ≤⇒=≥= −− 11
We also have: [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ]
[ ] [ ] [ ]BABA
B
BA
BBABBABBAA
σσσ
σ
σ
σσσσσσ
≤⇒
=≥≥= −−− 111
If A is nonsingular then:
[ ] [ ] [ ] [ ] [ ]
[ ]
[ ] [ ] [ ]BABA
A
BA
BAABAAB σσσ
σ
σ
σσσσ ≤⇒=≥= −− 11
We also have: [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ]
[ ] [ ] [ ]BABA
A
BA
BAABAABAAB
σσσ
σ
σ
σσσσσσ
≤⇒
=≥≥= −−− 111
q.e.d.
Singular Values
39
SOLO Matrices
Properties of Singular Values
(12) Any unitary matrix U (U UH
= UH
U = I) has all the singular values equal to 1.
Proof of (12):
[ ] [ ] [ ] iIUUU i
H
ii ∀=== 12/12/1
λλσ
(13) If U is a unitary matrix (U UH
= UH
U = I) then:
Proof of (13):
[ ] [ ] [ ] iAUAAU iii ∀== σσσ
[ ] ( ) ( )[ ] [ ] [ ] [ ] iAAAAUUAAUAUAU i
H
i
HH
i
H
ii ∀==== σλλλσ 2/12/12/1
[ ] ( ) ( )[ ] [ ] [ ] [ ] [ ] iAAAAAUUUAAUUAUAUA i
H
i
HH
i
HH
i
H
ii ∀===== σλλλλσ 2/12/12/12/1
q.e.d.
Singular Values
q.e.d.
40
SOLO Matrices
Properties of Singular Values - Summary
(4) The absolute value of the eigenvalues of a square matrix Anxn are bounded between
the minimum and the maximum singular values:
[ ] [ ] [ ] niAAA i
,,2,1 =≤≤ σλσ
(3) is a norm of Anxm, because it satisfies the norm properties:[ ]Aσ
(3.1) is non-negative and if and only if A = 0.[ ]Aσ [ ] 0=Aσ [ ] 00 =⇔= AAσ
(3.2) Multiplication by a complex constant α: [ ] [ ]AA σαασ =
(3.3) Triangle Inequalities:
(3.4) Schwarz Inequality:
[ ] [ ] [ ] [ ] [ ]BABABA σσσσσ +≤+≤−
[ ] [ ] [ ]BABA σσσ ≤
(1) The maximum singular value of Anxm is:
[ ] [ ]
2
2
02121
maxmaxmaxmax:
22 x
xA
xAxAAA
xxx
i
i ≠=≤
==== σσ
(2) The minimum singular value of Anxm is:
[ ] [ ]
2
2
02121
minminminmin:
22 x
xA
xAxAAA
xxx
i
i ≠=≤
==== σσ
Singular Values
41
SOLO Matrices
Properties of Singular Values – Summary (continue – 1)
(5) A square matrix Anxn is singular iff its minimal singular value is zero.
[ ] 0=⇔ ASingularA σ
(6) For a nonsingular square matrix Anxn we have
[ ]
[ ]
[ ]
[ ]11
1
&
1
−−
==⇔
A
A
A
ArNonsingulaA
σ
σ
σ
σ
(9) The minimum singular value of a square matrix (A+B) satisfies the inequalities:
[ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( )ABBABAABBA σσσσσσσσσ ++≤+≤−− ,min,max
(8) A sufficient condition that the square matrix (A+B) is nonsingular is:
( ) [ ] [ ] [ ] [ ]ABorBAingularonsNBA σσσσ <<⇒+
( ) [ ] [ ] [ ] [ ]ABBASingularBA σσσσ ≥≥⇒+ &
(7) If the square matrix (A+B) is singular then the maximum singular values of A
and of B are greater or equal than the minimum singular value of B and A,
respectively. The opposite is not true.
Singular Values
42
SOLO Matrices
Properties of Singular Values – Summary (continue – 2)
(12) Any unitary matrix U (U UH
= UH
U = I) has all the singular values equal to 1.
(13) If U is a unitary matrix (U UH
= UH
U = I) then: [ ] [ ] [ ] iAUAAU iii ∀== σσσ
(11) Multiplicative Inequalities for square matrices:
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABABABABABA σσσσσσσσσσ ≤≤≤≤ &
(10) If the square matrix A is a big matrix relative to the square matrix B, then (A+B)
can be approximated by A:
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ABAABABABAIf σσσσσσσσ ≈+≈+≤+⇒>> &
Singular Values
Table of Contents
43
SOLO Matrices
Householder Transformation
nˆ
( )xnn T 
ˆˆ
( )xnn T 
ˆˆ
x

'x

O A
We want to compute the reflection of
over a plane defined by the normal ( )1ˆˆˆ =nnn T
x

From the Figure we can see that:
( ) ( ) xHxnnIxnnxx TT 
=−=−= ˆˆ2ˆˆ2'
1ˆˆˆˆ2: =−= nnnnIH TT
We can see that H is symmetric:
( ) HnnInnIH TTTT
=−=−= ˆˆ2ˆˆ2
In fact H is also a rotation of around OA so it must be orthogonal, i.e.
HT
H=H HT
=I.
x

( ) ( )  InnnnnnInnInnIHHHH TTTTTT
=+−=−−== ˆˆˆˆ4ˆˆ4ˆˆ2ˆˆ2
1
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Table of Contents
Alston Scott Householder
1904 - 1993
44
SOLO Matrices
The same result is obtained if we compute α that minimizes:
a

b

P
a

α
ab

α−p

We want to find such that ( )pba

−⊥ap

α=
Projection of a vector on a vector .b

a

or: ( ) ( ) ( ) baaaabapba TTTT
 1
0
−
=⇒−=−= αα
and: ( ) ( )[ ] bPbaaaabaaaaap TTTT

====
−− 11
α
( )[ ]TT
aaaaP
 1
:
−
= Projection Matrix
( ) ( ) ( )aababbabababd TTT
T  2
2
2
2minminminmin ααααα αααα
+−=−−=−=
( )
( )
( ) baaa
aa
d
aaba
d
TT
T
TT



1
min
2
22
2
0
022
−
=⇒







>=
∂
∂
=+−=
∂
∂
α
α
α
α
Properties of Projection Matrix
(1) P is idempotent P2
= P
(2) P is symmetric PT
= P
( ) cbcPIcPcbP

,∀−=−⊥
Proof:
( ) ( ) ( ) cbcPIPbcPIbP TT
T 
,0 ∀−=−=
( ) 0=− PIPT
Hence: PPP TT
= ( ) PPPPP TTT
== 2
PPPPP TT
===
b

bP

cP

cP
c

 −
c

Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Table of Contents
45
SOLO
Note:
If A and b were real, instead of H (transpose & complex conjugate) we
have only T (transpose).
Matrices
Given: Amxn of rank (Amxn) = r ≤ min (m,n) and 1mx
b

Find: such that is minimal1nx
x

11 mxnxmxn
bxAd

−=
If the solution is not unique choose such that is minimal1nx
x

1nx
x

Solution:
The minimum is obtained when
( ) ( )
( )







>=
∂
∂
=−=−=−=
∂
∂
0
0
2
22
2
11
2
AA
x
d
bAxAAbxAAbxA
x
d
H
HHH
mxnxmxn



( ) bAAAx HH
 1−
=
A unique solution exists if AH
A is positive definite, or rank (AH
A) = n, or det|AH
A| ≠ 0
( ) ( )1111
2
11
2
mxnxmxn
H
mxnxmxnmxnxmxn
bxAbxAbxAd

−−=−=Analytic:
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
111
min&min
1
nxmxnxmxn
x
xbxAd
nx

 −=
46
SOLO Matrices
Given: Amxn of rank (Amxn) = r ≤ min (m,n) and 1mx
b

Find: such that is minimal1nx
x

11 mxnxmxn
bxAd

−=
If the solution is not unique choose such that is minimal1nx
x

1nx
x

Solution (continue – 1):
Geometric:
We have A x∈ R (A) for all x ∈ domain (A).
We want to find x0 ∈ domain (A), such that
is normal to A x.0
xAbpb

−=−
( ) ( ) ( )AdomainxxAbpbxA ∈∀−=−⊥

0
( ) ( ) ( ) ( )AdomainxxAAbAxxAbxA HHHH
∈∀−=−=

00
0
Hence: 00
=− bAxAA HH

( )H
AR
( )AN
( )H
AN
( )AR
xA

( )Adomx ∈0

( )AcodomY ∈
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
b

R
x0

Nx0

0
xAp

=
pb

−
xA

( )Adomx ∈

0
xA

Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
111
min&min
1
nxmxnxmxn
x
xbxAd
nx

 −=
47
SOLO Matrices
Let decompose as0
x

( )H
AR
( )AN
( )H
AN
( )AR
xA

( )Adomx ∈0

( )AcodomY ∈
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
b

R
x0

N
x0

0xAp

=
pb

−
xA

( )Adomx ∈

0xA

( )
( ) NR
N
H
R
NR
xx
AofspaceNullANx
AofspaceRowARx
xxx 00
0
0
000




⊥



∈
∈
+=
Therefore:
RNR
xAxAxAxAp 0
0
000



=+==
Hence if:
(a) N (A) = 0 or
(b) The rows of A are linearly dependent or
(c) rank (A) = r < m
(d) AH
A is singular
there are a infinity of solutions NRNR
xxxxx 00000

⊥+=
The norm of is:0x

NR
xx
NR
xxxxx
NR
00000
00 

+=+=
⊥
Hence: 0&min 000
== NR
xxx

Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
111
min&min
1
nxmxnxmxn
x
xbxAd
nx

 −=
48
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
( )T
AR
( )AN
( )H
AN
( )AR
xA

( )Adomx ∈0

( )AcodomY ∈
Null Space of A
Ker (A)
span by VA2
T
Row Space of A
span by VA1
T
Column Space of A
span by UA1
Left Null Space of A
span by UA2
b

R
x0

N
x0

0xAp

=
pb

−
xA

( )Adomx ∈

0xA

bAx R
 +
=0
0&min 000
== NR
xxx

Define the Linear Transformation (Matrix),
that gives from , as the Pseudoinverse
of A. (A is the direct transformation that gives
from :
Rx0

b

p

x

xAp

=
bAx †
R

=0
A†
is called Moore-Penrose Pseudoinverse Matrix,
because was defined independently by E.H.Moore in 1920
and Roger Penrose in 1955.
Eliakim Hastings
Moore
1862 - 1932
Roger Penrose
1931 -
111
min&min
1
nxmxnxmxn
x
xbxAd
nx

 −=
Table of Contents
49
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .a

( )H
AR
( )AN
( )H
AN
( )AR
xA

( )Adomx ∈0

( )AcodomY ∈
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
b

R
x0

N
x0

0xAp

=
pb

−
xA

( )Adomx ∈

0xA

bAx †
R

=0
bAx †
R

=0
Computation of Moore-Penrose Pseudoinverse Matrix, A †
Perform Singular Value Decomposition (S.V.D.) of Amxn:
where ( ) 0,,, 21211 >≥≥≥=Σ rrA diagrxr
σσσσσσ 
UAmxm and VAnxn are unitary matrices, i.e.:
( )
[ ] ( )
( ) ( ) ( ) ( ) 














Σ
=Σ=
−
−
−−−
−
H
A
H
A
rnxrmxrrm
rnrxA
AA
H
AAAmxn
xnrn
rxnrxr
rmmxmxrnxnmxnmxm
V
V
UUVUA
2
11
21
00
0

[ ]
( ) ( )
[ ] H
AA
H
AA
H
AAH
A
H
A
AA
rmxrm
rxr
AAH
A
H
A
A
H
A UUUUUU
U
U
UU
I
I
UU
U
U
UU =+=





=





=





=
−−
2211
2
1
2121
2
1
0
0
[ ]
( ) ( )
[ ] H
AA
H
AA
H
AAH
A
H
A
AA
rnxrn
rxr
AAH
A
H
A
A
H
A VVVVVV
V
V
VV
I
I
VV
V
V
VV =+=





=





=








=
−−
2211
2
1
2121
2
1
0
0
50
SOLO Matrices
( )H
AR
( )AN
( )H
AN
( )AR
xA

( )Adomx ∈0

( )AcodomY ∈
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
b

R
x0

N
x0

0xAp

=
pb

−
xA

( )Adomx ∈

0xA

bAx †
R

=0
Since the norm is invariant to the product of orthogonal matrices
( ) bUxVbxVUUbxVUbxA HHHHH

−Σ=−Σ=−Σ=−
Introduce the new unknown: R
H
N
H
R
HH
xVxVxVxVy

=+==:
But 
( ) 0
0
=⇒Σ=+Σ=+= N
H
R
H
N
H
R
H
NR xVxVUxVxVUxAxAxA

RR
I
HH
RR
HH
xxVVxxVxVy



=








===
2/1
( )
( ) ( ) ( )
bUybUybxA H
rnxrmxrrm
r
rnrx
y
H
yx







 −
















=−Σ=−
−−−
−
00
0
0
0
minminmin
1
σ
σ
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Computation of Moore-Penrose Pseudoinverse Matrix, A †
51
SOLO Matrices
( )H
AR
( )AN
( )H
AN
( )AR
xA

( )Adomx ∈0

( )AcodomY ∈
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
b

Rx0

Nx0

0xAp

=
pb

−
xA

( )Adomx ∈

0xA

bAx †
R

=0
Therefore:
R
HH
xVxVy

==:
RR
I
HT
RR
HH
xxVVxxVxVy



=








===
2/1
( )
( ) ( ) ( )
bUybUybxA H
rnxrmxrrm
r
rnrx
y
H
yx







 −
















=−Σ=−
−−−
−
00
0
0
0
minminmin
1
σ
σ
( )
( ) ( ) ( )
( )




















+
















= −
−−−
−








any
xrm
rx
H
rmxrnxrrn
r
rmrx
XbUy 1
1
1
0
00
/10
0
0/1
σ
σ
R
xyx 0
minmin

==
( )
( ) ( ) ( )
R
HH
rmxrnxrrn
r
rmrx
xVbUy 0
1
00
/10
0
0/1

  






=
















=
+
Σ
−−−
−
σ
σ
bAbUVx †H†
R

=Σ=0
H††
UVA Σ=
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Computation of Moore-Penrose Pseudoinverse Matrix, A †
52
SOLO Matrices
( )H
AR
( )AN
( )H
AN
( )AR
xA

( )Adomx ∈0

( )AcodomY ∈
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
b

R
x0

N
x0

0
xAp

=
pb

−
xA

( )Adomx ∈

0xA

bAx †
R

=0
Where:
( )
( ) ( ) ( ) 

















=Σ
−−−
−
−
=
rmxrnxrrn
r
rmrx
†
nxm
00
0
0
0
:
1
1
1





σ
σ
H
mxm
†
nxmnxn
†
nxm UVA Σ=
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Computation of Moore-Penrose Pseudoinverse Matrix, A †
( )
[ ] ( )
( ) ( ) ( ) ( )
H
AAAH
A
H
A
rmxrnxrrn
rmrxA
AnA
†
nxm rxmrxrnxr
xmrm
rxmrxr
rnnxmxr
UV
U
U
VVA 1
1
11
2
1
1
1
21
00
0
: −
−−−
−
−
Σ=















Σ
=
−
−











=Σ
−
=
1
1
1
1
0
0
:
r
1-
A rxr
σ
σ



Table of Contents
53
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Properties of Moore-Penrose Pseudoinverse Matrix, A †
( )
( ) ( ) ( )
( )
( ) ( ) ( )
( )
( ) ( ) ( ) 







=


































=ΣΣ
−−−
−
−−−
−
−−−
−
−
=
rnxrnxrrn
rnrxrxr
rnxrmxrrm
r
rnrx
rmxrnxrrn
r
rmrx
mxn
†
nxm
I
00
0
00
0
0
0
00
0
0
0 1
1
1
1










σ
σ
σ
σ
( )
( ) ( ) ( )
( )
( ) ( ) ( )
( )
( ) ( ) ( ) 







=


































=ΣΣ
−−−
−
−−−
−
−
=
−−−
−
rmxrmxrrm
rmrxrxr
rmxrnxrrn
r
rmrx
rnxrmxrrm
r
rnrx
†
nxmmxn
I
00
0
00
0
0
0
00
0
0
0
1
1
11










σ
σ
σ
σ
( ) ( )
( ) ( ) ( )
†
nxmmxn
rmxrmxrrm
rmrxrxr††
nxmmxn
I
ΣΣ=








=ΣΣ
−−−
−
00
0
( ) ( )
( ) ( ) ( )
mxn
†
nxm
rnxrnxrrn
rnrxrxr†
mxn
†
nxm
I
ΣΣ=








=ΣΣ
−−−
−
00
0
Using the definition of the Pseudoinverse we can see that
54
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Properties of Moore-Penrose Pseudoinverse Matrix, A †
( )
( ) ( ) ( )
( )
( ) ( ) ( )
( )
( ) ( ) ( )
†
nxm
rmxrnxrrn
r
rmrx
rmxrnxrrn
r
rmrx
rnxrnxrrn
rnrxrxr†
nxmmxn
†
nxm
I
Σ=


















=


























=ΣΣΣ
−−−
−
−
=
−−−
−
−
=
−−−
−
00
0
0
0
00
0
0
0
00
0 1
1
1
1
1
1










σ
σ
σ
σ
( )
( ) ( ) ( )
( )
( ) ( ) ( )
( )
( ) ( ) ( )
mxn
rnxrmxrrm
r
rnrx
rnxrmxrrm
r
rnrx
rmxrmxrrm
rmrxrxr
mxn
†
nxmmxn
I
Σ=
















=
























=ΣΣΣ
−−−
−
−−−
−
−−−
−
00
0
0
0
00
0
0
0
00
0
11










σ
σ
σ
σ
( ) ( ) ( ) ( ) †
nxmmxn
H†H††
Def†
†H††H†H††
nxmmxn
AAUUUUUUUVVUAA =ΣΣ=ΣΣ=ΣΣ=ΣΣ=
( ) ( ) ( ) ( ) mxn
†
nxm
H†H††
Def†
†H††HH††
mxn
†
nxm
AAVVVVVVVUUVAA =ΣΣ=ΣΣ=ΣΣ=ΣΣ=
Also:
Let check the same operations for Matrix A †
( ) ( ) ( ) ( ) mxn
HH†HH†H
mxn
†
nxmmxn
AVUVUVUUVVUAAA =Σ=ΣΣΣ=ΣΣΣ=
( ) ( ) ( ) ( ) †
nxm
H†H††H†HH††
nxmmxn
†
nxm
AUVUVUVVUUVAAA =Σ=ΣΣΣ=ΣΣΣ=
55
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Properties of Moore-Penrose Pseudoinverse Matrix, A †
- Summary)
( ) †††
nxmmxnnxmmxn AAAA =
( ) mxn
†
nxm
†
mxn
†
nxm AAAA =
mxnmxn
†
nxmmxn AAAA =
†
nxm
†
nxmmxn
†
nxm
AAAA =
1
2
3
4
Table of Contents
56
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Description of Projections Related to Moore-Penrose Pseudoinverse
bPbAAxAp †
R

1
===1
( )H
AR
( )AN
( )H
AN
( )AR
Rx

( )Adomx∈
( )Acodomb ∈

Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
b

bAx †
R

=
( )
R
†
xA
bAAp


=
=
R
xAp

=
P1 is a projection matrix because
( ) ( ) ( )



=ΣΣ=ΣΣ==
===
11
1
2
1
PUUUVVUAAP
PAAAAAAP
HH†HH†HH†H
†††
P1=A A†
projects into column space of A, R (A)b

H†H†H†
UUUVVUAAP ΣΣ=ΣΣ==:1
57
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Description of Projections Related to Moore-Penrose Pseudoinverse
2
( )H
AR
( )AN
( )H
AN
( )AR
R
x

( )Adomx ∈

( )Acodomb ∈

Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
b

bAx †
R

=
( )
R
†
xA
bAAp


=
=
RxAp

=
( )bAAIpb †

−=−
( ) 0=− pbA† 
pAx †
R

=
P2=(I - A A †
) is a projection matrix because
( ) ( )
( ) ( )




=−=−=−=−=
=+−−=−−=
21112
2
2
2
PPIPIPIAAIP
PAAAAAAAAIAAIAAIP
HHH†H
†
A
†††††

Because , is the
projection of into .
( ) ( )H
ANAR ⊥ pb

−
( )H
ANb

We can see, also, that:
( ) H†H†
†
UIUUUI
AAIPIP
ΣΣ−=ΣΣ−=
−=−= 12 :
( ) ( ) 00



==








−=−=− bbAAAAbAAIApbA
†
A
†††††† pAbAx ††
R

==
( ) ( ) bPbAAIpb †

2
=−=−
58
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Description of Projections Related to Moore-Penrose Pseudoinverse
3 ( )
( ) NR
N
H
R
NR
xx
AofspaceNullANx
AofspaceRowARx
xxx




⊥



∈
∈
+=
( ) ( ) xPxAAxAApAbAx ††††
R

3
=====
P3=A †
A is a projection matrix of in R (AH
)x

( ) ( )
( ) ( ) ( )




=ΣΣ=ΣΣ==
====
33
3
2
3
PVVVUUVAAP
PAAAAAAAAAAP
HH†HHH†H†H
†
A
††††
†

4 ( ) ( ) xPxAAIxAAxxxx ††
RN

4
=−=−=−=
P4=I-A †
A is a projection matrix of in N (A)x

( ) 
( ) ( )




=−=−=−=
=+−=−=
43333
4
2
33
2
3
2
4
3
2
PPIPIPIP
PPPIPIP
HHHH
P
( )H
AR
( )AN
( )H
AN
( )AR
( )Adomx ∈

( )Acodomb ∈

Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
b

bAx †
R

=
( )
R
†
xA
bAAp


=
=
R
xAp

=
( )bAAIpb †

−=−
( ) 0=− pbA† 
pAx †
R

=
( ) xAAx †
R

=
( )H
AR
( )AN
( )H
AN
( )AR
( )Adomx ∈

( )Acodomb ∈

Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
b

bAx †
R

=
( )
R
†
xA
bAAp


=
=
R
xAp

=
( )bAAIpb †

−=−
( ) 0=− pbA† 
pAx †
R

=
( ) xAAx †
R

=
( ) xAAIx †
N

−=
0=NxA

59
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Description of Projections Related to Moore-Penrose Pseudoinverse (Summary)
3 ( ) ( ) ( )H††††
R
ARxPxAAxAApAbAx ∈=====

3
4
( )H
AR
( )AN
( )H
AN
( )AR
( )Adomx ∈

( )Acodomb ∈

Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
b

bAx †
R

=
( )
R
†
xA
bAAp


=
=
R
xAp

=
( )bAAIpb †

−=−
( ) 0=− pbA† 
pAx †
R

=
( ) xAAx †
R

=
( ) xAAIx †
N

−=
0=NxA

( ) ( ) ( )ANxPxAAIxAAxxxx ††
RN
∈=−=−=−=

4
( ) ( ) ( )H†
ANbPbAAIpb ∈=−=−

2
2
( )ARbPbAAxAp †
R
∈===

1
1
H††
UUAAP ΣΣ==:1
†
AAIPIP −=−= 12
:
H††
VVAAP ΣΣ==:3
AAIPIP †
−=−= 34 :
Table of Contents
60
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Particular case (1) r = n ≤ m:
( )
[ ]
( )
H
A
xnnm
A
AA
H
AAAmxn nxn
nxn
nmmxmxnnxnmxnmxm
VUUVUA







Σ
=Σ=
−
−
0
1
21

(a) rank (Amxn) = n or
(b) columns of Amxn are linear independent or
(c) N (Amxn) = 0 or
(d) Anxm
H
Amxn is nonsingular
This is equivalent to:
where ( ) 0,,, 21211 >≥≥≥=Σ nnA diagnxn
σσσσσσ 
[ ]
( ) ( )
[ ] H
AA
H
AA
H
AAH
A
H
A
AA
nmxnm
nxn
AAH
A
H
A
A
H
A UUUUUU
U
U
UU
I
I
UU
U
U
UU =+=





=





=





=
−−
2211
2
1
2121
2
1
0
0
( )[ ]
( )
H
AAAH
A
H
A
nmnxAA
†
nxm nxmnxnnxn
xmnm
nxm
nxnnxn
UV
U
U
VA 1
1
1
2
11
1 0: −
−
−
Σ=








Σ=
−
( )H
AR
( ) 0=AN
( )H
AN
( )AR
x

b

Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
( )bAAxAp †

==
pAx † 
=
( )bAAIpb
 +
−=−
xAp

=
bAx †

=
( ) 0=− pbA† 
61
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Particular case (1) r = n ≤ n: (continue – 1)
( )[ ]
( )
H
AAAH
A
H
A
nmnxAA
†
nxm nxmnxnnxn
xmnm
nxm
nxnnxn
UV
U
U
VA 1
1
1
2
11
1 0: −
−
−
Σ=








Σ=
−
( )
[ ]
( )
H
A
xnnm
A
AA
H
AAAmxn nxn
nxn
nmmxmxnnxnmxnmxm
VUUVUA







Σ
=Σ=
−
−
0
1
21

[ ] [ ] H
AAA
H
A
A
AAH
A
H
A
AA
H
VVVUU
U
U
VAA 2
1
1
21
2
1
1
0
0 Σ=




Σ






Σ=  ( ) H
AAA
H
VVAA 2
1
1 −−
Σ=
( ) †H
AAA
H
AAA
H
AAA
HH
AUVUVVVAAA =Σ=ΣΣ= −−−
1
1
111
2
1
1
or ( ) H
nxmmxn
H
nxm
†
nxm
AAAA
1−
=
( )H
AR
( ) 0=AN
( )H
AN
( )AR
x

b

Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
( )bAAxAp †

==
pAx † 
=
( )bAAIpb
 +
−=−
xAp

=
bAx †

=
( ) 0=− pbA† 
We have only one solution that minimize
11 mxnxmxn
bxAd

−=
x

and is given by:
( ) 1
1
11 mx
H
nxmmxn
H
nxmmx
†
nxmnx
bAAAbAx
 −
== Table of Contents
62
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Particular case (2) r = m ≤ n:
(a) rank (Amxn) = m or
(b) rows of Amxn are linear independent or
(c) N (Anxm
H
) = 0 or
(d) AmxnAnxm
H
is nonsingular
This is equivalent to:
where ( ) 0,,, 21211 >≥≥≥=Σ mmA diagmxm
σσσσσσ 
( )
[ ]
( )
H
AAA
H
A
xmmn
A
AnA
†
nxm mxmmxmnxmmxm
mxm
mnnxmxr
UVUVVA 1
11
1
1
21
0
: −
−
−
Σ=







Σ
= −

( )[ ]
( )
H
AAAH
A
H
A
mnmxAA
H
AAAmxn mxnmxmmxm
xnmn
mxn
mxmmxmnxnmxnmxm
VU
V
V
UVUA 11
2
1
1
0 Σ=








Σ=Σ=
−
−
[ ]
( ) ( )
[ ] H
AA
H
AA
H
AAH
A
H
A
AA
mnxmn
mxm
AAH
A
H
A
A
H
A VVVVVV
V
V
VV
I
I
VV
V
V
VV =+=





=





=








=
−−
2211
2
1
2121
2
1
0
0
( )H
AR
( )AN
( ) ( )ARBAN H
∈≡ &0
( )AR
xAb

=
( ) N
†
nxn xxAAI

=−
( ) R
†
xxAA

=
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H Column Space of A
span by UA1
bAx †
R

= R
xAb

=
b

0=N
xA

63
SOLO Matrices
Moore-Penrose Pseudoinverse Matrix Anxm
†
of Amxn .
Particular case (2) r = m ≤ n: (continue – 1)
( )
[ ]
( )
H
AAA
H
A
xmmn
A
AnA
†
nxm mxmmxmnxmmxm
mxm
mnnxmxr
UVUVVA 1
11
1
1
21
0
: −
−
−
Σ=







Σ
= −

( )[ ]
( )
H
AAAH
A
H
A
mnmxAA
H
AAAmxn mxnmxmmxm
xnmn
mxn
mxmmxmnxnmxnmxm
VU
V
V
UVUA 11
2
1
1
0 Σ=








Σ=Σ=
−
−
H
AAA
H
AA
I
A
H
AAA
H
UUUVVUAA
m
2
11111 Σ=ΣΣ=

( ) H
AAA
H
UUAA 2
1
1 −−
Σ=
( ) †H
AAA
H
AAA
H
AAA
HH
AUVUUUVAAA =Σ=ΣΣ= −−− 1
11
2
111
1
or ( ) 1−
= HH†
AAAA
( )H
AR
( )AN
( ) ( )ARBAN H
∈≡ &0
( )AR
xAb

=
( ) N
†
nxn
xxAAI

=−
( ) R
†
xxAA

=
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H Column Space of A
span by UA1
bAx †
R

= R
xAb

=
b

0=N
xA

We have an infinite number of solutions that minimize
11 mxnxmxn
bxAd

−=
( ) bAAAbAx HH†
R
 1−
==
The solution that minimizes
the norm is given by:
Rx

Rx

Table of Contents
64
SOLO Matrices
General Solution of Amxn Xnxp = Bmxp
X - nxp unknowns with mxp equations
mxpnxpmxn BXA =
Perform Singular Value Decomposition (S.V.D.) of Amxn:
where ( ) 0,,, 21211
>≥≥≥=Σ rrA
diagrxr
σσσσσσ 
UAmxm and VAnxn are unitary matrices, i.e.:
( )H
AR
( )AN
( )H
AN
( )ARBXA =
11 yAx H
=
( )AdomX ∈
( )AcodomY ∈
1nx
y
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
B
( )
[ ] ( )
( ) ( ) ( ) ( ) 














Σ
=Σ=
−
−
−−−
−
H
A
H
A
rnxrmxrrm
rnrxA
AA
H
AAAmxn
xnrn
rxnrxr
rmmxmxrnxnmxnmxm
V
V
UUVUA
2
11
21
00
0

[ ]
( ) ( )
[ ] H
AA
H
AA
H
AAH
A
H
A
AA
rmxrm
rxr
AAH
A
H
A
A
H
A UUUUUU
U
U
UU
I
I
UU
U
U
UU =+=





=





=





=
−−
2211
2
1
2121
2
1
0
0
[ ]
( ) ( )
[ ] H
AA
H
AA
H
AAH
A
H
A
AA
rnxrn
rxr
AAH
A
H
A
A
H
A VVVVVV
V
V
VV
I
I
VV
V
V
VV =+=





=





=








=
−−
2211
2
1
2121
2
1
0
0
65
SOLO Matrices
General Solution of Amxn Xnxp = Bmxp
Let multiply by
and using:
mxpnxpmxn BXA =








H
H
U
U
2
1
we obtain: [ ]








=













Σ








BU
BU
X
V
V
UU
U
U
H
A
H
A
H
A
H
AA
I
AAH
A
H
A
m
2
1
2
11
21
2
1
00
0
  

or:








=













Σ
BU
BU
X
V
V
H
A
H
A
H
A
H
AA
2
1
2
11
00
0
or:
( ) ( )xprmmxp
H
A BU xmrm −=−
02
(m-r)xp - constraints equivalent
to condition Bmxp∈ℜ (Amxn)
mxp
H
Anxp
H
AA
BUXV rxmrxnrxr 111
=Σ
rxp - independent equations
nxp – unknowns
since r ≤ n → # Eq. ≤ # Unknown
( )H
AR
( )AN
( )H
AN
( )ARBXA =
11 yAx H
=
( )AdomX ∈
( )AcodomY ∈
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
B
( )
[ ] ( )
( ) ( ) ( ) ( ) 














Σ
=Σ=
−
−
−−−
−
H
A
H
A
rnxrmxrrm
rnrxA
AA
H
AAAmxn
xnrn
rxnrxr
rmmxmxrnxnmxnmxm
V
V
UUVUA
2
11
21
00
0

66
( ) ( )xprmmxp
H
A
BU xmrm −
=−
02
(m-r)xp - constraints equivalent
to condition Bmxp∈ℜ (Amxn)
SOLO Matrices
General Solution of Amxn Xnxp = Bmxp
mxp
H
Anxp
H
AA
BUXV rxmrxnrxr 111
=Σ
rxp - independent equations
nxp – unknowns
since r ≤ n → # Eq. ≤ # Unknown
This equation is a Necessary and Sufficient Condition for any solutions of equation
Amxn Xnxp = Bmxp. It is equivalent to Bmxp∈ℜ (Amxn) or Bmxp ∩ N (AT
) = ∅.
If this condition is fulfilled, then from we have
nxp unknowns ≥ rxp independent equations, that means (n-r)xp degrees of freedom.
mxp
H
Anxp
H
AA BUXV rxmrxnrxr 111 =Σ
mxp
H
AAnxp
H
A BUXV rxmrxrrxn 1
1
11
−
Σ=
Since VA1
T
VA1=Ir & VA1
T
VA2 = 0 the
General Solution of Amxn Xnxp = Bmxp is:
( )
( ) ( )
( )
  
AN
xprnA
AR
mxp
H
AAAnxp
YVBUVX rnnx
T
rxmrxrnxr
∈
−
∈
−
−
+Σ= 21
1
11
where Y(n-r)xp is any (n-r)xp matrix, i.e. we
used all (n-r)xp degrees of freedom.
( )H
AR
( )AN
( )H
AN
( )ARBXA =
( )AdomX ∈
( )AcodomY ∈
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
BB has to be in the
column space of A
( ) ( ) =∩∈ ANBorARB
67
SOLO Matrices
General Solution of Amxn Xnxp = Bmxp
Check:
( )
[ ] ( )
( ) ( ) ( ) ( )
( ) ( )( )
( )
[ ] ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( )
[ ] ( )
( ) ( ) ( ) ( )
( )
[ ]
( )
( )
[ ] ( ) ( )
[ ]
( )
mxpmxp
xmrm
H
A
H
A
AA
mxpxmrm
H
A
mxp
H
A
AA
xprm
mxp
H
A
AA
xprn
mxp
H
AA
rnxrmxrrm
rnrxA
AA
xprn
I
A
H
Amxp
H
AAA
H
A
xprnA
H
Amxp
H
AA
I
A
H
A
rnxrmxrrm
rnrxA
AA
xprnAmxp
H
AAAH
A
H
A
rnxrmxrrm
rnrxA
AAnxp
H
AAAnxpmxn
BB
U
U
UUBU
BU
UU
BU
UU
Y
BU
UU
YVVBUVV
YVVBUVV
UU
YVBUV
V
V
UUXVUXA
rxm
rmmxmxr
rxm
rmmxmxr
rxm
rmmxmxr
rxmrxrrxr
rmmxmxr
rnnxxnrnrxmrxrnxrxnrn
rnnxrxnrxmrxrnxrrxnrxr
rmmxmxr
rnnxrxmrxrnxr
xnrn
rxnrxr
rmmxmxrnxnmxnmxm
=








=










=








=







Σ







Σ
=












+Σ
+Σ







Σ
=
+Σ















Σ
=Σ=
−
−
−−
−
−−−
−
−
−
−
−
−−−
−
−
−
−−−
−
−−
−−
−−−
−
−
−
−
−
2
1
21
0
2
1
21
1
21
1
1
11
21
221
1
1
0
12
0
211
1
1111
21
21
1
11
2
11
21
000
0
00
0
00
0








68
SOLO Matrices
where r is such that:
General Solution of Amxn Xnxp = Bmxp
Algorithm to solve Amxn Xnxp = Bmxp:
(1) Compute s.v.d. of Amxn and partition according to:
( ) 0,,, 21211 >≥≥≥=Σ rrA diagrxr
σσσσσσ 
(2) Check if:
( ) ( )xprmmxp
H
A
BU xmrm −
=−
02
(3) If (2) is not true → no solution for (1)
( ) ( )

any
xprnAmxp
H
AAAnxp
YVBUVX rnnxrxmrxrnxr −
−
−
+Σ= 21
1
11
( )
[ ] ( )
( ) ( ) ( ) ( ) 














Σ
=Σ=
−
−
−−−
−
H
A
H
A
rnxrmxrrm
rnrxA
AA
H
AAAmxn
xnrn
rxnrxr
rmmxmxrnxnmxnmxm
V
V
UUVUA
2
11
21
00
0

If (2) is true → (n-r)xp solutions:
69
SOLO Matrices
General Solution of Amxn Xnxp = Bmxp
Moore-Penrose Pseudoinverse of A:
( )
[ ] ( )
( ) ( ) ( ) ( )
H
AAAH
A
H
A
rmxrnxrrn
rmrxA
AnA
†
nxm rxmrxrnxr
xmrm
rxmrxr
rnnxmxr
UV
U
U
VVA 1
1
11
2
1
1
1
21
00
0
: −
−−−
−
−
Σ=















Σ
=
−
−

then
( )
[ ] ( )
( ) ( ) ( ) ( )
( )
[ ] ( )
( ) ( ) ( ) ( )
H
AAH
A
H
A
rmxrnxrrn
rmrxA
I
AAH
A
H
A
rnxrmxrrm
rnrxA
AA
†
mxn rxnnxr
xmrm
rxmrxr
nxn
rnnxnxr
xnrn
rxnrxr
rmmxmxrnxm
UU
U
U
VV
V
V
UUAA 11
2
1
1
1
21
2
11
21
00
0
00
0
=















Σ















Σ
=
−
−
−
−
−−−
−
−
−−−
−
  

( ) ( )
( ) ( ) ( )
H
AA
H
AA
H
AA
H
AA
†
nxmmxnmxm xmrmrmmxrxmmxrxmrmrmmxrxmmxr
UUUUUUUUAAI −−−−
=−+=− 22112211
also
( )
[ ] ( )
( ) ( ) ( ) ( )
( )
[ ] ( )
( ) ( ) ( ) ( )
H
AAH
A
H
A
rnxrmxrrm
rnrxA
I
AAH
A
H
A
rmxrnxrrn
rmrxA
AAnxm
†
mxn rxnnxr
xnrn
rxnrxr
mxm
rmmxmxr
xmrm
rxmrxr
rnnxnxr
VV
V
V
UU
U
U
VVAA 11
2
11
21
2
1
1
1
21
00
0
00
0
: =















Σ















Σ
=
−
−
−
−
−−−
−
−−−
−
−
  

( ) ( )
( ) ( ) ( )
H
AA
H
AA
H
AA
H
AAmxn
†
nxmnxn xnrnrmnxrxnnxrxnrnrmnxrxnnxr
VVVVVVVVAAI −−−−
=−+=− 22112211
70
SOLO Matrices
General Solution of Amxn Xnxp = Bmxp
Moore-Penrose Pseudoinverse of A (continue - ):
Define also Znxp such that: ( ) ( ) nxp
H
Axprn
ZVY xrrn−
=− 2
:
( ) ( )

any
xprnAmxp
H
AAAnxp YVBUVX rnnxrxmrxrnxr −
−
−
+Σ= 21
1
11
Since, if
( ) ( )xprmmxp
H
A
BU xmrm −
=−
02
The solution of Amxn Xnxp = Bmxp is
( ) ( )
( ) ( ) ( )
H
AA
H
AA
H
AA
H
AAmxn
†
nxmnxn xnrnrmnxrxnnxrxnrnrmnxrxnnxr
VVVVVVVVAAI −−−−
=−+=− 22112211
( )
[ ] ( )
( ) ( ) ( ) ( )
H
AAAH
A
H
A
rmxrnxrrn
rmrxA
AnA
†
nxm rxmrxrnxr
xmrm
rxmrxr
rnnxmxr
UV
U
U
VVA 1
1
11
2
1
1
1
21
00
0
: −
−−−
−
−
Σ=















Σ
=
−
−

Therefore: ( ) 
any
nxpmxn
†
nxmnxnmxp
†
nxmnxp
ZAAIBAX −+=
Note: By writing the solution this way we lose the fact that we have only (n-r)xp
different solutions as we have seen.
Check: ( ) ( )
( )

xprn
xnrnrnnxrxmrxrnxr
Y
nxp
H
AAmxp
H
AAAnxp
ZVVBUVX
−
−−
+Σ= −
221
1
11
71
SOLO Matrices
General Solution of Amxn Xnxp = Bmxp
Moore-Penrose Pseudoinverse of A (continue - ):
( ) ( ) ( ) 
any
nxpmxn
†
nxmnxnmxp
†
nxm
any
xprnAmxp
H
AAAnxp
ZAAIBAYVBUVX rnnxrxmrxrnxr
−+=+Σ= −
−
−
21
1
11
( )
( )
( )
( )
( ) ( ) ( )xprmmxp
H
AA
ANonBofprojection
mxp
H
BUU
BAAI
orANB
orARB
xmrmrmmx
T
−
+
==
−
Ο/=∩
∈
−−
0
0
22

  
Solutions exists iff:
( )H
AR
( )AN ( )H
AN
( )AR
BXA =
( ) YVZAAI A
†
nxn 2=−
BA†
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H Column Space of A
span by UA1
Left Null Space of A
span by UA2
B
BA†Z
i.e. the projection (Imxm – Amxn Anxm
†
) of B on N (AH
) is zero.
( ) ( ) ( ) mxpmxp
H
AAmxp
†
nxmmxnmxm
BUUBAAI mnrmrmmx
0
0
22
==− −−

Table of Contents
72
SOLO Matrices
General Solution of Amxn Xnxp = Bmxp
Particular case (1) r = m ≤ n:
solutions always exist
( )H
AR
( )AN
( ) ( )ARBAN H
∈≡ &0
( )AR
BXA =
( ) YVZAAI A
†
nxn 2=−
BA†
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H Column Space of A
span by UA1
B
BA†Z
Since
( )[ ]
( ) 







Σ=Σ=
−
− H
A
H
A
mnmxAA
H
AAAmxn
xnmn
rxn
mxmmxmnxnmxnmxm
V
V
UVUA
2
1
1 0
( ) ( ) ( ) ( )xprmmxp
H
ArmmxA BUU xmrmrmmx −− ≡⇒≡ −−
00 22
nxp unknowns ≥ mxp equations, meaning (n-m)xp degrees of freedom
( ) ( )
( ) 
any
nxpmxn
†
nxmnxnmxp
†
nxm
any
xprnAmxp
H
AAAnxp
ZAAIBA
YVBUVX rnnxrxmrxrnxr
−+=
+Σ= −
−
−
21
1
11
( )
[ ]
( )
( ) 11
11
1
1
21
0
:
−−
−
−
=Σ=







Σ
= −
H
nxmmxn
H
nxm
H
AAA
H
A
xmmn
A
AnA
†
nxm
AAAUVUVVA mxmrxrnxrmxm
mxm
mnnxnxm

( )[ ]
( )
( )
[ ]
( )
mxm
H
A
xmmn
A
AAH
A
H
A
mnmxAA
†
nxmmxn IUVV
V
V
UAA mxm
mxm
mnnxnxm
xnmn
mxn
mxmmxm
=







Σ








Σ=
−
−
− −
−
0
0
1
1
21
2
1

Table of Contents
73
SOLO Matrices
General Solution of Amxn Xnxp = Bmxp
Particular case (2) r = n ≤ n: mxp equations ≥ nxp unknowns, meaning (n-m)xp constraints
Only if solutions exist.
( ) ( )xprmmxp
H
A
BU xmrm −
=−
02
In this case we have nxp unknowns and mxp equations - (m-p)xp constraints =
nxp independent equations, i.e. a unique solution:
mxpnxmmxp
H
AAAnxp
BABUVX nxmnxnnxn
+−
=Σ= 1
1
11
( )
[ ]
( )
H
A
xnnm
A
AA
H
AAAmxn nxn
nxn
nmmxmxnnxnmxnmxm
VUUVUA







Σ
=Σ=
−
−
0
1
21

( )[ ]
( )
H
AAAH
A
H
A
nmnxAA
†
nxm nxmnxnnxn
xmnm
nxm
nxnnxn
UV
U
U
VA 1
1
2
11
0: −
−
−
Σ=








Σ=
−
( )[ ]
( )
( )
[ ]
( )
nxn
H
A
xnnm
A
AAH
A
H
A
nmnxAAmxn
†
nxm IVUU
U
U
VAA nxn
nxn
nmmxmxn
xmnm
nxm
nxnnxn
=







Σ








Σ=
−
−
−
−
−
0
0
1
21
2
11

( )H
AR
( ) 0=AN ( )H
AN
( )ARBXA =
BA†
1nx
y
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
BB has to be in the
column space of A
( ) ( ) =∩∈ ANBorARB
Table of Contents
74
SOLO Matrices
General Solution of YpxmAmxn = Cpxn
Y - pxm unknowns with pxn equations
pxnmxnpxm CAY =
Perform Singular Value Decomposition (S.V.D.) of Amxn:
where ( ) 0,,, 21211
>≥≥≥=Σ rrA
diagrxr
σσσσσσ 
UAmxm and VAnxn are unitary matrices, i.e.:
[ ]
( ) ( )
[ ] H
AA
H
AA
H
AAH
A
H
A
AA
rmxrm
rxr
AAH
A
H
A
A
H
A UUUUUU
U
U
UU
I
I
UU
U
U
UU =+=





=





=





=
−−
2211
2
1
2121
2
1
0
0
[ ]
( ) ( )
[ ] H
AA
H
AA
H
AAH
A
H
A
AA
rnxrn
rxr
AAH
A
H
A
A
H
A VVVVVV
V
V
VV
I
I
VV
V
V
VV =+=





=





=








=
−−
2211
2
1
2121
2
1
0
0
( )H
AR
( )AN
( )H
AN
( )ARCAY =
11 yAx H
=
C
Y
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
( )
[ ] ( )
( ) ( ) ( ) ( ) 














Σ
=Σ=
−
−
−−−
−
H
A
H
A
rnxrmxrrm
rnrxA
AA
H
AAAmxn
xnrn
rxnrxr
rmmxmxrnxnmxnmxm
V
V
UUVUA
2
11
21
00
0

75
SOLO Matrices
we obtain: [ ] [ ] [ ]2121
2
11
21
00
0
AAAAH
A
H
AA
AA
VCVCVV
V
V
UUY  =













Σ
or:
( ) ( )rnpxApxn rnnx
VC −=−
02
px(n-r) - constraints equivalent
to condition Cpxn∈ℜ (Amxn
H
)
nxrrxrmxr ApxnAApxm
VCUY 111
=Σ
pxr - independent equations
pxm – unknowns
since r ≤ m → # Eq. ≤ # Unknown
( )
[ ] ( )
( ) ( ) ( ) ( ) 














Σ
=Σ=
−
−
−−−
−
H
A
H
A
rnxrmxrrm
rnrxA
AA
H
AAAmxn
xnrn
rxnrxr
rmmxmxrnxnmxnmxm
V
V
UUVUA
2
11
21
00
0

General Solution of YpxmAmxn = Cpxn ( )H
AR
( )AN
( )H
AN
( )ARCAY =
C
Y
Null Space of A
Ker (A)
span by VA2
T
Row Space of A
span by VA1
T
Column Space of A
span by UA1
Left Null Space of A
span by UA2
C has to be in the
Row Space of A
H
AC
( )
( ) Ο/=∩
∈
ANC
orARC HLet post-multiply by
and using:
[ ]21
VVpxnmxnpxm CAY =
or: [ ] [ ]21
1
21
00
0
AA
A
AA
VCVCUUY  =




Σ
76
SOLO Matrices
Since UA1
T
UA1=Ir & UA1
T
UA2 = 0 the
General Solution of YpxmAmxn = Cpxn is:
where Xpx(m-r) is any px(m-r) matrix, i.e. we
used all px(m-r) degrees of freedom.
General Solution of YpxmAmxn = Cpxn
nxrrxrmxr ApxnAApxm
VCUY 111
=Σ
pxr - independent equations
pxm – unknowns
since r ≤ m → # Eq. ≤ # Unknown
This equation is a Necessary and Sufficient Condition for any solutions of equation
YpxmAmxn = Cpxn. It is equivalent to Cpxn∈ℜ (Amxn) or Cpxn ∩ N (AT
) = ∅.
If this condition is fulfilled, then from we have
nxp unknowns ≥ rxp independent equations, that means (n-r)xp degrees of freedom.
H
ApxnAApxm nxrrxrmxr
VCUY 111 =Σ
1
111
−
Σ= rxrnxrmxr AApxnApxm
VCUY
px(n-r) - constraints equivalent
to condition Cpxn∈ℜ (Amxn
H
)( ) ( )rnpxApxn rnnx
VC −=−
02
( ) ( )
H
A
any
rmpx
H
AAApxnpxm xmrmrxmrxrnxr
UXUVCY −−
−
+Σ= 21
1
11

( )H
AR
( )AN
( )H
AN
( )ARCAY =
C
Y
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
C has to be in the
Row Space of A
H
AC
( )
( ) Ο/=∩
∈
ANC
orARC H
H
AC
77
SOLO Matrices
Check:
( ) ( )
( ) ( )
[ ] ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( )[ ] ( )
( ) ( ) ( ) ( )
( )[ ]
( )
( )
( )
( )
( )
[ ]
( )
pxnH
A
H
A
AApxnH
A
H
A
ApxnApxn
H
A
H
A
rnpxApxnH
A
H
A
rnxrmxrrm
rnrxA
rmpxAApxn
H
A
H
A
rnxrmxrrm
rnrxA
I
A
H
ArmpxA
H
AAApxnA
H
Armpx
I
A
H
AAApxn
H
A
H
A
rnxrmxrrm
rnrxA
AA
H
Armpx
H
AAApxnmxnpxm
C
V
V
VVC
V
V
VCVC
V
V
VC
V
V
XVC
V
V
UUXUUVCUUXUUVC
V
V
UUUXUVCAY
xnrn
rxn
rnpxnxr
xnrn
rxn
rnpx
rnpxnxr
xnrn
rxn
nxr
xnrn
rxnrxr
rxrnxr
xnrn
rxnrxr
rmmxxmrmrmmxrxmrxrnxrmxrxmrmmxrrxmrxrnxr
xnrn
rxnrxr
rmmxmxrxmrmrxmrxrnxr
=








=


















=








=















Σ
Σ=















Σ








+Σ+Σ=















Σ
+Σ=
−
−
−
−
−
−−
−
−−−−
−
−−
−
−−−
−
−
−
−−−
−
−
−
−
−
−−−
−
−
−
2
1
21
2
1
0
21
2
1
1
2
111
11
2
11
22
0
21
1
11
0
1211
1
11
2
11
2121
1
11
0
00
0
00
0
00
0




  



General Solution of YpxmAmxn = Cpxn
78
SOLO Matrices
where r is such that:
Algorithm to solve YpxmAmxn = Cpxn:
(1) Compute s.v.d. of Amxn and partition according to:
( ) 0,,, 21211 >≥≥≥=Σ rrA diagrxr
σσσσσσ 
(2) Check if:
(3) If (2) is not true → no solution for (1)
( )
[ ] ( )
( ) ( ) ( ) ( ) 














Σ
=Σ=
−
−
−−−
−
H
A
H
A
rnxrmxrrm
rnrxA
AA
H
AAAmxn
xnrn
rxnrxr
rmmxmxrnxnmxnmxm
V
V
UUVUA
2
11
21
00
0

General Solution of YpxmAmxn = Cpxn
( ) ( )rnpxApxn rnnx
VC −=−
02
( ) ( )
H
A
any
rmpx
H
AAApxnpxm xmrmrxmrxrnxr
UXUVCY −−
−
+Σ= 21
1
11

If (2) is true → px(m-r) solutions:
79
SOLO Matrices
Moore-Penrose Pseudoinverse of A (continue - ):
Define also Wpxm such that: ( ) ( )rmmxApxmrmpx UWX −
=− 2:
( ) ( )
( ) ( ) ( )
H
AA
H
AA
H
AA
H
AAmxn
†
nxmnxn xnrnrmnxrxnnxrxnrnrmnxrxnnxr
VVVVVVVVAAI −−−−
=−+=− 22112211
( )
[ ] ( )
( ) ( ) ( ) ( )
H
AAAH
A
H
A
rmxrnxrrn
rmrxA
AnA
†
nxm rxmrxrnxr
xmrm
rxmrxr
rnnxmxr
UV
U
U
VVA 1
1
11
2
1
1
1
21
00
0
: −
−−−
−
−
Σ=















Σ
=
−
−

Therefore: 
( )†
nxmmxnmxm
any
pxm
†
nxmpxnpxm
AAIWACY −+=
Note: By writing the solution this way we lose the fact that we have only px(m-r)
different solutions as we have seen.
If ( ) ( )rnpxApxn rnnx
VC −
=−
02
General Solution of YpxmAmxn = Cpxn
the solution of YpxmAmxn = Cpxn is ( ) ( )
H
A
any
rmpx
H
AAApxnpxm xmrmrxmrxrnxr
UXUVCY −−
−
+Σ= 21
1
11

Check: ( )
( )
( )
H
A
X
Apxm
H
AAApxnpxm xmrm
rmpx
rmmxrxmrxrnxr
UUWUVCY −
−
−
+Σ= −
221
1
11

80
SOLO Matrices
Moore-Penrose Pseudoinverse of A (continue - ):
Solutions exists iff:
i.e. the projection (Inxn – Anxm
†
Amxn) of C on N (A) is zero.
General Solution of YpxmAmxn = Cpxn
( ) ( )

( )†
nxmmxnmxm
any
pxm
†
nxmpxn
H
A
any
rmpx
H
AAApxnpxm
AAIWAC
UXUVCY xmrmrxmrxrnxr
−+=
+Σ= −−
−
21
1
11

( ) ( )
( )
( ) pxn
H
AApxnmxn
†
nxmnxnpxn xnrn
rnpx
rnnx
VVCAAIC 02
0
2 ==− −
−
−

( )H
AR
( )AN ( )H
AN
( )ARCAY =
C
pxm
Y
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
C has to be in the
Row Space of A
H
AC
( )
( ) orANC
orARC H
Ο/=∩
∈
( )
( )
( )
( )
( ) pxn
H
AApxn
ANonprojection
mxnnxmnxnpxn xnrn
rnpx
rnnx
VVCAAIC 02
0
2 ==− −
−
−
+
  
( )
( )
( ) ( )
H
Armpx
ANonWanyofprojection
nxmmxnmxmpxm xrrm
H
pxm
UXAAIW −−
+
=− 2
  
pxmW
H
AC
( )
( )
( )
( )
( )
( )
( ) pxn
H
AApxn
ANonprojection
mxn
†
nxmnxnpxn
H
xnrn
rnpx
rnnx
VVC
AAIC
orANC
orARC
02
0
2 ==
−
Ο/=∩
∈
−
−
−

  
†††
Table of Contents
81
SOLO Matrices
Particular case (1) r = m ≤ n:
( )[ ]
( ) 







Σ=Σ=
−
− H
A
H
A
mnmxAA
H
AAAmxn
xnmn
rxn
mxmmxmnxnmxnmxm
V
V
UVUA
2
1
1 0
( )
[ ]
( )
( ) 11
11
1
1
21
0
:
−−
−
−
=Σ=







Σ
= −
H
nxmmxn
H
nxm
H
AAA
H
A
xmmn
A
AnA
†
nxm
AAAUVUVVA mxmrxrnxrmxm
mxm
mnnxnxm

( )[ ]
( )
( )
[ ]
( )
mxm
H
A
xmmn
A
AAH
A
H
A
mnmxAA
†
nxmmxn IUVV
V
V
UAA mxm
mxm
mnnxnxm
xnmn
mxn
mxmmxm
=







Σ








Σ=
−
−
− −
−
0
0
1
1
21
2
1

General Solution of YpxmAmxn = Cpxn
Only if solutions exist.( ) ( )rnpxApxn rnnx
VC −
=−
02
In this case we have pxm unknowns and pxn equations – px(n-m) constraints =
pxm independent equations, i.e. a unique solution:
†
nxmpxn
H
AAApxnpxm
AC
UVCY rxmrxrnxr
=
Σ= −
1
1
11
( )H
AR
( )AN
( ) 0=H
AN
( )ARCAY =
C
Null Space of A
Ker (A)
span by VA2
H
Row Space of A
span by VA1
H
Column Space of A
span by UA1
C has to be in the
Row Space of A
H
AC
( )
( )
( ) ( )
( )
( ) pxn
H
AApxnmxn
†
nxmnxnpxn
H
xnrn
rnpx
rnnx
VVCAAIC
orANC
orARC
02
0
2 ==−
Ο/=∩
∈
−
−
−

Table of Contents
82
SOLO Matrices
Particular case (2) r = n ≤ n: pxn equations ≥ pxm unknowns, meaning px(m-n) constraints
( )
[ ]
( )
H
A
xnnm
A
AA
H
AAAmxn nxn
nxn
nmmxmxnnxnmxnmxm
VUUVUA







Σ
=Σ=
−
−
0
1
21

( )[ ]
( )
H
AAAH
A
H
A
nmnxAA
†
nxm nxmnxnnxn
xmnm
nxm
nxnnxn
UV
U
U
VA 1
1
2
11
0: −
−
−
Σ=








Σ=
−
( )[ ]
( )
( )
[ ]
( )
nxn
H
A
xnnm
A
AAH
A
H
A
nmnxAAmxn
†
nxm
IVUU
U
U
VAA nxn
nxn
nmmxmxn
xmnm
nxm
nxnnxn
=







Σ








Σ=
−
−
−
−
−
0
0
1
21
2
11

Since solutions always exist( ) ( )rnpxApxn rnnx
VC −
≡−
02
pxm unknowns ≥ pxn equations, meaning px(m-n) degrees of freedom
( )H
AR
( ) 0=AN
( )H
AN
( )ARCAY =
C
Y
Row Space of A
span by VA1
H
Column Space of A
span by UA1
Left Null Space of A
span by UA2
C has to be in the
Row Space of A
H
AC
( ) CAAC †
=
( ) H
A
UXAAIW 2
=− +
( )
( )
( ) ( )
( )
( ) pxn
H
AApxnmxn
†
nxmnxnpxn
H
xnrn
rnpx
rnnx
VVCAAIC
orANC
orARC
02
0
2
==−
Ο/=∩
∈
−
−
−

( ) ( )

( )†
nxmmxnmxm
any
pxm
†
nxmpxn
H
A
any
rmpx
H
AAApxnpxm
AAIWAC
UXUVCY xmrmrxmrxrnxr
−+=
+Σ= −−
−
21
1
11

General Solution of YpxmAmxn = Cpxn
Table of Contents
83
SOLO Matrices
Inverse of Partitioned Matrices
( ) ( )
( ) ( ) 







−−−
−−−
=





−
×
−
×××
−
×
−
××××
−
×
−
×
−
××××
−
×
−
×
−
×××
−
××
××
11111
111111
mnnnnmmmnmmmmnnnnmmm
mnnnnmmmmnnnnmmmmnnn
mmnm
mnnn
BADCDCBADC
BADCBADCBA
CD
BA
if and exist.
1−
×nnA
1−
×nnC
Let find the inverse of such that:





××
××
mmnm
mnnn
PN
ML






××
××
mmnm
mnnn
CD
BA






=











××
××
××
××
××
××
mmnm
mnnn
mmnm
mnnn
mmnm
mnnn
I
I
PN
ML
CD
BA
0
0
Proof:
nnnmmnnnnn INBLA ××××× =+1 ( ) nnnnnmmmmnnn ILDCBA ×××
−
××× =−→
1
2 nmnmmmnnnm NCLD ××××× =+ 0
nnnmmmnm LDCN ××
−
×× −=→
1
3
mnmmmnmnnn PBMA ××××× =+ 0 mmmnnnmn PBAM ××
−
×× −=→
1
4
mmmmmmmnnm IPCMD ××××× =+ ( ) mmmmmnnnnmmm IPBADC ×××
−
××× =−→
1
84
SOLO Matrices
Inverse of Partitioned Matrices
( ) ( )
( ) ( ) 







−−−
−−−
=





−
×
−
×××
−
×
−
××××
−
×
−
×
−
××××
−
×
−
×
−
×××
−
××
××
11111
111111
mnnnnmmmnmmmmnnnnmmm
mnnnnmmmmnnnnmmmmnnn
mmnm
mnnn
BADCDCBADC
BADCBADCBA
CD
BA
if and exist.
1−
×nnA
1−
×nnC
Let find the inverse of such that:





××
××
mmnm
mnnn
PN
ML






××
××
mmnm
mnnn
CD
BA






=











××
××
××
××
××
××
mmnm
mnnn
mmnm
mnnn
mmnm
mnnn
I
I
PN
ML
CD
BA
0
0
Proof (continue – 1):
1 ( ) nnnnnmmmmnnn
ILDCBA ×××
−
×××
=−
1
2 nnnmmmnm LDCN ××
−
×× −=
1
3
4
mmmnnnmn PBAM ××
−
×× −=
1
( ) mmmmmnnnnmmm IPBADC ×××
−
××× =−
1
( ) 11 −
×
−
×××× −= nmmmmnnnnn DCBAL
( ) 111 −
×
−
××××
−
×× −−= nmmmmnnnnmmmnm DCBADCN
( ) 11 −
×
−
×××× −= mnnnnmmmmm BADCP
( ) 111 −
×
−
××××
−
×× −−= mnnnnmmmmnnnmn BADCBAM
q.e.d.
85
SOLO Matrices
Inverse of Partitioned Matrices






=











××
××
××
××
××
××
mmnm
mnnn
mmnm
mnnn
mmnm
mnnn
I
I
CD
BA
PN
ML
0
0
From:
( ) 1−
×××××
−=→ mmmnnmmmmm
CBNIPmmmmmmmnnm ICPBN ××××× =+we get:
( ) 11 −
×
−
×××× −= mnnnnmmmmm BADCPSubstitute:
and: ( ) 111 −
×
−
××××
−
×× −−= nmmmmnnnnmmmnm DCBADCN
( ) ( ) 1111111 −
××
−
×
−
××××
−
×
−
×
−
×
−
××× −+=− mmmnnmmmmnnnnmmmmmmnnnnmmm CBDCBADCCBADC
to obtain:
By inter-changing , in this identity, we obtain:nmmnnnmm DBAC ×××× ↔↔ ,
( ) ( ) 1111111 −
××
−
×
−
××××
−
×
−
×
−
×
−
×××
−+=− nnnmmnnnnmmmmnnnnnnmmmmnnn
ADBADCBAADCBA
86
SOLO
Pre-multiplying this identity by we obtain
Matrices
Inverse of Partitioned Matrices
Let prove the identity:
( ) ( ) 111111 −
××
−
×
−
×××
−
×
−
××××
−
× −=− mmmnnmmmmnnnmnnnnmmmmnnn CBDCBABADCBA
( ) ( ) 1111 −
×
−
××××
−
××
−
××× −− mnnnnmmmmnnnnmmmmnnn BADCBADCBA
Proof:
( )( ) 1111 −
×
−
××××
−
××
−
××× −−≡ mnnnnmmmmnnnnmmmmnmn BADCBADCBB
( )( ) 11111 −
××
−
×
−
××××
−
×××
−
××
≡−−≡ mmmnmnnnnmmmmnnnnmmmmmmn
CBBADCBADCCB
( ) 11 −
×
−
××× − nmmmmnnn DCBA
( ) ( ) ( )
( ) 111
111111
−
××
−
×
−
×××
−
×
−
××××
−
××
−
×××
−
×
−
×××
−≡
−−−
mmmnnmmmmnnn
mnnnnmmmmnnnnmmmmnnnnmmmmnnn
CBDCBA
BADCBADCBADCBA
q.e.d.
( ) ( ) 111111 −
×
−
××××
−
×
−
××
−
×
−
×××
−=− nmmmmnnnnmmmnnnmmnnnnmmm
DCBADCADBADC
By inter-changing ,in the first identity, we obtain:nmmnnnmm DBAC ×××× ↔↔ ,
( ) ( ) 111111 −
××
−
×
−
×××
−
×
−
××××
−
× −=− nnnmmnnnnmmmnmmmmnnnnmmm ADBADCDCBADC
q.e.d.
87
SOLO Matrices
Inverse of Partitioned Matrices
By using the identities:
( ) ( ) 111111 −
×
−
××××
−
×
−
××
−
×
−
××× −=− nmmmmnnnnmmmnnnmmnnnnmmm DCBADCADBADC
We obtain:
( ) ( )
( ) ( ) 







−−−
−−−
=





−
×
−
×××
−
×
−
××××
−
×
−
×
−
××××
−
×
−
×
−
×××
−
××
××
11111
111111
mnnnnmmmnmmmmnnnnmmm
mnnnnmmmmnnnnmmmmnnn
mmnm
mnnn
BADCDCBADC
BADCBADCBA
CD
BA
if and exist.
1−
×nnA
1−
×nnC
( ) ( )
( ) ( ) 







−−−
−−−+
=





−
×
−
×××
−
××
−
×
−
×××
−
×
−
××××
−
×
−
××
−
×
−
××××
−
×
−
×
−
××
××
11111
111111111
mnnnnmmmnnnmmnnnnmmm
mnnnnmmmmnnnnnnmmnnnnmmmmnnnnn
mmnm
mnnn
BADCADBADC
BADCBAADBADCBAA
CD
BA
( ) ( ) 1111111 −
××
−
×
−
××××
−
×
−
×
−
×
−
×××
−+=− nnnmmnnnnmmmmnnnnnnmmmmnnn
ADBADCBAADCBA
88
SOLO Matrices
Inverse of Partitioned Matrices
If and exist, performing the computation M-1
M, we can prove:
1−
×nnA
1−
×nnC








−
=





−
×
−
××
−
×
×
−
×
−
××
××
111
11
00
mmnnnmmm
mnnn
mmnm
mnnn
CADC
A
CD
A
1
2







 −
=





−
××
−
××
−
×
−
×
−
××
××
1
1111
00 mmnm
mmmnnnnn
mmnm
mnnn
C
CBAA
C
BA
3








=





−
××
×
−
×
−
××
××
1
11
0
0
0
0
mmnm
mnnn
mmnm
mnnn
C
A
C
A
4 If and :
T
nnnn
AA ××
=
T
nnnn
CC ××
=
( ) ( )
( ) ( ) 







−−−
−−−
=





−
×
−
×××
−
×
−
××××
−
×
−
×
−
××××
−
×
−
×
−
×××
−
××
××
11111
111111
mnnnnm
T
mmnm
T
mmmnnnnm
T
mm
mnnnnm
T
mmmnnnnm
T
mmmnnn
mmnm
T
mnnn
BABCBCBABC
BABCBABCBA
CB
BA
Because this is a symmetric matrix
( ) ( ) 111111 −
××
−
×
−
×××
−
×
−
××××
−
× −=− nnnm
T
mnnnnm
T
mmnm
T
mmmnnnnm
T
mm ABBABCBCBABC
Also: ( ) ( ) 1111111 −
××
−
×
−
××××
−
×
−
×
−
×
−
××× −+=− mmmnnm
T
mmmnnnnm
T
mmmmmnnnnm
T
mm CBBCBABCCBABC
89
SOLO Matrices
Inverse of Partitioned Matrices
If m=n and and also exist:
1−
×nnB
1−
×nn
D5
( ) ( )[ ] 111111 −
×
−
××
−
×××
−
×
−
××××
−
× −−=−− nnnnnnnnnnnnnnnnnnnnnnnn ABBADCBADCBA
( ) ( )[ ] 111111 −
×
−
××
−
×××
−
×
−
××××
−
× −−=−− nnnnnnnnnnnnnnnnnnnnnnnn CDDCBADCBADC
also
we obtain
( ) ( )
( ) ( ) 







−−
−−
=





−
×
−
×××
−
×
−
×××
−
×
−
×××
−
×
−
×××
−
××
××
1111
11111
nnnnnnnnnnnnnnnn
nnnnnnnnnnnnnnnn
nnnn
nnnn
BADCCDAB
ABCDDCBA
CD
BA
Table of Contents
90
SOLO Matrices
Matrix Inverse Lemmas Identities
( ) ( ) 1111111 −
××
−
×
−
××
−
××
−
×
−
×
−
×××× +−=+ mmmnnmmmmnnnnmmmmmmnnnnmmm CBDCBADCCBADC1
Proof:
( ) ( ) 1111111 −
××
−
×
−
××××
−
×
−
×
−
×
−
××× −+=− mmmnnmmmmnnnnmmmmmmnnnnmmm CBDCBADCCBADC
In the identity:
substitute by .
1−
×nnA nnA ×−
Substitute by and by in (1).
1−
×nnAnnA × mmC ×
1−
×mmC2
( ) ( ) mmmnnmmmmnnnnmmmmmmnnnnmmm CBDCBADCCBADC ××
−
×××××××
−
×
−
××
−
× +−=+
1111
Substitute in (1) nnnn IA ×× =3
( ) ( ) 111111 −
××
−
×
−
××××
−
×
−
×
−
××× +−=+ mmmnnmmmmnnnnmmmmmmnnmmm CBDCBIDCCBDC
Substitute in (2) nnnn IA ×× =4
( ) ( ) mmmnnmmmmnnnnmmmmmmnnmmm CBDCBIDCCBDC ××
−
×××××××
−
××
−
× +−=+
111
91
SOLO Matrices
Matrix Inverse Lemmas Identities
5Substitute in (1), (2), (3), (4) by . (We don’t assume symmetric and )nmD × nm
T
B × nnA × mmC ×
( ) ( ) 1111111 −
××
−
×
−
××
−
××
−
×
−
×
−
×××× +−=+ mmmnnm
T
mmmnnnnm
T
mmmmmnnnnm
T
mm CBBCBABCCBABC
( ) ( ) mmmnnm
T
mmmnnnnm
T
mmmmmnnnnm
T
mm CBBCBABCCBABC ××
−
×××××××
−
×
−
××
−
× +−=+
1111
( ) ( ) 111111 −
××
−
×
−
××××
−
×
−
×
−
××× +−=+ mmmnnm
T
mmmnnnnm
T
mmmmmnnm
T
mm CBBCBIBCCBBC
( ) ( ) mmmnnm
T
mmmnnnnm
T
mmmmmnnm
T
mm CBBCBIBCCBBC ××
−
×××××××
−
××
−
× +−=+
111
From this we get:
6Substitute in (3) mmmm IC ×× =
( ) ( ) mnnmmnnnnmmmmnnmmm BDBIDIBDI ×
−
×××××
−
××× +−=+
11
( ) ( )
( )( ) ( ) ( )
( ) ( ) ( ) ( ) mnnmmnnmmmmnnmmmmnnmmmmnnmmm
mnnmmmmnnmmnnmmmmnnmmmmnnmmm
mnnmmmmmmnnmmnnnnm
BDBDIBDIBDIBDI
BDIBDBDIBDIBDI
BDIIBDBID
××
−
×××
−
××××××
−
×××
−
×××××
−
×××
−
××××××
−
×××××
−
××××
+=+−++=
+=+−++=
+−=+
111
111
11
92
SOLO Matrices
Matrix Inverse Lemmas Identities
7Substitute in the identity
( ) ( ) 111111 −
××
−
×
−
×××
−
×
−
××××
−
× −=− mmmnnmmmmnnnmnnnnmmmmnnn CBDCBABADCBA
nnnn IA ×× −= and mmmm IC ×× = to obtain:
( ) ( ) mnnmmnnnmnnmmmmn BDBIBDIB ×
−
×××
−
×××× +=+
11
Pre-multiplying this by we get (6).nmD ×
By using a similar path with the identity
( ) ( ) 111111 −
××
−
×
−
×××
−
×
−
××××
−
× −=− nnnmmnnnnmmmnmmmmnnnnmmm ADBADCDCBADC
nnnn IA ×× −= and mmmm IC ×× = to obtain:with
( ) ( ) nmmnnmmmnmmnnnnm DBDIDBID ×
−
×××
−
×××× +=+
11
Post-multiplying this by we get (6).mnB ×
93
SOLO Matrices
By matrix manipulation we obtain:
Matrix Inverse Lemmas Identities
8In the identity
( ) ( ) 111111 −
××
−
×
−
×××
−
×
−
××××
−
× −=− mmmnnmmmmnnnmnnnnmmmmnnn CBDCBABADCBA
pre-multiplying Anxn by and post-multiplying by Cmxm we get:
( ) ( ) mnnmmmmnnnnnmmmnnnnmmmmn BDCBAACBADCB ×
−
×
−
×××××
−
×
−
×××× −=−
1111
( ) ( ) mnnnnmmmmnnnmnnnnmmmmmmn BADCBIBADCIB ×
−−
××
−
×××
−
×
−
××
−
××× −=−
111111
Use now the identity
( ) ( ) 111111 −
××
−
×
−
×××
−
×
−
××××
−
× −=− nnnmmnnnnmmmnmmmmnnnnmmm ADBADCDCBADC
Pre-multiplying by Cmxm and post-multiplying by Anxn we get:
( ) ( ) nmmnnnnmmmmmnnnmmmmnnnnm DBADCCADCBAD ×
−
×
−
×××××
−
×
−
×××× −=−
1111
By matrix manipulation we obtain
( ) ( ) nmmmmnnnnmmmnmmmmnnnnnnm DCBADIDCBAID ×
−−
××
−
×××
−
×
−
××
−
××× −=−
111111
Table of Contents
94
SOLO Matrices
Matrix Schwarz Inequality
( ) ( ) ( )QPPPQPQQ TTTTT 1−
≥
Table of Contents
Hermann Amandus
Schwarz
1843 - 1921
yxyx ≤>< ,
Let x, y be the elements of an Inner Product space X, than :
This is the Schwarz Inequality.
Let Pmxn and Qmxl be two matrices such that PT
P is nonsingular, then:
( ) ( ) ( ) CxxQPPPQPxxQQx TTTTTTT
∈∨≥
−1
i.e.,:
Furthermore equality holds if and only if exists a matrix Snxl such that Q = P S.
Proof:
Start from the inequality: and choose( ) ( ) 0≥−− SPQSPQ
T
( ) ( )QPPPS TT 1−
=
( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) 0
1
1111
≥−=
+−−=
+−−=−−
−
−−−−
QPPPQPQQ
QPPPPPPPPQQPPPPQQPPPPQQQ
SPPSQPSSPQQQSPQSPQ
TTTTT
TTTTTTTTTTTT
TTTTTTT
The inequality becomes equality if and only if : that is equivalent
with
( ) ( ) 0=−− SPQSPQ
T
SPQ =
95
SOLO Matrices
Trace of a Square Matrix
The trace of a square matrix is defined as ( ) ( )T
nn
n
i
iinn AtraceaAtrace ×
=
× == ∑1
:
q.e.d.
( ) ( )ABtraceBAtrace =1
Proof:
( ) ∑ ∑= =








=
n
i
n
j
jiij baBAtrace
1 1
( ) ( )BAtracebaabABtrace
n
i
n
j
jiij
n
j
n
i
ijji ==





= ∑∑∑ ∑ = == = 1 11 1
( ) ( )
( )
( )
( )
( ) ( )
( )
( )ABtraceBAtraceBAtraceABtraceABtraceBAtrace TTTT
111
=≠===2
Proof:
( ) ( ) ( )ABtraceBAtracebabaBAtrace
n
i
n
j
jiij
n
i
n
j
ijij
T
==







≠







= ∑ ∑∑ ∑ = == = 1 11 1
( ) ( )T
n
j
n
i
ijij
T
BAtraceabABtrace =





= ∑ ∑= =1 1
q.e.d.
96
SOLO Matrices
Trace of a Square Matrix
The trace of a square matrix is defined as ( ) ( )T
nn
n
i
iinn AtraceaAtrace ×
=
× == ∑1
:
3
Proof:
q.e.d.
( ) ( ) ( )∑=
−
==
n
i
i APAPtraceAtrace
1
1
λ
where P is the eigenvector matrix of A related to the eigenvalue matrix Λ of A by










=Λ=
n
PPPA
λ
λ



0
01
( )
( )
( ) ( )AtraceAPPtracePAPtrace == −− 1
1
1










=Λ=
n
PPPA
λ
λ



0
01










=Λ=→ −
n
PAP
λ
λ



0
01
1
( ) ( ) ∑=
−
=Λ=→
n
i
itracePAPtace
1
1
λ
97
SOLO Matrices
Trace of a Square Matrix
The trace of a square matrix is defined as ( ) ( )T
nn
n
i
iinn AtraceaAtrace ×
=
× == ∑1
:
Proof:
q.e.d.
Definition
4
( )AtraceA
ee =det
( )AtraceA
eeePe
P
PePPePe
n
i
i
======
∑=ΛΛΛ−Λ− 1
detdetdet
det
1
detdetdetdetdet 11
λ
If aij are the coefficients of the matrix Anxn and z is a scalar function of aij, i.e.:
( ) njiazz ij ,,1, ==
then is the matrix nxn whose coefficients i,j areA
z
∂
∂
nji
a
z
A
z
ijij
,,1,: =
∂
∂
=





∂
∂
(see Gelb “Applied Optimal Estimation”, pg.23)
98
SOLO Matrices
Trace of a Square Matrix
The trace of a square matrix is defined as ( ) ( )T
nn
n
i
iinn AtraceaAtrace ×
=
× == ∑1
:
Proof:
q.e.d.
5
( ) ( ) ( )
A
Atrace
I
A
Atrace T
n
∂
∂
==
∂
∂ 1
( )



=
≠
==
∂
∂
=





∂
∂
∑= ji
ji
a
aA
Atrace
ij
n
i
ii
ijij
1
0
1
δ
6
( ) ( ) ( ) ( ) nmmnTTT
RBRCCBBC
A
BCAtrace
A
ABCtrace ××
∈∈==
∂
∂
=
∂
∂ 1
Proof:
( ) ( ) ( )[ ]ij
T
ji
m
p
pijp
ik
jl
n
l
m
p
n
k
klpklp
ijij
BCBCbcabc
aA
ABCtrace
===
∂
∂
=





∂
∂
∑∑∑∑ =
=
=
= = = 11 1 1
q.e.d.
7 If A, B, C ∈ Rnxn
,i.e. square matrices, then
( ) ( ) ( ) ( ) ( ) ( ) TTT
CBBC
A
BCAtrace
A
CABtrace
A
ABCtrace
==
∂
∂
=
∂
∂
=
∂
∂ 11
99
SOLO Matrices
Trace of a Square Matrix
The trace of a square matrix is defined as ( ) ( )T
nn
n
i
iinn AtraceaAtrace ×
=
× == ∑1
:
Proof:
q.e.d.
8 ( )( ) ( )( ) ( )( )( )
nmmn
TTT
RBRCBC
A
ABCtrace
A
BCAtrace
A
ABCtrace ××
∈∈=
∂
∂
=
∂
∂
=
∂
∂ 721
9
( )( ) ( )( ) ( )( )
BC
A
BCAtrace
A
CABtrace
A
ABCtrace TTT 811
=
∂
∂
=
∂
∂
=
∂
∂
If A, B, C ∈ Rnxn
,i.e. square matrices, then
10
( ) T
A
A
Atrace
2
2
=
∂
∂
( ) ( ) ( )ij
T
jiji
n
l
n
m
mllm
ijijij
Aaaaa
aa
Atrace
A
Atrace
2
1 1
22
=+=





∂
∂
=
∂
∂
=





∂
∂
∑∑= =
11
( ) ( ) 1−
=
∂
∂ kT
k
Ak
A
Atrace
Proof:
( ) ( ) ( ) ( ) ( ) 1111 −−−−
=+++=
∂








⋅∂
=
∂
∂ kT
k
kTkTkT
k
k
AkAAA
A
AAAtrace
A
Atrace
  



q.e.d.
100
SOLO Matrices
Trace of a Square Matrix
The trace of a square matrix is defined as ( ) ( )T
nn
n
i
iinn AtraceaAtrace ×
=
× == ∑1
:
Proof:
q.e.d.
12 ( ) T
A
A
e
A
etrace
=
∂
∂
( ) ( ) ( ) T
A
n
k
n
k
kT
n
kk
kT
n
n
k
k
n
n
k
k
n
A
eA
k
A
k
k
k
A
trace
Ak
A
trace
AA
etrace
===





∂
∂
=





∂
∂
=
∂
∂
∑ ∑∑∑ = =
→∞
→−
−
→∞
=
→∞
=
→∞
1 0
1
1
00 !
1
lim
!
lim
!
lim
!
lim
13
( )( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( )
TT
TTTTTTTTT
TTTTT
TTT
BACBAC
A
ACABtrace
A
BACAtrace
A
ABACtrace
A
CABAtrace
A
BACAtrace
A
CABAtrace
A
ACABtrace
A
BACAtrace
A
ABACtrace
+=
∂
∂
=
∂
∂
=
∂
∂
=
∂
∂
=
∂
∂
=
∂
∂
=
∂
∂
=
∂
∂
=
∂
∂
111
21
11
( ) ( ) ( ) ( ) ( )
( ) TTTT
TTT
BACBACCABBAC
A
ABACtrace
A
ABACtrace
A
ABACtrace
+=+==
∂
∂
+
∂
∂
=
∂
∂ + 86
2
2
1
1
Proof: q.e.d.
14
( ) ( )( )
A
A
AAtrace
A
AAtrace TT
2
13
=
∂
∂
=
∂
∂
101
SOLO Matrices
Trace of a Square Matrix
The trace of a square matrix is defined as ( ) ( )T
nn
n
i
iinn AtraceaAtrace ×
=
× == ∑1
:
Proof:
15
( ) ( )TTTTT
ABBAABBA
A
ABAtrace
+=+=
∂
∂
Table of Contents
( ) ( ) ( )ij
TTTT
n
l
jlli
n
k
kijk
n
l
n
l
n
k
klmklm
ijijij
ABBAbababaa
aa
ABAtrace
A
ABAtrace
+=+=





∂
∂
=
∂
∂
=





∂
∂
∑∑∑∑∑ === = = 111 1 1
q.e.d.
16
( ) TTTTTT
CABBAC
A
ABACtrace
+=
∂
∂
( ) ( )
( )ij
TTTTTT
n
l
n
r
lirljr
n
k
n
m
mikmjk
n
l
n
r
rljrli
n
k
n
m
mikmjk
n
l
n
k
n
m
n
r
rlmrkmlk
ijijij
CABBACcabbac
abcbacabac
aa
ABACtrace
A
ABACtrace
+=+=
+=





∂
∂
=
∂
∂
=





∂
∂
∑∑∑∑
∑∑∑∑∑∑∑∑
= == =
= == == = = =
1 11 1
1 11 11 1 1 1
Proof:
q.e.d.
102
SOLO
References
[1] Pease, “Methods of Matrix Algebra” ,Mathematics in Science and Engineering,
Vol.16, Academic Press, 1965
Matrices
[2] S. Hermelin, “Robustness and Sensitivity Design of Linear Time-Invariant Systems”
PhD Thesis, Stanford University, 1986
Table of Contents
January 6, 2015 103
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA
Matrices
104
SOLO
Derivatives of Matrices
Matrices
ljik
ij
kl
a
a
δδ=
∂
∂
For vector forms
j
i
ijii
i
i
y
x
y
x
y
x
y
x
y
x
y
x
∂
∂
=





∂
∂
∂
∂
=





∂
∂
∂
∂
=





∂
∂
:::
We have the following expressions:
( )
( )
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( )( ) ( )
( ) ( )
( ) ( )HH
TT
XX
XX
XXtraceX
XXtraceXX
XXXX
YXYXYX
YXYXYX
XtraceXtrace
YXYX
XX
constAifA
∂=∂
∂=∂
∂=∂
∂=∂
∂−=∂
∂⊗+⊗∂=⊗∂
∂⋅+⋅∂=⋅∂
∂=∂
∂+∂=+∂
=∂
==∂
−
−
−−−
1
1
111
detln
detdet
0
αα
105
SOLO
Derivatives of Determinants
Matrices
( ) ( ) 





∂
∂
=
∂
∂ −
x
Y
YtraceY
x
Y 1
det
det
( )
( )












∂
∂






∂
∂
−






∂
∂






∂
∂
+












∂
∂
∂
∂
=
∂
∂
∂
∂
−−
−−
−
x
Y
Y
x
Y
Ytrace
x
Y
Ytrace
x
Y
Ytrace
x
x
Y
YtraceY
x
x
Y
11
11
1
det
det
General Form
106
SOLO
Derivatives of Determinants
Matrices
( ) ( )( )
( ) ( )
( ) ( )( ) ( )( ) 11
1
detdet
det
det
det
det
det
−−
−
==
∂
∂
=
∂
∂
=
∂
∂
∑
TT
ij
k
jk
ik
T
XBXAXBXA
X
BXA
XX
X
X
XX
X
X
δ
Linear Form
Square Forms
If X is Square and Invertible, then
( ) ( ) TT
T
XXAX
X
XAX −
=
∂
∂
det2
det
If X is Not Square but A is Symmetric, then
( ) ( ) ( ) 1
det2
det −
=
∂
∂
XAXXAXAX
X
XAX TT
T
If X is Not Square and A is Not Symmetric, then
( ) ( ) ( ) ( )[ ]11
det
det −−
+=
∂
∂
XAXXAXAXXAXAX
X
XAX TTTT
T
107
SOLO
Derivatives of Determinants
Matrices
( ) ( )
( )
( )
( ) ( )
( ) ( ) Tk
k
T
T
T
T
T
XXk
X
X
XX
X
X
X
X
XX
X
X
XX
−
−
=
∂
∂
==
∂
∂
−=
∂
∂
=
∂
∂
det
det
22
detln
2
detln
2
detln
1T1-
†
†
Nonlinear Form
108
SOLO
Derivatives of an Inverse
Matrices
11
1
−−
−
∂
∂
−=
∂
∂
Y
x
Y
Y
x
Y
From this it follows
( ) ( ) ( )
( )
( ) ( )( )
( ) ( )
( )( ) ( ) ( )( )T
T
T
TTT
T
jlki
ij
kl
AXAX
X
AXtrace
XABX
X
BXAtrace
XX
X
X
XbaX
X
bXa
XX
X
X
11
1
11
1
11
1
1
11
1
det
det
−−
−
−−
−
−−
−
−−
−
−−
−
++−=
∂
+∂
−=
∂
∂
−=
∂
∂
−=
∂
∂
−=
∂
∂
109
SOLO
Derivatives of Matrices, Vectors and Scalar Forms
Matrices
First Order
( ) ( )
( )
( )
( ) ( )
( )
( ) ( )
( ) ( ) ( )ij
nm
mjin
mn
ij
T
ij
mn
njim
mn
ij
ij
ij
T
TTT
T
TT
T
T
TT
AJA
X
AX
AJA
X
AX
J
X
X
aa
X
aXa
X
aXa
ab
X
bXa
ba
X
bXa
a
x
xa
x
ax
==
∂
∂
==
∂
∂
=
∂
∂
=
∂
∂
=
∂
∂
=
∂
∂
=
∂
∂
=
∂
∂
=
∂
∂
δ
δ
n
mJ mn
↑
←
















=
000
010
000





110
SOLO
Derivatives of Matrices, Vectors and Scalar Forms
Matrices
Second Order
( ) ( )
( ) ( )[ ] ( ) ( )
( ) ( ) ( )
( ) ( ) jlikkl
ijijijT
ij
T
ilkjkl
T
lj
ij
kl
T
TTT
T
TT
TT
kl
kl
klmn
mnkl
ij
JXBJJBX
X
XBX
XBBX
X
XBX
bxBCDdxDCB
x
dxDCbxB
bccbX
X
cXXb
XXX
X
δδ
δδ
=+=
∂
∂
+=
∂
∂
+++=
∂
++∂
+=
∂
∂
=
∂
∂
∑∑ 2
n
mJ mn
↑
←
















=
000
010
000





111
SOLO
Derivatives of Matrices, Vectors and Scalar Forms
Matrices
Second Order (continue)
( ) ( )
( )
( ) ( )[ ] ( )( ) TTT
TTT
TT
T
T
bcbXDDcbXDcbX
X
bcXDcbXD
X
cXDXb
xBB
x
xBx
++=++
∂
∂
+=
∂
∂
+=
∂
∂
Assume W is symmetric
( ) ( )[ ] ( )
( ) ( )[ ] ( )
( ) ( )[ ] ( )
( ) ( )[ ] ( )
( ) ( )[ ] ( ) TT
T
T
T
TT
ssAxWsAxWsAx
A
sAxWsAxWsAx
x
sxWsxWsx
s
sxWsxWsx
x
sAxWAsAxWsAx
s
−−=−−
∂
∂
−=−−
∂
∂
−−=−−
∂
∂
−=−−
∂
∂
−−=−−
∂
∂
2
2
2
2
2
112
SOLO
Derivatives of Matrices, Vectors and Scalar Forms
Matrices
Higher Order and Nonlinear
( ) ( )∑
−
=
−−
=
∂
∂ 1
0
1
n
r
kl
rnijr
ij
kl
n
XJX
X
X
[ ] ( ) ( )
( )[ ] ( ) ( ) ( )[ ]∑
∑
−
=
−−−−
−−
−
=
+=
∂
∂
=
∂
∂
1
0
11
1
1
0
n
r
TrnTnTrrTnTrnnTnT
Trn
n
r
TTrnT
XbaXXXXbaXbXXa
X
XbaXbXa
X

More Related Content

What's hot

Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachSolo Hermelin
 
Equation of motion of a variable mass system3
Equation of motion of a variable mass system3Equation of motion of a variable mass system3
Equation of motion of a variable mass system3Solo Hermelin
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulationSolo Hermelin
 
Introduction to Calculus of Variations
Introduction to Calculus of VariationsIntroduction to Calculus of Variations
Introduction to Calculus of VariationsDelta Pi Systems
 
Calculus of variations & solution manual russak
Calculus of variations & solution manual   russakCalculus of variations & solution manual   russak
Calculus of variations & solution manual russakJosé Pallo
 
5 cramer-rao lower bound
5 cramer-rao lower bound5 cramer-rao lower bound
5 cramer-rao lower boundSolo Hermelin
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variationsSolo Hermelin
 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of VariationSubhajit Pramanick
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observersSolo Hermelin
 
How to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surfaceHow to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surfacetr1987
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsStavros Vologiannidis
 
4 stochastic processes
4 stochastic processes4 stochastic processes
4 stochastic processesSolo Hermelin
 
Introduction to Mathematical Probability
Introduction to Mathematical ProbabilityIntroduction to Mathematical Probability
Introduction to Mathematical ProbabilitySolo Hermelin
 

What's hot (20)

Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Dyadics
DyadicsDyadics
Dyadics
 
Matrices i
Matrices iMatrices i
Matrices i
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Equation of motion of a variable mass system3
Equation of motion of a variable mass system3Equation of motion of a variable mass system3
Equation of motion of a variable mass system3
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
 
Introduction to Calculus of Variations
Introduction to Calculus of VariationsIntroduction to Calculus of Variations
Introduction to Calculus of Variations
 
Gamma function
Gamma functionGamma function
Gamma function
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Calculus of variations & solution manual russak
Calculus of variations & solution manual   russakCalculus of variations & solution manual   russak
Calculus of variations & solution manual russak
 
5 cramer-rao lower bound
5 cramer-rao lower bound5 cramer-rao lower bound
5 cramer-rao lower bound
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of Variation
 
Mech MA6351 tpde_notes
Mech MA6351 tpde_notes Mech MA6351 tpde_notes
Mech MA6351 tpde_notes
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
How to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surfaceHow to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surface
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
 
4 stochastic processes
4 stochastic processes4 stochastic processes
4 stochastic processes
 
Introduction to Mathematical Probability
Introduction to Mathematical ProbabilityIntroduction to Mathematical Probability
Introduction to Mathematical Probability
 
residue
residueresidue
residue
 

Similar to Matrices ii

Thesis oral defense
Thesis oral defenseThesis oral defense
Thesis oral defenseFan Zhitao
 
Eigenvalue eigenvector slides
Eigenvalue eigenvector slidesEigenvalue eigenvector slides
Eigenvalue eigenvector slidesAmanSaeed11
 
1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdfd00a7ece
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...IOSR Journals
 
Classification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum planeClassification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum planeSteven Duplij (Stepan Douplii)
 
Jones matrix formulation by the unitary matrix
Jones matrix formulation by the unitary matrixJones matrix formulation by the unitary matrix
Jones matrix formulation by the unitary matrixSachidanandChikkpeti
 
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...BRNSS Publication Hub
 
Stochastic Schrödinger equations
Stochastic Schrödinger equationsStochastic Schrödinger equations
Stochastic Schrödinger equationsIlya Gikhman
 
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...irjes
 
Numarical values
Numarical valuesNumarical values
Numarical valuesAmanSaeed11
 
Numarical values highlighted
Numarical values highlightedNumarical values highlighted
Numarical values highlightedAmanSaeed11
 
A Fast Numerical Method For Solving Calculus Of Variation Problems
A Fast Numerical Method For Solving Calculus Of Variation ProblemsA Fast Numerical Method For Solving Calculus Of Variation Problems
A Fast Numerical Method For Solving Calculus Of Variation ProblemsSara Alvarez
 

Similar to Matrices ii (20)

Thesis oral defense
Thesis oral defenseThesis oral defense
Thesis oral defense
 
Eigenvalue eigenvector slides
Eigenvalue eigenvector slidesEigenvalue eigenvector slides
Eigenvalue eigenvector slides
 
1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
 
eigenvalue
eigenvalueeigenvalue
eigenvalue
 
Classification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum planeClassification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum plane
 
Summer Proj.
Summer Proj.Summer Proj.
Summer Proj.
 
Algebra.pdf
Algebra.pdfAlgebra.pdf
Algebra.pdf
 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
 
Jones matrix formulation by the unitary matrix
Jones matrix formulation by the unitary matrixJones matrix formulation by the unitary matrix
Jones matrix formulation by the unitary matrix
 
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
 
06_AJMS_256_20-compressed.pdf
06_AJMS_256_20-compressed.pdf06_AJMS_256_20-compressed.pdf
06_AJMS_256_20-compressed.pdf
 
Ch07 6
Ch07 6Ch07 6
Ch07 6
 
Stochastic Schrödinger equations
Stochastic Schrödinger equationsStochastic Schrödinger equations
Stochastic Schrödinger equations
 
On Uq(sl2)-actions on the quantum plane
On Uq(sl2)-actions on the quantum planeOn Uq(sl2)-actions on the quantum plane
On Uq(sl2)-actions on the quantum plane
 
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Numarical values
Numarical valuesNumarical values
Numarical values
 
Numarical values highlighted
Numarical values highlightedNumarical values highlighted
Numarical values highlighted
 
A Fast Numerical Method For Solving Calculus Of Variation Problems
A Fast Numerical Method For Solving Calculus Of Variation ProblemsA Fast Numerical Method For Solving Calculus Of Variation Problems
A Fast Numerical Method For Solving Calculus Of Variation Problems
 

More from Solo Hermelin

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanicsSolo Hermelin
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Solo Hermelin
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode ObserversSolo Hermelin
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectoriesSolo Hermelin
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles iiSolo Hermelin
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles iSolo Hermelin
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polarSolo Hermelin
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part ivSolo Hermelin
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iiiSolo Hermelin
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part iiSolo Hermelin
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part iSolo Hermelin
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hmsSolo Hermelin
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systemsSolo Hermelin
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instrumentsSolo Hermelin
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutawaySolo Hermelin
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft WarheadSolo Hermelin
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerabilitySolo Hermelin
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - iiSolo Hermelin
 

More from Solo Hermelin (20)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
 

Recently uploaded

Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfNAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfWadeK3
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 

Recently uploaded (20)

Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfNAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 

Matrices ii

  • 1. 1 Matrices II SOLO HERMELIN Updated: 20.07.07http://www.solohermelin.com
  • 2. 2 SOLO Matrices Table of Content Singular Values Definitions Domain and Codomain of a Matrix A Properties of Square Orthogonal Matrices Definition of the Singular Values Geometric Interpretation of Singular Values Properties of Singular Values Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Householder Transformation Projection of a vector on a vector .b  a  111 min&min 1 nxmxnxmxn x xbxAd nx   −= Computation of Moore-Penrose Pseudoinverse Matrix, A † Properties of Moore-Penrose Pseudoinverse Matrix, A † Description of Projections Related to Moore-Penrose Pseudoinverse Particular case (1) r = n ≤ m: Particular case (2) r = m ≤ n:
  • 3. 3 SOLO Matrices Table of Content (continue – 1) General Solution of Amxn Xnxp = Bmxp Particular case (1) r = m ≤ n Particular case (2) r = n ≤ n General Solution of YpxmAmxn = Cpxn Particular case (1) r = m ≤ n Particular case (2) r = n ≤ n Inverse of Partitioned Matrices Matrix Inverse Lemmas Identities Matrix Schwarz Inequality Trace of a Square Matrix References
  • 4. 4 SOLO Matrices Singular Values Definitions: Any complex matrix A with n rows (r1, r2,…,rn) and m columns (c1,c2,…,cm) [ ]m n nxm ccc r r r A ,,, 21 2 1   =               = can be considered as a linear function (or mapping or transformation) for a m-dimensional domain to a n-dimensional codomain. ( ) ( ){ }AcodomyAdomxxAyA nxmxnxm ∈⇒∈= 11;: In the same way its conjugate transpose: [ ]H n HH H m H H H mxn rrr c c c A ,,, 21 2 1   =               = is a linear function (or mapping or transformation) for an-dimensional codomain to a m-dimensional domain. ( ) ( ){ }AcdomxAcodomyyAxA mxnx HH mxn ∈⇒∈= 111111 ;: Table of Contents
  • 5. 5 SOLO Matrices Domain and Codomain of a Matrix A The domain of A can be decomposed into orthogonal subspaces: ( ) ( ) ( )ANARAdom H ⊥ ⊕= ( )H AR ( )AN ( )H AN ( )AR xAy = 11 yAx H = ( )Adomxmx ∈1 11mxx ( )Acodomy nx ∈11 1nxyR (AH ) – is the row space of AH (dimension r) N (A) – is the null-space of A (x∈ N (A) ⇔ A x = 0) or the kernel of A (ker (A)) (dimension m-r) The codomain of A (domain of AH ) can be decomposed into orthogonal subspaces: ( ) ( ) ( )H ANARAcodom ⊥ ⊕= R (A) – is the column space of A (dimension r) N (AH ) – is the null-space of AH (dimension n-r) Singular Values Table of Contents
  • 6. 6 SOLO Hermitian = Symmetric if A has real components Hermitian Matrix: AH = A, Symmetric Matrix: AT = A Matrices Properties of Square Orthogonal Matrices Use Pease, “Methods of Matrix Algebra”, Mathematics in Science and Engineering Vol.16, Academic Press 1965 Definitions: Adjoint Operation (H): AH = (A*)T (* is complex conjugate and T is transpose of the matrix) Skew-Hermitian = Anti-Symmetric if A has real components. Skew-Hermitian: AH = -A, Anti-Symmetric Matrix: AT =-A Unitary Matrix: UH = U-1, Orthonormal Matix: OT = O-1 Unitary = Orthonormal if A has real components. Charles Hermite 1822 - 1901
  • 7. 7 SOLO Matrices Properties of Square Orthogonal Matrices (continue – 1) Lemma1: All the eigenvalues of a hermitian matrix H are real and the eigenvectors are orthogonal. Proof of Lemma1: Pre-multiply by :iii xHx λ= H ix i H iii H i xxHxx λ= and take the conjugate transpose: ( ) i H iii HH i H i H i xxxHxHxx * λ== This proves that the eigenvalues of H are real. Subtract those two equations: ( ) 00 ** ≠=→=− i H iiii H iii xxsincexx λλλλ From ( ) H ij H jj H j HH j H j xxHxHxHx λλ ==== * Pre-multiply by and post-multiply by and subtractiii xHx λ= H jx H ij H j xHx λ= ix ( ) 0=−→     = = i H jji i H jji H j i H jii H j xx xxHxx xxHxx λλ λ λ 0=→≠ i H jji xxλλIf If we can use the Gram-Schmidt procedure to obtain an eigenvector orthogonal to . ji λλ = jx~ ix ( ) ( ) i i H i j H i jj x xx xx xx −=~
  • 8. 8 SOLO Matrices Properties of Square Orthogonal Matrices (continue – 2) Lemma1: All the eigenvalues of a hermitian matrix H are real and the eigenvectors are orthogonal. Proof of Lemma1 (continue – 1): ( ) 0=−→     = = i H jji i H jji H j i H jii H j xx xxHxx xxHxx λλ λ λ 0=→≠ i H jji xxλλIf If we can use the Gram-Schmidt procedure to obtain an eigenvector orthogonal to . ji λλ = jx~ ix ( ) ( ) i i H i j H i jj x xx xx xx −=~ we can see that ( ) ( ) 0~ =−= i H i i H i j H i j H ij H i xx xx xx xxxx ( ) ( ) ( ) ( ) ( ) ( ) jii i H i j H i jiii i H i j H i jji i H i j H i jj xx xx xx xx xx xx xxH xx xx xHxH ~~ λλλλ =         −=−=−= q.e.d.
  • 9. 9 SOLO Matrices Properties of Square Orthogonal Matrices (continue – 3) Lemma2: Any hermitian matrix H can be factored in H = U Λ UH where Λ=diag (λ1,λ2,…,λn) and U is unitary i.e. U UH = UH U = In. Proof of Lemma2: Let normalize the orthogonal eigenvectors of H ;i.e. iii xxu /:= or H U = U Λ where U = [u1,u2,…,un] Because U is a square matrix having orthonormal columns, and is a square matrix, U is also a unitary matrix satisfying UH U=U UH =In. q.e.d. [ ] [ ]             = 000 00 00 ,,,,,, 2 1 2121      λ λ nn uuuuuuH
  • 10. 10 SOLO Matrices Properties of Square Orthogonal Matrices (continue – 4) Lemma3: A AH and AH A are hermitian matrices that have the same nonzero real positive eigenvalues. Proof of Lemma3: q.e.d. ( ) ( ) HHHHHH AAAAAA == i.e. A AH is hermitian, therefore the eigenvalues λi (A AH ) are real and positive according to Lemma 1. Suppose ui is a normalized eigenvector of λi (A AH ) ≠0 ( ) i H ii H uAAuAA λ= Pre-multiply by AH and define ( ) i H H i i uA AA v λ 1 := ( ) ( ) ( ) ( ) ( ) ( ) ( ) i H ii H H i i H H i H i i H H i HH ii HH vAAvAA AA uA AA AA uA AAuAAAuAAA λ λ λ λ λ =→ →=→= we get We can see that νi is the eigenvector of AH A and λi (A AH ) is the corresponding eigenvalue, meaning that both AH A and A AH have the same nonzero eigenvalues. From ( ) ( ) ( ) ( ) ( ) ( ) 02 2 >==→=→= i i i H i i H iH ii H i H ii HH ii H ii H v vA vv vAvA AAvvAAvAAvvAAvAA λλλ Therefore we can define ( ) 0: >= H ii AAλσ
  • 11. 11 SOLO Matrices Properties of Square Orthogonal Matrices (continue – 5) Lemma4: If U is a unitary matrix then all its eigenvalues have unit modulus. . Proof of Lemma4: form the inner product IUUUU HH == Consider the set of eigenvalues x1, x2, …, xn which we know to be complete and iii xUx λ= nixxIxxUxUxxx iiii H ii H ii HH ii H iii ,11 ** =∀==→=== λλλλλ q.e.d.
  • 12. 12 SOLO Matrices Properties of Square Orthogonal Matrices (continue – 6) Proof of Lemma5: Lemma5: Every unitary matrix U can be expressed as an exponential matrix: where H is hermitian (jH is skew-hermitian) jH eU = Since the eigenvalues of U have unit modulus; i.e. we can writenii ,11 =∀=λ niej Hij HiHii ,1sincos =∀=+= λ λλλ ( ){ } jHjjj eSeeediagSU HnHH == −1 ,,, 21 λλλ  ( ){ } 1 21 ,,, − = SdiagSH HnHH λλλ where: q.e.d.
  • 13. 13 SOLO Matrices Properties of Square Orthogonal Matrices (continue – 7) Table of Contents Decomposition of Square Matrices: ( ) ( ) ( ) ( )    − − ++=−++= HHHH AA j jAAAAAAA 22 1 2 1 2 1 ( ) ( )H H H AAAA +=    + 2 1 2 1 ( ) ( ) ( )HH H H AAAAAA −−=−=      − 2 1 2 1 2 1 here: Hermitian Skew-Hermitian ( ) ( ) ( )HH H H AA j AA j AA j − − =−=    − − 222 Hermitian ( ) ( )      − − ++= HH AA j jAAA 22 1 the matrix generalization of the decomposition of a complex number in the real and imaginary part.
  • 14. 14 SOLO Matrices Lemma6: (6.1) Every complex nxm matrix of rank can be factored into: Definition of the Singular Values ( ) [ ] ( ) ( ) ( ) ( ) ( )                Σ =Σ= − − −−− − H H rmxrnxrrn rmrxH mxmnxmnxnnxm xmrm rxmrxr rnnxnxr V V UUVUA 2 11 21 00 0    where ( ) 0,,, 21211 >≥≥≥=Σ rrdiagrxr σσσσσσ  Unxn and Vmxm are unitary matrices, i.e.: [ ] [ ] ( ) ( )       =         ==         = −− rnxrn rxr H H H H H H I I UU U U UU U U UUUU 0 0 21 2 1 2 1 21 [ ] [ ] ( ) ( )       =         ==         = −− rmxrm rxr H H H H H H I I VV V V VV V V VVVV 0 0 21 2 1 2 1 21 (6.2) σi i=1,…,r are the positive square roots of the nonzero eigenvalues of AH A or A AH and are called the singular values of A. (6.3) The dyadic expansion of A is: where ui and vi are the columns of U1 and V1 respectively. ∑= = r i H iii vuA 1 σ Singular Values
  • 15. 15 SOLO Matrices Lemma6 (continue – 1): Definition of the Singular Values (6.5) The columns of V are orthonormal eigenvectors of AH A: [ ] [ ] ( ) ( ) ( ) ( )        Σ = −−− − rmxrmxrrm rmrxH rxr VVVVAA 00 0 2 1 2121    i.e. the columns of V1 are the eigenvectors of the nonzero eigenvalues, and the columns of V2 are the eigenvectors of the zero eigenvalues of AH A. (6.6) The following relations exist between U1 and V1 1 111 1 111 − − Σ= Σ= rxrnxrmxr rxrmxrnxr UAV VAU H nxm nxm i.e. the columns of U1 are the eigenvectors of the nonzero eigenvalues, and the columns of U2 are the eigenvectors of the zero eigenvalues of A AH . (6.4) The columns of U are orthonormal eigenvectors of A AH : [ ] [ ] ( ) ( ) ( ) ( )        Σ = −−− − rmxrnxrrn rmrxH rxr UUUUAA 00 0 2 1 2121    Singular Values
  • 16. 16 SOLO Matrices Lemma6 (continue – 2): Definition of the Singular Values ( )H AR ( )AN ( )H AN ( )AR xAy = 11 yAx H = ( )Adomxmx ∈1 11mx x ( )Acodomy nx ∈11 1nxy (6.7) The columns U1 of form an orthonormal basis for the column space of A: ( ) ( )ARUR =1 The columns of U2 form an orthonormal basis for the nullspace of AH : ( ) ( ) ( )HH AANUR ker2 == The columns of V1 form an orthonormal basis for the column space of AH : ( ) ( )H ARVR =1 The columns of V2 form an orthonormal basis for the nullspace of A: ( ) ( ) ( )AANVR ker2 == Singular Values
  • 17. 17 SOLO Matrices Lemma6 (continue – 3): Proof of Lemma 6: Definition of the Singular Values and From Lemma 3 we have ( ) [ ] ( ) ( ) ( ) ( ) ( )                 Σ =Λ= − − −−− − H H rnxrnxrrn rnrxH nxnnxn H mxnnxm xnrn rxnrxr rnnxnxrnxn U U UUUUAA 2 1 2 1 211 00 0 ( ) [ ] ( ) ( ) ( ) ( ) ( )                 Σ =Λ= − − −−− − H H rmxrmxrrm rmrxH mxmmxmnxm H mxn xmrm rxmrxr rmmxmxrmxm V V VVVVAA 2 1 2 1 212 00 0 where ( ) 0,,, 21211 >≥≥≥=Σ rrdiagrxr σσσσσσ  and ( ) ( ) riAAAA H i H ii ,,2,10: =>== λλσ Those equations can be rewritten as: [ ] [ ] [ ] [ ]0 0 1121 1121 Σ= Σ= VVVAA UUUAA H H or 0 0 2 2 111 111 = = Σ= Σ= VAA UAA VVAA UUAA H H H H H U2 H V2 ( ) ( ) 00 00 22222 22222 =→== =→== VAVAVAVAAV UAUAUAUAAU HHH HHHHHH Singular Values
  • 18. 18 SOLO Matrices Lemma6 (continue – 4): Proof of Lemma 6 (continue – 1): Definition of the Singular Values 02 =UAH The columns of U2 form an orthonormal basis for the nullspace of AH : ( ) ( ) ( )HH AANUR ker2 == 02 =VA The columns of V2 form an orthonormal basis for the nullspace of A: ( ) ( ) ( )AANVR ker2 == 111 Σ= UUAA H The columns U1 of form an orthonormal basis for the column space of A: ( ) ( )ARUR =1 111 Σ= VVAAH The columns of V1 form an orthonormal basis for the column space of AH : ( ) ( )H ARVR =1 ( )H AR ( )AN ( )H AN ( )AR xAy = 11 yAx H = ( )Adomxmx ∈1 11mx x ( )Acodomy nx ∈11 1nx y Singular Values
  • 19. 19 SOLO Matrices Lemma6 (continue – 5): Proof of Lemma 6 (continue – 2): Definition of the Singular Values ( )H AR ( )AN ( )H AN ( )AR xAy = 11 yAx H = ( )Adomxmx ∈1 11mx x ( )Acodomy nx ∈11 1nx y From ( ) riuAuA AA v i H i i H H i i ,,2,1 11 : === σλ we have [ ] [ ]               = r r H r uuuAvvv σ σ σ /100 0/10 00/1 2 1 2121      or 1 111 − Σ= UAV H 11 1 1 2 11 1 111 2 111 Σ=ΣΣ=Σ= − Σ= − UUUAAVA UUAA H H riuuuAAvA iiii i i H i i ,,2,1 11 2 ==== σσ σσ from which 1 111 − Σ= VAU rivAu i i i ,,2,1 1 == σ 111 Σ=VAU H Singular Values
  • 20. 20 SOLO Matrices Lemma6 (continue – 6): Proof of Lemma 6 (continue – 3): Definition of the Singular Values ( )H AR ( )AN ( )H AN ( )AR xAy = 11 yAx H = ( )Adomxmx ∈1 11mx x ( )Acodomy nx ∈11 1nx y Using and let compute AH A V111 Σ=VAU H 02 =VA ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )         Σ =         =         = −−− − −−− − − − rmxrnxrrn rmrx nxm H nxm H nxm H nxm H nxmH H mxmnxm H nxn rxr rmmxxrrnmxrxrrn rmmxrxnmxrrxn rmmxmxr xnrn rxn VAUVAU VAUVAU VVA U U VAU 00 01 2212 2111 21 2 1 From this equation we obtain: ( ) [ ] ( ) ( ) ( ) ( ) ( ) ∑= −−− − =Σ=                 Σ = − − r i H iii H H H rmxrnxrrn rmrx nxm vuVU V V UUA rxmrxrnxr xmrm rxmrxr rnnxnxr 1 111 2 11 21 00 0 σ Singular Values Table of Contents
  • 21. 21 SOLO Matrices Let perform the following transformations in the domain and codomain : Geometric Interpretation of Singular Values Suppose, first, that A is square and r = n = m, and consider the spherical hypersurface in the domain of A for which: 1v 1x 2 x 2 v 1=x 111 vAv =σ 111 xAx =λ 222 xAx =λ 222 vAv =σ The Indicator Ellipsoid of a 2 x 2 Matrix11 11 nxnxnnx mxmxmmx Uy Vx η ς = = Because y = A x: ( ) ςςςη Σ=Σ=== UVVUVAUy H From which: 11 mxnxmnx ςη Σ= 1 1 22 2 2 2 ===== ∑= r i i HHH VVxxx ςςςς From we have and the mapping of the spherical hypersurface, in the codomain of A is the hypersurface of an ellipsoid: 11 mxnxmnx ςη Σ= iii σης /= 1 1 2 =        ∑= r i i i σ η This ellipsoid is called the indicator ellipsoid of A and the singular values are the lengths of the principal axes of this ellipsoid. Singular Values
  • 22. 22 SOLO Matrices If the square matrix A is singular, i.e., r < n = m, the indicator ellipsoid shrinks to zero in the directions of the principal axes vi for which σi = 0. In this case: Geometric Interpretation of Singular Values (continue – 1) 01 1 1 2 ===<        + = ∑ nr r i i i ηη σ η  If the general case of nonsquare matrices with r < n ≠ m, if we choose the cylindrical hypersurface that has a circular hypersurface projection in R (AH ): 01 1 1 2 ==== + = ∑ mr r i i ςςς  then its mapping will be the surface of the ellipsoid in R (A). 01 1 1 2 ====        + = ∑ nr r i i i ηη σ η  ( )H AR ( )AN ( )H AN ( )AR Singular Values Table of Contents
  • 23. 23 SOLO Matrices Properties of Singular Values (1) The maximum singular value of Anxm is: [ ] [ ] 2 2 02121 maxmaxmaxmax: 22 x xA xAxAAA xxx i i ≠=≤ ==== σσ (2) The minimum singular value of Anxm is: [ ] [ ] 2 2 02121 minminminmin: 22 x xA xAxAAA xxx i i ≠=≤ ==== σσ Proof of (1) and (2) Using x = V ζ we can write: ( ) ∑= = =Σ=Σ=== m i ii H xV HHHHH xVVxxAAxxAxAxA 1 22222 2 ςσςς ς 1 1 22 2 ≤==== ∑= = m i i H xV HHH xVVxxxx ςςς ς To obtain the maximum/minimum of that satisfy the condition we construct the Hamiltonian by adjoin the constraint to the extremum problem: 2 2 xA 1 2 2 ≤x ( )       −+±= ∑∑ == 1:, 1 2 1 22 m i i m i ii H ςλςσλς + for maximum - for minimum Singular Values
  • 24. 24 SOLO Matrices Properties of Singular Values Proof of maximum/minimum singular value of Anxm (continue – 1) The necessary conditions for extremum are: ( )       −+±= ∑∑ == 1:, 1 2 1 22 m i i m i ii H ςλςσλς + for maximum - for minimum ( ) mi H ii i ,,2,102 2 ==+±= ∂ ∂ ςλσ ς Kuhn-Tucker Condition ( ) mi minimumfor maximumforH i i ,,2,1 0 0 2 2 2 2 =    > < +±= ∂ ∂ λσ ς Maximization problem solution: ( ) [ ]AH 22 1,max σσλς == with 0 10,1 2 1 1 2 21 <−= =⇒==== ∑= σλ ςςςς m i im  Kuhn-Tucker Condition Minimization problem solution: ( ) [ ]AH m 22 ,min σσλς == with 0 10,1 2 1 2 11 ≥= =⇒==== ∑= − m m i imm σλ ςςςς  Kuhn-Tucker Condition Singular Values
  • 25. 25 SOLO Matrices Properties of Singular Values Proof of maximum/minimum singular value of Anxm (continue – 2) For any x ≠ 0 we have: [ ] [ ] ( ) 0max max 2 2 2 2 2 ≤ − =−=− xx xIAAx AA xx xAAx A x xA H HH H H HH λ λσ The inequality holds because (AH A-I λmax [AH A]) is non-positive definite. We can see that the equality is satisfied for x = eigenvector (AH A) that corresponds to λmax [AH A], therefore: [ ] 0max 2 2 0 =         − ≠ A x xA x σ In the same way, or any x ≠ 0 we have: [ ] [ ] ( ) 0min min 2 2 2 2 2 ≥ − =−=− xx xIAAx AA xx xAAx A x xA H HH H H HH λ λσ We can see that the equality is satisfied for x = eigenvector (AH A) that corresponds to λmin [AH A], therefore: [ ] 0min 2 2 0 =         − ≠ A x xA x σ [ ]A x xA x σ= ≠ 2 2 0 max [ ]A x xA x σ= ≠ 2 2 0 min Singular Values
  • 26. 26 SOLO Matrices Properties of Singular Values (3) is a norm of Anxm, because it satisfies the norm properties:[ ]Aσ (3.1) is non-negative and if and only if A = 0. Proof of (3.1): From Lemma 3: [ ]Aσ [ ] 0=Aσ [ ] 00 =⇔= AAσ (3.2) Multiplication by a complex constant α: [ ] [ ]AA σαασ = (3.3) Triangle Inequalities: (3.4) Schwarz Inequality: [ ] [ ] [ ] [ ] [ ]BABABA σσσσσ +≤+≤− [ ] [ ] [ ]BABA σσσ ≤ [ ] 0≥Aσ [ ] 000 =Σ=⇔=Σ⇔= H VUAAσ Proof of (3.2): [ ] ( ) [ ]AAAA xx σαααασ === ≤≤ 2121 22 maxmax Singular Values
  • 27. 27 SOLO Matrices Properties of Singular Values (3) is a norm of Anxm, because it satisfies the norm properties:[ ]Aσ (3.1) is non-negative and if and only if A = 0.[ ]Aσ [ ] 0=Aσ [ ] 00 =⇔= AAσ (3.2) Multiplication by a complex constant α: [ ] [ ]AA σαασ = (3.3) Triangle Inequalities: (3.4) Schwarz Inequality: [ ] [ ] [ ] [ ] [ ]BABABA σσσσσ +≤+≤− [ ] [ ] [ ]BABA σσσ ≤ Proof of (3.3): [ ] ( ) ( ) [ ] [ ]BAxBxA xBxAxBABA xx xx σσ σ +=+≤ +≤+=+ ≤≤ ≤≤ 2121 22121 22 22 maxmax maxmax [ ] ( )[ ] [ ] [ ]BBABBAA σσσσ ++≤−+=From which [ ] [ ] [ ]BABA +≤− σσσ In the same way [ ] [ ] [ ]BAAB +≤− σσσ [ ] [ ] [ ]BABA +≤− σσσ Proof of (3.4): [ ] ( ) ( ) [ ] [ ]BA x xB y yA x xB xB xBA x xBA BA xy xx σσ σ =≤ == ≠≠ ≠≠ 2 2 0 2 2 0 2 2 2 2 0 2 2 0 maxmax maxmax Hermann Amandus Schwarz 1843 - 1921 Singular Values
  • 28. 28 SOLO Matrices Properties of Singular Values (4) The absolute value of the eigenvalues of a square matrix Anxn are bounded between the minimum and the maximum singular values: [ ] [ ] [ ] niAAA i ,,2,1 =≤≤ σλσ Proof of (4): We have: [ ] [ ] 0 2 2 ≠∀≤≤ xA x xA A σσ If xi is any normalized eigenvector: A xi = λi xi, then ni x x x x x xA i i ii i ii i i ,,2,1 2 2 2 2 2 2 ==== λ λλ Therefore: [ ] [ ] [ ] niAAA i ,,2,1 =≤≤ σλσ Singular Values
  • 29. 29 SOLO Matrices Properties of Singular Values (5) A square matrix Anxn is singular iff its minimal singular value is zero. [ ] 0=⇔ ASingularA σ Proof of (5): ( ) [ ] [ ]AAVdiagUA n H n σσσσσσσσ =≥≥≥==  2121 ,,, Therefore: [ ] [ ] [ ] 00det ==⇔=⇔ AAASingularA nσσ ( )[ ] [ ] ∏= == n i i H n VdiagUA 11 21 1 det,,,detdetdet σσσσ   (6) For a nonsingular square matrix Anxn we have [ ] [ ] [ ] [ ]11 1 & 1 −− ==⇔ A A A ArNonsingulaA σ σ σ σ Proof of (6): ( ) ( ) H n H n UdiagVAVdiagUA σσσσσσ /1,,/1,/1,,, 21 1 21  =⇒= − [ ] [ ] [ ] [ ]1 1 1 21 /1/10 −− =≥≥=⇒>=≥≥≥= AAAA nn σσσσσσσσσ  Hence: [ ] [ ] [ ] [ ]11 1 & 1 −− == A A A A σ σ σ σ Singular Values
  • 30. 30 SOLO Matrices Properties of Singular Values (7) If the square matrix (A+B) is singular then the maximum singular values of A and of B are greater or equal than the minimum singular value of B and A, respectively. The opposite is not true. ( ) [ ] [ ] [ ] [ ]ABBASingularBA σσσσ ≥≥⇒+ & Proof of (7): If (A+B) is singular, there exists a normalized eigenvector u (║u║2=1), s.t.: ( ) 22 0 uBuAuBuAuBA =⇒−=⇒=+ From this equation we obtain: [ ] [ ]BxBuBuAxAA xx σσ =≥=≥= ≤≤ 212221 22 minmax [ ] [ ]AxAuAuBxBB xx σσ =≥=≥= ≤≤ 212221 22 minmax To prove that the opposite is not true, consider a counterexample: [ ] [ ] [ ] [ ] 15&34 30 05 10 04 =>==>=     − =      = ABBABA σσσσ The right side is satisfied, but is nonsingular.( )      − =+ 40 01 BA Singular Values
  • 31. 31 SOLO Matrices Properties of Singular Values ( ) [ ] [ ] [ ] [ ]ABBASingularBA σσσσ ≥≥⇒+ & Proof of (8): (8) A sufficient condition that the square matrix (A+B) is nonsingular is: We just proved: ( ) [ ] [ ] [ ] [ ]ABorBAingularonsNBA σσσσ <<⇒+ The proof follows directly from property (7). If (A+B) is singular then [ ] [ ] [ ] [ ]ABBA σσσσ ≥≥ & ; hence if then (A+B) is nonsingular. [ ] [ ] [ ] [ ]ABorBA σσσσ << (7) If the square matrix (A+B) is singular then the maximum singular values of A and of B are greater or equal than the minimum singular value of B and A, respectively. The opposite is not true. Singular Values
  • 32. 32 SOLO To prove this we will consider the following three cases: - (A+B) singular, - (A+B) nonsingular but A and B are singular, - (A+B) nonsingular but A or B, or both are nonsingular. Matrices Properties of Singular Values (9) The minimum singular value of a square matrix (A+B) satisfies the inequalities: [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( )ABBABAABBA σσσσσσσσσ ++≤+≤−− ,min,max Proof of (9): (9.1) - (A+B) singular According to property (5) [ ] 0=+ BAσ Since (A+B) is singular use property (7) [ ] [ ] [ ] [ ] [ ]BABAAB +=≤−⇒≥ σσσσσ 0 [ ] [ ] [ ] [ ] [ ]BAABBA +=≤−⇒≥ σσσσσ 0 This completes the proof when (A+B) is singular. Singular Values
  • 33. 33 SOLO (9.2) - (A+B) nonsingular but A and B are singular, Matrices Properties of Singular Values (9) The minimum singular value of a square matrix (A+B) satisfies the inequalities: [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( )ABBABAABBA σσσσσσσσσ ++≤+≤−− ,min,max Proof of (9) (continue – 1): ( )  ( ) 22 0 uBuBAuBuBuAuBA =+⇒=+=+ If A is singular, ,there exists a normalized eigenvector u (║u║2=1), s.t. A u=0:[ ] 0=Aσ [ ] ( ) ( ) [ ] [ ] [ ]ABBxBuBuBAxBABA xx σσσσ +==≤=+≤+=+ ≤≤ 212221 22 maxmin and [ ] [ ] [ ] [ ] [ ]BABABA σσσσσ +≤+<− In the same way for (A+B) nonsingular and B singular: [ ] [ ] [ ] [ ] [ ]ABBAAB σσσσσ +≤+<− This completes the proof when (A+B) is nonsingular but A and B are singular. Singular Values
  • 34. 34 SOLO (9.3) - (A+B) nonsingular but A or B, or both are nonsingular. Matrices Properties of Singular Values (9) The minimum singular value of a square matrix (A+B) satisfies the inequalities: [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( )ABBABAABBA σσσσσσσσσ ++≤+≤−− ,min,max Proof of (9) (continue – 2): BAC +=:Suppose that (A+B) and A are nonsingular, and define: Pre-multiply by C-1 and post-multiply by A-1 : 1111 −−−− += ABCCA Let take any norm of this equation and write triangle an Schwarz inequalities: BACABC ABCCAABCC 1111 1111111 −−−− −−−−−−− ≤ −≤≤− BACCABACC 1111111 −−−−−−− −≤≤− ( ) B ABA B A +≤ + ≤− −−− 111 111 Using property (3), we can define , and because property (6) the previous equation is equivalent to: [ ]** σ= [ ] [ ] [ ] [ ] [ ]BABABA σσσσσ +≤+<− If B is nonsingular in the same way we can prove that: [ ] [ ] [ ] [ ] [ ]ABBAAB σσσσσ +≤+<− This completes the proof when (A+B) is nonsingular but A or B, or both are nonsingular. Singular Values
  • 35. 35 SOLO Using this and property (3.3): Matrices Properties of Singular Values (10) If the square matrix A is a big matrix relative to the square matrix B, then (A+B) can be approximated by A: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ABAABABABAIf σσσσσσσσ ≈+≈+≤+⇒>> & Proof of (10): We have: [ ] [ ] [ ] [ ]BBAA σσσσ ≥>>≥ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ABAABABABAA σσσσσσσσσ ≈+⇒≈+≤+≤−≈ [ ] [ ] [ ] [ ] [ ]BABABA σσσσσ +≤+≤− Using: and property (9):[ ] [ ] [ ] [ ]BBAA σσσσ ≥>>≥ [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( )ABBABAABBA σσσσσσσσσ ++≤+≤−− ,min,max we have: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ABAABABABAA σσσσσσσσσ ≈+⇒≈+≤+≤−≈ Singular Values
  • 36. 36 SOLO Matrices Properties of Singular Values (11) Multiplicative Inequalities for square matrices: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABABABABABA σσσσσσσσσσ ≤≤≤≤ & Proof of (11): The proof is given in the following steps: (11.1) is the Schwarz inequality of property (3)[ ] [ ] [ ]BABA σσσ ≤ (11.2) prove that :[ ] [ ] [ ]BABA σσσ ≤ If A or B is singular ( or is zero) then A B is singular ( det [A B] = det [A]. det [B]=0 and ) and we have equality. [ ]Aσ [ ]Bσ [ ] 0=BAσ If A or B is nonsingular then A B is nonsingular ( det [A B] = det [A]. det [B]≠0 ) and: ( ) ( ) 11111111 −−−−−−−− ≤=== ABABBAABBA We define , and use the property (6):[ ]** σ= [ ] [ ] [ ] [ ]11 1 & 1 −− == A A A A σ σ σ σ to obtain: [ ] [ ] ( ) [ ]BA BABA BA σσσ ≤≤= −−− 111 111 This result is opposite to Schwarz inequality, proving that is not a norm.[ ]Aσ Singular Values
  • 37. 37 SOLO Matrices Properties of Singular Values (11) Multiplicative Inequalities for square matrices: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABABABABABA σσσσσσσσσσ ≤≤≤≤ & Proof of (11) (continue – 1): (11.3) prove that : If A is singular then: [ ] [ ] [ ] [ ] [ ]BABAorBA σσσσσ ≤ [ ] [ ] [ ]BABA σσσ ≤= 0 If A is nonsingular then: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BAB A BA A BAABAAB σσ σ σ σ σσσσ ≤⇒=≤= −− 1111 If B is singular then: [ ] [ ] [ ]BABA σσσ ≤= 0 If B is nonsingular then: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABA B BA BBABBAA σσσ σ σ σσσσ ≤⇒=≤= −− 11 Singular Values
  • 38. 38 SOLO Matrices Properties of Singular Values (11) Multiplicative Inequalities for square matrices: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABABABABABA σσσσσσσσσσ ≤≤≤≤ & Proof of (11) (continue – 2): (11.4) prove that : If A or B are singular then A B is singular, and: [ ] [ ] [ ] [ ] [ ]BABAorBA σσσσσ ≤ [ ] [ ] [ ] [ ] [ ]( )BAorBABA σσσσσ ≤= 0 If B is nonsingular then: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABA B BA BBABBAA σσσ σ σ σσσσ ≤⇒=≥= −− 11 We also have: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABA B BA BBABBABBAA σσσ σ σ σσσσσσ ≤⇒ =≥≥= −−− 111 If A is nonsingular then: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABA A BA BAABAAB σσσ σ σ σσσσ ≤⇒=≥= −− 11 We also have: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABA A BA BAABAABAAB σσσ σ σ σσσσσσ ≤⇒ =≥≥= −−− 111 q.e.d. Singular Values
  • 39. 39 SOLO Matrices Properties of Singular Values (12) Any unitary matrix U (U UH = UH U = I) has all the singular values equal to 1. Proof of (12): [ ] [ ] [ ] iIUUU i H ii ∀=== 12/12/1 λλσ (13) If U is a unitary matrix (U UH = UH U = I) then: Proof of (13): [ ] [ ] [ ] iAUAAU iii ∀== σσσ [ ] ( ) ( )[ ] [ ] [ ] [ ] iAAAAUUAAUAUAU i H i HH i H ii ∀==== σλλλσ 2/12/12/1 [ ] ( ) ( )[ ] [ ] [ ] [ ] [ ] iAAAAAUUUAAUUAUAUA i H i HH i HH i H ii ∀===== σλλλλσ 2/12/12/12/1 q.e.d. Singular Values q.e.d.
  • 40. 40 SOLO Matrices Properties of Singular Values - Summary (4) The absolute value of the eigenvalues of a square matrix Anxn are bounded between the minimum and the maximum singular values: [ ] [ ] [ ] niAAA i ,,2,1 =≤≤ σλσ (3) is a norm of Anxm, because it satisfies the norm properties:[ ]Aσ (3.1) is non-negative and if and only if A = 0.[ ]Aσ [ ] 0=Aσ [ ] 00 =⇔= AAσ (3.2) Multiplication by a complex constant α: [ ] [ ]AA σαασ = (3.3) Triangle Inequalities: (3.4) Schwarz Inequality: [ ] [ ] [ ] [ ] [ ]BABABA σσσσσ +≤+≤− [ ] [ ] [ ]BABA σσσ ≤ (1) The maximum singular value of Anxm is: [ ] [ ] 2 2 02121 maxmaxmaxmax: 22 x xA xAxAAA xxx i i ≠=≤ ==== σσ (2) The minimum singular value of Anxm is: [ ] [ ] 2 2 02121 minminminmin: 22 x xA xAxAAA xxx i i ≠=≤ ==== σσ Singular Values
  • 41. 41 SOLO Matrices Properties of Singular Values – Summary (continue – 1) (5) A square matrix Anxn is singular iff its minimal singular value is zero. [ ] 0=⇔ ASingularA σ (6) For a nonsingular square matrix Anxn we have [ ] [ ] [ ] [ ]11 1 & 1 −− ==⇔ A A A ArNonsingulaA σ σ σ σ (9) The minimum singular value of a square matrix (A+B) satisfies the inequalities: [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( )ABBABAABBA σσσσσσσσσ ++≤+≤−− ,min,max (8) A sufficient condition that the square matrix (A+B) is nonsingular is: ( ) [ ] [ ] [ ] [ ]ABorBAingularonsNBA σσσσ <<⇒+ ( ) [ ] [ ] [ ] [ ]ABBASingularBA σσσσ ≥≥⇒+ & (7) If the square matrix (A+B) is singular then the maximum singular values of A and of B are greater or equal than the minimum singular value of B and A, respectively. The opposite is not true. Singular Values
  • 42. 42 SOLO Matrices Properties of Singular Values – Summary (continue – 2) (12) Any unitary matrix U (U UH = UH U = I) has all the singular values equal to 1. (13) If U is a unitary matrix (U UH = UH U = I) then: [ ] [ ] [ ] iAUAAU iii ∀== σσσ (11) Multiplicative Inequalities for square matrices: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]BABABABABABA σσσσσσσσσσ ≤≤≤≤ & (10) If the square matrix A is a big matrix relative to the square matrix B, then (A+B) can be approximated by A: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ABAABABABAIf σσσσσσσσ ≈+≈+≤+⇒>> & Singular Values Table of Contents
  • 43. 43 SOLO Matrices Householder Transformation nˆ ( )xnn T  ˆˆ ( )xnn T  ˆˆ x  'x  O A We want to compute the reflection of over a plane defined by the normal ( )1ˆˆˆ =nnn T x  From the Figure we can see that: ( ) ( ) xHxnnIxnnxx TT  =−=−= ˆˆ2ˆˆ2' 1ˆˆˆˆ2: =−= nnnnIH TT We can see that H is symmetric: ( ) HnnInnIH TTTT =−=−= ˆˆ2ˆˆ2 In fact H is also a rotation of around OA so it must be orthogonal, i.e. HT H=H HT =I. x  ( ) ( )  InnnnnnInnInnIHHHH TTTTTT =+−=−−== ˆˆˆˆ4ˆˆ4ˆˆ2ˆˆ2 1 Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Table of Contents Alston Scott Householder 1904 - 1993
  • 44. 44 SOLO Matrices The same result is obtained if we compute α that minimizes: a  b  P a  α ab  α−p  We want to find such that ( )pba  −⊥ap  α= Projection of a vector on a vector .b  a  or: ( ) ( ) ( ) baaaabapba TTTT  1 0 − =⇒−=−= αα and: ( ) ( )[ ] bPbaaaabaaaaap TTTT  ==== −− 11 α ( )[ ]TT aaaaP  1 : − = Projection Matrix ( ) ( ) ( )aababbabababd TTT T  2 2 2 2minminminmin ααααα αααα +−=−−=−= ( ) ( ) ( ) baaa aa d aaba d TT T TT    1 min 2 22 2 0 022 − =⇒        >= ∂ ∂ =+−= ∂ ∂ α α α α Properties of Projection Matrix (1) P is idempotent P2 = P (2) P is symmetric PT = P ( ) cbcPIcPcbP  ,∀−=−⊥ Proof: ( ) ( ) ( ) cbcPIPbcPIbP TT T  ,0 ∀−=−= ( ) 0=− PIPT Hence: PPP TT = ( ) PPPPP TTT == 2 PPPPP TT === b  bP  cP  cP c   − c  Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Table of Contents
  • 45. 45 SOLO Note: If A and b were real, instead of H (transpose & complex conjugate) we have only T (transpose). Matrices Given: Amxn of rank (Amxn) = r ≤ min (m,n) and 1mx b  Find: such that is minimal1nx x  11 mxnxmxn bxAd  −= If the solution is not unique choose such that is minimal1nx x  1nx x  Solution: The minimum is obtained when ( ) ( ) ( )        >= ∂ ∂ =−=−=−= ∂ ∂ 0 0 2 22 2 11 2 AA x d bAxAAbxAAbxA x d H HHH mxnxmxn    ( ) bAAAx HH  1− = A unique solution exists if AH A is positive definite, or rank (AH A) = n, or det|AH A| ≠ 0 ( ) ( )1111 2 11 2 mxnxmxn H mxnxmxnmxnxmxn bxAbxAbxAd  −−=−=Analytic: Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . 111 min&min 1 nxmxnxmxn x xbxAd nx   −=
  • 46. 46 SOLO Matrices Given: Amxn of rank (Amxn) = r ≤ min (m,n) and 1mx b  Find: such that is minimal1nx x  11 mxnxmxn bxAd  −= If the solution is not unique choose such that is minimal1nx x  1nx x  Solution (continue – 1): Geometric: We have A x∈ R (A) for all x ∈ domain (A). We want to find x0 ∈ domain (A), such that is normal to A x.0 xAbpb  −=− ( ) ( ) ( )AdomainxxAbpbxA ∈∀−=−⊥  0 ( ) ( ) ( ) ( )AdomainxxAAbAxxAbxA HHHH ∈∀−=−=  00 0 Hence: 00 =− bAxAA HH  ( )H AR ( )AN ( )H AN ( )AR xA  ( )Adomx ∈0  ( )AcodomY ∈ Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 b  R x0  Nx0  0 xAp  = pb  − xA  ( )Adomx ∈  0 xA  Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . 111 min&min 1 nxmxnxmxn x xbxAd nx   −=
  • 47. 47 SOLO Matrices Let decompose as0 x  ( )H AR ( )AN ( )H AN ( )AR xA  ( )Adomx ∈0  ( )AcodomY ∈ Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 b  R x0  N x0  0xAp  = pb  − xA  ( )Adomx ∈  0xA  ( ) ( ) NR N H R NR xx AofspaceNullANx AofspaceRowARx xxx 00 0 0 000     ⊥    ∈ ∈ += Therefore: RNR xAxAxAxAp 0 0 000    =+== Hence if: (a) N (A) = 0 or (b) The rows of A are linearly dependent or (c) rank (A) = r < m (d) AH A is singular there are a infinity of solutions NRNR xxxxx 00000  ⊥+= The norm of is:0x  NR xx NR xxxxx NR 00000 00   +=+= ⊥ Hence: 0&min 000 == NR xxx  Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . 111 min&min 1 nxmxnxmxn x xbxAd nx   −=
  • 48. 48 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . ( )T AR ( )AN ( )H AN ( )AR xA  ( )Adomx ∈0  ( )AcodomY ∈ Null Space of A Ker (A) span by VA2 T Row Space of A span by VA1 T Column Space of A span by UA1 Left Null Space of A span by UA2 b  R x0  N x0  0xAp  = pb  − xA  ( )Adomx ∈  0xA  bAx R  + =0 0&min 000 == NR xxx  Define the Linear Transformation (Matrix), that gives from , as the Pseudoinverse of A. (A is the direct transformation that gives from : Rx0  b  p  x  xAp  = bAx † R  =0 A† is called Moore-Penrose Pseudoinverse Matrix, because was defined independently by E.H.Moore in 1920 and Roger Penrose in 1955. Eliakim Hastings Moore 1862 - 1932 Roger Penrose 1931 - 111 min&min 1 nxmxnxmxn x xbxAd nx   −= Table of Contents
  • 49. 49 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn .a  ( )H AR ( )AN ( )H AN ( )AR xA  ( )Adomx ∈0  ( )AcodomY ∈ Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 b  R x0  N x0  0xAp  = pb  − xA  ( )Adomx ∈  0xA  bAx † R  =0 bAx † R  =0 Computation of Moore-Penrose Pseudoinverse Matrix, A † Perform Singular Value Decomposition (S.V.D.) of Amxn: where ( ) 0,,, 21211 >≥≥≥=Σ rrA diagrxr σσσσσσ  UAmxm and VAnxn are unitary matrices, i.e.: ( ) [ ] ( ) ( ) ( ) ( ) ( )                Σ =Σ= − − −−− − H A H A rnxrmxrrm rnrxA AA H AAAmxn xnrn rxnrxr rmmxmxrnxnmxnmxm V V UUVUA 2 11 21 00 0  [ ] ( ) ( ) [ ] H AA H AA H AAH A H A AA rmxrm rxr AAH A H A A H A UUUUUU U U UU I I UU U U UU =+=      =      =      = −− 2211 2 1 2121 2 1 0 0 [ ] ( ) ( ) [ ] H AA H AA H AAH A H A AA rnxrn rxr AAH A H A A H A VVVVVV V V VV I I VV V V VV =+=      =      =         = −− 2211 2 1 2121 2 1 0 0
  • 50. 50 SOLO Matrices ( )H AR ( )AN ( )H AN ( )AR xA  ( )Adomx ∈0  ( )AcodomY ∈ Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 b  R x0  N x0  0xAp  = pb  − xA  ( )Adomx ∈  0xA  bAx † R  =0 Since the norm is invariant to the product of orthogonal matrices ( ) bUxVbxVUUbxVUbxA HHHHH  −Σ=−Σ=−Σ=− Introduce the new unknown: R H N H R HH xVxVxVxVy  =+==: But  ( ) 0 0 =⇒Σ=+Σ=+= N H R H N H R H NR xVxVUxVxVUxAxAxA  RR I HH RR HH xxVVxxVxVy    =         === 2/1 ( ) ( ) ( ) ( ) bUybUybxA H rnxrmxrrm r rnrx y H yx         −                 =−Σ=− −−− − 00 0 0 0 minminmin 1 σ σ Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Computation of Moore-Penrose Pseudoinverse Matrix, A †
  • 51. 51 SOLO Matrices ( )H AR ( )AN ( )H AN ( )AR xA  ( )Adomx ∈0  ( )AcodomY ∈ Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 b  Rx0  Nx0  0xAp  = pb  − xA  ( )Adomx ∈  0xA  bAx † R  =0 Therefore: R HH xVxVy  ==: RR I HT RR HH xxVVxxVxVy    =         === 2/1 ( ) ( ) ( ) ( ) bUybUybxA H rnxrmxrrm r rnrx y H yx         −                 =−Σ=− −−− − 00 0 0 0 minminmin 1 σ σ ( ) ( ) ( ) ( ) ( )                     +                 = − −−− −         any xrm rx H rmxrnxrrn r rmrx XbUy 1 1 1 0 00 /10 0 0/1 σ σ R xyx 0 minmin  == ( ) ( ) ( ) ( ) R HH rmxrnxrrn r rmrx xVbUy 0 1 00 /10 0 0/1           =                 = + Σ −−− − σ σ bAbUVx †H† R  =Σ=0 H†† UVA Σ= Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Computation of Moore-Penrose Pseudoinverse Matrix, A †
  • 52. 52 SOLO Matrices ( )H AR ( )AN ( )H AN ( )AR xA  ( )Adomx ∈0  ( )AcodomY ∈ Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 b  R x0  N x0  0 xAp  = pb  − xA  ( )Adomx ∈  0xA  bAx † R  =0 Where: ( ) ( ) ( ) ( )                   =Σ −−− − − = rmxrnxrrn r rmrx † nxm 00 0 0 0 : 1 1 1      σ σ H mxm † nxmnxn † nxm UVA Σ= Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Computation of Moore-Penrose Pseudoinverse Matrix, A † ( ) [ ] ( ) ( ) ( ) ( ) ( ) H AAAH A H A rmxrnxrrn rmrxA AnA † nxm rxmrxrnxr xmrm rxmrxr rnnxmxr UV U U VVA 1 1 11 2 1 1 1 21 00 0 : − −−− − − Σ=                Σ = − −            =Σ − = 1 1 1 1 0 0 : r 1- A rxr σ σ    Table of Contents
  • 53. 53 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Properties of Moore-Penrose Pseudoinverse Matrix, A † ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )         =                                   =ΣΣ −−− − −−− − −−− − − = rnxrnxrrn rnrxrxr rnxrmxrrm r rnrx rmxrnxrrn r rmrx mxn † nxm I 00 0 00 0 0 0 00 0 0 0 1 1 1 1           σ σ σ σ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )         =                                   =ΣΣ −−− − −−− − − = −−− − rmxrmxrrm rmrxrxr rmxrnxrrn r rmrx rnxrmxrrm r rnrx † nxmmxn I 00 0 00 0 0 0 00 0 0 0 1 1 11           σ σ σ σ ( ) ( ) ( ) ( ) ( ) † nxmmxn rmxrmxrrm rmrxrxr†† nxmmxn I ΣΣ=         =ΣΣ −−− − 00 0 ( ) ( ) ( ) ( ) ( ) mxn † nxm rnxrnxrrn rnrxrxr† mxn † nxm I ΣΣ=         =ΣΣ −−− − 00 0 Using the definition of the Pseudoinverse we can see that
  • 54. 54 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Properties of Moore-Penrose Pseudoinverse Matrix, A † ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) † nxm rmxrnxrrn r rmrx rmxrnxrrn r rmrx rnxrnxrrn rnrxrxr† nxmmxn † nxm I Σ=                   =                           =ΣΣΣ −−− − − = −−− − − = −−− − 00 0 0 0 00 0 0 0 00 0 1 1 1 1 1 1           σ σ σ σ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) mxn rnxrmxrrm r rnrx rnxrmxrrm r rnrx rmxrmxrrm rmrxrxr mxn † nxmmxn I Σ=                 =                         =ΣΣΣ −−− − −−− − −−− − 00 0 0 0 00 0 0 0 00 0 11           σ σ σ σ ( ) ( ) ( ) ( ) † nxmmxn H†H†† Def† †H††H†H†† nxmmxn AAUUUUUUUVVUAA =ΣΣ=ΣΣ=ΣΣ=ΣΣ= ( ) ( ) ( ) ( ) mxn † nxm H†H†† Def† †H††HH†† mxn † nxm AAVVVVVVVUUVAA =ΣΣ=ΣΣ=ΣΣ=ΣΣ= Also: Let check the same operations for Matrix A † ( ) ( ) ( ) ( ) mxn HH†HH†H mxn † nxmmxn AVUVUVUUVVUAAA =Σ=ΣΣΣ=ΣΣΣ= ( ) ( ) ( ) ( ) † nxm H†H††H†HH†† nxmmxn † nxm AUVUVUVVUUVAAA =Σ=ΣΣΣ=ΣΣΣ=
  • 55. 55 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Properties of Moore-Penrose Pseudoinverse Matrix, A † - Summary) ( ) ††† nxmmxnnxmmxn AAAA = ( ) mxn † nxm † mxn † nxm AAAA = mxnmxn † nxmmxn AAAA = † nxm † nxmmxn † nxm AAAA = 1 2 3 4 Table of Contents
  • 56. 56 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Description of Projections Related to Moore-Penrose Pseudoinverse bPbAAxAp † R  1 ===1 ( )H AR ( )AN ( )H AN ( )AR Rx  ( )Adomx∈ ( )Acodomb ∈  Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 b  bAx † R  = ( ) R † xA bAAp   = = R xAp  = P1 is a projection matrix because ( ) ( ) ( )    =ΣΣ=ΣΣ== === 11 1 2 1 PUUUVVUAAP PAAAAAAP HH†HH†HH†H ††† P1=A A† projects into column space of A, R (A)b  H†H†H† UUUVVUAAP ΣΣ=ΣΣ==:1
  • 57. 57 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Description of Projections Related to Moore-Penrose Pseudoinverse 2 ( )H AR ( )AN ( )H AN ( )AR R x  ( )Adomx ∈  ( )Acodomb ∈  Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 b  bAx † R  = ( ) R † xA bAAp   = = RxAp  = ( )bAAIpb †  −=− ( ) 0=− pbA†  pAx † R  = P2=(I - A A † ) is a projection matrix because ( ) ( ) ( ) ( )     =−=−=−=−= =+−−=−−= 21112 2 2 2 PPIPIPIAAIP PAAAAAAAAIAAIAAIP HHH†H † A †††††  Because , is the projection of into . ( ) ( )H ANAR ⊥ pb  − ( )H ANb  We can see, also, that: ( ) H†H† † UIUUUI AAIPIP ΣΣ−=ΣΣ−= −=−= 12 : ( ) ( ) 00    ==         −=−=− bbAAAAbAAIApbA † A †††††† pAbAx †† R  == ( ) ( ) bPbAAIpb †  2 =−=−
  • 58. 58 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Description of Projections Related to Moore-Penrose Pseudoinverse 3 ( ) ( ) NR N H R NR xx AofspaceNullANx AofspaceRowARx xxx     ⊥    ∈ ∈ += ( ) ( ) xPxAAxAApAbAx †††† R  3 ===== P3=A † A is a projection matrix of in R (AH )x  ( ) ( ) ( ) ( ) ( )     =ΣΣ=ΣΣ== ==== 33 3 2 3 PVVVUUVAAP PAAAAAAAAAAP HH†HHH†H†H † A †††† †  4 ( ) ( ) xPxAAIxAAxxxx †† RN  4 =−=−=−= P4=I-A † A is a projection matrix of in N (A)x  ( )  ( ) ( )     =−=−=−= =+−=−= 43333 4 2 33 2 3 2 4 3 2 PPIPIPIP PPPIPIP HHHH P ( )H AR ( )AN ( )H AN ( )AR ( )Adomx ∈  ( )Acodomb ∈  Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 b  bAx † R  = ( ) R † xA bAAp   = = R xAp  = ( )bAAIpb †  −=− ( ) 0=− pbA†  pAx † R  = ( ) xAAx † R  = ( )H AR ( )AN ( )H AN ( )AR ( )Adomx ∈  ( )Acodomb ∈  Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 b  bAx † R  = ( ) R † xA bAAp   = = R xAp  = ( )bAAIpb †  −=− ( ) 0=− pbA†  pAx † R  = ( ) xAAx † R  = ( ) xAAIx † N  −= 0=NxA 
  • 59. 59 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Description of Projections Related to Moore-Penrose Pseudoinverse (Summary) 3 ( ) ( ) ( )H†††† R ARxPxAAxAApAbAx ∈=====  3 4 ( )H AR ( )AN ( )H AN ( )AR ( )Adomx ∈  ( )Acodomb ∈  Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 b  bAx † R  = ( ) R † xA bAAp   = = R xAp  = ( )bAAIpb †  −=− ( ) 0=− pbA†  pAx † R  = ( ) xAAx † R  = ( ) xAAIx † N  −= 0=NxA  ( ) ( ) ( )ANxPxAAIxAAxxxx †† RN ∈=−=−=−=  4 ( ) ( ) ( )H† ANbPbAAIpb ∈=−=−  2 2 ( )ARbPbAAxAp † R ∈===  1 1 H†† UUAAP ΣΣ==:1 † AAIPIP −=−= 12 : H†† VVAAP ΣΣ==:3 AAIPIP † −=−= 34 : Table of Contents
  • 60. 60 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Particular case (1) r = n ≤ m: ( ) [ ] ( ) H A xnnm A AA H AAAmxn nxn nxn nmmxmxnnxnmxnmxm VUUVUA        Σ =Σ= − − 0 1 21  (a) rank (Amxn) = n or (b) columns of Amxn are linear independent or (c) N (Amxn) = 0 or (d) Anxm H Amxn is nonsingular This is equivalent to: where ( ) 0,,, 21211 >≥≥≥=Σ nnA diagnxn σσσσσσ  [ ] ( ) ( ) [ ] H AA H AA H AAH A H A AA nmxnm nxn AAH A H A A H A UUUUUU U U UU I I UU U U UU =+=      =      =      = −− 2211 2 1 2121 2 1 0 0 ( )[ ] ( ) H AAAH A H A nmnxAA † nxm nxmnxnnxn xmnm nxm nxnnxn UV U U VA 1 1 1 2 11 1 0: − − − Σ=         Σ= − ( )H AR ( ) 0=AN ( )H AN ( )AR x  b  Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 ( )bAAxAp †  == pAx †  = ( )bAAIpb  + −=− xAp  = bAx †  = ( ) 0=− pbA† 
  • 61. 61 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Particular case (1) r = n ≤ n: (continue – 1) ( )[ ] ( ) H AAAH A H A nmnxAA † nxm nxmnxnnxn xmnm nxm nxnnxn UV U U VA 1 1 1 2 11 1 0: − − − Σ=         Σ= − ( ) [ ] ( ) H A xnnm A AA H AAAmxn nxn nxn nmmxmxnnxnmxnmxm VUUVUA        Σ =Σ= − − 0 1 21  [ ] [ ] H AAA H A A AAH A H A AA H VVVUU U U VAA 2 1 1 21 2 1 1 0 0 Σ=     Σ       Σ=  ( ) H AAA H VVAA 2 1 1 −− Σ= ( ) †H AAA H AAA H AAA HH AUVUVVVAAA =Σ=ΣΣ= −−− 1 1 111 2 1 1 or ( ) H nxmmxn H nxm † nxm AAAA 1− = ( )H AR ( ) 0=AN ( )H AN ( )AR x  b  Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 ( )bAAxAp †  == pAx †  = ( )bAAIpb  + −=− xAp  = bAx †  = ( ) 0=− pbA†  We have only one solution that minimize 11 mxnxmxn bxAd  −= x  and is given by: ( ) 1 1 11 mx H nxmmxn H nxmmx † nxmnx bAAAbAx  − == Table of Contents
  • 62. 62 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Particular case (2) r = m ≤ n: (a) rank (Amxn) = m or (b) rows of Amxn are linear independent or (c) N (Anxm H ) = 0 or (d) AmxnAnxm H is nonsingular This is equivalent to: where ( ) 0,,, 21211 >≥≥≥=Σ mmA diagmxm σσσσσσ  ( ) [ ] ( ) H AAA H A xmmn A AnA † nxm mxmmxmnxmmxm mxm mnnxmxr UVUVVA 1 11 1 1 21 0 : − − − Σ=        Σ = −  ( )[ ] ( ) H AAAH A H A mnmxAA H AAAmxn mxnmxmmxm xnmn mxn mxmmxmnxnmxnmxm VU V V UVUA 11 2 1 1 0 Σ=         Σ=Σ= − − [ ] ( ) ( ) [ ] H AA H AA H AAH A H A AA mnxmn mxm AAH A H A A H A VVVVVV V V VV I I VV V V VV =+=      =      =         = −− 2211 2 1 2121 2 1 0 0 ( )H AR ( )AN ( ) ( )ARBAN H ∈≡ &0 ( )AR xAb  = ( ) N † nxn xxAAI  =− ( ) R † xxAA  = Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 bAx † R  = R xAb  = b  0=N xA 
  • 63. 63 SOLO Matrices Moore-Penrose Pseudoinverse Matrix Anxm † of Amxn . Particular case (2) r = m ≤ n: (continue – 1) ( ) [ ] ( ) H AAA H A xmmn A AnA † nxm mxmmxmnxmmxm mxm mnnxmxr UVUVVA 1 11 1 1 21 0 : − − − Σ=        Σ = −  ( )[ ] ( ) H AAAH A H A mnmxAA H AAAmxn mxnmxmmxm xnmn mxn mxmmxmnxnmxnmxm VU V V UVUA 11 2 1 1 0 Σ=         Σ=Σ= − − H AAA H AA I A H AAA H UUUVVUAA m 2 11111 Σ=ΣΣ=  ( ) H AAA H UUAA 2 1 1 −− Σ= ( ) †H AAA H AAA H AAA HH AUVUUUVAAA =Σ=ΣΣ= −−− 1 11 2 111 1 or ( ) 1− = HH† AAAA ( )H AR ( )AN ( ) ( )ARBAN H ∈≡ &0 ( )AR xAb  = ( ) N † nxn xxAAI  =− ( ) R † xxAA  = Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 bAx † R  = R xAb  = b  0=N xA  We have an infinite number of solutions that minimize 11 mxnxmxn bxAd  −= ( ) bAAAbAx HH† R  1− == The solution that minimizes the norm is given by: Rx  Rx  Table of Contents
  • 64. 64 SOLO Matrices General Solution of Amxn Xnxp = Bmxp X - nxp unknowns with mxp equations mxpnxpmxn BXA = Perform Singular Value Decomposition (S.V.D.) of Amxn: where ( ) 0,,, 21211 >≥≥≥=Σ rrA diagrxr σσσσσσ  UAmxm and VAnxn are unitary matrices, i.e.: ( )H AR ( )AN ( )H AN ( )ARBXA = 11 yAx H = ( )AdomX ∈ ( )AcodomY ∈ 1nx y Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 B ( ) [ ] ( ) ( ) ( ) ( ) ( )                Σ =Σ= − − −−− − H A H A rnxrmxrrm rnrxA AA H AAAmxn xnrn rxnrxr rmmxmxrnxnmxnmxm V V UUVUA 2 11 21 00 0  [ ] ( ) ( ) [ ] H AA H AA H AAH A H A AA rmxrm rxr AAH A H A A H A UUUUUU U U UU I I UU U U UU =+=      =      =      = −− 2211 2 1 2121 2 1 0 0 [ ] ( ) ( ) [ ] H AA H AA H AAH A H A AA rnxrn rxr AAH A H A A H A VVVVVV V V VV I I VV V V VV =+=      =      =         = −− 2211 2 1 2121 2 1 0 0
  • 65. 65 SOLO Matrices General Solution of Amxn Xnxp = Bmxp Let multiply by and using: mxpnxpmxn BXA =         H H U U 2 1 we obtain: [ ]         =              Σ         BU BU X V V UU U U H A H A H A H AA I AAH A H A m 2 1 2 11 21 2 1 00 0     or:         =              Σ BU BU X V V H A H A H A H AA 2 1 2 11 00 0 or: ( ) ( )xprmmxp H A BU xmrm −=− 02 (m-r)xp - constraints equivalent to condition Bmxp∈ℜ (Amxn) mxp H Anxp H AA BUXV rxmrxnrxr 111 =Σ rxp - independent equations nxp – unknowns since r ≤ n → # Eq. ≤ # Unknown ( )H AR ( )AN ( )H AN ( )ARBXA = 11 yAx H = ( )AdomX ∈ ( )AcodomY ∈ Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 B ( ) [ ] ( ) ( ) ( ) ( ) ( )                Σ =Σ= − − −−− − H A H A rnxrmxrrm rnrxA AA H AAAmxn xnrn rxnrxr rmmxmxrnxnmxnmxm V V UUVUA 2 11 21 00 0 
  • 66. 66 ( ) ( )xprmmxp H A BU xmrm − =− 02 (m-r)xp - constraints equivalent to condition Bmxp∈ℜ (Amxn) SOLO Matrices General Solution of Amxn Xnxp = Bmxp mxp H Anxp H AA BUXV rxmrxnrxr 111 =Σ rxp - independent equations nxp – unknowns since r ≤ n → # Eq. ≤ # Unknown This equation is a Necessary and Sufficient Condition for any solutions of equation Amxn Xnxp = Bmxp. It is equivalent to Bmxp∈ℜ (Amxn) or Bmxp ∩ N (AT ) = ∅. If this condition is fulfilled, then from we have nxp unknowns ≥ rxp independent equations, that means (n-r)xp degrees of freedom. mxp H Anxp H AA BUXV rxmrxnrxr 111 =Σ mxp H AAnxp H A BUXV rxmrxrrxn 1 1 11 − Σ= Since VA1 T VA1=Ir & VA1 T VA2 = 0 the General Solution of Amxn Xnxp = Bmxp is: ( ) ( ) ( ) ( )    AN xprnA AR mxp H AAAnxp YVBUVX rnnx T rxmrxrnxr ∈ − ∈ − − +Σ= 21 1 11 where Y(n-r)xp is any (n-r)xp matrix, i.e. we used all (n-r)xp degrees of freedom. ( )H AR ( )AN ( )H AN ( )ARBXA = ( )AdomX ∈ ( )AcodomY ∈ Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 BB has to be in the column space of A ( ) ( ) =∩∈ ANBorARB
  • 67. 67 SOLO Matrices General Solution of Amxn Xnxp = Bmxp Check: ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) [ ] ( ) mxpmxp xmrm H A H A AA mxpxmrm H A mxp H A AA xprm mxp H A AA xprn mxp H AA rnxrmxrrm rnrxA AA xprn I A H Amxp H AAA H A xprnA H Amxp H AA I A H A rnxrmxrrm rnrxA AA xprnAmxp H AAAH A H A rnxrmxrrm rnrxA AAnxp H AAAnxpmxn BB U U UUBU BU UU BU UU Y BU UU YVVBUVV YVVBUVV UU YVBUV V V UUXVUXA rxm rmmxmxr rxm rmmxmxr rxm rmmxmxr rxmrxrrxr rmmxmxr rnnxxnrnrxmrxrnxrxnrn rnnxrxnrxmrxrnxrrxnrxr rmmxmxr rnnxrxmrxrnxr xnrn rxnrxr rmmxmxrnxnmxnmxm =         =           =         =        Σ        Σ =             +Σ +Σ        Σ = +Σ                Σ =Σ= − − −− − −−− − − − − − −−− − − − −−− − −− −− −−− − − − − − 2 1 21 0 2 1 21 1 21 1 1 11 21 221 1 1 0 12 0 211 1 1111 21 21 1 11 2 11 21 000 0 00 0 00 0        
  • 68. 68 SOLO Matrices where r is such that: General Solution of Amxn Xnxp = Bmxp Algorithm to solve Amxn Xnxp = Bmxp: (1) Compute s.v.d. of Amxn and partition according to: ( ) 0,,, 21211 >≥≥≥=Σ rrA diagrxr σσσσσσ  (2) Check if: ( ) ( )xprmmxp H A BU xmrm − =− 02 (3) If (2) is not true → no solution for (1) ( ) ( )  any xprnAmxp H AAAnxp YVBUVX rnnxrxmrxrnxr − − − +Σ= 21 1 11 ( ) [ ] ( ) ( ) ( ) ( ) ( )                Σ =Σ= − − −−− − H A H A rnxrmxrrm rnrxA AA H AAAmxn xnrn rxnrxr rmmxmxrnxnmxnmxm V V UUVUA 2 11 21 00 0  If (2) is true → (n-r)xp solutions:
  • 69. 69 SOLO Matrices General Solution of Amxn Xnxp = Bmxp Moore-Penrose Pseudoinverse of A: ( ) [ ] ( ) ( ) ( ) ( ) ( ) H AAAH A H A rmxrnxrrn rmrxA AnA † nxm rxmrxrnxr xmrm rxmrxr rnnxmxr UV U U VVA 1 1 11 2 1 1 1 21 00 0 : − −−− − − Σ=                Σ = − −  then ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) H AAH A H A rmxrnxrrn rmrxA I AAH A H A rnxrmxrrm rnrxA AA † mxn rxnnxr xmrm rxmrxr nxn rnnxnxr xnrn rxnrxr rmmxmxrnxm UU U U VV V V UUAA 11 2 1 1 1 21 2 11 21 00 0 00 0 =                Σ                Σ = − − − − −−− − − −−− −     ( ) ( ) ( ) ( ) ( ) H AA H AA H AA H AA † nxmmxnmxm xmrmrmmxrxmmxrxmrmrmmxrxmmxr UUUUUUUUAAI −−−− =−+=− 22112211 also ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) H AAH A H A rnxrmxrrm rnrxA I AAH A H A rmxrnxrrn rmrxA AAnxm † mxn rxnnxr xnrn rxnrxr mxm rmmxmxr xmrm rxmrxr rnnxnxr VV V V UU U U VVAA 11 2 11 21 2 1 1 1 21 00 0 00 0 : =                Σ                Σ = − − − − −−− − −−− − −     ( ) ( ) ( ) ( ) ( ) H AA H AA H AA H AAmxn † nxmnxn xnrnrmnxrxnnxrxnrnrmnxrxnnxr VVVVVVVVAAI −−−− =−+=− 22112211
  • 70. 70 SOLO Matrices General Solution of Amxn Xnxp = Bmxp Moore-Penrose Pseudoinverse of A (continue - ): Define also Znxp such that: ( ) ( ) nxp H Axprn ZVY xrrn− =− 2 : ( ) ( )  any xprnAmxp H AAAnxp YVBUVX rnnxrxmrxrnxr − − − +Σ= 21 1 11 Since, if ( ) ( )xprmmxp H A BU xmrm − =− 02 The solution of Amxn Xnxp = Bmxp is ( ) ( ) ( ) ( ) ( ) H AA H AA H AA H AAmxn † nxmnxn xnrnrmnxrxnnxrxnrnrmnxrxnnxr VVVVVVVVAAI −−−− =−+=− 22112211 ( ) [ ] ( ) ( ) ( ) ( ) ( ) H AAAH A H A rmxrnxrrn rmrxA AnA † nxm rxmrxrnxr xmrm rxmrxr rnnxmxr UV U U VVA 1 1 11 2 1 1 1 21 00 0 : − −−− − − Σ=                Σ = − −  Therefore: ( )  any nxpmxn † nxmnxnmxp † nxmnxp ZAAIBAX −+= Note: By writing the solution this way we lose the fact that we have only (n-r)xp different solutions as we have seen. Check: ( ) ( ) ( )  xprn xnrnrnnxrxmrxrnxr Y nxp H AAmxp H AAAnxp ZVVBUVX − −− +Σ= − 221 1 11
  • 71. 71 SOLO Matrices General Solution of Amxn Xnxp = Bmxp Moore-Penrose Pseudoinverse of A (continue - ): ( ) ( ) ( )  any nxpmxn † nxmnxnmxp † nxm any xprnAmxp H AAAnxp ZAAIBAYVBUVX rnnxrxmrxrnxr −+=+Σ= − − − 21 1 11 ( ) ( ) ( ) ( ) ( ) ( ) ( )xprmmxp H AA ANonBofprojection mxp H BUU BAAI orANB orARB xmrmrmmx T − + == − Ο/=∩ ∈ −− 0 0 22     Solutions exists iff: ( )H AR ( )AN ( )H AN ( )AR BXA = ( ) YVZAAI A † nxn 2=− BA† Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 B BA†Z i.e. the projection (Imxm – Amxn Anxm † ) of B on N (AH ) is zero. ( ) ( ) ( ) mxpmxp H AAmxp † nxmmxnmxm BUUBAAI mnrmrmmx 0 0 22 ==− −−  Table of Contents
  • 72. 72 SOLO Matrices General Solution of Amxn Xnxp = Bmxp Particular case (1) r = m ≤ n: solutions always exist ( )H AR ( )AN ( ) ( )ARBAN H ∈≡ &0 ( )AR BXA = ( ) YVZAAI A † nxn 2=− BA† Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 B BA†Z Since ( )[ ] ( )         Σ=Σ= − − H A H A mnmxAA H AAAmxn xnmn rxn mxmmxmnxnmxnmxm V V UVUA 2 1 1 0 ( ) ( ) ( ) ( )xprmmxp H ArmmxA BUU xmrmrmmx −− ≡⇒≡ −− 00 22 nxp unknowns ≥ mxp equations, meaning (n-m)xp degrees of freedom ( ) ( ) ( )  any nxpmxn † nxmnxnmxp † nxm any xprnAmxp H AAAnxp ZAAIBA YVBUVX rnnxrxmrxrnxr −+= +Σ= − − − 21 1 11 ( ) [ ] ( ) ( ) 11 11 1 1 21 0 : −− − − =Σ=        Σ = − H nxmmxn H nxm H AAA H A xmmn A AnA † nxm AAAUVUVVA mxmrxrnxrmxm mxm mnnxnxm  ( )[ ] ( ) ( ) [ ] ( ) mxm H A xmmn A AAH A H A mnmxAA † nxmmxn IUVV V V UAA mxm mxm mnnxnxm xnmn mxn mxmmxm =        Σ         Σ= − − − − − 0 0 1 1 21 2 1  Table of Contents
  • 73. 73 SOLO Matrices General Solution of Amxn Xnxp = Bmxp Particular case (2) r = n ≤ n: mxp equations ≥ nxp unknowns, meaning (n-m)xp constraints Only if solutions exist. ( ) ( )xprmmxp H A BU xmrm − =− 02 In this case we have nxp unknowns and mxp equations - (m-p)xp constraints = nxp independent equations, i.e. a unique solution: mxpnxmmxp H AAAnxp BABUVX nxmnxnnxn +− =Σ= 1 1 11 ( ) [ ] ( ) H A xnnm A AA H AAAmxn nxn nxn nmmxmxnnxnmxnmxm VUUVUA        Σ =Σ= − − 0 1 21  ( )[ ] ( ) H AAAH A H A nmnxAA † nxm nxmnxnnxn xmnm nxm nxnnxn UV U U VA 1 1 2 11 0: − − − Σ=         Σ= − ( )[ ] ( ) ( ) [ ] ( ) nxn H A xnnm A AAH A H A nmnxAAmxn † nxm IVUU U U VAA nxn nxn nmmxmxn xmnm nxm nxnnxn =        Σ         Σ= − − − − − 0 0 1 21 2 11  ( )H AR ( ) 0=AN ( )H AN ( )ARBXA = BA† 1nx y Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 BB has to be in the column space of A ( ) ( ) =∩∈ ANBorARB Table of Contents
  • 74. 74 SOLO Matrices General Solution of YpxmAmxn = Cpxn Y - pxm unknowns with pxn equations pxnmxnpxm CAY = Perform Singular Value Decomposition (S.V.D.) of Amxn: where ( ) 0,,, 21211 >≥≥≥=Σ rrA diagrxr σσσσσσ  UAmxm and VAnxn are unitary matrices, i.e.: [ ] ( ) ( ) [ ] H AA H AA H AAH A H A AA rmxrm rxr AAH A H A A H A UUUUUU U U UU I I UU U U UU =+=      =      =      = −− 2211 2 1 2121 2 1 0 0 [ ] ( ) ( ) [ ] H AA H AA H AAH A H A AA rnxrn rxr AAH A H A A H A VVVVVV V V VV I I VV V V VV =+=      =      =         = −− 2211 2 1 2121 2 1 0 0 ( )H AR ( )AN ( )H AN ( )ARCAY = 11 yAx H = C Y Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 ( ) [ ] ( ) ( ) ( ) ( ) ( )                Σ =Σ= − − −−− − H A H A rnxrmxrrm rnrxA AA H AAAmxn xnrn rxnrxr rmmxmxrnxnmxnmxm V V UUVUA 2 11 21 00 0 
  • 75. 75 SOLO Matrices we obtain: [ ] [ ] [ ]2121 2 11 21 00 0 AAAAH A H AA AA VCVCVV V V UUY  =              Σ or: ( ) ( )rnpxApxn rnnx VC −=− 02 px(n-r) - constraints equivalent to condition Cpxn∈ℜ (Amxn H ) nxrrxrmxr ApxnAApxm VCUY 111 =Σ pxr - independent equations pxm – unknowns since r ≤ m → # Eq. ≤ # Unknown ( ) [ ] ( ) ( ) ( ) ( ) ( )                Σ =Σ= − − −−− − H A H A rnxrmxrrm rnrxA AA H AAAmxn xnrn rxnrxr rmmxmxrnxnmxnmxm V V UUVUA 2 11 21 00 0  General Solution of YpxmAmxn = Cpxn ( )H AR ( )AN ( )H AN ( )ARCAY = C Y Null Space of A Ker (A) span by VA2 T Row Space of A span by VA1 T Column Space of A span by UA1 Left Null Space of A span by UA2 C has to be in the Row Space of A H AC ( ) ( ) Ο/=∩ ∈ ANC orARC HLet post-multiply by and using: [ ]21 VVpxnmxnpxm CAY = or: [ ] [ ]21 1 21 00 0 AA A AA VCVCUUY  =     Σ
  • 76. 76 SOLO Matrices Since UA1 T UA1=Ir & UA1 T UA2 = 0 the General Solution of YpxmAmxn = Cpxn is: where Xpx(m-r) is any px(m-r) matrix, i.e. we used all px(m-r) degrees of freedom. General Solution of YpxmAmxn = Cpxn nxrrxrmxr ApxnAApxm VCUY 111 =Σ pxr - independent equations pxm – unknowns since r ≤ m → # Eq. ≤ # Unknown This equation is a Necessary and Sufficient Condition for any solutions of equation YpxmAmxn = Cpxn. It is equivalent to Cpxn∈ℜ (Amxn) or Cpxn ∩ N (AT ) = ∅. If this condition is fulfilled, then from we have nxp unknowns ≥ rxp independent equations, that means (n-r)xp degrees of freedom. H ApxnAApxm nxrrxrmxr VCUY 111 =Σ 1 111 − Σ= rxrnxrmxr AApxnApxm VCUY px(n-r) - constraints equivalent to condition Cpxn∈ℜ (Amxn H )( ) ( )rnpxApxn rnnx VC −=− 02 ( ) ( ) H A any rmpx H AAApxnpxm xmrmrxmrxrnxr UXUVCY −− − +Σ= 21 1 11  ( )H AR ( )AN ( )H AN ( )ARCAY = C Y Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 C has to be in the Row Space of A H AC ( ) ( ) Ο/=∩ ∈ ANC orARC H H AC
  • 77. 77 SOLO Matrices Check: ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) [ ] ( ) pxnH A H A AApxnH A H A ApxnApxn H A H A rnpxApxnH A H A rnxrmxrrm rnrxA rmpxAApxn H A H A rnxrmxrrm rnrxA I A H ArmpxA H AAApxnA H Armpx I A H AAApxn H A H A rnxrmxrrm rnrxA AA H Armpx H AAApxnmxnpxm C V V VVC V V VCVC V V VC V V XVC V V UUXUUVCUUXUUVC V V UUUXUVCAY xnrn rxn rnpxnxr xnrn rxn rnpx rnpxnxr xnrn rxn nxr xnrn rxnrxr rxrnxr xnrn rxnrxr rmmxxmrmrmmxrxmrxrnxrmxrxmrmmxrrxmrxrnxr xnrn rxnrxr rmmxmxrxmrmrxmrxrnxr =         =                   =         =                Σ Σ=                Σ         +Σ+Σ=                Σ +Σ= − − − − − −− − −−−− − −− − −−− − − − −−− − − − − − −−− − − − 2 1 21 2 1 0 21 2 1 1 2 111 11 2 11 22 0 21 1 11 0 1211 1 11 2 11 2121 1 11 0 00 0 00 0 00 0           General Solution of YpxmAmxn = Cpxn
  • 78. 78 SOLO Matrices where r is such that: Algorithm to solve YpxmAmxn = Cpxn: (1) Compute s.v.d. of Amxn and partition according to: ( ) 0,,, 21211 >≥≥≥=Σ rrA diagrxr σσσσσσ  (2) Check if: (3) If (2) is not true → no solution for (1) ( ) [ ] ( ) ( ) ( ) ( ) ( )                Σ =Σ= − − −−− − H A H A rnxrmxrrm rnrxA AA H AAAmxn xnrn rxnrxr rmmxmxrnxnmxnmxm V V UUVUA 2 11 21 00 0  General Solution of YpxmAmxn = Cpxn ( ) ( )rnpxApxn rnnx VC −=− 02 ( ) ( ) H A any rmpx H AAApxnpxm xmrmrxmrxrnxr UXUVCY −− − +Σ= 21 1 11  If (2) is true → px(m-r) solutions:
  • 79. 79 SOLO Matrices Moore-Penrose Pseudoinverse of A (continue - ): Define also Wpxm such that: ( ) ( )rmmxApxmrmpx UWX − =− 2: ( ) ( ) ( ) ( ) ( ) H AA H AA H AA H AAmxn † nxmnxn xnrnrmnxrxnnxrxnrnrmnxrxnnxr VVVVVVVVAAI −−−− =−+=− 22112211 ( ) [ ] ( ) ( ) ( ) ( ) ( ) H AAAH A H A rmxrnxrrn rmrxA AnA † nxm rxmrxrnxr xmrm rxmrxr rnnxmxr UV U U VVA 1 1 11 2 1 1 1 21 00 0 : − −−− − − Σ=                Σ = − −  Therefore:  ( )† nxmmxnmxm any pxm † nxmpxnpxm AAIWACY −+= Note: By writing the solution this way we lose the fact that we have only px(m-r) different solutions as we have seen. If ( ) ( )rnpxApxn rnnx VC − =− 02 General Solution of YpxmAmxn = Cpxn the solution of YpxmAmxn = Cpxn is ( ) ( ) H A any rmpx H AAApxnpxm xmrmrxmrxrnxr UXUVCY −− − +Σ= 21 1 11  Check: ( ) ( ) ( ) H A X Apxm H AAApxnpxm xmrm rmpx rmmxrxmrxrnxr UUWUVCY − − − +Σ= − 221 1 11 
  • 80. 80 SOLO Matrices Moore-Penrose Pseudoinverse of A (continue - ): Solutions exists iff: i.e. the projection (Inxn – Anxm † Amxn) of C on N (A) is zero. General Solution of YpxmAmxn = Cpxn ( ) ( )  ( )† nxmmxnmxm any pxm † nxmpxn H A any rmpx H AAApxnpxm AAIWAC UXUVCY xmrmrxmrxrnxr −+= +Σ= −− − 21 1 11  ( ) ( ) ( ) ( ) pxn H AApxnmxn † nxmnxnpxn xnrn rnpx rnnx VVCAAIC 02 0 2 ==− − − −  ( )H AR ( )AN ( )H AN ( )ARCAY = C pxm Y Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 C has to be in the Row Space of A H AC ( ) ( ) orANC orARC H Ο/=∩ ∈ ( ) ( ) ( ) ( ) ( ) pxn H AApxn ANonprojection mxnnxmnxnpxn xnrn rnpx rnnx VVCAAIC 02 0 2 ==− − − − +    ( ) ( ) ( ) ( ) H Armpx ANonWanyofprojection nxmmxnmxmpxm xrrm H pxm UXAAIW −− + =− 2    pxmW H AC ( ) ( ) ( ) ( ) ( ) ( ) ( ) pxn H AApxn ANonprojection mxn † nxmnxnpxn H xnrn rnpx rnnx VVC AAIC orANC orARC 02 0 2 == − Ο/=∩ ∈ − − −     ††† Table of Contents
  • 81. 81 SOLO Matrices Particular case (1) r = m ≤ n: ( )[ ] ( )         Σ=Σ= − − H A H A mnmxAA H AAAmxn xnmn rxn mxmmxmnxnmxnmxm V V UVUA 2 1 1 0 ( ) [ ] ( ) ( ) 11 11 1 1 21 0 : −− − − =Σ=        Σ = − H nxmmxn H nxm H AAA H A xmmn A AnA † nxm AAAUVUVVA mxmrxrnxrmxm mxm mnnxnxm  ( )[ ] ( ) ( ) [ ] ( ) mxm H A xmmn A AAH A H A mnmxAA † nxmmxn IUVV V V UAA mxm mxm mnnxnxm xnmn mxn mxmmxm =        Σ         Σ= − − − − − 0 0 1 1 21 2 1  General Solution of YpxmAmxn = Cpxn Only if solutions exist.( ) ( )rnpxApxn rnnx VC − =− 02 In this case we have pxm unknowns and pxn equations – px(n-m) constraints = pxm independent equations, i.e. a unique solution: † nxmpxn H AAApxnpxm AC UVCY rxmrxrnxr = Σ= − 1 1 11 ( )H AR ( )AN ( ) 0=H AN ( )ARCAY = C Null Space of A Ker (A) span by VA2 H Row Space of A span by VA1 H Column Space of A span by UA1 C has to be in the Row Space of A H AC ( ) ( ) ( ) ( ) ( ) ( ) pxn H AApxnmxn † nxmnxnpxn H xnrn rnpx rnnx VVCAAIC orANC orARC 02 0 2 ==− Ο/=∩ ∈ − − −  Table of Contents
  • 82. 82 SOLO Matrices Particular case (2) r = n ≤ n: pxn equations ≥ pxm unknowns, meaning px(m-n) constraints ( ) [ ] ( ) H A xnnm A AA H AAAmxn nxn nxn nmmxmxnnxnmxnmxm VUUVUA        Σ =Σ= − − 0 1 21  ( )[ ] ( ) H AAAH A H A nmnxAA † nxm nxmnxnnxn xmnm nxm nxnnxn UV U U VA 1 1 2 11 0: − − − Σ=         Σ= − ( )[ ] ( ) ( ) [ ] ( ) nxn H A xnnm A AAH A H A nmnxAAmxn † nxm IVUU U U VAA nxn nxn nmmxmxn xmnm nxm nxnnxn =        Σ         Σ= − − − − − 0 0 1 21 2 11  Since solutions always exist( ) ( )rnpxApxn rnnx VC − ≡− 02 pxm unknowns ≥ pxn equations, meaning px(m-n) degrees of freedom ( )H AR ( ) 0=AN ( )H AN ( )ARCAY = C Y Row Space of A span by VA1 H Column Space of A span by UA1 Left Null Space of A span by UA2 C has to be in the Row Space of A H AC ( ) CAAC † = ( ) H A UXAAIW 2 =− + ( ) ( ) ( ) ( ) ( ) ( ) pxn H AApxnmxn † nxmnxnpxn H xnrn rnpx rnnx VVCAAIC orANC orARC 02 0 2 ==− Ο/=∩ ∈ − − −  ( ) ( )  ( )† nxmmxnmxm any pxm † nxmpxn H A any rmpx H AAApxnpxm AAIWAC UXUVCY xmrmrxmrxrnxr −+= +Σ= −− − 21 1 11  General Solution of YpxmAmxn = Cpxn Table of Contents
  • 83. 83 SOLO Matrices Inverse of Partitioned Matrices ( ) ( ) ( ) ( )         −−− −−− =      − × − ××× − × − ×××× − × − × − ×××× − × − × − ××× − ×× ×× 11111 111111 mnnnnmmmnmmmmnnnnmmm mnnnnmmmmnnnnmmmmnnn mmnm mnnn BADCDCBADC BADCBADCBA CD BA if and exist. 1− ×nnA 1− ×nnC Let find the inverse of such that:      ×× ×× mmnm mnnn PN ML       ×× ×× mmnm mnnn CD BA       =            ×× ×× ×× ×× ×× ×× mmnm mnnn mmnm mnnn mmnm mnnn I I PN ML CD BA 0 0 Proof: nnnmmnnnnn INBLA ××××× =+1 ( ) nnnnnmmmmnnn ILDCBA ××× − ××× =−→ 1 2 nmnmmmnnnm NCLD ××××× =+ 0 nnnmmmnm LDCN ×× − ×× −=→ 1 3 mnmmmnmnnn PBMA ××××× =+ 0 mmmnnnmn PBAM ×× − ×× −=→ 1 4 mmmmmmmnnm IPCMD ××××× =+ ( ) mmmmmnnnnmmm IPBADC ××× − ××× =−→ 1
  • 84. 84 SOLO Matrices Inverse of Partitioned Matrices ( ) ( ) ( ) ( )         −−− −−− =      − × − ××× − × − ×××× − × − × − ×××× − × − × − ××× − ×× ×× 11111 111111 mnnnnmmmnmmmmnnnnmmm mnnnnmmmmnnnnmmmmnnn mmnm mnnn BADCDCBADC BADCBADCBA CD BA if and exist. 1− ×nnA 1− ×nnC Let find the inverse of such that:      ×× ×× mmnm mnnn PN ML       ×× ×× mmnm mnnn CD BA       =            ×× ×× ×× ×× ×× ×× mmnm mnnn mmnm mnnn mmnm mnnn I I PN ML CD BA 0 0 Proof (continue – 1): 1 ( ) nnnnnmmmmnnn ILDCBA ××× − ××× =− 1 2 nnnmmmnm LDCN ×× − ×× −= 1 3 4 mmmnnnmn PBAM ×× − ×× −= 1 ( ) mmmmmnnnnmmm IPBADC ××× − ××× =− 1 ( ) 11 − × − ×××× −= nmmmmnnnnn DCBAL ( ) 111 − × − ×××× − ×× −−= nmmmmnnnnmmmnm DCBADCN ( ) 11 − × − ×××× −= mnnnnmmmmm BADCP ( ) 111 − × − ×××× − ×× −−= mnnnnmmmmnnnmn BADCBAM q.e.d.
  • 85. 85 SOLO Matrices Inverse of Partitioned Matrices       =            ×× ×× ×× ×× ×× ×× mmnm mnnn mmnm mnnn mmnm mnnn I I CD BA PN ML 0 0 From: ( ) 1− ××××× −=→ mmmnnmmmmm CBNIPmmmmmmmnnm ICPBN ××××× =+we get: ( ) 11 − × − ×××× −= mnnnnmmmmm BADCPSubstitute: and: ( ) 111 − × − ×××× − ×× −−= nmmmmnnnnmmmnm DCBADCN ( ) ( ) 1111111 − ×× − × − ×××× − × − × − × − ××× −+=− mmmnnmmmmnnnnmmmmmmnnnnmmm CBDCBADCCBADC to obtain: By inter-changing , in this identity, we obtain:nmmnnnmm DBAC ×××× ↔↔ , ( ) ( ) 1111111 − ×× − × − ×××× − × − × − × − ××× −+=− nnnmmnnnnmmmmnnnnnnmmmmnnn ADBADCBAADCBA
  • 86. 86 SOLO Pre-multiplying this identity by we obtain Matrices Inverse of Partitioned Matrices Let prove the identity: ( ) ( ) 111111 − ×× − × − ××× − × − ×××× − × −=− mmmnnmmmmnnnmnnnnmmmmnnn CBDCBABADCBA ( ) ( ) 1111 − × − ×××× − ×× − ××× −− mnnnnmmmmnnnnmmmmnnn BADCBADCBA Proof: ( )( ) 1111 − × − ×××× − ×× − ××× −−≡ mnnnnmmmmnnnnmmmmnmn BADCBADCBB ( )( ) 11111 − ×× − × − ×××× − ××× − ×× ≡−−≡ mmmnmnnnnmmmmnnnnmmmmmmn CBBADCBADCCB ( ) 11 − × − ××× − nmmmmnnn DCBA ( ) ( ) ( ) ( ) 111 111111 − ×× − × − ××× − × − ×××× − ×× − ××× − × − ××× −≡ −−− mmmnnmmmmnnn mnnnnmmmmnnnnmmmmnnnnmmmmnnn CBDCBA BADCBADCBADCBA q.e.d. ( ) ( ) 111111 − × − ×××× − × − ×× − × − ××× −=− nmmmmnnnnmmmnnnmmnnnnmmm DCBADCADBADC By inter-changing ,in the first identity, we obtain:nmmnnnmm DBAC ×××× ↔↔ , ( ) ( ) 111111 − ×× − × − ××× − × − ×××× − × −=− nnnmmnnnnmmmnmmmmnnnnmmm ADBADCDCBADC q.e.d.
  • 87. 87 SOLO Matrices Inverse of Partitioned Matrices By using the identities: ( ) ( ) 111111 − × − ×××× − × − ×× − × − ××× −=− nmmmmnnnnmmmnnnmmnnnnmmm DCBADCADBADC We obtain: ( ) ( ) ( ) ( )         −−− −−− =      − × − ××× − × − ×××× − × − × − ×××× − × − × − ××× − ×× ×× 11111 111111 mnnnnmmmnmmmmnnnnmmm mnnnnmmmmnnnnmmmmnnn mmnm mnnn BADCDCBADC BADCBADCBA CD BA if and exist. 1− ×nnA 1− ×nnC ( ) ( ) ( ) ( )         −−− −−−+ =      − × − ××× − ×× − × − ××× − × − ×××× − × − ×× − × − ×××× − × − × − ×× ×× 11111 111111111 mnnnnmmmnnnmmnnnnmmm mnnnnmmmmnnnnnnmmnnnnmmmmnnnnn mmnm mnnn BADCADBADC BADCBAADBADCBAA CD BA ( ) ( ) 1111111 − ×× − × − ×××× − × − × − × − ××× −+=− nnnmmnnnnmmmmnnnnnnmmmmnnn ADBADCBAADCBA
  • 88. 88 SOLO Matrices Inverse of Partitioned Matrices If and exist, performing the computation M-1 M, we can prove: 1− ×nnA 1− ×nnC         − =      − × − ×× − × × − × − ×× ×× 111 11 00 mmnnnmmm mnnn mmnm mnnn CADC A CD A 1 2         − =      − ×× − ×× − × − × − ×× ×× 1 1111 00 mmnm mmmnnnnn mmnm mnnn C CBAA C BA 3         =      − ×× × − × − ×× ×× 1 11 0 0 0 0 mmnm mnnn mmnm mnnn C A C A 4 If and : T nnnn AA ×× = T nnnn CC ×× = ( ) ( ) ( ) ( )         −−− −−− =      − × − ××× − × − ×××× − × − × − ×××× − × − × − ××× − ×× ×× 11111 111111 mnnnnm T mmnm T mmmnnnnm T mm mnnnnm T mmmnnnnm T mmmnnn mmnm T mnnn BABCBCBABC BABCBABCBA CB BA Because this is a symmetric matrix ( ) ( ) 111111 − ×× − × − ××× − × − ×××× − × −=− nnnm T mnnnnm T mmnm T mmmnnnnm T mm ABBABCBCBABC Also: ( ) ( ) 1111111 − ×× − × − ×××× − × − × − × − ××× −+=− mmmnnm T mmmnnnnm T mmmmmnnnnm T mm CBBCBABCCBABC
  • 89. 89 SOLO Matrices Inverse of Partitioned Matrices If m=n and and also exist: 1− ×nnB 1− ×nn D5 ( ) ( )[ ] 111111 − × − ×× − ××× − × − ×××× − × −−=−− nnnnnnnnnnnnnnnnnnnnnnnn ABBADCBADCBA ( ) ( )[ ] 111111 − × − ×× − ××× − × − ×××× − × −−=−− nnnnnnnnnnnnnnnnnnnnnnnn CDDCBADCBADC also we obtain ( ) ( ) ( ) ( )         −− −− =      − × − ××× − × − ××× − × − ××× − × − ××× − ×× ×× 1111 11111 nnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnn nnnn nnnn BADCCDAB ABCDDCBA CD BA Table of Contents
  • 90. 90 SOLO Matrices Matrix Inverse Lemmas Identities ( ) ( ) 1111111 − ×× − × − ×× − ×× − × − × − ×××× +−=+ mmmnnmmmmnnnnmmmmmmnnnnmmm CBDCBADCCBADC1 Proof: ( ) ( ) 1111111 − ×× − × − ×××× − × − × − × − ××× −+=− mmmnnmmmmnnnnmmmmmmnnnnmmm CBDCBADCCBADC In the identity: substitute by . 1− ×nnA nnA ×− Substitute by and by in (1). 1− ×nnAnnA × mmC × 1− ×mmC2 ( ) ( ) mmmnnmmmmnnnnmmmmmmnnnnmmm CBDCBADCCBADC ×× − ××××××× − × − ×× − × +−=+ 1111 Substitute in (1) nnnn IA ×× =3 ( ) ( ) 111111 − ×× − × − ×××× − × − × − ××× +−=+ mmmnnmmmmnnnnmmmmmmnnmmm CBDCBIDCCBDC Substitute in (2) nnnn IA ×× =4 ( ) ( ) mmmnnmmmmnnnnmmmmmmnnmmm CBDCBIDCCBDC ×× − ××××××× − ×× − × +−=+ 111
  • 91. 91 SOLO Matrices Matrix Inverse Lemmas Identities 5Substitute in (1), (2), (3), (4) by . (We don’t assume symmetric and )nmD × nm T B × nnA × mmC × ( ) ( ) 1111111 − ×× − × − ×× − ×× − × − × − ×××× +−=+ mmmnnm T mmmnnnnm T mmmmmnnnnm T mm CBBCBABCCBABC ( ) ( ) mmmnnm T mmmnnnnm T mmmmmnnnnm T mm CBBCBABCCBABC ×× − ××××××× − × − ×× − × +−=+ 1111 ( ) ( ) 111111 − ×× − × − ×××× − × − × − ××× +−=+ mmmnnm T mmmnnnnm T mmmmmnnm T mm CBBCBIBCCBBC ( ) ( ) mmmnnm T mmmnnnnm T mmmmmnnm T mm CBBCBIBCCBBC ×× − ××××××× − ×× − × +−=+ 111 From this we get: 6Substitute in (3) mmmm IC ×× = ( ) ( ) mnnmmnnnnmmmmnnmmm BDBIDIBDI × − ××××× − ××× +−=+ 11 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) mnnmmnnmmmmnnmmmmnnmmmmnnmmm mnnmmmmnnmmnnmmmmnnmmmmnnmmm mnnmmmmmmnnmmnnnnm BDBDIBDIBDIBDI BDIBDBDIBDIBDI BDIIBDBID ×× − ××× − ×××××× − ××× − ××××× − ××× − ×××××× − ××××× − ×××× +=+−++= +=+−++= +−=+ 111 111 11
  • 92. 92 SOLO Matrices Matrix Inverse Lemmas Identities 7Substitute in the identity ( ) ( ) 111111 − ×× − × − ××× − × − ×××× − × −=− mmmnnmmmmnnnmnnnnmmmmnnn CBDCBABADCBA nnnn IA ×× −= and mmmm IC ×× = to obtain: ( ) ( ) mnnmmnnnmnnmmmmn BDBIBDIB × − ××× − ×××× +=+ 11 Pre-multiplying this by we get (6).nmD × By using a similar path with the identity ( ) ( ) 111111 − ×× − × − ××× − × − ×××× − × −=− nnnmmnnnnmmmnmmmmnnnnmmm ADBADCDCBADC nnnn IA ×× −= and mmmm IC ×× = to obtain:with ( ) ( ) nmmnnmmmnmmnnnnm DBDIDBID × − ××× − ×××× +=+ 11 Post-multiplying this by we get (6).mnB ×
  • 93. 93 SOLO Matrices By matrix manipulation we obtain: Matrix Inverse Lemmas Identities 8In the identity ( ) ( ) 111111 − ×× − × − ××× − × − ×××× − × −=− mmmnnmmmmnnnmnnnnmmmmnnn CBDCBABADCBA pre-multiplying Anxn by and post-multiplying by Cmxm we get: ( ) ( ) mnnmmmmnnnnnmmmnnnnmmmmn BDCBAACBADCB × − × − ××××× − × − ×××× −=− 1111 ( ) ( ) mnnnnmmmmnnnmnnnnmmmmmmn BADCBIBADCIB × −− ×× − ××× − × − ×× − ××× −=− 111111 Use now the identity ( ) ( ) 111111 − ×× − × − ××× − × − ×××× − × −=− nnnmmnnnnmmmnmmmmnnnnmmm ADBADCDCBADC Pre-multiplying by Cmxm and post-multiplying by Anxn we get: ( ) ( ) nmmnnnnmmmmmnnnmmmmnnnnm DBADCCADCBAD × − × − ××××× − × − ×××× −=− 1111 By matrix manipulation we obtain ( ) ( ) nmmmmnnnnmmmnmmmmnnnnnnm DCBADIDCBAID × −− ×× − ××× − × − ×× − ××× −=− 111111 Table of Contents
  • 94. 94 SOLO Matrices Matrix Schwarz Inequality ( ) ( ) ( )QPPPQPQQ TTTTT 1− ≥ Table of Contents Hermann Amandus Schwarz 1843 - 1921 yxyx ≤>< , Let x, y be the elements of an Inner Product space X, than : This is the Schwarz Inequality. Let Pmxn and Qmxl be two matrices such that PT P is nonsingular, then: ( ) ( ) ( ) CxxQPPPQPxxQQx TTTTTTT ∈∨≥ −1 i.e.,: Furthermore equality holds if and only if exists a matrix Snxl such that Q = P S. Proof: Start from the inequality: and choose( ) ( ) 0≥−− SPQSPQ T ( ) ( )QPPPS TT 1− = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 1 1111 ≥−= +−−= +−−=−− − −−−− QPPPQPQQ QPPPPPPPPQQPPPPQQPPPPQQQ SPPSQPSSPQQQSPQSPQ TTTTT TTTTTTTTTTTT TTTTTTT The inequality becomes equality if and only if : that is equivalent with ( ) ( ) 0=−− SPQSPQ T SPQ =
  • 95. 95 SOLO Matrices Trace of a Square Matrix The trace of a square matrix is defined as ( ) ( )T nn n i iinn AtraceaAtrace × = × == ∑1 : q.e.d. ( ) ( )ABtraceBAtrace =1 Proof: ( ) ∑ ∑= =         = n i n j jiij baBAtrace 1 1 ( ) ( )BAtracebaabABtrace n i n j jiij n j n i ijji ==      = ∑∑∑ ∑ = == = 1 11 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ABtraceBAtraceBAtraceABtraceABtraceBAtrace TTTT 111 =≠===2 Proof: ( ) ( ) ( )ABtraceBAtracebabaBAtrace n i n j jiij n i n j ijij T ==        ≠        = ∑ ∑∑ ∑ = == = 1 11 1 ( ) ( )T n j n i ijij T BAtraceabABtrace =      = ∑ ∑= =1 1 q.e.d.
  • 96. 96 SOLO Matrices Trace of a Square Matrix The trace of a square matrix is defined as ( ) ( )T nn n i iinn AtraceaAtrace × = × == ∑1 : 3 Proof: q.e.d. ( ) ( ) ( )∑= − == n i i APAPtraceAtrace 1 1 λ where P is the eigenvector matrix of A related to the eigenvalue matrix Λ of A by           =Λ= n PPPA λ λ    0 01 ( ) ( ) ( ) ( )AtraceAPPtracePAPtrace == −− 1 1 1           =Λ= n PPPA λ λ    0 01           =Λ=→ − n PAP λ λ    0 01 1 ( ) ( ) ∑= − =Λ=→ n i itracePAPtace 1 1 λ
  • 97. 97 SOLO Matrices Trace of a Square Matrix The trace of a square matrix is defined as ( ) ( )T nn n i iinn AtraceaAtrace × = × == ∑1 : Proof: q.e.d. Definition 4 ( )AtraceA ee =det ( )AtraceA eeePe P PePPePe n i i ====== ∑=ΛΛΛ−Λ− 1 detdetdet det 1 detdetdetdetdet 11 λ If aij are the coefficients of the matrix Anxn and z is a scalar function of aij, i.e.: ( ) njiazz ij ,,1, == then is the matrix nxn whose coefficients i,j areA z ∂ ∂ nji a z A z ijij ,,1,: = ∂ ∂ =      ∂ ∂ (see Gelb “Applied Optimal Estimation”, pg.23)
  • 98. 98 SOLO Matrices Trace of a Square Matrix The trace of a square matrix is defined as ( ) ( )T nn n i iinn AtraceaAtrace × = × == ∑1 : Proof: q.e.d. 5 ( ) ( ) ( ) A Atrace I A Atrace T n ∂ ∂ == ∂ ∂ 1 ( )    = ≠ == ∂ ∂ =      ∂ ∂ ∑= ji ji a aA Atrace ij n i ii ijij 1 0 1 δ 6 ( ) ( ) ( ) ( ) nmmnTTT RBRCCBBC A BCAtrace A ABCtrace ×× ∈∈== ∂ ∂ = ∂ ∂ 1 Proof: ( ) ( ) ( )[ ]ij T ji m p pijp ik jl n l m p n k klpklp ijij BCBCbcabc aA ABCtrace === ∂ ∂ =      ∂ ∂ ∑∑∑∑ = = = = = = 11 1 1 q.e.d. 7 If A, B, C ∈ Rnxn ,i.e. square matrices, then ( ) ( ) ( ) ( ) ( ) ( ) TTT CBBC A BCAtrace A CABtrace A ABCtrace == ∂ ∂ = ∂ ∂ = ∂ ∂ 11
  • 99. 99 SOLO Matrices Trace of a Square Matrix The trace of a square matrix is defined as ( ) ( )T nn n i iinn AtraceaAtrace × = × == ∑1 : Proof: q.e.d. 8 ( )( ) ( )( ) ( )( )( ) nmmn TTT RBRCBC A ABCtrace A BCAtrace A ABCtrace ×× ∈∈= ∂ ∂ = ∂ ∂ = ∂ ∂ 721 9 ( )( ) ( )( ) ( )( ) BC A BCAtrace A CABtrace A ABCtrace TTT 811 = ∂ ∂ = ∂ ∂ = ∂ ∂ If A, B, C ∈ Rnxn ,i.e. square matrices, then 10 ( ) T A A Atrace 2 2 = ∂ ∂ ( ) ( ) ( )ij T jiji n l n m mllm ijijij Aaaaa aa Atrace A Atrace 2 1 1 22 =+=      ∂ ∂ = ∂ ∂ =      ∂ ∂ ∑∑= = 11 ( ) ( ) 1− = ∂ ∂ kT k Ak A Atrace Proof: ( ) ( ) ( ) ( ) ( ) 1111 −−−− =+++= ∂         ⋅∂ = ∂ ∂ kT k kTkTkT k k AkAAA A AAAtrace A Atrace       q.e.d.
  • 100. 100 SOLO Matrices Trace of a Square Matrix The trace of a square matrix is defined as ( ) ( )T nn n i iinn AtraceaAtrace × = × == ∑1 : Proof: q.e.d. 12 ( ) T A A e A etrace = ∂ ∂ ( ) ( ) ( ) T A n k n k kT n kk kT n n k k n n k k n A eA k A k k k A trace Ak A trace AA etrace ===      ∂ ∂ =      ∂ ∂ = ∂ ∂ ∑ ∑∑∑ = = →∞ →− − →∞ = →∞ = →∞ 1 0 1 1 00 ! 1 lim ! lim ! lim ! lim 13 ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( ) TT TTTTTTTTT TTTTT TTT BACBAC A ACABtrace A BACAtrace A ABACtrace A CABAtrace A BACAtrace A CABAtrace A ACABtrace A BACAtrace A ABACtrace += ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ 111 21 11 ( ) ( ) ( ) ( ) ( ) ( ) TTTT TTT BACBACCABBAC A ABACtrace A ABACtrace A ABACtrace +=+== ∂ ∂ + ∂ ∂ = ∂ ∂ + 86 2 2 1 1 Proof: q.e.d. 14 ( ) ( )( ) A A AAtrace A AAtrace TT 2 13 = ∂ ∂ = ∂ ∂
  • 101. 101 SOLO Matrices Trace of a Square Matrix The trace of a square matrix is defined as ( ) ( )T nn n i iinn AtraceaAtrace × = × == ∑1 : Proof: 15 ( ) ( )TTTTT ABBAABBA A ABAtrace +=+= ∂ ∂ Table of Contents ( ) ( ) ( )ij TTTT n l jlli n k kijk n l n l n k klmklm ijijij ABBAbababaa aa ABAtrace A ABAtrace +=+=      ∂ ∂ = ∂ ∂ =      ∂ ∂ ∑∑∑∑∑ === = = 111 1 1 q.e.d. 16 ( ) TTTTTT CABBAC A ABACtrace += ∂ ∂ ( ) ( ) ( )ij TTTTTT n l n r lirljr n k n m mikmjk n l n r rljrli n k n m mikmjk n l n k n m n r rlmrkmlk ijijij CABBACcabbac abcbacabac aa ABACtrace A ABACtrace +=+= +=      ∂ ∂ = ∂ ∂ =      ∂ ∂ ∑∑∑∑ ∑∑∑∑∑∑∑∑ = == = = == == = = = 1 11 1 1 11 11 1 1 1 Proof: q.e.d.
  • 102. 102 SOLO References [1] Pease, “Methods of Matrix Algebra” ,Mathematics in Science and Engineering, Vol.16, Academic Press, 1965 Matrices [2] S. Hermelin, “Robustness and Sensitivity Design of Linear Time-Invariant Systems” PhD Thesis, Stanford University, 1986 Table of Contents
  • 103. January 6, 2015 103 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA Matrices
  • 104. 104 SOLO Derivatives of Matrices Matrices ljik ij kl a a δδ= ∂ ∂ For vector forms j i ijii i i y x y x y x y x y x y x ∂ ∂ =      ∂ ∂ ∂ ∂ =      ∂ ∂ ∂ ∂ =      ∂ ∂ ::: We have the following expressions: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )HH TT XX XX XXtraceX XXtraceXX XXXX YXYXYX YXYXYX XtraceXtrace YXYX XX constAifA ∂=∂ ∂=∂ ∂=∂ ∂=∂ ∂−=∂ ∂⊗+⊗∂=⊗∂ ∂⋅+⋅∂=⋅∂ ∂=∂ ∂+∂=+∂ =∂ ==∂ − − −−− 1 1 111 detln detdet 0 αα
  • 105. 105 SOLO Derivatives of Determinants Matrices ( ) ( )       ∂ ∂ = ∂ ∂ − x Y YtraceY x Y 1 det det ( ) ( )             ∂ ∂       ∂ ∂ −       ∂ ∂       ∂ ∂ +             ∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂ −− −− − x Y Y x Y Ytrace x Y Ytrace x Y Ytrace x x Y YtraceY x x Y 11 11 1 det det General Form
  • 106. 106 SOLO Derivatives of Determinants Matrices ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( ) 11 1 detdet det det det det det −− − == ∂ ∂ = ∂ ∂ = ∂ ∂ ∑ TT ij k jk ik T XBXAXBXA X BXA XX X X XX X X δ Linear Form Square Forms If X is Square and Invertible, then ( ) ( ) TT T XXAX X XAX − = ∂ ∂ det2 det If X is Not Square but A is Symmetric, then ( ) ( ) ( ) 1 det2 det − = ∂ ∂ XAXXAXAX X XAX TT T If X is Not Square and A is Not Symmetric, then ( ) ( ) ( ) ( )[ ]11 det det −− += ∂ ∂ XAXXAXAXXAXAX X XAX TTTT T
  • 107. 107 SOLO Derivatives of Determinants Matrices ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Tk k T T T T T XXk X X XX X X X X XX X X XX − − = ∂ ∂ == ∂ ∂ −= ∂ ∂ = ∂ ∂ det det 22 detln 2 detln 2 detln 1T1- † † Nonlinear Form
  • 108. 108 SOLO Derivatives of an Inverse Matrices 11 1 −− − ∂ ∂ −= ∂ ∂ Y x Y Y x Y From this it follows ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )T T T TTT T jlki ij kl AXAX X AXtrace XABX X BXAtrace XX X X XbaX X bXa XX X X 11 1 11 1 11 1 1 11 1 det det −− − −− − −− − −− − −− − ++−= ∂ +∂ −= ∂ ∂ −= ∂ ∂ −= ∂ ∂ −= ∂ ∂
  • 109. 109 SOLO Derivatives of Matrices, Vectors and Scalar Forms Matrices First Order ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ij nm mjin mn ij T ij mn njim mn ij ij ij T TTT T TT T T TT AJA X AX AJA X AX J X X aa X aXa X aXa ab X bXa ba X bXa a x xa x ax == ∂ ∂ == ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ δ δ n mJ mn ↑ ←                 = 000 010 000     
  • 110. 110 SOLO Derivatives of Matrices, Vectors and Scalar Forms Matrices Second Order ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) jlikkl ijijijT ij T ilkjkl T lj ij kl T TTT T TT TT kl kl klmn mnkl ij JXBJJBX X XBX XBBX X XBX bxBCDdxDCB x dxDCbxB bccbX X cXXb XXX X δδ δδ =+= ∂ ∂ += ∂ ∂ +++= ∂ ++∂ += ∂ ∂ = ∂ ∂ ∑∑ 2 n mJ mn ↑ ←                 = 000 010 000     
  • 111. 111 SOLO Derivatives of Matrices, Vectors and Scalar Forms Matrices Second Order (continue) ( ) ( ) ( ) ( ) ( )[ ] ( )( ) TTT TTT TT T T bcbXDDcbXDcbX X bcXDcbXD X cXDXb xBB x xBx ++=++ ∂ ∂ += ∂ ∂ += ∂ ∂ Assume W is symmetric ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) TT T T T TT ssAxWsAxWsAx A sAxWsAxWsAx x sxWsxWsx s sxWsxWsx x sAxWAsAxWsAx s −−=−− ∂ ∂ −=−− ∂ ∂ −−=−− ∂ ∂ −=−− ∂ ∂ −−=−− ∂ ∂ 2 2 2 2 2
  • 112. 112 SOLO Derivatives of Matrices, Vectors and Scalar Forms Matrices Higher Order and Nonlinear ( ) ( )∑ − = −− = ∂ ∂ 1 0 1 n r kl rnijr ij kl n XJX X X [ ] ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]∑ ∑ − = −−−− −− − = += ∂ ∂ = ∂ ∂ 1 0 11 1 1 0 n r TrnTnTrrTnTrnnTnT Trn n r TTrnT XbaXXXXbaXbXXa X XbaXbXa X

Editor's Notes

  1. http://en.wikipedia.org/wiki/Householder_transformation http://www-history.mcs.st-andrews.ac.uk/Biographies/Householder.html
  2. http://en.wikipedia.org/wiki/Moore-Penrose_inverse
  3. C.K. Chui, G. Chen, “Kalman Filtering with Real Time Applications”. Springer Verlag, 1987, pp. 2-3
  4. Petersen &amp; Pedersen, “Matrix Cookbook, http://matrixcookbook.com
  5. Petersen &amp; Pedersen, “Matrix Cookbook, http://matrixcookbook.com
  6. Petersen &amp; Pedersen, “Matrix Cookbook, http://matrixcookbook.com
  7. Petersen &amp; Pedersen, “Matrix Cookbook, http://matrixcookbook.com
  8. Petersen &amp; Pedersen, “Matrix Cookbook, http://matrixcookbook.com
  9. Petersen &amp; Pedersen, “Matrix Cookbook, http://matrixcookbook.com
  10. Petersen &amp; Pedersen, “Matrix Cookbook, http://matrixcookbook.com
  11. Petersen &amp; Pedersen, “Matrix Cookbook, http://matrixcookbook.com
  12. Petersen &amp; Pedersen, “Matrix Cookbook, http://matrixcookbook.com