SlideShare a Scribd company logo
1 of 208
1
Recursive
Bayesian Estimation
SOLO HERMELIN
Updated: 22.02.09
11.01.14
http://www.solohermelin.com
2
SOLO
Table of Content Recursive Bayesian Estimation
Review of Probability
Conditional Probability
Total Probability Theorem
Conditional Probability - Bayes Formula
Statistical Independent Events
Expected Value or Mathematical Expectation
Variance and Central Moments
Characteristic Function and Moment-Generating Function
Probability Distribution and Probability Density Functions (Examples)
Normal (Gaussian) Distribution
Existence Theorems 1 & 2
Monte Carlo Method
Estimation of the Mean and Variance of a Random Variable
Generating Discrete Random Variables
Existence Theorem 3
Markov Processes
Functions of one Random Variable
The Laws of Large Numbers
Central Limit Theorem
Problem Definition
Stochastic Processes
3
SOLO
Table of Content (continue -1)
Recursive Bayesian Estimation
Bayesian Estimation Introduction
Linear Gaussian Markov Systems
Closed-Form Solutions of Estimation
Kalman Filter
Extended Kalman Filter
General Bayesian Nonlinear Filters
Additive Gaussian Nonlinear Filter
Gauss – Hermite Quadrature Approximation
Unscented Kalman Filter
Monte Carlo Kalman Filter (MCKF)
Non-Additive Non-Gaussian Nonlinear Filter
Nonlinear Estimation Using Particle Filters
Importance Sampling (IS)
Sequential Importance Sampling (SIS)
Sequential Importance Resampling (SIR)
Monte Carlo Particle Filter (MCPF)
Bayesian Maximum Likelihood Estimate (Maximum Aposteriori – MAP Estimate)
4
SOLO
Table of Content (continue -2)
Recursive Bayesian Estimation
References
Nonlinear Filters based on the Fokker-Planck Equation
5
SOLO Recursive Bayesian Estimation
kx1−kx
kz1−kz
0x 1x 2x
1z 2z kZ :11:1 −kZ
( )11, −− kk wxf
( )kk vxh ,
( )00 ,wxf
( )11,vxh
( )11,wxf
( )22 ,vxh
Since this is a probabilistic problem, we start with a remainder of Probability Theory
A discrete nonlinear system is defined by
( )
( )kkk
kkk
vxkhz
wxkfx
,,
,,1 11
=
−= −− State vector dynamics
Measurements
kk vw ,1− State and Measurement Noise Vectors, respectively
Problem Definition:
Estimate the hidden States of a Non-linear Dynamic Stochastic System from
Noisy Measurements .
kx
kz
Table of Content
6
SOLO
Pr (A) is the probability of the event A if
S nAAAA ∪∪∪= 21
1A 2A nA
jiOAA ji ≠∀/=∩
( ) 0Pr ≥A(1)
(3) If jiOAAandAAAA jin ≠∀/=∩∪∪∪= 21
( ) 1Pr =S(2)
then ( ) ( ) ( ) ( )nAAAA PrPrPrPr 21 +++= 
Probability Axiomatic Definition
Probability Geometric Definition
Assume that the probability of an event in a geometric region A is defined as the
ratio between A surface to surface of S.
( ) ( )
( )SSurface
ASurface
A =Pr
( ) 0Pr ≥A(1)
( ) 1Pr =S(2)
(3) If jiOAAandAAAA jin ≠∀/=∩∪∪∪= 21
then ( ) ( ) ( ) ( )nAAAA PrPrPrPr 21 +++= 
S
A
Review of Probability
A more detailed explanation
of the subject is given in the
“Probability” Presentation
7
SOLO
From those definition we can prove the
following:( ) 0=/OP(1’)
Proof: OOSandOSS /=/∩/∪=
( )
( ) ( ) ( ) ( ) 0PrPrPrPr
3
=/⇒/+=⇒ OOSS
( ) ( )APAP −= 1(2’)
Proof: OAAandAAS /=∩∪= ( )
( ) ( )
( ) ( ) ( ) ( )AAAAS Pr1PrPrPr1Pr
32
−=⇒+==⇒
( ) 1Pr0 ≤≤ A(3’)
Proof: ( )
( )
( )
( )
( ) 1Pr0Pr1Pr
1'2
≤⇒≥−= AAA
( )
( )APr0
1
≤
( ) 0Pr ≥A(1) ( ) 1Pr =S(2) (3) If jiOAAandAAAA jin ≠∀/=∩∪∪∪= 21
then ( ) ( ) ( ) ( )n
AAAA PrPrPrPr 21
+++= 
( ) ( )AABAIf PrPr ≤⇒⊂(4’)
Proof: ( )
( )
( ) ( ) ( ) ( )BAAABB PrPr0PrPrPr
00
3
≤⇒≥+−=
≥≥

( ) ( ) OAABandAABB /=∩−∪−=
( ) ( ) ( ) ( )BABABA ∩−+=∪ PrPrPrPr(5’)
Proof: ( ) ( )
( ) ( ) ( ) ( ) OABBAandABBAB
OABAandABABA
/=−∩∩−∪∩=
/=−∩−∪=∪
( )
( )
( ) ( )
( )
( )
( ) ( )
( ) ( ) ( ) ( )BABABA
ABBAB
ABABA
∩−+=∪⇒




−+∩=
−+=∪
PrPrPrPr
PrPrPr
PrPrPr
3
3
Table of Content
Review of Probability
8
SOLO
Conditional Probability
S nAAAA ααα ∪∪∪= 21

1αA
jiOAA ji ≠∀/=∩
1αβA
mAAAB βββ ∪∪∪= 212αA
2αβA 1βA 2βA

Given two events A and B decomposed in elementary
events
jiOAAandAAAAA ji
n
i
in ≠∀/=∩=∪∪∪=
=
αααααα 
1
21
lkOAAandAAAAB lk
m
k
km ≠∀/=∩=∪∪∪=
=
ββββββ 
1
21
jiOAAandAAABA jir ≠∀/=∩∪∪∪=∩ αβαβαβαβαβ 21
( ) ( ) ( ) ( )n
AAAA ααα PrPrPrPr 21
+++=  ( ) ( ) ( ) ( )mAAAB βββ PrPrPrPr 21 +++= 
( ) ( ) ( ) ( ) nmrAAABA r ,PrPrPrPr 21 ≤+++=∩ βαβαβα 
We want to find the probability of A event under the condition that the event B
had occurred designed as P (A|B)
( )
( ) ( ) ( )
( ) ( ) ( )
( )
( )B
BA
AAA
AAA
BA
m
r
Pr
Pr
PrPrPr
PrPrPr
|Pr
21
21 ∩
=
+++
+++
=
βββ
βαβαβα


Review of Probability
9
SOLO
Conditional Probability S nAAAA ααα ∪∪∪= 21

1αA
jiOAA ji ≠∀/=∩
1αβA
mAAAB βββ ∪∪∪= 212αA
2αβA 1βA 2βA

If the events A and B are statistical independent, that the fact that B occurred will
not affect the probability of A to occur.
( ) ( )
( )B
BA
BA
Pr
Pr
|Pr
∩
= ( ) ( )
( )A
BA
AB
Pr
Pr
|Pr
∩
=
( ) ( )ABA Pr|Pr = ( ) ( ) ( ) ( ) ( ) ( ) ( )BAAABBBABA PrPrPr|PrPr|PrPr ⋅=⋅=⋅=∩
Definition:
n events Ai i = 1,2,…n are statistical independent if:
( ) nrAA
r
i
i
r
i
i ,,2PrPr
11
 =∀=





∏==
Table of Content
Review of Probability
10
SOLO
Conditional Probability - Bayes Formula
Using the relation:
( ) ( ) ( ) ( ) ( )llll AABBBABA ββββ Pr|PrPr|PrPr ⋅=⋅=∩
( ) ( ) ( ) klOBABABAB lk
m
k
k ,
1
∀/=∩∩∩∩=
=
βββ
( ) ( )∑
=
∩=
m
k
k
BAB
1
PrPr β
we obtain:
( ) ( ) ( )
( )
( ) ( )
( ) ( )∑=
⋅
⋅
=
⋅
= m
k
kk
llll
l
AAB
AAB
B
AAB
BA
1
Pr|Pr
Pr|Pr
Pr
Pr|Pr
|Pr
ββ
ββββ
β
Bayes Formula
Thomas Bayes
1702 - 1761
Table of Content
Review of Probability
11
SOLO
Total Probability Theorem
Table of Content
jiOAAandSAAA jin ≠∀/=∩=∪∪∪ 21If
we say that the set space S is decomposed in exhaustive and
incompatible (exclusive) sets.
The Total Probability Theorem states that for any event B,
its probability can be decomposed in terms of conditional
probability as follows:
( ) ( ) ( ) ( )∑∑ ==
==
n
i
i
n
i
i BPBABAB
11
|Pr,PrPr
Using the relation:
( ) ( ) ( ) ( ) ( )llll AABBBABA Pr|PrPr|PrPr ⋅=⋅=∩
( ) ( ) ( ) klOBABABAB lk
n
k
k ,
1
∀/=∩∩∩∩=
=

( ) ( )∑=
∩=
n
k
k BAB
1
PrPr
For any event B
we obtain:
Review of Probability
12
SOLO
Statistical Independent Events
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )∏∑∏∑∏∑
∑∑∑
=
−






≠≠
=






≠
=






=
=
−






≠≠






≠






==
−+−+−=






−+−+−=





n
i
i
n
n
kji
kji i
i
n
ji
ji i
i
n
i
i
tIndependen
lStatisticaA
n
i
i
n
n
kji
kji
kji
n
ji
ji
ji
n
i
i
n
i
i
AAAA
AAAAAAAA
i
1
1
3
,.
3
1
2
.
2
1
1
1
1
1
3
,.
2
.
1
11
Pr1PrPrPr
Pr1PrPrPrPr

 
From Theorem of Addition
Therefore
( )[ ]∏==
−=





−
n
i
i
tIndependen
lStatisticaA
n
i
i AA
i
11
Pr1Pr1  ( )[ ]∏==
−−=




 n
i
i
tIndependen
lStatisticaA
n
i
i AA
i
11
Pr11Pr 
Since OAASAA
n
i
i
n
i
i
n
i
i
n
i
i /=














=














====
 
1111
&








=





−
==

n
i
i
n
i
i AA
11
PrPr1
( )∏==
=




 n
i
i
tIndependen
lStatisticaA
n
i
i AA
i
11
PrPr 
If the n events Ai i = 1,2,…n are statistical independent
than are also statistical independentiA
( )∏=
=
n
i
iA
1
Pr





=
=

n
i
i
MorganDe
A
1
Pr ( )[ ]∏=
−=
n
i
i
tIndependen
lStatisticaA
A
i
1
Pr1
( ) nrAA
r
i
i
r
i
i ,,2PrPr
11
 =∀=





∏==
Table of Content
Review of Probability
13
SOLO Review of Probability
Expected Value or Mathematical Expectation
Given a Probability Density Function p (x) we define the Expected Value
For a Continuous Random Variable: ( ) ( )∫
+∞
∞−
= dxxpxxE X:
For a Discrete Random Variable: ( ) ( )∑=
k
kXk xpxxE :
For a general function g (x) of the
Random Variable x: ( )[ ] ( ) ( )∫
+∞
∞−
= dxxpxgxgE X:
( )xp
x
0 ∞+∞−
0.1
( )xE
( )
( )
( )∫
∫
∞+
∞−
+∞
∞−
=
dxxp
dxxpx
xE
X
X
:
The Expected Value is the center of
surface enclosed between the
Probability Density Function and x
axis.
Table of Content
14
SOLO Review of Probability
Variance
Given a Probability Density Functions p (x) we define the Variance
( ) ( )[ ]{ } ( ) ( )[ ] ( ) ( )22222
2: xExExExExxExExExVar −=+−=−=
Central Moment
( ) { }k
k xEx =:'µ
Given a Probability Density Functions p (x) we define the Central Moment
of order k about the origin
( ) ( )[ ]{ } ( ) ( )∑=
−−
−





=−=
k
j
jk
j
jkk
k xE
j
k
xExEx
0
'1: µµ
Given a Probability Density Functions p (x) we define the Central Moment
of order k about the Mean E (x)
Table of Content
15
SOLO Review of Probability
Moments
Normal Distribution ( ) ( ) ( )[ ]
σπ
σ
σ
2
2/exp
;
22
x
xpX
−
=
[ ] ( )


 −⋅
=
oddnfor
evennforn
xE
n
n
0
131 σ
[ ]
( )





+=
=−⋅
= +
12!2
2
2131
12
knfork
knforn
xE kk
n
n
σ
π
σ
Proof:
Start from: and differentiate k time with respect to a( ) 0exp 2
>=−∫
∞
∞−
a
a
dxxa
π
Substitute a = 1/(2σ2
) to obtain E [xn
]
( ) ( ) 0
2
1231
exp 12
22
>
−⋅
=− +
∞
∞−
∫ a
a
k
dxxax kk
k π
[ ] ( ) ( )[ ] ( ) ( )[ ]
( ) ( ) 12
!
0
122/
0
222221212
!2
2
exp
2
22
2/exp
2
2
2/exp
2
1
2
+
∞+
=
∞∞
∞−
++
=−=
−=−=
∫
∫∫
kk
k
k
k
xy
kkk
kdyyy
xdxxxdxxxxE
σ
πσ
σ
π
σ
σπ
σ
σπ
σ
  
Now let compute:
[ ] [ ]( )2244
33 xExE == σ
Chi-square
16
SOLO Review of Probability
Functions of one Random Variable
Let y = g (x) a given function of the random variable x defined o the domain Ω, with
probability distribution pX (x). We want to find pY (y).
Fundamental Theorem
Assume x1, x2, …, xn all the solutions of the equation
( ) ( ) ( )n
xgxgxgy ==== 21
( ) ( )
( )
( )
( )
( )
( )n
nXXX
Y
xg
xp
xg
xp
xg
xp
yp
''' 2
2
1
1
+++= 
( ) ( )
xd
xgd
xg =:'
Proof
( ) ( ) ( ) ( ) ( )
( )∑∑∑ ===
==±≤≤=+≤≤=
n
i i
iX
n
i
iiX
n
i
iiiY yd
xg
xp
xdxpxdxxxydyYyydyp
111 '
PrPr:
q.e.d.
17
SOLO Review of Probability
Functions of one Random Variable (continue – 1)
Example 1
bxay += ( ) 




 −
=
a
by
p
a
yp XY
1
Example 2
x
a
y = ( ) 





=
y
a
p
y
a
yp XY 2
Example 3
2
xay = ( ) ( )yU
a
y
p
a
y
p
ya
yp XXY
















−+








=
2
1
Example 4
xy = ( ) ( ) ( )[ ] ( )yUypypyp XXY −+=
Table of Content
18
SOLO Review of Probability
Characteristic Function and Moment-Generating Function
Given a Probability Density Functions pX (x) we define the Characteristic Function or
Moment Generating Function
( ) ( )[ ]
( ) ( ) ( ) ( )
( ) ( )




=
==Φ
∑
∫∫
+∞
∞−
+∞
∞−
x
X
XX
X
discretexxpxj
continuousxxPdxjdxxpxj
xjE
ω
ωω
ωω
exp
expexp
exp:
This is in fact the complex conjugate of the Fourier Transfer of the Probability Density
Function. This function is always defined since the sufficient condition of the existence of a
Fourier Transfer :
Given the Characteristic Function we can find the Probability Density
Functions pX (x) using the Inverse Fourier Transfer:
( )
( )
( ) ∞<== ∫∫
+∞
∞−
≥+∞
∞−
1
0
dxxpdxxp X
xp
X
( ) ( ) ( )∫
+∞
∞−
Φ−= ωωω
π
dxjxp XX exp
2
1
is always fulfilled.
19
SOLO Review of Probability
Properties of Moment-Generating Function
( ) ( ) ( )∫
+∞
∞−
=
Φ
dxxpxxjj
d
d
X
X
ω
ω
ω
exp
( ) ( ) 10
==Φ ∫
+∞
∞−
=
dxxpXX ω
ω
( ) ( ) ( )xEjdxxpxj
d
d
X
X
==
Φ
∫
+∞
∞−=0ω
ω
ω
( ) ( ) ( ) ( )∫
+∞
∞−
=
Φ
dxxpxxjj
d
d
X
X 22
2
2
exp ω
ω
ω ( ) ( ) ( ) ( ) ( )2222
0
2
2
xEjdxxpxj
d
d
X
X
==
Φ
∫
+∞
∞−=ω
ω
ω
( ) ( ) ( ) ( )∫
+∞
∞−
=
Φ
dxxpxxjj
d
d
X
nn
n
X
n
ω
ω
ω
exp
( ) ( ) ( ) ( ) ( )nn
X
nn
n
X
n
xEjdxxpxj
d
d
==
Φ
∫
+∞
∞−=0ω
ω
ω
 
( ) ( ) ( )∫
+∞
∞−
=Φ dxxpxj XX ωω exp
This is the reason why ΦX (ω) is also called the Moment-Generation Function.
20
SOLO Review of Probability
Properties of Moment-Generating Function
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 

+++++=
+
Φ
++
Φ
+
Φ
+Φ=Φ
===
=
n
n
n
n
X
n
XX
XX
xE
n
j
xE
j
xE
j
d
d
nd
d
d
d
!!2!1
1
!
1
!2
1
2
2
0
2
0
2
2
0
0
ωωω
ω
ω
ω
ω
ω
ω
ω
ω
ω
ωω
ωωω
ω
Develop ΦX (ω) in a Taylor series
( ) ( ) ( )∫
+∞
∞−
=Φ dxxpxj XX ωω exp
21
SOLO Review of Probability
Probability Distribution and Probability Density Functions (Examples)
(2) Poisson’s Distribution ( ) ( )0
0
exp
!
, k
k
k
nkp
k
−≈
(1) Binomial (Bernoulli) ( )
( )
( ) ( ) knkknk
pp
k
n
pp
knk
n
nkp
−−
−





=−
−
= 11
!!
!
,
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 k
( )nkP ,
(3) Normal (Gaussian)
( ) ( ) ( )[ ]
σπ
σµ
σµ
2
2/exp
,;
22
−−
=
x
xp
(4) Laplacian Distribution ( )







 −
−=
b
x
b
bxp
µ
µ exp
2
1
,;
22
SOLO Review of Probability
Probability Distribution and Probability Density Functions (Examples)
(5) Gama Distribution ( )
( )
( )





<
≥
Γ
−
=
−
00
0
/exp
,;
1
x
xx
k
x
kxp
k
k
θ
θ
θ
(6) Beta Distribution
( ) ( )
( )
( )
( ) ( )
( ) 11
1
0
11
11
1
1
1
,;
−−
−−
−−
−
ΓΓ
+Γ
=
−
−
=
∫
βα
βα
βα
βα
βα
βα xx
duuu
xx
xp
(7) Cauchy Distribution ( )
( ) 





+−
= 22
0
0
1
,;
γ
γ
π
γ
xx
xxp
23
SOLO Review of Probability
Probability Distribution and Probability Density Functions (Examples)
SOLO
(8) Exponential Distribution
( )
( )



<
≥−
=
00
0exp
;
x
xx
xp
λλ
λ
(9) Chi-square Distribution
( )
( )
( )
( )





<
≥−
Γ=
−
00
02/exp
2/
2/1
;
12/
2/
x
xxx
kkxp
k
k
Γ is the gamma function ( ) ( )∫
∞
−
−=Γ
0
1
exp dttta a
(10) Student’s t-Distribution
( ) ( )[ ]
( ) ( )( ) 2/12
/12/
2/1
; +
+Γ
+Γ
= ν
ννπν
ν
ν
x
xp
24
SOLO Review of Probability
Probability Distribution and Probability Density Functions (Examples)
SOLO
(11) Uniform Distribution (Continuous)
( )





>>
≤≤
−=
bxxa
bxa
abbaxp
0
1
,;
(12) Rayleigh Distribution
( ) 2
2
2
2
exp
;
σ
σ
σ






−
=
x
x
xp
(13) Rice Distribution
( ) 










 +
−
= 202
2
22
2
exp
,;
σσ
σ
σ
vx
I
vx
x
vxp
25
SOLO Review of Probability
Probability Distribution and Probability Density Functions (Examples)
(14) Weibull Distribution
SOLO
( )





<
>≥













 −
−




 −
=
−
00
0,,exp
,,;
1
x
x
xx
xp
αγµ
α
µ
α
µ
α
γ
αµγ
γγ
Table of Content
26
SOLO Review of Probability
Normal (Gaussian) Distribution
Karl Friederich Gauss
1777-1855
( )
( )
( )σµ
σπ
σ
µ
σµ ,;:
2
2
exp
,;
2
2
x
x
xp N=





 −
−
=
( ) ( )
∫
∞−





 −
−=
x
du
u
xP 2
2
2
exp
2
1
,;
σ
µ
σπ
σµ
( ) µ=xE
( ) σ=xVar
( ) ( )[ ]
( ) ( )






−=





 −
−=
=Φ
∫
∞+
∞−
2
exp
exp
2
exp
2
1
exp
22
2
2
σω
µω
ω
σ
µ
σπ
ωω
j
duuj
u
xjE
Probability Density Functions
Cumulative Distribution Function
Mean Value
Variance
Moment Generating Function
27
SOLO Review of Probability
Moments
Normal Distribution ( ) ( ) ( )[ ] ( )σ
σπ
σ
σ ,0;:
2
2/exp
,0;
22
x
x
xpX N=
−
=
[ ] ( )


 −⋅
=
oddnfor
evennforn
xE
n
n
0
131 σ
[ ]
( )





+=
=−⋅
= +
12!2
2
2131
12
knfork
knforn
xE kk
n
n
σ
π
σ
Proof:
Start from: and differentiate k time with respect to a( ) 0exp 2
>=−∫
∞
∞−
a
a
dxxa
π
Substitute a = 1/(2σ2
) to obtain E [xn
]
( ) ( ) 0
2
1231
exp 12
22
>
−⋅
=− +
∞
∞−
∫ a
a
k
dxxax kk
k π
[ ] ( ) ( )[ ] ( ) ( )[ ]
( ) ( ) 12
!
0
122/
0
222221212
!2
2
exp
2
22
2/exp
2
2
2/exp
2
1
2
+
∞+
=
∞∞
∞−
++
=−=
−=−=
∫
∫∫
kk
k
k
k
xy
kkk
kdyyy
xdxxxdxxxxE
σ
πσ
σ
π
σ
σπ
σ
σπ
σ
  
Now let compute:
[ ] [ ]( )2244
33 xExE == σ
Chi-square
28
SOLO Review of Probability
Normal (Gaussian) Distribution (continue – 1)
Karl Friederich Gauss
1777-1855
( ) ( ) ( ) ( )PxxxxPxxPPxxp
T
,;:
2
1
exp2,; 12/1 
N=



−−−= −−
π
A Vector – Valued Gaussian Random Variable has the
Probability Density Functions
where
{ }xEx

= Mean Value
( )( ){ }T
xxxxEP

−−= Covariance Matrix
If P is diagonal P = diag [σ1
2
σ2
2
… σk
2
] then the components of the random vector
are uncorrelated, and
x

( )
( ) ( ) ( ) ( )
∏=
−
−





 −
−
=





 −
−




 −
−




 −
−
=






























−
−
−




























−
−
−
−=
k
i i
i
ii
k
k
kk
kk
k
T
kk
xxxxxxxx
xx
xx
xx
xx
xx
xx
PPxxp
1
2
2
2
2
2
2
2
2
22
1
2
1
2
11
22
11
1
2
2
2
2
1
22
11
2/1
2
2
exp
2
2
exp
2
2
exp
2
2
exp
0
0
2
1
exp2,;
σπ
σ
σπ
σ
σπ
σ
σπ
σ
σ
σ
σ
π



therefore the
components of the
random vector are
also independent
29
SOLO Review of Probability
The Laws of Large Numbers
The Law of Large Numbers is a fundamental concept in statistics and probability that
describes how the average of randomly selected sample of a large population is likely
to be close to the average of the whole population. There are two laws of large numbers
the Weak Law and the Strong Law.
The Weak Law of Large Numbers
The Weak Law of Large Numbers states that if X1,X2,…,Xn,… is an infinite sequence
of random variables that have the same expected value μ and variance σ2
, and are
uncorrelated (i.e., the correlation between any two of them is zero), then
( ) nXXX nn /: 1 ++= 
converges in probability (a weak convergence sense) to μ . We have
{ } ∞→=<− nforXn 1Pr εµ
converges in
probability
The Strong Law of Large Numbers
The Strong Law of Large Numbers states that if X1,X2,…,Xn,… is an infinite sequence
of random variables that have the same expected value μ and variance σ2
, and are
uncorrelated (i.e., the correlation between any two of them is zero), and E (|Xi|) < ∞
then ,i.e. converges almost surely to μ.{ } ∞→== nforXn 1Pr µ
converges
almost surely
3030
SOLO Review of Probability
The Law of Large Numbers
Differences between the Weak Law and the Strong Law
The Weak Law states that, for a specified large n, (X1 + ... + Xn) / n is likely to be near μ.
Thus, it leaves open the possibility that | (X1 + ... + Xn) / n − μ | > ε happens an infinite
number of times, although it happens at infrequent intervals.
The Strong Law shows that this almost surely will not occur.
In particular, it implies that with probability 1, we have for any positive value ε, the
inequality | (X1 + ... + Xn) / n − μ | > ε is true only a finite number of times (as opposed to
an infinite, but infrequent, number of times).
Almost sure convergence is also called strong convergence of random variables.
This version is called the strong law because random variables which converge
strongly (almost surely) are guaranteed to converge weakly (in probability). The
strong law implies the weak law.
3131
SOLO Review of Probability
The Law of Large Numbers
Proof of the Weak Law of Large Numbers
( ) iXE i ∀= µ ( ) iXVar i ∀= 2
σ ( )( )[ ] jiXXE ji ≠∀=−− 0µµ
( ) ( ) ( )[ ] µµ ==++= nnnXEXEXE nn //1 
( ) ( )[ ]{ } ( ) ( )
( )( )[ ] ( )[ ] ( )[ ]
nn
n
n
XEXE
n
XX
E
n
XX
EXEXEXVar
n
jiXXE
nn
nnn
ji 2
2
2
2
22
1
0
2
1
2
12
σσµµ
µµ
µ
µµ
==
−++−
=













 −++−
=














−
++
=−=
≠∀=−−


Given
we have:
Using Chebyshev’s inequality on we obtain:nX ( ) 2
2
/
Pr
ε
σ
εµ
n
Xn ≤≥−
Using this equation we obtain:
( ) ( ) ( ) n
XXX nnn 2
2
1Pr1Pr1Pr
ε
σ
εµεµεµ −≥≥−−≥>−−=≤−
As n approaches infinity, the expression approaches 1.
Chebyshev’s
inequality
q.e.d.
Monte Carlo
Integration
Monte Carlo
Integration
Table of Content
3232
SOLO Review of Probability
Central Limit Theorem
The first version of this theorem was first postulated by the
French-born English mathematician Abraham de Moivre in
1733, using the normal distribution to approximate the
distribution of the number of heads resulting from many tosses
of a fair coin. This was published in1756 in “The Doctrine
of Chance” 3th Ed.
Pierre-Simon Laplace
(1749-1827)
Abraham de Moivre
(1667-1754)
This finding was forgotten until 1812 when the French
mathematician Pierre-Simon Laplace recovered it in his work
“Théory Analytique des Probabilités”, in which he approximate
the binomial distribution with the normal distribution.
This is known as the De Moivre – Laplace Theorem.
De Moivre – Laplace
Theorem
The present form of the Central Limit Theorem was given by the
Russian mathematician Alexandr Lyapunov in 1901.
Alexandr Mikhailovich
Lyapunov
(1857-1918)
3333
SOLO Review of Probability
Central Limit Theorem (continue – 1)
Let X1, X2, …, Xm be a sequence of independent random variables with the same
probability distribution function pX (x). Define the statistical mean:
m
XXX
X m
m
+++
=
21
( ) ( ) ( ) ( ) µ=
+++
=
m
XEXEXE
XE m
m
21
( ) ( )[ ]{ } ( ) ( ) ( )
mm
m
m
XXX
EXEXEXVar m
mmmXm
2
2
22
21
22 σσµµµ
σ ==













 −++−+−
=−==

Define also the new random variable
( ) ( ) ( ) ( )
m
XXXXEX
Y m
X
mm
m
σ
µµµ
σ
−++−+−
=
−
=
21
:
We have:
The probability distribution of Y tends to become gaussian (normal) as m
tends to infinity, regardless of the probability distribution of the random
variable, as long as the mean μ and the variance σ2
are finite.
3434
SOLO Review of Probability
Central Limit Theorem (continue – 2)
( ) ( ) ( ) ( )
m
XXXXEX
Y m
X
mm
m
σ
µµµ
σ
−++−+−
=
−
=
21
:
Proof
The Characteristic Function
( ) ( )[ ] ( ) ( ) ( )
( ) ( )
( )
m
X
m
i
m
i
i
m
Y
m
X
m
j
E
m
X
jE
m
XXX
jEYjE
i














Φ=



















 −
=













 −
=













 −++−+−
==Φ
−
=
∏
ω
σ
µω
σ
µ
ω
σ
µµµ
ωωω
σ
µexpexp
expexp
1
21 
( )
( ) ( ) ( ) ( ) ( ) ( )
0/lim
2
1
!3
/
!2
/
!1
/
1
2222
33
1
22
0
=





Ο/





Ο/+−=
+













 −
+













 −
+




 −
+=





Φ
∞→
−
mmmm
X
E
mjX
E
mjX
E
mj
m
m
iii
Xi
ωωωω
σ
µω
σ
µω
σ
µωω
σ
µ 
  
Develop in a Taylor series( ) 





Φ −
miX
ω
σ
µ
35
SOLO Review of Probability
Central Limit Theorem (continue – 3)
Proof (continue – 1)
The Characteristic Function ( ) ( )
m
XY
m
E i














Φ=Φ −
ω
ω
σ
µ
( ) 0/lim
2
1
2222
=





Ο/





Ο/+−=





Φ
∞→
−
mmmmm m
Xi
ωωωωω
σ
µ
( ) ( )2/exp
2
1 2
22
ω
ωω
ω −→











Ο/+−=Φ
∞→m
m
Y
mm
Therefore
( ) ( ) ( ) ( ) ( )2/exp
2
1
2/exp
2
1
exp
2
1 22
ydyjdyjyp
m
YY −=−−→Φ−= ∫∫
+∞
∞−
∞→+∞
∞− π
ωωω
π
ωωω
π
The probability distribution of Y tends to become gaussian (normal) as m tends to infinity
(Convergence in Distribution).
Characteristic Function
of Normal Distribution
Convergence
Concepts
Monte Carlo
Integration
Table of Content
36
SOLO Review of Probability
Central Limit Theorem (continue – 2)
( ) ( ) ( ) ( )
m
XXXXEX
Y m
X
mm
m
σ
µµµ
σ
−++−+−
=
−
=
21
:
Proof
The Characteristic Function
( ) ( )[ ] ( ) ( ) ( )
( ) ( )
( )
m
X
m
i
m
i
i
m
Y
m
X
m
j
E
m
X
jE
m
XXX
jEYjE
i














Φ=



















 −
=













 −
=













 −++−+−
==Φ
−
=
∏
ω
σ
µω
σ
µ
ω
σ
µµµ
ωωω
σ
µexpexp
expexp
1
21 
( )
( ) ( ) ( ) ( ) ( ) ( )
0/lim
2
1
!3
/
!2
/
!1
/
1
2222
33
1
22
0
=





Ο/





Ο/+−=
+













 −
+













 −
+




 −
+=





Φ
∞→
−
mmmm
X
E
mjX
E
mjX
E
mj
m
m
iii
Xi
ωωωω
σ
µω
σ
µω
σ
µωω
σ
µ 
  
Develop in a Taylor series( ) 





Φ −
miX
ω
σ
µ
37
SOLO Review of Probability
Central Limit Theorem (continue – 3)
Proof (continue – 1)
The Characteristic Function ( ) ( )
m
XY
m
E i














Φ=Φ −
ω
ω
σ
µ
( ) 0/lim
2
1
2222
=





Ο/





Ο/+−=





Φ
∞→
−
mmmmm m
Xi
ωωωωω
σ
µ
( ) ( )2/exp
2
1 2
22
ω
ωω
ω −→











Ο/+−=Φ
∞→m
m
Y
mm
Therefore
( ) ( ) ( ) ( ) ( )2/exp
2
1
2/exp
2
1
exp
2
1 22
ydyjdyjyp
m
YY −=−−→Φ−= ∫∫
+∞
∞−
∞→+∞
∞− π
ωωω
π
ωωω
π
The probability distribution of Y tends to become gaussian (normal) as m tends to infinity
(Convergence in Distribution).
Characteristic Function
of Normal Distribution
Convergence
Concepts
Table of Content
38
SOLO Review of Probability
Existence Theorems
Existence Theorem 1
Given a function G (x) such that
( ) ( ) ( ) 1lim,1,0 ==∞+=∞−
∞→
xGGG
x
( ) ( ) 2121 0 xxifxGxG <=≤ ( G (x) is monotonic non-decreasing)
( ) ( ) ( )xGxGxG n
xx
xx
n
n
==
≥
→
+ lim
We can find an experiment X and a random variable x, defined on X, such that
its distribution function P (x) equals the given function G (x).
Proof of Existence Theorem 1
Assume that the outcome of the experiment X is any real number -∞ <x < +∞.
We consider as events all intervals, the intersection or union of intervals on the
real axis.
5x
1x 2x 3x 4x 6x 7x 8x
∞− ∞+
To specify the probability of those events we define P (x)=Prob { x ≤ x1}= G (x1).
From our definition of G (x) it follows that P (x) is a distribution function.
Existence Theorem 2 Existence Theorem 3
39
SOLO Review of Probability
Existence Theorems
Existence Theorem 2
If a function F (x,y) is such that
( ) ( ) ( )
( ) ( ) ( ) ( ) 0,,,,
1,,0,,
11122122 ≥+−−
=+∞∞+=−∞=∞−
yxFyxFyxFyxF
FxFyF
for every x1 < x2, y1 < y2, then two random variables x and y can be found such that
F (x,y) is their joint distribution function.
Proof of Existence Theorem 2
Assume that the outcome of the experiment X is any real number -∞ <x < +∞.
Assume that the outcome of the experiment Y is any real number -∞ <y < +∞.
We consider as events all intervals, the intersection or union of intervals on the
real axes x and y.
To specify the probability of those events we define P (x,y)=Prob { x ≤ x1, y ≤ y1, }= F (x1,y1).
From our definition of F (x,y) it follows that P (x,y) is a joint distribution function.
The proof is similar to that in the Existence Theorem 1
40
SOLO Review of Probability
Monte Carlo Method
Monte Carlo methods are a class of computational algorithms that
rely on repeated random sampling to compute their results. Monte
Carlo methods are often used when simulating physical and
mathematical systems. Because of their reliance on repeated
computation and random or pseudo-random numbers, Monte Carlo
methods are most suited to calculation by a computer. Monte Carlo
methods tend to be used when it is infeasible or impossible to
compute an exact result with a deterministic algorithm.
The term Monte Carlo method was coined in the 1940s by physicists Stanislaw Ulam,
Enrico Fermi, John von Neumann, and Nicholas Metropolis, working on nuclear
weapon projects in the Los Alamos National Laboratory (reference to the Monte Carlo
Casino in Monaco where Ulam's uncle would borrow money to gamble)
Stanislaw Ulam
1909 - 1984
Enrico - Fermi
1901 - 1954
John von Neumann
1903 - 1957
Monte Carlo Casino
Nicholas Constantine Metropolis
(1915 –1999)
41
SOLO Review of Probability
Monte Carlo Approximation
Monte Carlo runs, generate a set of random samples that approximate the distribution p (x).
So, with P samples, expectations with respect to the filtering distribution are approximated by
( ) ( ) ( )
( )∑∫ =
≈
P
L
L
xf
P
dxxpxf
1
1
and , in the usual way for Monte Carlo, can give all the moments etc. of the distribution
up to some degree of approximation.
{ } ( ) ( )
∑∫ =
≈==
P
L
L
x
P
dxxpxxE
1
1
1
µ
( ){ } ( ) ( ) ( )
( )∑∫ =
−≈−=−=
P
L
nLnn
n x
P
dxxpxxE
1
111
1
µµµµ

Table of Content
x(L)
are generated (draw) samples from distribution p (x)
( )
( )xpx L
~
42
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (Unknown Statistics)
{ } { } jimxExE ji ,∀==
Define
Estimation of the
Population mean
∑=
=
k
i
ik x
k
m
1
1
:ˆ
A random variable, x, may take on any values in the range - ∞ to + ∞.
Based on a sample of k values, xi, i = 1,2,…,k, we wish to compute the sample mean, ,
and sample variance, , as estimates of the population mean, m, and variance, σ2
.
2
ˆkσ
kmˆ
( )
{ }
( ) ( ) ( )[ ] ( ) ( )[ ]
2
1
2
1
222
2
22222
1 11
2
1
2
2
11
2
1
2
11
1
1
1
1
1
21
11
2
1
ˆˆ2
1
ˆ
1
σσ
σσσ
k
k
kk
mkmkk
k
mmk
k
m
k
xx
k
Ex
k
xExE
k
mxmxE
k
mx
k
E
k
i
k
i
k
i
k
l
l
k
j
j
k
j
jii
k
k
i
ik
k
i
i
k
i
ki
−
=





−=






++−+++−−+=














+






−=






+−=






−
∑
∑
∑ ∑∑∑
∑∑∑
=
=
= ===
===
{ } { } jimxExE ji ,2222
∀+== σ
{ } { } mxE
k
mE
k
i
ik == ∑=1
1
ˆ
{ } { } { } jimxExExxE ji
tindependenxx
ji
ji
,2
,
∀==
Compute
Biased
Unbiased
Monte Carlo simulations assume independent and identical distributed (i.i.d.) samples.
43
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (continue - 1)
{ } { } jimxExE ji ,∀==
Define
Estimation of the
Population mean
∑=
=
k
i
ik x
k
m
1
1
:ˆ
A random variable, x, may take on any values in the range - ∞ to + ∞.
Based on a sample of k values, xi, i = 1,2,…,k, we wish to compute the sample mean, ,
and sample variance, , as estimates of the population mean, m, and variance, σ2
.
2
ˆkσ
kmˆ
( ) 2
1
2 1
ˆ
1
σ
k
k
mx
k
E
k
i
ki
−
=






−∑=
{ } { } jimxExE ji ,2222
∀+== σ
{ } { } mxE
k
mE
k
i
ik == ∑=1
1
ˆ
{ } { } { } jimxExExxE ji
tindependenxx
ji
ji
,2
,
∀==
Biased
Unbiased
Therefore, the unbiased estimation of the sample variance of the population is defined as:
( )∑=
−
−
=
k
i
kik mx
k 1
22
ˆ
1
1
:ˆσ since { } ( ) 2
1
22
ˆ
1
1
:ˆ σσ =






−
−
= ∑=
k
i
kik mx
k
EE
Unbiased
Monte Carlo simulations assume independent and identical distributed (i.i.d.) samples.
44
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (continue - 2)
A random variable, x, may take on any values in the range - ∞ to + ∞.
Based on a sample of k values, xi, i = 1,2,…,k, we wish to compute the sample mean, ,
and sample variance, , as estimates of the population mean, m, and variance, σ2
.
2
ˆkσ
kmˆ
{ } { } mxE
k
mE
k
i
ik == ∑=1
1
ˆ
{ } ( ) 2
1
22
ˆ
1
1
:ˆ σσ =






−
−
= ∑=
k
i
kik mx
k
EE
Monte Carlo simulations assume independent and identical distributed (i.i.d.) samples.
45
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (continue - 3)
{ } { } mxE
k
mE
k
i
ik == ∑=1
1
ˆ { } ( ) 2
1
22
ˆ
1
1
:ˆ σσ =






−
−
= ∑=
k
i
kik mx
k
EEWe found:
Let Compute:
( ){ } ( )
( ){ } ( ) ( ){ }
( ){ } ( ){ } ( ){ }
k
mxEmxEmxE
k
mxmxEmxE
k
mx
k
Emx
k
EmmE
k
i
k
ij
j
ji
k
i
i
k
i
k
ij
j
ji
k
i
i
k
i
i
k
i
ikmk
2
1 1
00
1
2
2
1 11
2
2
2
1
2
1
22
ˆ
2
1
1
11
ˆ:
σ
σ
σ
=










−−+−=










−−+−=














−=














−=−=
∑ ∑∑
∑∑∑
∑∑
=
≠
==
=
≠
==
==

( ){ } k
mmE kmk
2
22
ˆ ˆ:
σ
σ =−=
46
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (continue - 4)
Let Compute:
( ){ } ( ) ( )
( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )














−−
−
+−
−
−
+−
−
=














−−+−−+−
−
=














−−+−
−
=














−−
−
=−=
∑∑
∑
∑∑
==
=
==
2
22
11
2
2
2
1
22
2
2
1
2
2
2
1
22222
ˆ
ˆ
11
ˆ2
1
1
ˆˆ2
1
1
ˆ
1
1
ˆ
1
1
ˆ:2
σ
σ
σσσσσσ
k
k
i
i
k
k
i
i
k
i
kkii
k
i
ki
k
i
kik
mm
k
k
mx
k
mm
mx
k
E
mmmmmxmx
k
E
mmmx
k
Emx
k
EE
k
( )
( ){ } ( ){ } ( ){ } ( ){ }
( )
( ){ } ( )
( ){ }
( ){ }
( )
( ){ } ( ){ }
( )
( ){ } ( )
( ){ }
( ){ }
( )
( ){ } ( ){ }
( )
( ){ }
( )
( ){ }




    
  

  
k
k
k
i
i
k
k
i
i
k
k
k
i
i
k
k
i
i
k
k
k
i
i
k
k
k
k
i
i
k
k
k
i
k
ij
j
ji
k
k
i
i
mmE
k
k
mxE
k
mmE
mxE
k
mmEk
mxE
k
mxE
k
mmEk
mxE
k
mmE
mmE
k
k
mxE
k
mmE
mxEmxEmxE
kk
/
2
2
1
0
2
0
1
0
2
3
1
2
2
1
2
2
/
2
1
3
2
0
44
2
2
1
2
2
/
2
1 1
22
1
4
2
2
ˆ
2
222
22
22
4
2
ˆ
1
2
1
ˆ4
1
ˆ4
1
2
1
ˆ2
1
ˆ4
ˆ
11
ˆ4
1
1
σ
σσσ
σσ
σσ
µ
σ
σσ
σ
σσ
−
−
−−
−
−
−−
−
−
+
−
−
−−
−
−
+−
−
−
+
+−
−
+−
−
−
+












−−+−
−
≈
∑∑
∑∑∑
∑∑ ∑∑
==
===
==
≠
==
Since (xi – m), (xj - m) and are all independent for i ≠ j:( )kmm ˆ−
47
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (continue - 4)
Since (xi – m), (xj - m) and are all independent for i ≠ j:( )kmm ˆ−
( )
( )
( ) ( ) ( )
( ){ }
( ) ( ) ( ) ( ) ( ) ( )
( ){ }4
2
2
4
22
4
44
2
4
44
2
2
2
4
2
4
2
42
ˆ
ˆ
11
7
11
2
1
2
1
2
ˆ
11
4
1
1
1
2
k
k
mmE
k
k
k
k
k
k
kk
k
k
k
mmE
k
k
kk
kk
k
k
k
−
−
+
−
+−
+
−
=
−
−
−
−
−
+
+−
−
+
−
+
−
−
+
−
≈
σ
µσσσ
σ
σσµ
σσ
kk
4
42
ˆ 2
σµ
σσ
−
≈ ( ){ }4
4 : mxE i −=µ
( )
( ){ } ( ){ } ( ){ } ( ){ }
( )
( ){ } ( )
( ){ }
( ){ }
( )
( ){ } ( ){ }
( )
( ){ } ( )
( ){ }
( ){ }
( )
( ){ } ( ){ }
( )
( ){ }
( )
( ){ }




    
  

  
k
k
k
i
i
k
k
i
i
k
k
k
i
i
k
k
i
i
k
k
k
i
i
k
k
k
k
i
i
k
k
k
i
k
ij
j
ji
k
k
i
i
mmE
k
k
mxE
k
mmE
mxE
k
mmEk
mxE
k
mxE
k
mmEk
mxE
k
mmE
mmE
k
k
mxE
k
mmE
mxEmxEmxE
kk
/
2
2
1
0
2
0
1
0
2
3
1
2
2
1
2
2
/
2
1
3
2
0
44
2
2
1
2
2
/
2
1 1
22
1
4
2
2
ˆ
2
222
22
22
4
2
ˆ
1
2
1
ˆ4
1
ˆ4
1
2
1
ˆ2
1
ˆ4
ˆ
11
ˆ4
1
1
σ
σσσ
σσ
σσ
µ
σ
σσ
σ
σσ
−
−
−−
−
−
−−
−
−
+
−
−
−−
−
−
+−
−
−
+
+−
−
+−
−
−
+












−−+−
−
≈
∑∑
∑∑∑
∑∑ ∑∑
==
===
==
≠
==
48
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (continue - 5)
{ } { } mxE
k
mE
k
i
ik == ∑=1
1
ˆ
{ } ( ) 2
1
22
ˆ
1
1
:ˆ σσ =






−
−
= ∑=
k
i
kik mx
k
EE
We found:
( ){ } k
mmE kmk
2
22
ˆ ˆ:
σ
σ =−=
( ){ } ( )
k
mx
k
EE
k
i
kik
k
4
4
2
2
1
22222
ˆ
ˆ
1
1
ˆ:2
σµ
σσσσσ
−
≈














−−
−
=−= ∑=
( ){ }4
4 : mxE i −=µ
Kurtosis of random variable xi
Define
4
4
:
σ
µ
λ =
( ){ } ( ) ( )
k
mx
k
EE
k
i
kik
k
42
2
1
22222
ˆ
1
ˆ
1
1
ˆ:2
σλ
σσσσσ
−
≈














−−
−
=−= ∑=
49
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (continue - 6)
[ ] ϕσσσ σσ =≤≤
2
ˆ
2
k
2
k
ˆ-0Prob n
For high values of k, according to the Central Limit Theorem the estimations of mean
and of variance are approximately Gaussian Random Variables.
kmˆ
2
ˆkσ
We want to find a region around that
will contain σ2
with a predefined probability
φ as function of the number of iterations k.
2
ˆkσ
Since are approximately Gaussian Random
Variables nσ is given by solving:
2
ˆkσ
ϕζζ
π
σ
σ
=





−∫
+
−
n
n
d2
2
1
exp
2
1
nσ φ
1.000 0.6827
1.645 0.9000
1.960 0.9500
2.576 0.9900
Cumulative Probability within nσ
Standard Deviation of the Mean for a
Gaussian Random Variable
22
k
22 1
ˆ-
1
σ
λ
σσσ
λ
σσ
k
n
k
n
−
≤≤
−
−
22
k
2
1
1
ˆ-1
1
σ
λ
σσ
λ
σσ 







−
−
≤≤







+
−
−
k
n
k
n
( ) ( ) ( ) ( )( )42222
1,0;ˆ~ˆ&,0;ˆ~ˆ σλσσσσ −−− kkkk kmmmk NN
50
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (continue - 7)
[ ] ϕσσσ σσ =≤≤
2
ˆ
2
k
2
k
ˆ-0Prob n
22
k
22 1
ˆ-
1
σ
λ
σσσ
λ
σσ
k
n
k
n
−
≤≤
−
−
22
k
2
1
1
ˆ-1
1
σ
λ
σσ
λ
σσ 







−
−
≤≤







+
−
−
k
n
k
n
22
ˆ
1
2
k
σ
λ
σσ
k
−
=
22
k
2 1
1ˆ
1
1 σ
λ
σσ
λ
σσ 






 −
−≥≥






 −
+
k
n
k
n







 −
−
≥≥







 −
+
k
n
k
n
1
1
ˆ
1
1
2
2
k
2
λ
σ
σ
λ
σ
σσ
k
n
k
n
1
1
:ˆ:
1
1
k
−
−
=≥≥=
−
+
λ
σ
σσσ
λ
σ
σσ
51
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (continue - 8)
52
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (continue - 9)
53
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (continue - 10)
k
n
k
n
kk 1ˆ
1
:&
1ˆ
1
:
00
−
−
=
−
+
=
λ
σ
σ
λ
σ
σ
σσ
Monte-Carlo Procedure
Choose the Confidence Level φ and find the corresponding nσ
using the normal (Gaussian) distribution.
nσ φ
1.000 0.6827
1.645 0.9000
1.960 0.9500
2.576 0.9900
1
Run a few sample k0 > 20 and estimate λ according to2
( )
( )
2
1
2
0
1
4
0
0
0
0
0
0
ˆ
1
ˆ
1
:ˆ






−
−
=
∑
∑
=
=
k
i
ki
k
i
ki
k
mx
k
mx
k
λ∑=
=
0
0
10
1
:ˆ
k
i
ik x
k
m
3 Compute and as function of kσ σ
4 Find k for which
[ ] ϕσσσ σσ =≤≤
2
ˆ
2
k
2
k
ˆ-0Prob n
5 Run k-k0 simulations
54
SOLO Review of Probability
Estimation of the Mean and Variance of a Random Variable (continue – 11)
Monte-Carlo Procedure
Choose the Confidence Level φ = 95% that gives the
corresponding nσ=1.96.
nσ φ
1.000 0.6827
1.645 0.9000
1.960 0.9500
2.576 0.9900
1
The kurtosis λ = 32
3 Find k for which ϕσ
λ
σσ
σ
σ =












−
≤≤

2
kˆ
22
k
2 1
ˆ-0Prob
k
n
4 Run k>800 simulations
Example:
Assume a Gaussian distribution λ = 3
95.0
2
96.1ˆ-0Prob
2
kˆ
22
k
2
=












≤≤

σ
σσσ
k
Assume also that we require also that with probability φ = 95 %22
k
2
1.0ˆ- σσσ ≤
1.0
2
96.1 =
k
800≈k
55
SOLO Review of Probability
Generating Discrete Random Variables
Pseudo-Random Number Generators
• First attempts to generate “random numbers”:
- Draw balls out of a stirred urn
- Roll dice
• 1927: L.H.C. Tippett published a table of 40,000 digits taken “at random” from
census reports.
• 1939: M.G. Kendall and B. Babington-Smith create a mechanical machine to
generate random numbers. They published a table of 100,000 digits.
• 1946: J. Von Neumann proposed the “middle square method”.
• 1948: D.H. Lehmer introduced the “linear congruential method”.
• 1955: RAND Corporation published a table of 1,000,000 random digits obtained
from electronic noise.
• 1965: M.D. MacLaren and G. Marsaglia proposed to combine two congruential
generators.
• 1989: R.S. Wikramaratna proposed the additive congruential method.
56
SOLO Review of Probability
Generating Discrete Random Variables
Pseudo-Random Number Generators
A Random Number represents the value of a random variable uniform distributed on (0,1).
Pseudo-Random Numbers constitute a sequence of values, which although are
deterministically generated, have all the appearances of being independent uniform
distributed on (0,1).
One approach
1. Define x0 = integer initial condition or seed
2. Using integers a and m recursively compute
mxax nn modulo1−= mxIntegerxkmaxmkxa nnn <∈+⋅=− ,,,1
Therefore xn takes the values 0,1,…,m-1 and the quantity un=xn/m , called a pseudo-random
number is an approximation to the value of uniform (0,1) random variable.
In general the integers a and m should be chose to satisfy three criteria:
1. For any initial seed, the resultant sequence has the “appearance” of being a sequence
of independent (0,1) random variables.
For any initial seed, the number of variables that can be generated before repetition
begins is large.
The values can be computed efficiently on a digital computer.
Multiplicative congruential method
Return to
Monte Carlo Approximation
57
SOLO Review of Probability
Generating Discrete Random Variables
Pseudo-Random Number Generators (continue – 1)
A guideline is to choose m to be a large prime number compared to the computer word size.
Examples:
32 bits word computer: 807,16712 531
==−= am
125,35312 535
==−= am36 bits word computer:
Another generator of pseudo-random numbers uses recursions of the type:
( ) mcxax nn modulo1 += −
mxIntegerxkmcaxmkcxa nnn <∈+⋅=+− ,,,,1
Mixed congruential method
58
SOLO Review of Probability
Generating Discrete Random Variables
Histograms
Return to Table of Content
A histogram is a graphical display of tabulated frequencies, shown as bars. It shows what
proportion of cases fall into each of several categories: it is a form of data binning. The categories
are usually specified as non-overlapping intervals of some variable. The categories (bars) must be
adjacent. The intervals (or bands, or bins) are generally of the same size.
Histograms are used to plot density of data, and often for density estimation: estimating the
probability density function of the underlying variable. The total area of a histogram always
equals 1. If the length of the intervals on the x-axis are all 1, then a histogram is identical to a
relative frequency plot.
A cumulative histogram is a mapping that counts the
cumulative number of observations in all of the bins
up to the specified bin. That is, the cumulative
histogram Mi of a histogram mi is defined as:
An ordinary and a cumulative
histogram of the same data. The
data shown is a random sample of
10,000 points from a normal
distribution with a mean of 0 and
a standard deviation of 1.
Mathematical Definition
∑=
=
k
i
imn
1
In a more general mathematical sense, a histogram is
a mapping mi that counts the number of observations
that fall into various disjoint categories (known as
bins), whereas the graph of a histogram is merely one
way to represent a histogram. Thus, if we let n be the
total number of observations and k be the total number
of bins, the histogram mi meets the following
conditions:
∑=
=
i
j
ji mM
1
59
SOLO Review of Probability
Generating Discrete Random Variables
The Inverse Transform Method
Suppose we want to generate a discrete random variable X
having probability density function:
( ) 1,1,0)( ==−= ∑j
jjj pjxxpxp δ
To accomplish this, let generate a random number U that is uniformly distributed
over (0,1) and set:











<≤
+<≤
<
=
∑∑ =
−
=


j
i
i
j
i
ij pUpifx
ppUpifx
pUifx
X
1
1
1
1001
00
j
j
i
i
j
i
ij ppUpPxXP =






<<== ∑∑ =
−
= 1
1
1
)(
Since , for any a and b such that 0 < a < b < 1, and U is uniformly distributed
P (a ≤ U < b) = b-a, we have:
and so X has the desired distribution.
60
SOLO Review of Probability
Generating Discrete Random Variables
The Inverse Transform Method (continue – 1)
Suppose we want to generate a discrete random variable X
having probability density function: ( ) 1,1,0)( ==−= ∑j
jjj pjxxpxp δ
Draw X, N times,
from p (x)
Histogram of the
Results
61
SOLO Review of Probability
Generating Discrete Random Variables
The Inverse Transform Method (continue – 2)
Generating a Poisson Random Variable: 1,1,0
!
)( ===== ∑−
i
i
i
i pi
i
eiXPp 
λλ
( )
1
!
!1
1
1
+
=
+
=
−
+
−
+
i
i
e
i
e
p
p
i
i
i
i λ
λ
λ
λ
λ
Draw X , N times, from
Poisson Distribution
Histogram of the Results
62
SOLO Review of Probability
Generating Discrete Random Variables
The Inverse Transform Method (continue – 3)
Generating Binominal Random Variable:
( )
( ) 1,1,01
!!
!
)( ==−
−
=== ∑−
i
i
ini
i pipp
ini
n
iXPp 
( ) ( )
( )
( )
( ) p
p
i
in
pp
ini
n
pp
ini
n
p
p
ini
ini
i
i
−+
−
=
−
−
−
−−+
=
−
−−+
+
111
!!
!
1
!1!1
! 11
1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 k
( )nkP ,
Histogram of the Results
63
SOLO Review of Probability
Generating Discrete Random Variables
The Accaptance-Rejection Technique
Suppose we have an efficient method for simulating a random variable having a
probability density function { qj, j ≥0 }. We want to use this to obtain a random
variable that has the probability density function { pj, j ≥0 }.
Let c be a constant such that: 0.. ≠∀≤ j
j
j
qtsjc
q
p
If such a c exists, it must satisfy: cqcp
j
j
j
j ≤⇒≤ ∑∑ 1
11

Rejection Method
Step 1: Simulate the value of Y, having probability density function qj.
Step 2: Generate a random number U (that is uniformly distributed
over (0,1) ).
Step 3: If U < pY/c qY, set X = Y and stop. Otherwise return to Step 1.
64
SOLO Review of Probability
Generating Discrete Random Variables
The Acceptance-Rejection Technique (continue – 1)
Theorem
The random variable X obtained by the rejection method has probability density
function P { X=i } = pi.
Proof
{ } { } { }
{ } { }Acceptance
,
Acceptance
Acceptance,
Acceptance
Method
Acceptance
Method
Acceptance
P
qc
p
UiYP
P
iYP
iYPiXP i
i
Bayes






≤=
=
=
====
{ }
{ } { } { }AcceptanceAcceptanceAcceptance
(0,1)ddistribute
uniformlyU
ceindependen
by
Pc
p
P
qc
p
q
P
qc
p
UPiYP
ii
i
i
i
i
qi
==





≤=
=

Summing over all i, yields
{ }
{ }Acceptance
1
1
Pc
p
iXP i
i
i

 ∑
∑ ==
{ } 1Acceptance =Pc
{ } ipiXP ==
{ } 1
1
Acceptance ≤=
c
P
q.e.d.
65
SOLO Review of Probability
Generating Discrete Random Variables
The Acceptance-Rejection Technique (continue – 2)
Example
Generate a truncated Gaussian using the
Accept-Reject method. Consider the case with
( ) [ ]



 −∈
≈
−
otherwise
xe
xp
x
0
4,42/2/2
π
Consider the Uniform proposal function
( )
[ ]


 −∈
≈
otherwise
x
xq
0
4,48/1
In Figure we can see the results of the
Accept-Reject method using N=10,000 samples.
66
SOLO Review of Probability
Generating Continuous Random Variables
The Inverse Transform Algorithm
Let U be a uniform (0,1) random variable. For any continuous
distribution function F the random variable X defined by
( )UFX 1−
=
has distribution F. [ F-1
(u) is defined to be that value of x such that F (x) = u ]
Proof
Let Px(x) denote the Probability Distribution Function X=F-1
(U)
( ) { } ( ){ }xUFPxXPxPx ≤=≤= −1
Since F is a distribution function, it means that F (x) is a monotonic increasing
function of x and so the inequality “a ≤ b” is equivalent to the inequality
“F (a) ≤ F (b)”, therefore
( ) ( )[ ] ( ){ }
( )[ ]
( ){ } ( )
( )
( )xFxFUP
xFUFFPxP
uniformU
xF
UUFF
x
1,0
10
1
1
≤≤
=
−
=≤=
≤=
−
67
SOLO Review of Probability
Importance Sampling
Let Y = (Y1,…,Ym) a vector of random variables having a joint probability density
function f (y1,…,ym), and suppose that we are interested in estimating
( )[ ] ( ) ( )∫== mmmmf dydyyyfyyhYYhE  1111 ,,,,,,θ
Suppose that a direct generation of the random vector Y so as to compute h (Y) is
inefficient possible because
(a) is difficult to generate the random vector Y, or
(b) the variance of h (Y) is large, or
(c) both of the above
Suppose that W=(W1,…,Wm) is another random vector, which takes values in the
same domain as Y, and has a joint density function g(w1,…,wm) that can be easily
generated. The estimation θ can be expressed as:
( )[ ] ( ) ( )
( )
( ) ( ) ( )
( ) 





=== ∫ Wg
WfWh
Edwdwwwg
wwg
wwfwwh
YYhE gmm
m
mm
mf 


 11
1
11
1 ,,
,,
,,,,
,,θ
Therefore, we can estimate θ by generating values of random vector W, and then
using as the estimator the resulting average of the values h (W) f (W)/ g (W).
Return to Particle Filters
68
SOLO Review of Probability
Monte Carlo Integration
Monte Carlo Method can be used to numerically evaluate multidimensional integrals
( ) ( )∫∫ == xdxgdxdxxxgI mm  11 ,,
To use Monte Carlo we factorize ( ) ( ) ( )xpxfxg ⋅=
( ) ( ) 1&0 =≥ ∫ xdxpxp
in such a way that is interpreted as a Probability Density Function such that( )xp
We assume that we can draw NS samples from ( )xp( )S
i
Nix ,,1, =
( ) S
i
Nixpx ,,1~ =
Using Monte Carlo we can approximate ( ) ( )∑=
−≈
SN
i
S
i
Nxxxp
1
/δ
( ) ( ) ( ) ( )
( ) ( ) ( )∑∑∫
∫ ∑∫
==
=
=−⋅=
−⋅=≈⋅=
SS
S
S
N
i
i
S
N
i
i
S
N
i
S
i
N
xf
N
xdxxxf
N
xdNxxxfIxdxpxfI
11
1
11
/
δ
δ
69
SOLO Review of Probability
Monte Carlo Integration
we draw NS samples from ( )xp( )S
i
Nix ,,1, =
( ) S
i
Nixpx ,,1~ =
( ) ( ) ( )∑∫ =
=≈⋅=
S
S
N
i
i
S
N xf
N
IxdxpxfI
1
1
If the samples are independent, then INS
is an unbiased estimate of I.
i
x
According to the Law of Large Numbers INS
will almost surely converge to I:
II
sa
N
N
S
S
..
∞→
→
( )[ ] ( ) ∞<−= ∫ xdxpIxff
22
:σIf the variance of is finite; i.e.:( )xf
then the Central Limit Theorem holds and the estimation error converges in
distribution to a Normal Distribution:
( ) ( )2
,0~lim fNS
N
IIN S
S
σN−
∞→
The error of the MC estimate, e = INS
– I, is of the order of O (NS
-1/2
), meaning
that the rate of convergence of the estimate is independent of the dimension of
the integrand.
Numerical Integration of
and ( )kk xzp |( )1| −kk xxp
Return to Particle Filters
70
SOLO Review of Probability
Existence Theorems
Existence Theorem 3
Given a function S (ω)= S (-ω) or, equivalently, a positive-defined function R (τ),
(R (τ) = R (-τ), and R (0)=max R (τ), for all τ ), we can find a stochastic process x (t)
having S (ω) as its power spectrum or R (τ) as its autocorrelation.
Proof of Existence Theorem 3
Define
( ) ( ) ( ) ( ) ( )ω
π
ω
π
ω
ωωω
π
−=
−
=== ∫
+∞
∞−
f
a
S
a
S
fdSa 22
2
:&
1
:
Since , according to Existence Theorem 1,
we can find a random variable ω with the even density function f (ω), and
probability density function
( ) ( ) 1&0 =≥ ∫
+∞
∞−
ωωω dff
( ) ( )∫∞−
=
ω
ττω dfP :
We now form the process , where is a random variable
uniform distributed in the interval (-π,+π) and independent of ω.
( ) ( )ϑω += tatx cos: ϑ
71
SOLO Review of Probability
Existence Theorems
Existence Theorem 3
Proof of Existence Theorem 3 (continue – 1)
Since is uniform distributed in the interval (-π,+π) and independent of ω,
its spectrum is
( ){ } ( ){ } ( ){ } ( ){ } ( ){ } 0sinsincoscos
00
,
=−=

ϑωϑω ϑωϑω
ϑω
EtEaEtEatxE
tindependen
ϑ
( ) { } ( )
ϖπ
ϖπ
ϖπϖπ
ϑ
π
ϖ
πϖπϖπ
π
ϑϖπ
π
ϑϖϑϖ
ϑϑ
sin
2
1
2
1
2
1
=
−
====
−+
−
+
−
∫ j
ee
j
e
deeES
jjj
jj
or { } ( ){ } ( ){ } ( )
ϖπ
ϖπ
ϑϖϑϖ ϑϑ
ϑϖ
ϑ
sin
sincos =+= EjEeE j
1=ϖ 1=ϖ
( ) ( ){ } ( ) ( )[ ]{ }
( ){ } ( )[ ]{ }
( ){ } ( )[ ]{ } ( ){ } ( )[ ]{ } ( ){ }
 0
2
0
22,
22
2
2sin2sin
2
2cos2cos
2
cos
2
22cos
2
cos
2
coscos
ϑτωϑτωτω
ϑτωτω
ϑτωϑωτ
ϑωϑωω
ϑω
EtE
a
EtE
a
E
a
tE
a
E
a
ttEatxtxE
tindependen
+−++=
+++=
+++=+
2=ϖ 2=ϖ
Given a function S (ω)= S (-ω) or, equivalently, a positive-defined function R (τ),
(R (τ) = R (-τ), and R (0)=max R (τ), for all τ ), we can find a stochastic process x (t)
having S (ω) as its power spectrum or R (τ) as its autocorrelation.
72
SOLO Review of Probability
Existence Theorems
Existence Theorem 3
Proof of Existence Theorem 3 (continue – 2)
( ){ } 0=txE
( ) ( ){ } ( ){ } ( ) ( ) ( )τωωτωτωτ ω xRdf
a
E
a
txtxE ===+ ∫
+∞
∞−
cos
2
cos
2
22
( ) ( )ϑω += tatx cos:We have
Because of those two properties x (t) is wide-sense stationary with a power spectrum
given by:
( ) ( ) ( ) ( )[ ]
( ) ( )
( ) ( )∫∫
+∞
∞−
−=+∞
∞−
=−= ττωτττωτωτω
ττ
dRdjRS x
RR
xx
xx
cossincos
( ) ( ) ( ) ( )[ ]
( ) ( )
( ) ( )∫∫
+∞
∞−
−=+∞
∞−
=+= ωτωω
π
ωτωτωω
π
τ
ωω
dSdjSR x
SS
xx
xx
cos
2
1
sincos
2
1
Therefore ( ) ( )ωπω faSx
2
=
q.e.d.
Fourier
Inverse
Fourier
( ) ( )∫
+∞
∞−
= ωωτω df
a
cos
2
2
f (ω) definition
( )ωS=
Given a function S (ω)= S (-ω) or, equivalently, a positive-defined function R (τ),
(R (τ) = R (-τ), and R (0)=max R (τ), for all τ ), we can find a stochastic process x (t)
having S (ω) as its power spectrum or R (τ) as its autocorrelation.
73
SOLO
Markov Processes
A Markov Process is defined by:
Andrei Andreevich
Markov
1856 - 1922
( ) ( )( ) ( ) ( )( ) 111
,|,,,|, tttxtxptxtxp >∀ΩΩ=≤ΩΩ ττ
i.e. the Random Process, the past up to any time t1 is fully defined
by the process at t1.
Examples of Markov Processes:
1. Continuous Dynamic System
( ) ( )
( ) ( )vuxthtz
wuxtftx
,,,
,,,
=
=
2. Discrete Dynamic System
( ) ( )
( ) ( )kkkkk
kkkkk
vuxthtz
wuxtftx
,,,
,,, 1111
=
= −−−−
x - state space vector (n x 1)
u - input vector (m x 1)
- measurement vector (p x 1)z
v - white measurement noise vector (p x 1)
- white input noise vector (n x 1)w
Recursive Bayesian Estimation
74
Recursive Bayesian EstimationSOLO
Using this property we obtain:
( ) ( )1021 |,,,| −−− = kkkkk xxpxxxxp 
Markov Processes
( ) ( )
( )
( )
( ) ( )
( )
( )
( ) ( )∏=
−
−−−−
−−−−−−
=
=
=
−−
−
k
i
ii
k
xxp
kkkk
kk
xxp
kkkkkk
xxpxp
xxpxxxpxxp
xxxpxxxxpxxxxp
kk
kk
1
10
02
|
0211
021
|
021021
|
,,,,||
,,,,,,|,,,,
21
1

  


  

Markov Process:
Table of Content
the present discrete state probability depends only on the previous state.
The Markov Process is defined if we know p (x0) and p(xi|xi-1) for each i.
75
Recursive Bayesian EstimationSOLO
In a Markovian system the probability of the current
true state depends only on the previous state, and is
independent of the other earlier states
( ) ( )1021 |,,,| −−− = kkkkk xxpxxxxp 
Similarly the measurements at the k-th time-
step is dependent upon the current true
state, so is conditionally independent of all other
earlier states, given the current state
( ) ( )kkkkk xzpxxxzp |,,,| 01 =− 
( ) ( ) ( ) ( ) ( )kkkkkkkk zpzxpxpxzpxzp ||, ==
From the definition of the Markovian system (see Figure) p (xk|xk-1) is defined by
f and the statistics of x and w and p (zk|xk) is defined by h and statistics of x and v.
kx1−kx
kz1−kz
0x 1x 2x
1z 2z kZ :11:1 −kZ
( )111 ,, −−− kkk wuxf
( )kk vxh ,
Markov Processes
( )000 ,, wuxf
( )11,vxh
( )111 ,, wuxf
( )22 ,vxh
Hidden States
Measurements
76
Recursive Bayesian EstimationSOLO
( ) ( ) ( )
( ) ( )kvkkk
xkkwkkkk
vpgivenvxhz
xpuwpgivenwuxfx
:,
,,:,, 011111 0
=
= −−−−−
Markov Processes
( ) ( )j
kkkkxkkkw
j
k wuxfxtsNjuxxfw k 11111
1
1 ,,..,..,1,, −−−−−
−
− ===
Suppose that we can obtain all for which
j
kw 1−
( ) ( ) ( )∑=
−
−−−−− ∇=
kxN
j
j
kkkw
j
kwkk wuxfwpxxp
1
1
11111 ,,|then
( ) ( ) ( )∑=
−
∇=
kx
k
N
j
j
kkv
j
kvkk vxhvpxzp
1
1
,|
( ) ( )j
kkkzkkv
j
k vxhztsNjxzhv k
,..,..,1,1
=== −
In the same way, suppose that we can obtain all for whichj
kv
then
( ) ( ) ( )
( ) ( )∑
∑
=
−
−−−−
=
−−−−
∇=
=+≤≤=
kx
kx
N
j
k
j
kkkw
j
kw
N
j
j
k
j
kwkkkkkkkk
xdwuxfwp
wdwpxxdxXxxdxxp
1
1
1111
1
1111
,,
|Pr|
This is a Conceptual
Not a Practical Procedure
Analytic Computations of and .( )kk xzp |( )1| −kk xxp
77
Recursive Bayesian EstimationSOLO
( ) ( ) ( )
( ) ( )kvkkk
xkkwkkkk
vpgivenvxhz
xpuwpgivenwuxfx
:
,,:, 011111 0
+=
+= −−−−−
kx1−kx
kz1−kz
( ) 111, −−− + kkk wuxf
( ) kk vxh +
Markov Processes
( ) ( )[ ]111 ,| −−− −= kkkwkk uxfxpxxptherefore
( ) ( )[ ]kkvkk xhzpxzp −=|and
For additive noise
we have
( )
( )kkk
kkkk
xhzv
uxfxw
−=
−= −−− 111 ,
Analytic Computations of and (continue – 1)( )kk xzp |( )1| −kk xxp
78
SOLO
( )
( )kkk
kkk
vxhz
wxfx
,
, 11
=
= −−
kk vw &1− are system and measurement white-noise sequences
independent of past and current states and on each other and
having known P.D.F.s ( ) ( )kk vpwp &1−
We want to compute p (xk|Z1:k) recursively, assuming knowledge of p(xk-1|Z1:k-1)
in two stages, prediction (before) and update (after measurement)
( ) ( )( ) ( )∫ −−−−− −= 11111 ,| kkkkkkk wdwpwxfxxxp δ
We need to evaluate the following integrals:
( ) ( )( ) ( )∫ −= kkkkkkk vdvpvxhzxzp ,| δ
We use the numeric Monte Carlo Method to evaluate the integrals:
Generate (Draw): ( ) ( ) Sk
i
kk
i
k Nivpvwpw ,,1~&~ 11 =−−
( ) ( )( ) S
N
i
i
k
i
k
i
kkk Nwxfxxxp
S
∑=
−−− −≈
1
111 /,| δ
( ) ( )( ) S
N
i
i
k
i
k
i
kkk Nvxhzxzp
S
∑=
−≈
1
/,| δ
or
( ) ( ) ( ) S
N
i
i
kkkk
i
k
i
k
i
k Nxxxxpwxfx
S
∑=
−−− −≈→=
1
111 /|, δ
( ) ( ) ( ) S
N
i
i
kkkk
i
k
i
k
i
k Nzzxzpvxhz
S
∑=
−≈→=
1
/|, δ
Analytic solutions for those integral
equations do not exist in the general
case.
Recursive Bayesian Estimation
Numerical Computations of and .( )kk xzp |( )1| −kk xxp
Markov Processes
Prediction (before measurement) ( ) ( ) ( )∫ −−−−− = 11:1111:1 ||| kkkkkkk xdZxpxxpZxp1
Update (after measurement)
( ) ( )
( ) ( ) ( )
( )
( ) ( )
( )
( ) ( )
( ) ( )∫ −
−
−
−
=
− ===
kkkkk
kkkk
kk
kkkk
Bayes
bp
apabp
bap
kkkkk
xdZxpxzp
Zxpxzp
Zzp
Zxpxzp
ZzxpZxp
1:1
1:1
1:1
1:1
|
|
1:1:1
||
||
|
||
,||
2
79
Recursive Bayesian EstimationSOLO
( ) ( ) ( )
( ) ( )kvkkk
xkkwkkkk
vpgivenvxhz
xpuwpgivenwuxfx
:,
,,:,, 011111 0
=
= −−−−−
Markov Processes
Monte Carlo Computations of and .( )kk xzp |( )1| −kk xxp
Generate (Draw) ( ) Sx
i
Nixpx ,,1~ 00 0
=
For { }∞∈ ,,1 k
Initialization0
1 At stage k-1
Generate (Draw) NS samples ( ) Skw
i
k Niwpw ,,1~ 11 =−−
2 State Update ( ) S
i
kk
i
k
i
k Niwuxfx ,,1,, 111 == −−−
3 Generate (Draw) Measurement Noise ( ) Skv
i
k Nivpv ,,1~ =
k:=k+1 & return to 1
Compute Histograms of
to obtain ( )kk xzp |
kk xz |
( ) ( )∑=
− −≈
SN
i
S
i
kkkk Nxxxxp
1
1 /| δ
( ) ( )∑=
−≈
SN
i
S
i
kkkk Nzzxzp
1
/| δ
Compute Histograms of
to obtain
1| −kk xx
( )1| −kk xxp
4 Measurement , Update ( ) S
i
k
i
k
i
k Nivxhz ,,1, ==kz
SOLO
Stochastic Processes deal with systems corrupted by noise. A description of those processes is
given in “Stochastic Processes” Presentation. Here we give only one aspect of those processes.
( ) ( ) ( ) [ ]fttttwddttxftxd ,, 0∈+=
A continuous dynamic system is described by:
Stochastic Processes
( )tx - n- dimensional state vector
( )twd - n- dimensional process noise vector
Assuming system measurements at discrete time tk given by:
( ) ( )( ) [ ]fkkkkk tttvttxhtz ,,, 0∈=
kv - m- dimensional measurement noise vector at tk
We are interested in the probability of the state at time t given the set of discrete
measurements until (included) time tk < t.
x
( )kZtxp |,
{ }kk zzzZ ,,, 21 = - set of all measurements up to and including time tk.
The time evolution of the probability density function is described by the
Fokker–Planck equation.
A solution to the one-dimensional
Fokker–Planck equation, with both the
drift and the diffusion term. The initial
condition is a Dirac delta function in
x = 1, and the distribution drifts
towards x = 0.
The Fokker–Planck equation describes the time evolution of
the probability density function of the position of a particle, and
can be generalized to other observables as well. It is named after
Adriaan Fokker and Max Planck and is also known as the
Kolmogorov forward equation. The first use of the Fokker–
Planck equation was the statistical description of Brownian
motion of a particle in a fluid.
In one spatial dimension x, the Fokker–Planck equation for a
process with drift D1(x,t) and diffusion D2(x,t) is
More generally, the time-dependent probability distribution
may depend on a set of N macrovariables xi. The general
form of the Fokker–Planck equation is then
where D1
is the drift vector and D2
the diffusion tensor; the latter results from the presence of the
stochastic force.
Fokker – Planck Equation
Adriaan Fokker
1887 - 1972
Max Planck
1858 - 1947
SOLO
Adriaan Fokker
„Die mittlere Energie rotierender
elektrischer Dipole im Strahlungsfeld"
Annalen der Physik 43, (1914) 810-
820
Max Plank, „Ueber einen Satz der
statistichen Dynamik und eine
Erweiterung in der Quantumtheorie“,
Sitzungberichte der Preussischen
Akadademie der Wissenschaften
(1917) p. 324-341
Stochastic Processes
( ) ( ) ( )[ ] ( ) ( )[ ]txftxD
x
txftxD
x
txf
t
,,,,, 22
2
1
∂
∂
+
∂
∂
−=
∂
∂
( )[ ] ( )[ ]∑∑∑ = == ∂∂
∂
+
∂
∂
−=
∂
∂ N
i
N
j
Nji
ji
N
i
Ni
i
ftxxD
xx
ftxxD
x
f
t 1 1
1
2
2
1
1
1
,,,,,, 
Fokker – Planck Equation (continue – 1)
The Fokker–Planck equation can be used for computing the probability densities of stochastic
differential equations.
where is the state and is a standard M-dimensional Wiener process. If the initial
probability distribution is , then the probability distribution of the state
is given by the Fokker – Planck Equation with the drift and diffusion terms:
Similarly, a Fokker–Planck equation can be derived for Stratonovich stochastic differential
equations. In this case, noise-induced drift terms appear if the noise strength is state-dependent.
SOLO
Consider the Itô stochastic differential equation:
( ) ( ) ( )[ ] ( ) ( )[ ]txftxD
x
txftxD
x
txf
t
,,,,, 22
2
1
∂
∂
+
∂
∂
−=
∂
∂
Fokker – Planck Equation (continue – 2)
Derivation of the Fokker–Planck Equation
SOLO
Start with ( ) ( ) ( )11|1, 111
|, −−− −−−
= kxkkxxkkxx xpxxpxxp kkkkk
and ( ) ( ) ( ) ( )∫∫
+∞
∞−
−−−
+∞
∞−
−− −−−
== 111|11, 111
|, kkxkkxxkkkxxkx xdxpxxpxdxxpxp kkkkkk
define ( ) ( )ttxxtxxttttt kkkk ∆−==∆−== −− 11 ,,,
( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )∫
+∞
∞−
∆−∆− ∆−∆−∆−= ttxdttxpttxtxptxp ttxttxtxtx ||
Let use the Characteristic Function of
( ) ( ) ( ) ( ) ( )[ ]{ } ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )ttxtxtxtxdttxtxpttxtxss ttxtxttxtx ∆−−=∆∆−∆−−−=Φ ∫
+∞
∞−
∆−∆−∆ |exp: ||
( ) ( ) ( ) ( )[ ]ttxtxp ttxtx ∆−∆− ||
The inverse transform is ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( ) ( )∫
∞+
∞−
∆−∆∆− Φ∆−−=∆−
j
j
ttxtxttxtx sdsttxtxs
j
ttxtxp || exp
2
1
|
π
Using Chapman-Kolmogorov Equation we obtain:
( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( ) ( )
( ) ( ) ( ) ( )[ ]
( ) ( )[ ] ( )
( ) ( )[ ]{ } ( ) ( ) ( ) ( ) ( )[ ] ( )ttxdsdttxpsttxtxs
j
ttxdttxpsdsttxtxs
j
txp
j
j
ttxttxtx
ttx
ttxtxp
j
j
ttxtxtx
ttxtx
∆−∆−Φ∆−−=
∆−∆−Φ∆−−=
∫ ∫
∫ ∫
∞+
∞−
∞+
∞−
∆−∆−∆
+∞
∞−
∆−
∆−
∞+
∞−
∆−∆
∆−
|
|
|
exp
2
1
exp
2
1
|
π
π
  
Stochastic Processes
Fokker – Planck Equation (continue – 3)
Derivation of the Fokker–Planck Equation (continue – 1)
SOLO
The Characteristic Function can be expressed in terms of the moments about x (t-Δt) as:
( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( ) ( ) ( ) ( )[ ] ( )ttxdsdttxpsttxtxs
j
txp
j
j
ttxttxtxtx ∆−∆−Φ∆−−= ∫ ∫
+∞
∞−
∞+
∞−
∆−∆−∆ |exp
2
1
π
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )[ ] ( ){ }∑
∞
=
∆−∆∆−∆ ∆−∆−−
−
+=Φ
1
|| |
!
1
i
i
ttxtx
i
ttxtx ttxttxtxE
i
s
s
Therefore
( ) ( )[ ] ( ) ( )[ ]{ } ( )
( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ] ( )ttxdsdttxpttxttxtxE
i
s
ttxtxs
j
txp
j
j
ttx
i
i
ttxtx
i
tx ∆−∆−






∆−∆−−
−
+∆−−= ∫ ∫ ∑
+∞
∞−
∞+
∞−
∆−
∞
=
∆−
1
| |
!
1exp
2
1
π
Use the fact that ( ) ( ) ( )[ ]{ } ( ) ( ) ( )[ ]
( )[ ]
,2,1,01exp
2
1
=
∂
∆−−∂
−=∆−−−∫
∞+
∞−
i
tx
ttxtx
sdttxtxss
j i
i
i
j
j
i δ
π
( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( )[ ] ( )
( ) ( ) ( )[ ]
( )[ ]
( ) ( )[ ] ( ){ } ( ) ( )[ ] ( )∫∑
∫ ∫
∞+
∞−
∞
=
∆−
+∞
∞−
∆−
∞+
∞−
∆−∆−∆−∆−−
∂
∆−−∂−
+
∆−∆−∆−−=
1
|
!
1
exp
2
1
i
ttx
i
i
ii
ttx
j
j
tx
ttxdttxpttxttxtxE
tx
ttxtx
i
ttxdttxpsdttxtxs
j
txp
δ
π
where δ [u] is the Dirac delta function:
[ ] { } ( ) [ ] ( ) ( ) ( ) ( ) ( )000..0exp
2
1
FFFtsuFFduuuFsdus
j
u
j
j
==∀== −+
+∞
∞−
∞+
∞−
∫∫ δ
π
δ
Stochastic Processes
Fokker – Planck Equation (continue – 4)
Derivation of the Fokker–Planck Equation (continue – 2)
SOLO
[ ] ( ){ } ( ) [ ] ( ) ( ) ( ) ( ) ( )afafaftsufufduuaufsduas
j
ua au
j
j
==∀=−−=− −+=
+∞
∞−
∞+
∞−
∫∫ ..exp
2
1
δ
π
δ
[ ] ( ){ } ( ) ( ) { } ( ) ( ) { }∫∫∫
∞+
∞−
∞+
∞−
∞+
∞−
=→=−
−
=−
j
j
j
j
j
j
sdussFs
j
uf
du
d
sdussF
j
ufsduass
j
ua
ud
d
exp
2
1
exp
2
1
exp
2
1
πππ
δ
( ) [ ] ( ) ( ){ } ( ) ( ){ }
{ } ( ) { } { } ( ) ( )
au
j
j
j
j
j
j
j
j
ud
ufd
sdsFass
j
sdduusufass
j
sdduuasufs
j
dusduass
j
ufduua
ud
d
uf
=
∞+
∞−
∞+
∞−
∞+
∞−
∞+
∞−
+∞
∞−
+∞
∞−
∞+
∞−
+∞
∞−
−=
−
=−
−
=
−
−
=−
−
=−
∫∫ ∫
∫ ∫∫ ∫∫
exp
2
1
expexp
2
1
exp
2
1
exp
2
1
ππ
ππ
δ
[ ] ( ) ( ){ } ( ) ( ) { } ( ) ( ) { }∫∫∫
∞+
∞−
∞+
∞−
∞+
∞−
=→=−
−
=−
j
j
i
i
ij
j
j
j
i
i
i
i
sdussFs
j
uf
du
d
sdussF
j
ufsduass
j
ua
ud
d
exp
2
1
exp
2
1
exp
2
1
πππ
δ
( ) [ ] ( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) { } ( ) { } ( ) ( ) { } ( ) ( )
au
i
i
i
j
j
i
ij
j
i
i
j
j
i
ij
j
i
i
i
i
ud
ufd
sdassFs
j
sdduusufass
j
sdduuasufs
j
dusduass
j
ufduua
ud
d
uf
=
−=
−
=−
−
=
−
−
=−
−
=−
∫∫ ∫
∫ ∫∫ ∫∫
∞+
∞−
∞+
∞−
∞+
∞−
∞+
∞−
+∞
∞−
+∞
∞−
∞+
∞−
+∞
∞−
1exp
2
1
expexp
2
1
exp
2
1
exp
2
1
ππ
ππ
δ
Useful results related to integrals involving Delta (Dirac) function
Stochastic Processes
Fokker – Planck Equation (continue – 5)
Derivation of the Fokker–Planck Equation (continue – 3)
SOLO
( ) ( )[ ]{ }
( ) ( )[ ]
( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ]txpttxdttxpttxtxttxdttxpsdttxtxs
j
ttxttxttx
ttxtx
j
j
∆−
+∞
∞−
∆−
+∞
∞−
∆−
∆−−
∞+
∞−
=∆−∆−∆−−=∆−∆−∆−− ∫∫ ∫ δ
π
δ
  
exp
2
1
( ) ( ) ( )[ ]
( )[ ] ( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ] ( )
( ) ( ) ( )[ ]
( )[ ] ( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ] ( )
( ) ( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ]( )
( )[ ]∑
∑ ∫
∫∑
∞
=
=∆
∆−∆−
∞
=
∞+
∞−
∆−∆−
+∞
∞−
∞
=
∆−∆−
∂
∆−∆−−∂−
=
∆−∆−∆−∆−−
∂
∆−−∂−
=
∆−∆−∆−∆−−
∂
∆−−∂−
1
0
|
1
|
1
|
|
!
1
|
!
1
|
!
1
i
t
i
ttx
i
ttxtx
ii
i
ttx
i
ttxtxi
ii
i
ttx
i
ttxtxi
ii
tx
txpttxttxtxE
i
ttxdttxpttxttxtxE
tx
ttxtx
i
ttxdttxpttxttxtxE
tx
ttxtx
i
δ
δ
( ) [ ] ( ) ( ) ( )
[ ]
[ ] ( )
auau
i
i
i
i
i
i
i
i
i
ud
ufd
duua
uad
d
uf
ud
ufd
duua
ud
d
uf
==
=−
−
→−=− ∫∫
+∞
∞−
+∞
∞−
δδ 1We found
( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ]( )
( )[ ]∑
∞
=
=∆
∆−∆−
∆−
∂
∆−∆−−∂−
+=
1
0
| |
!
1
i
t
i
ttx
i
ttxtx
ii
ttxtx
tx
txpttxttxtxE
i
txptxp
( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ]( )
( )[ ]∑
∞
=
∆−
→∆
∆−
→∆ ∂
∆−∆−−∂
∆
−
=
∆
−
1
00
|1
lim
!
1
lim
i
i
ttx
ii
t
i
ttxtx
t tx
txpttxttxtxE
tit
txptxp
Therefore
Rearranging, dividing by Δt, and tacking the limit Δt→0, we obtain:
Stochastic Processes
Fokker – Planck Equation (continue – 6)
Derivation of the Fokker–Planck Equation (continue – 4)
SOLO
We found ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ]( )
( )[ ]∑
∞
=
∆−∆−
→∆
∆−
→∆ ∂
∆−∆−−∂
∆
−
=
∆
−
1
|
00
|1
lim
!
1
lim
i
i
ttx
i
ttxtx
i
t
i
ttxtx
t tx
txpttxttxtxE
tit
txptxp
Define: ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ){ }
t
ttxttxtxE
txtxm
i
ttxtx
t
i
∆
∆−∆−−
=−
∆−
→∆
−
|
lim:
|
0
Therefore ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )[ ]( )
( )[ ]∑
∞
=
−
∂
−∂−
=
∂
∂
1 !
1
i
i
tx
iii
tx
tx
txptxtxm
it
txp
( ) ( )ttxtx
t
∆−=
→∆
−
0
lim: and:
This equation is called the Stochastic Equation or Kinetic Equation.
It is a partial differential equation that we must solve, with the initial condition:
( ) ( )[ ] ( )[ ]000 0 txptxp tx ===
Stochastic Processes
Fokker – Planck Equation (continue – 7)
Derivation of the Fokker–Planck Equation (continue – 5)
SOLO
We want to find px(t) [x(t)] where x(t) is the solution of
( ) ( ) ( ) [ ]fg ttttntxf
dt
txd
,, 0∈+=
( ){ } 0: == tnEn gg

( )tng
( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( )τδττ −=−− ttQnntntnE gggg
ˆˆ
Wiener (Gauss) Process
( ) ( )[ ] ( ) ( )[ ] ( ){ } [ ] ( ){ } [ ]{ } ( )tQnEtxnE
t
ttxttxtxE
txtxm gg
t
===
∆
∆−∆−−
=−
→∆
−
22
2
2
0
2
|
|
lim:
( ) ( )[ ] ( ) ( )[ ] ( ){ } ( ) ( ) ( ) ( ) ( )txfnEtxftx
td
txd
E
t
ttxttxtxE
txtxm g
t
,,|
|
lim:
0
0
1
=+=












=
∆
∆−∆−−
=−
→∆
−

( ) ( )[ ] ( ) ( )[ ] ( ){ } 20
|
lim:
0
>=
∆
∆−∆−−
=−
→∆
− i
t
ttxttxtxE
txtxm
i
t
i
Therefore we obtain:
( ) ( )[ ] ( )[ ] ( ) ( )[ ]( )
( )
( ) ( ) ( )[ ]
( )[ ]2
2
2
1,
tx
txp
tQ
tx
txpttxf
t
txp txtxtx
∂
∂
+
∂
∂
−=
∂
∂
Stochastic Processes
Fokker–Planck Equation
Return to Daum
89
Recursive Bayesian EstimationSOLO
Given a nonlinear discrete stochastic Markovian system we want to use k discrete
measurements Z1:k={z1,z2,…,zk} to estimate the hidden state xk. For this we want to
compute the probability of xk given all the measurements Z1:k={z1,z2,…,zk} .
If we know p ( xk| Z1:k ) then xk is estimated using:
{ } ( )∫== kkkkkkkk xdZxpxZxEx :1:1| ||:ˆ
( )( ){ } ( )( ) ( )∫ −−=−−= kkk
T
kkkkk
T
kkkkkk xdZxpxxxxZxxxxEP :1:1| |ˆˆ|ˆˆ
or more general we can compute all moments of the probability distribution p ( xk| Z1:k ):
( ){ } ( ) ( )∫= kkkkkk xdZxpxgZxgE :1:1 ||
Bayesian Estimation Introduction
Problem:
Estimate the hidden
States of a
Non-linear Dynamic
Stochastic System
from Noisy
Measurements.
kx1−kx
kz1−kz
0x 1x 2x
1z 2z kZ :11:1 −kZ
( )11, −− kk wxf
( )kk vxh ,
( )00 ,wxf
( )11,vxh
( )11,wxf
( )22 ,vxh
The knowledge of p ( xk| Z1:k ) allows also the computation of Maximum a Posteriori
(MAP) estimate using: ( )kk
x
MAP
kk Zxpx
k
:1| |maxargˆ =
90
Recursive Bayesian EstimationSOLO
To find the expression for p ( xk| Z1:k ) we use the theorem of joint probability (Bayes Rule):
( ) ( )
( )k
kk
RuleBayes
kk
Zp
Zxp
Zxp
:1
:1
:1
,
| =
Since Z1:k ={ zk, Z1:k-1 }: ( ) ( )
( )1:1
1:1
:1
,
,,
|
−
−
=
kk
kkk
kk
Zzp
Zzxp
Zxp
The denominator of this expression is
( ) ( ) ( )1:11:11:1 ,,|,, −−− = kkkkk
RuleBayes
kkk ZxpZxzpZzxp
( ) ( ) ( )
  
1:11:11:1 |,| −−−= kkkkkk ZpZxpZxzp
Since the knowledge of xk supersedes the need for Z1:k-1 = {z1, z2,…,zk-1}
( ) ( )kkkkk xzpZxzp |,| 1:1 ≡−
( ) ( ) ( ) ( )
( ) ( )1:11:1
1:11:1
:1
|
||
|
−−
−−
=
kkk
kkkkk
kk
ZpZzp
ZpZxpxzp
ZxpTherefore:
( ) ( ) ( )1:11:11:1 |, −−− = kkk
RuleBayes
kk ZpZzpZzp
and the nominator is
Bayesian Estimation Introduction
91
Recursive Bayesian EstimationSOLO
The final result is:
( ) ( ) ( )
( )1:1
1:1
:1
|
||
|
−
−
=
kk
kkkk
kk
Zzp
Zxpxzp
Zxp
Therefore:
Since p ( xk| Z1:k ) is a probability distribution it must satisfy:
( ) ( ) ( )
( )
( ) ( )
( )∫
∫
∫ −
−
−
−
===
1:1
1:1
1:1
1:1
:1
|
||
|
||
|1
kk
kkkkk
k
kk
kkkk
kkk
Zzp
xdZxpxzp
xd
Zzp
Zxpxzp
xdZxp
( ) 1| :1 =∫ kkk xdZxp
( ) ( ) ( )∫ −− = kkkkkkk xdZxpxzpZzp 1:11:1 |||
( ) ( ) ( )
( ) ( )∫ −
−
=
kkkkk
kkkk
kk
xdZxpxzp
Zxpxzp
Zxp
1:1
1:1
:1
||
||
|
and:
This is a recursive relation that needs the value of p (xk|Z1:k-1), assuming that
p (zk|xk) is obtained from the Markovian system definition ( zk = h (xk,vk) ).
Bayesian Estimation Introduction
kx1−kx
kz1−kz
0x 1x 2x
1z 2z kZ :11:1 −kZ
( )11, −− kk wxf
( )kk vxh ,
( )00 ,wxf
( )11,vxh
( )11,wxf
( )22 ,vxh
Hidden States
Measurements
92
Recursive Bayesian EstimationSOLO
The Correction Step is:
( ) ( ) ( )
( )1:1
1:1
:1
|
||
|
−
−
=
kk
kkkk
kk
Zzp
Zxpxzp
Zxp
Bayesian Estimation Introduction
evidence
priorlikeliood
posterior
⋅
=
or:
prior: given by prediction equation ( )kk xzp |
likelihood: given by observation model ( )1:1| −kk Zxp
evidence: the normalized constant on the denominator
( ) ( ) ( )∫ −− = kkkkkkk xdZxpxzpZzp 1:11:1 |||
93
Recursive Bayesian EstimationSOLO
( ) ( ) ( )1:111:111:11 |,||, −−−−−− = kkkkk
Bayes
kkk ZxpZxxpZxxp
( ) ( ) ( ) ( )∫∫ −−−−−−−− == 11:11111:111:1 |||,| kkkkkkkkkkk xdZxpxxpxdZxxpZxp
Using:
We obtain:
Since for a Markov Process the knowledge of xk-1 supersedes the need for
Z1:k-1 = {z1, z2,…,zk-1}
( ) ( )11:11 |,| −−− = kkkkk xxpZxxp
Chapman – Kolmogorov Equation
Sydney Chapman
1888 - 1970
Andrey
Nikolaevich
Kolmogorov
1903-1987
Bayesian Estimation Introduction
kx1−kx
kz1−kz
0x 1x 2x
1z 2z kZ :11:1 −kZ
( )11, −− kk wxf
( )kk vxh ,
( )00 ,wxf
( )11,vxh
( )11,wxf
( )22 ,vxh
Hidden States
Measurements
94
Recursive Bayesian EstimationSOLO
( ) ( ) ( ) ( )∫∫ −−−−−−−− == 11:11111:111:1 |||,| kkkkkkkkkkk xdZxpxxpxdZxxpZxp
Using p (xk-1|Z1:k-1) from time-step k-1 and p (xk|xk-1) of the Markov system, compute:
Initialize with p (x0)
( ) ( ) ( )
( ) ( )∫ −
−
=
kkkkk
kkkk
kk
xdZxpxzp
Zxpxzp
Zxp
1:1
1:1
:1
||
||
|
Using p (xk|Z1:k-1) from Prediction phase and p (zk|xk) of the Markov system, compute:
{ } ( )∫== kkkkkkkk xdZxpxZxEx :1:1| ||ˆ
( )( ){ } ( )( ) ( )∫ −−=−−= kkk
T
kkkkk
T
kkkkkk xdZxpxxxxZxxxxEP :1:1| |ˆˆ|ˆˆ
At stage k
k:=k+1
( )1|11|
ˆˆ −−− = kkkk xfx
0
Prediction phase
(before zk measurement)
1
Correction Step (after zk measurement)2
Filtering3
kx1−kx
kz1−kz
0x 1x 2x
1z 2z kZ :11:1 −kZ
( )11, −− kk wxf
( )kk vxh ,
( )00 ,wxf
( )11,vxh
( )11,wxf
( )22 ,vxh
Bayesian Estimation Introduction - Summary
95
Recursive Bayesian EstimationSOLO
( ) ( ) ( ) ( )∫∫ −−−−−−−− == 11:11111:111:1 |||,| kkkkkkkkkkk xdZxpxxpxdZxxpZxp
( ) ( ) ( )
( ) ( )∫ −
−
=
kkkkk
kkkk
kk
xdZxpxzp
Zxpxzp
Zxp
1:1
1:1
:1
||
||
|
Prediction phase
(before zk measurement)
1
Correction Step (after zk measurement)2
kx1−kx
kz1−kz
0x 1x 2x
1z 2z kZ :11:1 −kZ
( )11, −− kk wxf
( )kk vxh ,
( )00 ,wxf
( )11,vxh
( )11,wxf
( )22 ,vxh
Bayesian Estimation Introduction - Summary
This is a Conceptual Solution because the Integrals are Often Not Tractable.
An optimal solution is possible for some restricted cases:
• Linear Systems with Gaussian Noises (system and measurements)
• Grid-Based Filters
Table of Content
96
SOLO
Linear Gaussian Systems
A Linear Combination of Independent Gaussian random vectors is also a
Gaussian random vector mmm XaXaXaS +++= 2211:
( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )



+++++++−=




+−



+−



+−=
ΦΦ⋅Φ==Φ ∫ ∫
+∞
∞−
+∞
∞−
mmmm
mmmm
YYYm
YpYp
mYYmS
aaajaaa
ajaajaaja
YdYdYYpSj m
mmYY
mm
µµµωσσσω
µωσωµωσωµωσω
ωωωωω



  



2211
222
2
2
2
2
1
2
1
2
222
22
2
2
2
2
2
11
2
1
2
1
2
11,,
2
1
exp
2
1
exp
2
1
exp
2
1
exp
,,exp 21
11
1
( ) ( )





 −
−= 2
2
2
exp
2
1
,;
i
ii
i
iiiX
X
Xp i
σ
µ
σπ
σµ ( ) ( ) ( ) 



+−==Φ ∫
+∞
∞−
iiiiXiX jXdXpXj ii
µωσωωω
22
2
1
expexp:
Moment-
Generating
Function
Gaussian
distribution
Define
Proof:
( ) ( )iX
ii
i
X
i
iYiii Xp
aa
Y
p
a
YpXaY iii
11
: =





=→=
( ) ( ) ( ) ( )
( )
( ) 





+−=Φ===Φ ∫∫
+∞
∞−
+∞
∞−
iiiiiiX
asign
asign
ii
i
iX
iiiiYiY ajaXaXda
a
Xp
XajYdYpYj i
i
ii
µωσωωωω
222
2
1
expexpexp:
1
1
Review of Probability
97
SOLO
Linear Gaussian Systems (continue – 1)
A Linear Combination of Independent Gaussian random vectors is also a
Gaussian random vector mmm XaXaXaS +++= 2211:
Therefore the Linear Combination of Independent Gaussian Random Variables is a
Gaussian Random Variable with
mmS
mmS
aaa
aaa
m
m
µµµµ
σσσσ
+++=
+++=


2211
222
2
2
2
2
1
2
1
2
Therefore the Sm probability distribution is:
( ) ( )







 −
−= 2
2
2
exp
2
1
,;
m
m
m
mm
S
S
S
SSm
x
Sp
σ
µ
σπ
σµ
Proof (continue – 1):
( ) ( ) ( )





+++++++−=Φ mmmmS aaajaaam
µµµωσσσωω  2211
222
2
2
2
2
1
2
1
2
2
1
exp
We found:
Review of Probability
q.e.d.
98
Recursive Bayesian EstimationSOLO
Linear Gaussian Markov Systems (continue – 2)
( )
( )kkkk
kkkk
vuxkhz
wuxkfx
,,,
,,,1 111
=
−= −−−
kkkk
kkkkkkk
vxHz
wuGxx
+=
Γ++Φ= −−−−−− 111111
wk-1 and vk, white noises, zero mean, Gaussian, independent
( ) ( ) ( ){ } ( ) ( ){ } ( )kPkekeEkxEkxke x
T
xxx =−= &:
( ) ( ) ( ){ } ( ) ( ){ } ( ) lk
T
www kQlekeEkwEkwke ,
0
&: δ=−=

( ) ( ) ( ){ } ( ) ( ){ } ( ) lk
T
vvv kRlekeEkvEkvke ,
0
&: δ=−=

( ) ( ){ } { }0=lekeE
T
vw



=
≠
=
lk
lk
lk
1
0
,δ
( ) ( )Qwwpw ,0;N=
( ) ( )Rvvpv ,0;N=
( )
( ) 





−= −
wQw
Q
wp T
nw
1
2/12/
2
1
exp
2
1
π
( )
( ) 



−= −
vRv
R
vp T
pv
1
2/12/
2
1
exp
2
1
π
A Linear Gaussian Markov Systems is defined as
( ) ( )0|0000 ,;0
Pxxxp ttx == = N ( )
( )
( ) ( )



−−−= =
−
== 00
1
0|0002/1
0|0
2/0
2
1
exp
2
1
0
xxPxx
P
xp t
T
tntx
π
99
Recursive Bayesian EstimationSOLO
Linear Gaussian Markov Systems (continue – 3)
111111 −−−−−− Γ++Φ= kkkkkkk wuGxx
Prediction phase (before zk measurement)
{ } { } { }  
0
1:111111:1111:11| |||:ˆ −−−−−−−−−− Γ++Φ== kkkkkkkkkkkk ZwEuGZxEZxEx
or 111|111|
ˆˆ −−−−−− +Φ= kkkkkkk uGxx
The expectation is
{ }[ ] { }[ ]{ }
( )[ ] ( )[ ]{ }1:1111|111111|111
1:11|1|1|
|ˆˆ
|ˆˆ:
−−−−−−−−−−−−−
−−−−
Γ+−ΦΓ+−Φ=
−−=
k
T
kkkkkkkkkkkk
k
T
kkkkkkkk
ZwxxwxxE
ZxExxExEP
( ) ( ){ } ( ){ }
( ){ } { } T
k
Q
T
kkk
T
k
T
kkkkk
T
k
T
kkkkk
T
k
P
T
kkkkkkk
wwExxwE
wxxExxxxE
kk
11111
0
1|1111
1
0
11|11111|111|111
ˆ
ˆˆˆ
1|1
−−−−−−−−−−
−−−−−−−−−−−−−−
ΓΓ+Φ−Γ+
Γ−Φ+Φ−−Φ=
−−
  
    
T
kk
T
kkkkkk QPP 1111|111| −−−−−−− ΓΓ+ΦΦ=
{ } ( )1|1|1:1 ,ˆ;| −−− = kkkkkkk PxxZxP N
Since is a Linear Combination of Independent
Gaussian Random Variables:
111111 −−−−−− Γ++Φ= kkkkkkk wuGxx
100
SOLO
For the particular vector measurement equation
where the measurement noise, is Gaussian (normal), with zero mean: ( ) ( )kkkv Rvvp ,0;N=
( )
( )
( )xp
zxp
xzp
x
zx
xz
,
| ,
| =
and independent of , the conditional probability can be written,
using Bayes rule as:
kx ( )xzp xz ||
( )










−
−
==−=
1
111
1111
1
1
,
nxpp
nx
pxnxpxnpxpx
xHz
xHz
zxfxHzv
xn
xn

( ) ( )
2/1
,,
/,, T
vxzx
JJvxpzxp =
The measurement noise can be related to and by the function:v zx
pxp
p
pp
p
I
z
f
z
f
z
f
z
f
z
f
J =
















∂
∂
∂
∂
∂
∂
∂
∂
=





∂
∂
=



1
1
1
1
( ) ( ) ( ) ( )vpxpvxpzxp vxvxzx
⋅== ,, ,,
kv
Since the measurement noise is independent of :xv
zThe joint probability of and is given by:x
Recursive Bayesian Estimation
Linear Gaussian Markov Systems (continue – 4)
kkkk vxHz +=
Correction Step (after zk measurement) - 1st
Way
( ) ( ) ( )
( )1:1
1:1
:1
|
||
|
−
−
=
kk
kkkk
kk
Zzp
Zxpxzp
Zxp
101
( ) ( )kkkv Rvvp ,0;N=
kkkk vxHz +=
Consider a Gaussian vector , where ,
measurement, , where the Gaussian noise
is independent of and .
v
kx ( ) [ ]1|1| ,; −−= kkkkkkx Pxxxp

N
kx
( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
== kkxkkxzkkkzxkz xdxpxzpxdzxpzp |, |,
is Gaussian with( )kz zp ( ) ( ) ( ) ( ) 1|
0
−=+=+= kkkkkkkkk xHvExEHvxHEzE


( ) ( )[ ] ( )[ ]{ } [ ][ ]{ }
( )[ ] ( )[ ]{ } [ ]{ }
[ ]{ } [ ]{ } { } k
T
kkkk
T
kk
T
k
T
kkkk
T
kkkkk
T
k
T
kkkkkkk
T
kkkkkkkkkk
T
kkkkkkkkkkkk
T
kkkkk
RHPHvvEHxxvEvxxEH
HxxxxEHvxxHvxxHE
xHvxHxHvxHEzEzzEzEz
+=+−−−−
−−=+−+−=
−+−+=−−=
−−−
−−−−
−−
1|
0
1|
0
1|
1|1|1|1|
1|1|cov
  

  



( )
( ) ( )
( )[ ] ( )[ ] ( )[ ]






−−+−−−−
+−
=
−
xHzRHPHxHz
RHPH
zp TT
Tpz
ˆˆ
2
1
exp
2
1 1
2/12/
π
( )
( )
( ) ( )





−−−= −
−
−−
−
−− 1|
1
1|1|2/1
1|
2/1:1|
2
1
exp
2
1
|1:1 kkkkk
T
kkk
kk
nkkZx xxPxx
P
Zxp kk

π
( ) ( )
( )
( ) ( )



−−−=−= −
kkk
T
kkkpkkkvkkxz xHzRxHz
R
xHzpxzp 1
2/12/|
2
1
exp
2
1
|
π
Recursive Bayesian EstimationSOLO
Linear Gaussian Markov Systems (continue – 5)
Correction Step (after zk measurement) 1st
Way (continue – 1)
102
Recursive Bayesian EstimationSOLO
Linear Gaussian Markov Systems (continue – 6)
kkkk vxHz +=
( ) ( )Rvvpv ,0;N=
( )
( ) 





−= −
vRv
R
vp T
pv
1
2/12/
2
1
exp
2
1
π
Correction Step (after zk measurement) 1st
Way (continue – 2)
( )
( )
( ) ( )



−−−= −
−
−−
−
−− 1|
1
1|1|2/1
1|
2/1:1|
2
1
exp
2
1
|1:1 kkkkk
T
kkk
kk
nkkZx xxPxx
P
Zxp kk

π
( ) ( )
( )
( ) ( )



−−−=−= −
kkk
T
kkkpkkkvkkxz xHzRxHz
R
xHzpxzp 1
2/12/|
2
1
exp
2
1
|
π
( )
( )
[ ] [ ] [ ]






−+−−
+
= −
−
−−
−
1|
1
1|1|2/1
1|
2/
ˆˆ
2
1
exp
2
1
kkkk
T
kkkk
T
kkk
k
T
kkkk
p
kz xHzRHPHxHz
RHPH
zp
π
( ) ( ) ( )
( )
( )
( ) ( ) ( ) ( ) [ ] [ ] [ ]





−+−+−−−−−−⋅
+
==
−
−
−−−
−
−−
−
−
−−
−
1|
1
1|1|1|
1
1|1|
1
2/1
1|
2/12/1
1|2/1:1
1:1
:1
ˆˆ
2
1
2
1
2
1
exp
2
1
|
||
|
kkkkk
T
kkkk
T
kkkkkkkkk
T
kkkkkkk
T
kkk
k
T
kkkk
kkknkk
kkkk
kk
xHzRHPHxHzxxPxxxHzRxHz
RHPH
RPZzp
Zxpxzp
Zxp

π
from which
103
( ) ( ) ( ) ( ) ( ) [ ] ( )1|
1
1|1|1|
1
1|1|
1
−
−
−−−
−
−−
−
−+−−−−+−− kkkk
T
kkkkk
T
kkkkkkkkk
T
kkkkkkk
T
kkk xHzHPHRxHzxxPxxxHzRxHz

( )[ ] ( )[ ] ( ) ( )
( ) [ ] ( ) ( ) [ ]{ }( )
( ) ( ) ( ) ( ) ( ) [ ]( )1|
11
1|1|1|
1
1|1|
1
1|
1|
1
1|
1
1|1|
1
1|1|
1|
1
1|1|1|1|
1
1|1|
−
−−
−−−
−
−−
−
−
−
−
−
−
−−
−
−−
−
−
−−−−
−
−−
−+−+−−−−−−
−+−−=−+−−
−−+−−−−−−=
kkkkk
T
kkk
T
kkkkkkkk
T
kkkkkkkkk
T
k
T
kkk
kkkk
T
kkkkkk
T
kkkkkkkk
T
kkkkk
T
kkkk
kkkkk
T
kkkkkkkkkkkk
T
kkkkkkkk
xxHRHPxxxxHRxHzxHzRHxx
xHzHPHRRxHzxHzHPHRxHz
xxPxxxxHxHzRxxHxHz



[ ] [ ] 1111
1|
1111
1|
1 −−−−
−
−−−−
−
−
++/−/=+− k
T
kkk
T
kkkkkkk
LemmaMatrixInverse
T
kkkkkk RHHRHPHRRRHPHRRwe have
Define:
[ ] [ ] 1
1|
1
1|
1
1|
1
1|
111
1|| :
−
−
−
−
−
−
−
−
−−−
− +−=+= kk
T
k
T
kkkkkkkkkk
LemmaMatrixInverse
kk
T
kkkkk PHHPHRHPPHRHPP
( )[ ] ( )[ ]1|
1
|1|
1
|1|
1
|1| −
−
−
−
−
−
− −+−−+−= kkkkk
T
kkkkkkkk
T
kkkkk
T
kkkkkk xHzRHPxxPxHzRHPxx

( )
( )
( )[ ] ( )[ ]





−+−−+−−⋅= −
−
−
−
−
−
− 1|
1
|1|
1
|1|
1
|1|2/1
|
2/:1|
2
1
exp
2
1
| kkkkk
T
kkkkkkkk
T
kkkkk
T
kkkkkk
kk
nkkzx xHzRHPxxPxHzRHPxx
P
Zxp

π
Recursive Bayesian EstimationSOLO
Linear Gaussian Markov Systems (continue – 7)
Correction Step (after zk measurement) 1st
Way (continue – 3)
then ( ) ( ) ( ) ( ) ( ) [ ] ( )1|
1
1|1|1|
1
1|1|
1
−
−
−−−
−
−−
−
−+−−−−+−− kkkkk
T
kkkk
T
kkkkkkkkk
T
kkkkkkk
T
kkk xHzRHPHxHzxxPxxxHzRxHz

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )1|
1
|1|1|
1
||
1
1|
1|
1
|
1
|1|1|
1
|
1
||
1
1|
−
−
−−
−−
−
−
−−
−−
−−−
−
−−+−−−
−−−−−=
kkkkk
T
kkkkkkkkkkkk
T
kkkk
kkkkk
T
kkkkk
T
kkkkkkkk
T
kkkkkkkkk
T
kkkk
xxPxxxxPPHRxHz
xHzRHPPxxxHzRHPPPHRxHz


104
then
( )kkzx
x
Zxp
k
:1| |max
( )
{ }kk
kkkkk
T
kkkkkkkk
ZxE
xHzRHPxxx
:1
1|
1
|1|
*
|
|
ˆˆ:ˆ
=
−+== −
−
−
Recursive Bayesian EstimationSOLO
Linear Gaussian Markov Systems (continue – 8)
Correction Step (after zk measurement) 1st
Way (continue – 4)
( )
( )
( )[ ] ( )[ ]





−+−−+−−⋅= −
−
−
−
−
−
− 1|
1
1|
1
|1|
1
1|2/1
|
2/:1|
2
1
exp
2
1
| kkkkk
T
kkkkkk
T
kkkkk
T
kkkk
kk
nkkzx xHzRHxxPxHzRHxx
P
Zxp

π
where:[ ] ( )( ){ }k
T
kkkkkkkk
T
kkkkk ZxxxxEHRHPP :1||
111
1||
ˆˆ: −−=+=
−−−
−
105
{ } ( ) ( )

ki
kkkkkkkkkkkkkkkkk zzKxxHzKxZxEx 1|1|1|1|:1| ˆ| −−−− −+=−+==
Recursive Bayesian EstimationSOLO
Linear Gaussian Markov Systems (continue – 9)
Summary 1st
Way – Kalman Filter
Initial Conditions:
[ ] 111
1|| :
−−−
− += kk
T
kkkkk HRHPP
Prediction phase (before zk measurement)
111|111|
ˆˆ −−−−−− +Φ= kkkkkkk uGxx
Correction Step (after zk measurement)
T
kk
T
kkkkkk QPP 1111|111| −−−−−−− ΓΓ+ΦΦ=
1
|:
−
= k
T
kkkk RHPK
{ }00|0
ˆ xEx = ( ) ( ){ }T
xxxxEP 0|000|000|0
ˆˆ: −−=
kkkk wxHz += { } { } { }
0
1:11|1:11:11| |ˆ||ˆ −−−−− +=+== kkkkkkkkkkkkk ZwExHZwxHEZzEz
1|1|
ˆˆ −− = kkkkk xHz
106
Recursive Bayesian EstimationSOLO
Linear Gaussian Markov Systems (continue – 10)
kkkk vxHz +=
( ) ( )Rvvpv ,0;N= ( )
( ) 





−= −
vRv
R
vp T
pv
1
2/12/
2
1
exp
2
1
π
( )
( )
[ ] [ ] [ ]






−+−−
+
= −
−
−−
−
1|
1
1|1|2/1
1|
2/
ˆˆ
2
1
exp
2
1
kkkkk
T
kkkk
T
kkkk
k
T
kkkk
p
kz xHzRHPHxHz
RHPH
zp
π
from which { } 1|1:11|
ˆ|ˆ −−− == kkkkkkk xHZzEz
( ) ( ){ } kk
T
kkkkk
T
kkkkkk
zz
kk SRHPHZzzzzEP =+=−−= −−−−− :ˆˆ 1|1:11|1|1|
[ ][ ]{ }
[ ] ( )[ ]{ } T
kkkk
T
kkkkkkkk
k
T
kkkkkk
xz
kk
HPZvxxHxxE
ZzzxxEP
1|1:11|1|
1:11|1|1|
ˆˆ
ˆˆ
−−−−
−−−−
=+−−=
−−=
We also have
Correction Step (after zk measurement) 2nd
Way
Define the innovation: 1|1|
ˆˆ: −− −=−= kkkkkk xHzzzi
107
Recursive Bayesian EstimationSOLO
Joint and Conditional Gaussian Random Variables






=
k
k
k
z
x
yDefine: assumed that they are Gaussian distributed
Prediction phase (before zk measurement) 2nd
way (continue -1)
{ }








=












=
−
−
−
−
−
1|
1|
1:1
1:1
1:1
ˆ
ˆ
|
|
|
kk
kk
kk
kk
kk
z
x
Zz
Zx
EZyE








=
















−
−








−
−
=
−−
−−
−
−
−
−
−
− zz
kk
zx
kk
xz
kk
xx
kk
k
T
kkk
kkk
kkk
kkkyy
kk
PP
PP
Z
zz
xx
zz
xx
EP
1|1|
1|1|
1:1
1|
1|
1|
1|
1|
ˆ
ˆ
ˆ
ˆ
where: [ ][ ]{ } 1|1:11|1|1|
ˆˆ −−−−− =−−= kkk
T
kkkkkk
xx
kk PZxxxxEP
[ ][ ]{ } kk
T
kkkkk
T
kkkkkk
zz
kk SRHPHZzzzzEP =+=−−= −−−−− :ˆˆ 1|1:11|1|1|
[ ][ ]{ } T
kkkk
T
kkkkkk
xz
kk HPZzzxxEP 1|1:11|1|1| ˆˆ −−−−− =−−=
Linear Gaussian Markov Systems (continue – 11)
108
( ) ( ) ( )



−−−= −
−
−−
−
− 1|
1
1|1|2/1
1|
1:1,
ˆˆ
2
1
exp
2
1
|, kkk
yy
kk
T
kkk
yy
kk
kkkzx yyPyy
P
Zzxp
π
Recursive Bayesian EstimationSOLO
Joint and Conditional Gaussian Random Variables
The conditional probability distribution function (pdf) of xk given zk is given by:
Prediction phase (before zk measurement) 2nd
Way (continue – 2)
( ) ( ) ( )





−−−= −
−
−−
−
− 1|
1
1|1|2/1
1|
1:1 ˆˆ
2
1
exp
2
1
| kkk
zz
kk
T
kkk
zz
kk
kkz zzPzz
P
Zzp
π
( ) ( )
( )
( )
( ) ( )
( ) ( )



−−−




−−−
===
−
−
−−
−
−
−−
−
−
−
−
−
1|
1
1|1|
1|
1
1|1|
2/1
1|
2/1
1|
1:1
1:1,
|1:1|
ˆˆ
2
1
exp
ˆˆ
2
1
exp
2
2
|
|,
|,|
kkk
zz
kk
T
kkk
kkk
yy
kk
T
kkk
yy
kk
zz
kk
kkz
kkkzx
kkzxkkkzx
zzPzz
yyPyy
P
P
Zzp
Zzxp
zxpZzxp
π
π
( ) ( ) ( ) ( )



−−+−−−= −
−
−−−
−
−−
−
−
1|
1
1|1|1|
1
1|1|2/1
1|
2/1
1|
ˆˆ
2
1
ˆˆ
2
1
exp
2
2
kkk
zz
kk
T
kkkkkk
yy
kk
T
kkk
yy
kk
zz
kk
zzPzzyyPyy
P
P
π
π
Linear Gaussian Markov Systems (continue – 12)
We assumed that is Gaussian distributed:





=
k
k
k
z
x
y
109
Recursive Bayesian EstimationSOLO
Joint and Conditional Gaussian Random Variables
Prediction phase (before zk measurement) 2nd
Way (continue – 3)
( ) ( ) ( ) ( ) ( )



−−+−−−= −
−
−−−
−
−−
−
−
1|
1
1|1|1|
1
1|1|2/1
1|
2/1
1|
| ˆˆ
2
1
ˆˆ
2
1
exp
2
2
| kkk
zz
kk
T
kkkkkk
zz
kk
T
kkk
yy
kk
zz
kk
kkzx zzPzzyyPyy
P
P
zxp
π
π
Define: 1|1| ˆ:&ˆ: −− −=−= kkkkkkkk zzxx ςξ
( ) ( ) ( ) ( )
k
zz
kk
T
kk
zz
kk
T
kk
zx
kk
T
kk
xz
kk
T
kk
xx
kk
T
k
kkkzz
T
k
k
k
zz
kk
zx
kk
xz
kk
xx
kk
T
k
k
k
zz
kk
T
k
k
k
zz
kk
zx
kk
xz
kk
xx
kk
T
k
k
kkk
zz
kk
T
kkkkkk
yy
kk
T
kkk
PTTTT
P
TT
TT
P
PP
PP
zzPzzyyPyyq
ςςςςξςςξξξ
ςς
ς
ξ
ς
ξ
ςς
ς
ξ
ς
ξ
1
1|1|1|1|1|
1
1|
1|1|
1|1|
1
1|
1
1|1|
1|1|
1|
1
1|1|1|
1
1|1| ˆˆˆˆ:
−
−−−−−
−
−
−−
−−
−
−
−
−−
−−
−
−
−−−
−
−−
−+++=
−



















=
−



















=
−−−−−=
Linear Gaussian Markov Systems (continue – 13)
110
Recursive Bayesian EstimationSOLO
Joint and Conditional Gaussian Random Variables
Prediction phase (before zk measurement) 2nd
way (continue – 4)
Using Inverse Matrix Lemma:
( ) ( )
( ) ( ) 







−−−
−−−
=





−−−−−
−−−−−−
11111
111111
nxmnxnmxnmxmmxnmxmnxmnxnmxnmxm
mxmnxmmxnmxmnxmnxnmxnmxmnxmnxn
mxmmxn
nxmnxn
BADCDCBADC
CBDCBADCBA
CD
BA








=








−−
−−
−
−−
−−
zz
kk
zx
kk
xz
kk
xx
kk
zz
kk
zx
kk
xz
kk
xx
kk
TT
TT
PP
PP
1|1|
1|1|
1
1|1|
1|1|
in 1
1|1|1|
1
1|
1|
1
1|1|1|
1
1|
1|
1
1|1|1|
1
1|
−
−−−
−
−
−
−
−−−
−
−
−
−
−−−
−
−
−=
−=
−=
zz
kk
xz
kk
xz
kk
xx
kk
xz
kk
xx
kk
zx
kk
zz
kk
zz
kk
kkzxkkzzkkxzkkxxkkxx
PPTT
TTTTP
PPPPT
k
zz
kk
T
kk
zz
kk
T
kk
zx
kk
T
kk
xz
kk
T
kk
xx
kk
T
k PTTTTq ςςςςξςςξξξ
1
1|1|1|1|1|
−
−−−−− −+++=
( )
k
zz
kk
T
kk
zz
kk
T
k
k
xz
kk
xx
kk
zx
kk
T
kk
xz
kk
xx
kk
zx
kk
T
kk
xz
kk
T
kk
xx
kk
xx
kk
zx
kk
T
k
T
k
PT
TTTTTTTTTT
ςςςς
ςςςςςξξςξ
1
1|1|
1|
1
1|1|1|
1
1|1|1|1|
1
1|1|
−
−−
−
−
−−−
−
−−−−
−
−−
−+
−+++=
( ) ( )
( ) ( ) ( )k
xz
kk
xx
kkk
xx
kk
T
k
xz
kk
xx
kkkk
zz
kk
xz
kk
xx
kkkkzx
zz
kk
T
k
k
xz
kk
xx
kk
xx
kk
T
k
xz
kk
xx
kkkk
xx
kk
T
k
xz
kk
xx
kkk
TT
TTTTTPTTTT
TTTTTTTT
zx
kk
Txz
kk
ςξςξςς
ςςξξςξ
1|
1
1|1|1|
1
1|
0
1|1|
1
1|1|1|
1|
1
1|1|1|
1
1|1|1|
1
1|
1|1|
−
−
−−−
−
−−−
−
−−−
−
−
−−−
−
−−−
−
−
=
++=−−+
+++=
−−
  
Linear Gaussian Markov Systems (continue – 14)
111
Recursive Bayesian EstimationSOLO
Joint and Conditional Gaussian Random Variables
Prediction phase (before zk measurement) 2nd
way (continue – 5)








=








−−
−−
−
−−
−−
zz
kk
zx
kk
xz
kk
xx
kk
zz
kk
zx
kk
xz
kk
xx
kk
TT
TT
PP
PP
1|1|
1|1|
1
1|1|
1|1|
1
1|1|1|
1
1|
1|
1
1|1|1|
1
1|
1|
1
1|1|1|
1
1|
−
−−−
−
−
−
−
−−−
−
−
−
−
−−−
−
−
−=
−=
−=
zz
kk
xz
kk
xz
kk
xx
kk
xz
kk
xx
kk
zx
kk
zz
kk
zz
kk
kkzxkkzzkkxzkkxxkkxx
PPTT
TTTTP
PPPPT
( ) ( )k
xz
kk
xx
kkk
xx
kk
T
k
xz
kk
xx
kkk TTTTTq ςξςξ 1|
1
1|1|1|
1
1| −
−
−−−
−
− ++=
1|1| ˆ:&ˆ: −− −=−= kkkkkkkk zzxx ςξ
( )
( )[ ] ( )[ ]






−−−−−−−=






−=
−−−−−
−
−
−
−
1|1|1|1|1|2/1
1|
2/1
1|
2/1
1|
2/1
1|
|
ˆˆˆˆ
2
1
exp
2
2
2
1
exp
2
2
|
kkkkkkk
xx
kk
T
kkkkkkk
yy
kk
zz
kk
yy
kk
zz
kk
kkzx
zzKxxTzzKxx
P
P
q
P
P
zxp
π
π
π
π
( )1|
1
1|1|1|
1
1|1| ˆˆ −
−
−−−
−
−− −−−=+ kkk
K
zz
kk
xz
kkkkkk
xx
kk
xz
kkk zzPPxxTT
k


ςξ
Linear Gaussian Markov Systems (continue – 15)
112
Recursive Bayesian EstimationSOLO
Joint and Conditional Gaussian Random Variables
Prediction phase (before zk measurement) 2nd
Way (continue – 6)
( ) ( )[ ] ( )[ ]





−−−−−−−= −
−
−−−−−
−
−−− 1|
1
1|1|1|1|1|
1
1|1|1|| ˆˆˆˆ
2
1
exp| kkk
xx
kk
xz
kkkkk
xx
kk
T
kkk
xx
kk
xz
kkkkkkkzx zzPPxxTzzPPxxczxp
From this we can see that
{ } ( )1|
1
1|1|1|| ˆˆˆ| −
−
−−− −+== kkk
K
zz
kk
xz
kkkkkkkk zzPPxxzxE
k



( )( ){ }
T
k
zz
kkk
xx
kk
zx
kk
zz
kk
xz
kk
xx
kk
xx
kkk
T
kkkkkk
xx
kk
KPKP
PPPPTZxxxxEP
1|1|
1|
1
1|1|1|
1
1|:1|||
ˆˆ
−−
−
−
−−−
−
−
−=
−==−−=
[ ][ ]{ } 1|1:11|1|1|
ˆˆ −−−−− =−−= kkk
T
kkkkkk
xx
kk PZxxxxEP
[ ][ ]{ } k
T
kkkkkk
T
kkkkkk
zz
kk SHPHRZzzzzEP =+=−−= −−−−− :ˆˆ 1|1:11|1|1|
[ ][ ]{ } T
kkkk
T
kkkkkk
xz
kk HPZzzxxEP 1|1:11|1|1| ˆˆ −−−−− =−−=
Linear Gaussian Markov Systems (continue – 16)
113
Recursive Bayesian EstimationSOLO
Joint and Conditional Gaussian Random Variables
Prediction phase (before zk measurement) 2nd
Way (continue – 7)
From this we can see that
( ) [ ] 111
1|1|
1
1|1|1||
−−−
−−
−
−−− +=+−= kk
T
kkkkkk
T
kkkkk
T
kkkkkkk HRHPPHHPHRHPPP
( ) 1
1|
1
1|1|
1
1|1|
−
−
−
−−
−
−− =+== k
T
kkk
T
kkkkk
T
kkk
zz
kk
xz
kkk SHPHPHRHPPPK
Linear Gaussian Markov Systems (continue – 17)
kk
T
kkkkk KSKPP −= −1||
or
[ ][ ]{ } 1|1:11|1|1|
ˆˆ −−−−− =−−= kkk
T
kkkkkk
xx
kk PZxxxxEP
[ ][ ]{ } k
T
kkkkkk
T
kkkkkk
zz
kk SHPHRZzzzzEP =+=−−= −−−−− :ˆˆ 1|1:11|1|1|
[ ][ ]{ } T
kkkk
T
kkkkkk
xz
kk HPZzzxxEP 1|1:11|1|1| ˆˆ −−−−− =−−=
114
We found that the optimal Kk is
[ ] 1
1|1|
−
−− +=
T
kkkkk
T
kkkk HPHRHPK
[ ] [ ] 1111
|1
11
&
1
|1 1
1|
1
−−−−
+
−−−
+ +−=+ −
−
− k
T
kkk
T
kkkkkk
LemmaMatrixInverse
existPR
T
kkkkk RHHRHPHRRHPHR
kkk
[ ] 1111
1|
1
1|
1
1|
−−−−
−
−
−
−
− +−= k
T
kkk
T
kkkkk
T
kkkk
T
kkkk RHHRHPHRHPRHPK
[ ]{ } [ ] 1111
|1
111
|1|1
−−−−
+
−−−
++ +−+= k
T
kkk
T
kkkkk
T
kkk
T
kkkkk RHHRHPHRHHRHPP
[ ] 1
|
1111
|1
−−−−−
+ =+= RHPRHHRHPK T
kkk
T
kkk
T
kkkk
If Rk
-1
and Pk|k-1
-1
exist:
Recursive Bayesian EstimationSOLO
Linear Gaussian Markov Systems (continue – 18)
Relation Between 1st
and 2nd
ways
2nd
Way
1st
Way = 2nd
Way
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation
3  recursive bayesian estimation

More Related Content

What's hot

2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulationSolo Hermelin
 
Equation of motion of a variable mass system3
Equation of motion of a variable mass system3Equation of motion of a variable mass system3
Equation of motion of a variable mass system3Solo Hermelin
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variationsSolo Hermelin
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loopsSolo Hermelin
 
4 stochastic processes
4 stochastic processes4 stochastic processes
4 stochastic processesSolo Hermelin
 
Equation of motion of a variable mass system1
Equation of motion of a variable mass system1Equation of motion of a variable mass system1
Equation of motion of a variable mass system1Solo Hermelin
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problemsSolo Hermelin
 
Discrete control2 converted
Discrete control2 convertedDiscrete control2 converted
Discrete control2 convertedcairo university
 
Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 
Calculus of variations & solution manual russak
Calculus of variations & solution manual   russakCalculus of variations & solution manual   russak
Calculus of variations & solution manual russakJosé Pallo
 
Introduction to Calculus of Variations
Introduction to Calculus of VariationsIntroduction to Calculus of Variations
Introduction to Calculus of VariationsDelta Pi Systems
 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of VariationSubhajit Pramanick
 

What's hot (20)

2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
 
Matrices ii
Matrices iiMatrices ii
Matrices ii
 
Equation of motion of a variable mass system3
Equation of motion of a variable mass system3Equation of motion of a variable mass system3
Equation of motion of a variable mass system3
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loops
 
Dyadics
DyadicsDyadics
Dyadics
 
Legendre functions
Legendre functionsLegendre functions
Legendre functions
 
Gamma function
Gamma functionGamma function
Gamma function
 
4 stochastic processes
4 stochastic processes4 stochastic processes
4 stochastic processes
 
2 estimators
2 estimators2 estimators
2 estimators
 
Equation of motion of a variable mass system1
Equation of motion of a variable mass system1Equation of motion of a variable mass system1
Equation of motion of a variable mass system1
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
Matrices i
Matrices iMatrices i
Matrices i
 
Discrete control2 converted
Discrete control2 convertedDiscrete control2 converted
Discrete control2 converted
 
Prime numbers
Prime numbersPrime numbers
Prime numbers
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Calculus of variations & solution manual russak
Calculus of variations & solution manual   russakCalculus of variations & solution manual   russak
Calculus of variations & solution manual russak
 
Introduction to Calculus of Variations
Introduction to Calculus of VariationsIntroduction to Calculus of Variations
Introduction to Calculus of Variations
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of Variation
 

Viewers also liked

What is bayesian statistics and how is it different?
What is bayesian statistics and how is it different?What is bayesian statistics and how is it different?
What is bayesian statistics and how is it different?Wayne Lee
 
Introduction to Bayesian Statistics
Introduction to Bayesian StatisticsIntroduction to Bayesian Statistics
Introduction to Bayesian StatisticsPhilipp Singer
 
Bayesian statistics using r intro
Bayesian statistics using r   introBayesian statistics using r   intro
Bayesian statistics using r introBayesLaplace1
 
Bayesian statistical concepts
Bayesian statistical conceptsBayesian statistical concepts
Bayesian statistical conceptsAlexander Etz
 
Chapter 3 maximum likelihood and bayesian estimation-fix
Chapter 3   maximum likelihood and bayesian estimation-fixChapter 3   maximum likelihood and bayesian estimation-fix
Chapter 3 maximum likelihood and bayesian estimation-fixjelli123
 
An introduction to Bayesian Statistics using Python
An introduction to Bayesian Statistics using PythonAn introduction to Bayesian Statistics using Python
An introduction to Bayesian Statistics using Pythonfreshdatabos
 
An introduction to bayesian statistics
An introduction to bayesian statisticsAn introduction to bayesian statistics
An introduction to bayesian statisticsJohn Tyndall
 
Bayes theorem explained
Bayes theorem explainedBayes theorem explained
Bayes theorem explainedDaniel Ross
 
Academic Blogging. How? Why? What?
Academic Blogging. How? Why? What?Academic Blogging. How? Why? What?
Academic Blogging. How? Why? What?Chris Rowell
 
The Connected Library
The Connected LibraryThe Connected Library
The Connected LibraryNaomi Bates
 
Mit csail-tr-2007-034
Mit csail-tr-2007-034Mit csail-tr-2007-034
Mit csail-tr-2007-034vafopoulos
 
20100929 pen o1_les1
20100929 pen o1_les120100929 pen o1_les1
20100929 pen o1_les1Erik Duval
 

Viewers also liked (20)

ma12012id536
ma12012id536ma12012id536
ma12012id536
 
Bayesian intro
Bayesian introBayesian intro
Bayesian intro
 
What is bayesian statistics and how is it different?
What is bayesian statistics and how is it different?What is bayesian statistics and how is it different?
What is bayesian statistics and how is it different?
 
Introduction to Bayesian Statistics
Introduction to Bayesian StatisticsIntroduction to Bayesian Statistics
Introduction to Bayesian Statistics
 
Bayesian statistics using r intro
Bayesian statistics using r   introBayesian statistics using r   intro
Bayesian statistics using r intro
 
Bayesian statistical concepts
Bayesian statistical conceptsBayesian statistical concepts
Bayesian statistical concepts
 
Chapter 3 maximum likelihood and bayesian estimation-fix
Chapter 3   maximum likelihood and bayesian estimation-fixChapter 3   maximum likelihood and bayesian estimation-fix
Chapter 3 maximum likelihood and bayesian estimation-fix
 
An introduction to Bayesian Statistics using Python
An introduction to Bayesian Statistics using PythonAn introduction to Bayesian Statistics using Python
An introduction to Bayesian Statistics using Python
 
An introduction to bayesian statistics
An introduction to bayesian statisticsAn introduction to bayesian statistics
An introduction to bayesian statistics
 
Bayes theorem explained
Bayes theorem explainedBayes theorem explained
Bayes theorem explained
 
Academic Blogging. How? Why? What?
Academic Blogging. How? Why? What?Academic Blogging. How? Why? What?
Academic Blogging. How? Why? What?
 
wordcampUK SEO tools & plugins
wordcampUK SEO tools & pluginswordcampUK SEO tools & plugins
wordcampUK SEO tools & plugins
 
Cookies and bars
Cookies and barsCookies and bars
Cookies and bars
 
Privacy And Copyrights
Privacy And CopyrightsPrivacy And Copyrights
Privacy And Copyrights
 
The Connected Library
The Connected LibraryThe Connected Library
The Connected Library
 
Blog
BlogBlog
Blog
 
Fall & Winter Vegetable Gardening in King County, Washington, Gardening Guide...
Fall & Winter Vegetable Gardening in King County, Washington, Gardening Guide...Fall & Winter Vegetable Gardening in King County, Washington, Gardening Guide...
Fall & Winter Vegetable Gardening in King County, Washington, Gardening Guide...
 
Day2
Day2Day2
Day2
 
Mit csail-tr-2007-034
Mit csail-tr-2007-034Mit csail-tr-2007-034
Mit csail-tr-2007-034
 
20100929 pen o1_les1
20100929 pen o1_les120100929 pen o1_les1
20100929 pen o1_les1
 

Similar to 3 recursive bayesian estimation

IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesIIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesSOURAV DAS
 
Calculo
CalculoCalculo
CalculoJu Lio
 
Formulario derivadas e integrales
Formulario derivadas e integralesFormulario derivadas e integrales
Formulario derivadas e integralesGeovanny Jiménez
 
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating HyperplaneESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating HyperplaneShinichi Tamura
 
Docslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesDocslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesbarasActuarial
 
Probability and Statistics Cookbook
Probability and Statistics CookbookProbability and Statistics Cookbook
Probability and Statistics CookbookChairat Nuchnuanrat
 
Geurdes Monte Växjö
Geurdes Monte VäxjöGeurdes Monte Växjö
Geurdes Monte VäxjöRichard Gill
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculoFavian Flores
 
R4 m.s. radhakrishnan, probability &amp; statistics, dlpd notes.
R4 m.s. radhakrishnan, probability &amp; statistics, dlpd notes.R4 m.s. radhakrishnan, probability &amp; statistics, dlpd notes.
R4 m.s. radhakrishnan, probability &amp; statistics, dlpd notes.Ramachandran Uthirapathi R
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculoMan50035
 

Similar to 3 recursive bayesian estimation (20)

IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesIIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
 
Probability And Random Variable Lecture(3)
Probability And Random Variable Lecture(3)Probability And Random Variable Lecture(3)
Probability And Random Variable Lecture(3)
 
First st203
First st203First st203
First st203
 
b
bb
b
 
Formulario
FormularioFormulario
Formulario
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulas de calculo
Formulas de calculoFormulas de calculo
Formulas de calculo
 
Calculo
CalculoCalculo
Calculo
 
Calculo
CalculoCalculo
Calculo
 
Tablas calculo
Tablas calculoTablas calculo
Tablas calculo
 
Formulario
FormularioFormulario
Formulario
 
Formulario derivadas e integrales
Formulario derivadas e integralesFormulario derivadas e integrales
Formulario derivadas e integrales
 
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating HyperplaneESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
 
Docslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesDocslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tables
 
Probability and Statistics Cookbook
Probability and Statistics CookbookProbability and Statistics Cookbook
Probability and Statistics Cookbook
 
Geurdes Monte Växjö
Geurdes Monte VäxjöGeurdes Monte Växjö
Geurdes Monte Växjö
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculo
 
R4 m.s. radhakrishnan, probability &amp; statistics, dlpd notes.
R4 m.s. radhakrishnan, probability &amp; statistics, dlpd notes.R4 m.s. radhakrishnan, probability &amp; statistics, dlpd notes.
R4 m.s. radhakrishnan, probability &amp; statistics, dlpd notes.
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculo
 

More from Solo Hermelin

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanicsSolo Hermelin
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Solo Hermelin
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode ObserversSolo Hermelin
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectoriesSolo Hermelin
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles iiSolo Hermelin
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles iSolo Hermelin
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polarSolo Hermelin
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part ivSolo Hermelin
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iiiSolo Hermelin
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part iiSolo Hermelin
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part iSolo Hermelin
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hmsSolo Hermelin
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systemsSolo Hermelin
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instrumentsSolo Hermelin
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutawaySolo Hermelin
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft WarheadSolo Hermelin
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerabilitySolo Hermelin
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - iiSolo Hermelin
 

More from Solo Hermelin (20)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
 

Recently uploaded

Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxBREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxPABOLU TEJASREE
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |aasikanpl
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2John Carlo Rollon
 

Recently uploaded (20)

Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxBREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2
 

3 recursive bayesian estimation

  • 1. 1 Recursive Bayesian Estimation SOLO HERMELIN Updated: 22.02.09 11.01.14 http://www.solohermelin.com
  • 2. 2 SOLO Table of Content Recursive Bayesian Estimation Review of Probability Conditional Probability Total Probability Theorem Conditional Probability - Bayes Formula Statistical Independent Events Expected Value or Mathematical Expectation Variance and Central Moments Characteristic Function and Moment-Generating Function Probability Distribution and Probability Density Functions (Examples) Normal (Gaussian) Distribution Existence Theorems 1 & 2 Monte Carlo Method Estimation of the Mean and Variance of a Random Variable Generating Discrete Random Variables Existence Theorem 3 Markov Processes Functions of one Random Variable The Laws of Large Numbers Central Limit Theorem Problem Definition Stochastic Processes
  • 3. 3 SOLO Table of Content (continue -1) Recursive Bayesian Estimation Bayesian Estimation Introduction Linear Gaussian Markov Systems Closed-Form Solutions of Estimation Kalman Filter Extended Kalman Filter General Bayesian Nonlinear Filters Additive Gaussian Nonlinear Filter Gauss – Hermite Quadrature Approximation Unscented Kalman Filter Monte Carlo Kalman Filter (MCKF) Non-Additive Non-Gaussian Nonlinear Filter Nonlinear Estimation Using Particle Filters Importance Sampling (IS) Sequential Importance Sampling (SIS) Sequential Importance Resampling (SIR) Monte Carlo Particle Filter (MCPF) Bayesian Maximum Likelihood Estimate (Maximum Aposteriori – MAP Estimate)
  • 4. 4 SOLO Table of Content (continue -2) Recursive Bayesian Estimation References Nonlinear Filters based on the Fokker-Planck Equation
  • 5. 5 SOLO Recursive Bayesian Estimation kx1−kx kz1−kz 0x 1x 2x 1z 2z kZ :11:1 −kZ ( )11, −− kk wxf ( )kk vxh , ( )00 ,wxf ( )11,vxh ( )11,wxf ( )22 ,vxh Since this is a probabilistic problem, we start with a remainder of Probability Theory A discrete nonlinear system is defined by ( ) ( )kkk kkk vxkhz wxkfx ,, ,,1 11 = −= −− State vector dynamics Measurements kk vw ,1− State and Measurement Noise Vectors, respectively Problem Definition: Estimate the hidden States of a Non-linear Dynamic Stochastic System from Noisy Measurements . kx kz Table of Content
  • 6. 6 SOLO Pr (A) is the probability of the event A if S nAAAA ∪∪∪= 21 1A 2A nA jiOAA ji ≠∀/=∩ ( ) 0Pr ≥A(1) (3) If jiOAAandAAAA jin ≠∀/=∩∪∪∪= 21 ( ) 1Pr =S(2) then ( ) ( ) ( ) ( )nAAAA PrPrPrPr 21 +++=  Probability Axiomatic Definition Probability Geometric Definition Assume that the probability of an event in a geometric region A is defined as the ratio between A surface to surface of S. ( ) ( ) ( )SSurface ASurface A =Pr ( ) 0Pr ≥A(1) ( ) 1Pr =S(2) (3) If jiOAAandAAAA jin ≠∀/=∩∪∪∪= 21 then ( ) ( ) ( ) ( )nAAAA PrPrPrPr 21 +++=  S A Review of Probability A more detailed explanation of the subject is given in the “Probability” Presentation
  • 7. 7 SOLO From those definition we can prove the following:( ) 0=/OP(1’) Proof: OOSandOSS /=/∩/∪= ( ) ( ) ( ) ( ) ( ) 0PrPrPrPr 3 =/⇒/+=⇒ OOSS ( ) ( )APAP −= 1(2’) Proof: OAAandAAS /=∩∪= ( ) ( ) ( ) ( ) ( ) ( ) ( )AAAAS Pr1PrPrPr1Pr 32 −=⇒+==⇒ ( ) 1Pr0 ≤≤ A(3’) Proof: ( ) ( ) ( ) ( ) ( ) 1Pr0Pr1Pr 1'2 ≤⇒≥−= AAA ( ) ( )APr0 1 ≤ ( ) 0Pr ≥A(1) ( ) 1Pr =S(2) (3) If jiOAAandAAAA jin ≠∀/=∩∪∪∪= 21 then ( ) ( ) ( ) ( )n AAAA PrPrPrPr 21 +++=  ( ) ( )AABAIf PrPr ≤⇒⊂(4’) Proof: ( ) ( ) ( ) ( ) ( ) ( )BAAABB PrPr0PrPrPr 00 3 ≤⇒≥+−= ≥≥  ( ) ( ) OAABandAABB /=∩−∪−= ( ) ( ) ( ) ( )BABABA ∩−+=∪ PrPrPrPr(5’) Proof: ( ) ( ) ( ) ( ) ( ) ( ) OABBAandABBAB OABAandABABA /=−∩∩−∪∩= /=−∩−∪=∪ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )BABABA ABBAB ABABA ∩−+=∪⇒     −+∩= −+=∪ PrPrPrPr PrPrPr PrPrPr 3 3 Table of Content Review of Probability
  • 8. 8 SOLO Conditional Probability S nAAAA ααα ∪∪∪= 21  1αA jiOAA ji ≠∀/=∩ 1αβA mAAAB βββ ∪∪∪= 212αA 2αβA 1βA 2βA  Given two events A and B decomposed in elementary events jiOAAandAAAAA ji n i in ≠∀/=∩=∪∪∪= = αααααα  1 21 lkOAAandAAAAB lk m k km ≠∀/=∩=∪∪∪= = ββββββ  1 21 jiOAAandAAABA jir ≠∀/=∩∪∪∪=∩ αβαβαβαβαβ 21 ( ) ( ) ( ) ( )n AAAA ααα PrPrPrPr 21 +++=  ( ) ( ) ( ) ( )mAAAB βββ PrPrPrPr 21 +++=  ( ) ( ) ( ) ( ) nmrAAABA r ,PrPrPrPr 21 ≤+++=∩ βαβαβα  We want to find the probability of A event under the condition that the event B had occurred designed as P (A|B) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )B BA AAA AAA BA m r Pr Pr PrPrPr PrPrPr |Pr 21 21 ∩ = +++ +++ = βββ βαβαβα   Review of Probability
  • 9. 9 SOLO Conditional Probability S nAAAA ααα ∪∪∪= 21  1αA jiOAA ji ≠∀/=∩ 1αβA mAAAB βββ ∪∪∪= 212αA 2αβA 1βA 2βA  If the events A and B are statistical independent, that the fact that B occurred will not affect the probability of A to occur. ( ) ( ) ( )B BA BA Pr Pr |Pr ∩ = ( ) ( ) ( )A BA AB Pr Pr |Pr ∩ = ( ) ( )ABA Pr|Pr = ( ) ( ) ( ) ( ) ( ) ( ) ( )BAAABBBABA PrPrPr|PrPr|PrPr ⋅=⋅=⋅=∩ Definition: n events Ai i = 1,2,…n are statistical independent if: ( ) nrAA r i i r i i ,,2PrPr 11  =∀=      ∏== Table of Content Review of Probability
  • 10. 10 SOLO Conditional Probability - Bayes Formula Using the relation: ( ) ( ) ( ) ( ) ( )llll AABBBABA ββββ Pr|PrPr|PrPr ⋅=⋅=∩ ( ) ( ) ( ) klOBABABAB lk m k k , 1 ∀/=∩∩∩∩= = βββ ( ) ( )∑ = ∩= m k k BAB 1 PrPr β we obtain: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑= ⋅ ⋅ = ⋅ = m k kk llll l AAB AAB B AAB BA 1 Pr|Pr Pr|Pr Pr Pr|Pr |Pr ββ ββββ β Bayes Formula Thomas Bayes 1702 - 1761 Table of Content Review of Probability
  • 11. 11 SOLO Total Probability Theorem Table of Content jiOAAandSAAA jin ≠∀/=∩=∪∪∪ 21If we say that the set space S is decomposed in exhaustive and incompatible (exclusive) sets. The Total Probability Theorem states that for any event B, its probability can be decomposed in terms of conditional probability as follows: ( ) ( ) ( ) ( )∑∑ == == n i i n i i BPBABAB 11 |Pr,PrPr Using the relation: ( ) ( ) ( ) ( ) ( )llll AABBBABA Pr|PrPr|PrPr ⋅=⋅=∩ ( ) ( ) ( ) klOBABABAB lk n k k , 1 ∀/=∩∩∩∩= =  ( ) ( )∑= ∩= n k k BAB 1 PrPr For any event B we obtain: Review of Probability
  • 12. 12 SOLO Statistical Independent Events ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∏∑∏∑∏∑ ∑∑∑ = −       ≠≠ =       ≠ =       = = −       ≠≠       ≠       == −+−+−=       −+−+−=      n i i n n kji kji i i n ji ji i i n i i tIndependen lStatisticaA n i i n n kji kji kji n ji ji ji n i i n i i AAAA AAAAAAAA i 1 1 3 ,. 3 1 2 . 2 1 1 1 1 1 3 ,. 2 . 1 11 Pr1PrPrPr Pr1PrPrPrPr    From Theorem of Addition Therefore ( )[ ]∏== −=      − n i i tIndependen lStatisticaA n i i AA i 11 Pr1Pr1  ( )[ ]∏== −−=      n i i tIndependen lStatisticaA n i i AA i 11 Pr11Pr  Since OAASAA n i i n i i n i i n i i /=               =               ====   1111 &         =      − ==  n i i n i i AA 11 PrPr1 ( )∏== =      n i i tIndependen lStatisticaA n i i AA i 11 PrPr  If the n events Ai i = 1,2,…n are statistical independent than are also statistical independentiA ( )∏= = n i iA 1 Pr      = =  n i i MorganDe A 1 Pr ( )[ ]∏= −= n i i tIndependen lStatisticaA A i 1 Pr1 ( ) nrAA r i i r i i ,,2PrPr 11  =∀=      ∏== Table of Content Review of Probability
  • 13. 13 SOLO Review of Probability Expected Value or Mathematical Expectation Given a Probability Density Function p (x) we define the Expected Value For a Continuous Random Variable: ( ) ( )∫ +∞ ∞− = dxxpxxE X: For a Discrete Random Variable: ( ) ( )∑= k kXk xpxxE : For a general function g (x) of the Random Variable x: ( )[ ] ( ) ( )∫ +∞ ∞− = dxxpxgxgE X: ( )xp x 0 ∞+∞− 0.1 ( )xE ( ) ( ) ( )∫ ∫ ∞+ ∞− +∞ ∞− = dxxp dxxpx xE X X : The Expected Value is the center of surface enclosed between the Probability Density Function and x axis. Table of Content
  • 14. 14 SOLO Review of Probability Variance Given a Probability Density Functions p (x) we define the Variance ( ) ( )[ ]{ } ( ) ( )[ ] ( ) ( )22222 2: xExExExExxExExExVar −=+−=−= Central Moment ( ) { }k k xEx =:'µ Given a Probability Density Functions p (x) we define the Central Moment of order k about the origin ( ) ( )[ ]{ } ( ) ( )∑= −− −      =−= k j jk j jkk k xE j k xExEx 0 '1: µµ Given a Probability Density Functions p (x) we define the Central Moment of order k about the Mean E (x) Table of Content
  • 15. 15 SOLO Review of Probability Moments Normal Distribution ( ) ( ) ( )[ ] σπ σ σ 2 2/exp ; 22 x xpX − = [ ] ( )    −⋅ = oddnfor evennforn xE n n 0 131 σ [ ] ( )      += =−⋅ = + 12!2 2 2131 12 knfork knforn xE kk n n σ π σ Proof: Start from: and differentiate k time with respect to a( ) 0exp 2 >=−∫ ∞ ∞− a a dxxa π Substitute a = 1/(2σ2 ) to obtain E [xn ] ( ) ( ) 0 2 1231 exp 12 22 > −⋅ =− + ∞ ∞− ∫ a a k dxxax kk k π [ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) 12 ! 0 122/ 0 222221212 !2 2 exp 2 22 2/exp 2 2 2/exp 2 1 2 + ∞+ = ∞∞ ∞− ++ =−= −=−= ∫ ∫∫ kk k k k xy kkk kdyyy xdxxxdxxxxE σ πσ σ π σ σπ σ σπ σ    Now let compute: [ ] [ ]( )2244 33 xExE == σ Chi-square
  • 16. 16 SOLO Review of Probability Functions of one Random Variable Let y = g (x) a given function of the random variable x defined o the domain Ω, with probability distribution pX (x). We want to find pY (y). Fundamental Theorem Assume x1, x2, …, xn all the solutions of the equation ( ) ( ) ( )n xgxgxgy ==== 21 ( ) ( ) ( ) ( ) ( ) ( ) ( )n nXXX Y xg xp xg xp xg xp yp ''' 2 2 1 1 +++=  ( ) ( ) xd xgd xg =:' Proof ( ) ( ) ( ) ( ) ( ) ( )∑∑∑ === ==±≤≤=+≤≤= n i i iX n i iiX n i iiiY yd xg xp xdxpxdxxxydyYyydyp 111 ' PrPr: q.e.d.
  • 17. 17 SOLO Review of Probability Functions of one Random Variable (continue – 1) Example 1 bxay += ( )       − = a by p a yp XY 1 Example 2 x a y = ( )       = y a p y a yp XY 2 Example 3 2 xay = ( ) ( )yU a y p a y p ya yp XXY                 −+         = 2 1 Example 4 xy = ( ) ( ) ( )[ ] ( )yUypypyp XXY −+= Table of Content
  • 18. 18 SOLO Review of Probability Characteristic Function and Moment-Generating Function Given a Probability Density Functions pX (x) we define the Characteristic Function or Moment Generating Function ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )     = ==Φ ∑ ∫∫ +∞ ∞− +∞ ∞− x X XX X discretexxpxj continuousxxPdxjdxxpxj xjE ω ωω ωω exp expexp exp: This is in fact the complex conjugate of the Fourier Transfer of the Probability Density Function. This function is always defined since the sufficient condition of the existence of a Fourier Transfer : Given the Characteristic Function we can find the Probability Density Functions pX (x) using the Inverse Fourier Transfer: ( ) ( ) ( ) ∞<== ∫∫ +∞ ∞− ≥+∞ ∞− 1 0 dxxpdxxp X xp X ( ) ( ) ( )∫ +∞ ∞− Φ−= ωωω π dxjxp XX exp 2 1 is always fulfilled.
  • 19. 19 SOLO Review of Probability Properties of Moment-Generating Function ( ) ( ) ( )∫ +∞ ∞− = Φ dxxpxxjj d d X X ω ω ω exp ( ) ( ) 10 ==Φ ∫ +∞ ∞− = dxxpXX ω ω ( ) ( ) ( )xEjdxxpxj d d X X == Φ ∫ +∞ ∞−=0ω ω ω ( ) ( ) ( ) ( )∫ +∞ ∞− = Φ dxxpxxjj d d X X 22 2 2 exp ω ω ω ( ) ( ) ( ) ( ) ( )2222 0 2 2 xEjdxxpxj d d X X == Φ ∫ +∞ ∞−=ω ω ω ( ) ( ) ( ) ( )∫ +∞ ∞− = Φ dxxpxxjj d d X nn n X n ω ω ω exp ( ) ( ) ( ) ( ) ( )nn X nn n X n xEjdxxpxj d d == Φ ∫ +∞ ∞−=0ω ω ω   ( ) ( ) ( )∫ +∞ ∞− =Φ dxxpxj XX ωω exp This is the reason why ΦX (ω) is also called the Moment-Generation Function.
  • 20. 20 SOLO Review of Probability Properties of Moment-Generating Function ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   +++++= + Φ ++ Φ + Φ +Φ=Φ === = n n n n X n XX XX xE n j xE j xE j d d nd d d d !!2!1 1 ! 1 !2 1 2 2 0 2 0 2 2 0 0 ωωω ω ω ω ω ω ω ω ω ω ωω ωωω ω Develop ΦX (ω) in a Taylor series ( ) ( ) ( )∫ +∞ ∞− =Φ dxxpxj XX ωω exp
  • 21. 21 SOLO Review of Probability Probability Distribution and Probability Density Functions (Examples) (2) Poisson’s Distribution ( ) ( )0 0 exp ! , k k k nkp k −≈ (1) Binomial (Bernoulli) ( ) ( ) ( ) ( ) knkknk pp k n pp knk n nkp −− −      =− − = 11 !! ! , 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 k ( )nkP , (3) Normal (Gaussian) ( ) ( ) ( )[ ] σπ σµ σµ 2 2/exp ,; 22 −− = x xp (4) Laplacian Distribution ( )         − −= b x b bxp µ µ exp 2 1 ,;
  • 22. 22 SOLO Review of Probability Probability Distribution and Probability Density Functions (Examples) (5) Gama Distribution ( ) ( ) ( )      < ≥ Γ − = − 00 0 /exp ,; 1 x xx k x kxp k k θ θ θ (6) Beta Distribution ( ) ( ) ( ) ( ) ( ) ( ) ( ) 11 1 0 11 11 1 1 1 ,; −− −− −− − ΓΓ +Γ = − − = ∫ βα βα βα βα βα βα xx duuu xx xp (7) Cauchy Distribution ( ) ( )       +− = 22 0 0 1 ,; γ γ π γ xx xxp
  • 23. 23 SOLO Review of Probability Probability Distribution and Probability Density Functions (Examples) SOLO (8) Exponential Distribution ( ) ( )    < ≥− = 00 0exp ; x xx xp λλ λ (9) Chi-square Distribution ( ) ( ) ( ) ( )      < ≥− Γ= − 00 02/exp 2/ 2/1 ; 12/ 2/ x xxx kkxp k k Γ is the gamma function ( ) ( )∫ ∞ − −=Γ 0 1 exp dttta a (10) Student’s t-Distribution ( ) ( )[ ] ( ) ( )( ) 2/12 /12/ 2/1 ; + +Γ +Γ = ν ννπν ν ν x xp
  • 24. 24 SOLO Review of Probability Probability Distribution and Probability Density Functions (Examples) SOLO (11) Uniform Distribution (Continuous) ( )      >> ≤≤ −= bxxa bxa abbaxp 0 1 ,; (12) Rayleigh Distribution ( ) 2 2 2 2 exp ; σ σ σ       − = x x xp (13) Rice Distribution ( )             + − = 202 2 22 2 exp ,; σσ σ σ vx I vx x vxp
  • 25. 25 SOLO Review of Probability Probability Distribution and Probability Density Functions (Examples) (14) Weibull Distribution SOLO ( )      < >≥               − −      − = − 00 0,,exp ,,; 1 x x xx xp αγµ α µ α µ α γ αµγ γγ Table of Content
  • 26. 26 SOLO Review of Probability Normal (Gaussian) Distribution Karl Friederich Gauss 1777-1855 ( ) ( ) ( )σµ σπ σ µ σµ ,;: 2 2 exp ,; 2 2 x x xp N=       − − = ( ) ( ) ∫ ∞−       − −= x du u xP 2 2 2 exp 2 1 ,; σ µ σπ σµ ( ) µ=xE ( ) σ=xVar ( ) ( )[ ] ( ) ( )       −=       − −= =Φ ∫ ∞+ ∞− 2 exp exp 2 exp 2 1 exp 22 2 2 σω µω ω σ µ σπ ωω j duuj u xjE Probability Density Functions Cumulative Distribution Function Mean Value Variance Moment Generating Function
  • 27. 27 SOLO Review of Probability Moments Normal Distribution ( ) ( ) ( )[ ] ( )σ σπ σ σ ,0;: 2 2/exp ,0; 22 x x xpX N= − = [ ] ( )    −⋅ = oddnfor evennforn xE n n 0 131 σ [ ] ( )      += =−⋅ = + 12!2 2 2131 12 knfork knforn xE kk n n σ π σ Proof: Start from: and differentiate k time with respect to a( ) 0exp 2 >=−∫ ∞ ∞− a a dxxa π Substitute a = 1/(2σ2 ) to obtain E [xn ] ( ) ( ) 0 2 1231 exp 12 22 > −⋅ =− + ∞ ∞− ∫ a a k dxxax kk k π [ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) 12 ! 0 122/ 0 222221212 !2 2 exp 2 22 2/exp 2 2 2/exp 2 1 2 + ∞+ = ∞∞ ∞− ++ =−= −=−= ∫ ∫∫ kk k k k xy kkk kdyyy xdxxxdxxxxE σ πσ σ π σ σπ σ σπ σ    Now let compute: [ ] [ ]( )2244 33 xExE == σ Chi-square
  • 28. 28 SOLO Review of Probability Normal (Gaussian) Distribution (continue – 1) Karl Friederich Gauss 1777-1855 ( ) ( ) ( ) ( )PxxxxPxxPPxxp T ,;: 2 1 exp2,; 12/1  N=    −−−= −− π A Vector – Valued Gaussian Random Variable has the Probability Density Functions where { }xEx  = Mean Value ( )( ){ }T xxxxEP  −−= Covariance Matrix If P is diagonal P = diag [σ1 2 σ2 2 … σk 2 ] then the components of the random vector are uncorrelated, and x  ( ) ( ) ( ) ( ) ( ) ∏= − −       − − =       − −      − −      − − =                               − − −                             − − − −= k i i i ii k k kk kk k T kk xxxxxxxx xx xx xx xx xx xx PPxxp 1 2 2 2 2 2 2 2 2 22 1 2 1 2 11 22 11 1 2 2 2 2 1 22 11 2/1 2 2 exp 2 2 exp 2 2 exp 2 2 exp 0 0 2 1 exp2,; σπ σ σπ σ σπ σ σπ σ σ σ σ π    therefore the components of the random vector are also independent
  • 29. 29 SOLO Review of Probability The Laws of Large Numbers The Law of Large Numbers is a fundamental concept in statistics and probability that describes how the average of randomly selected sample of a large population is likely to be close to the average of the whole population. There are two laws of large numbers the Weak Law and the Strong Law. The Weak Law of Large Numbers The Weak Law of Large Numbers states that if X1,X2,…,Xn,… is an infinite sequence of random variables that have the same expected value μ and variance σ2 , and are uncorrelated (i.e., the correlation between any two of them is zero), then ( ) nXXX nn /: 1 ++=  converges in probability (a weak convergence sense) to μ . We have { } ∞→=<− nforXn 1Pr εµ converges in probability The Strong Law of Large Numbers The Strong Law of Large Numbers states that if X1,X2,…,Xn,… is an infinite sequence of random variables that have the same expected value μ and variance σ2 , and are uncorrelated (i.e., the correlation between any two of them is zero), and E (|Xi|) < ∞ then ,i.e. converges almost surely to μ.{ } ∞→== nforXn 1Pr µ converges almost surely
  • 30. 3030 SOLO Review of Probability The Law of Large Numbers Differences between the Weak Law and the Strong Law The Weak Law states that, for a specified large n, (X1 + ... + Xn) / n is likely to be near μ. Thus, it leaves open the possibility that | (X1 + ... + Xn) / n − μ | > ε happens an infinite number of times, although it happens at infrequent intervals. The Strong Law shows that this almost surely will not occur. In particular, it implies that with probability 1, we have for any positive value ε, the inequality | (X1 + ... + Xn) / n − μ | > ε is true only a finite number of times (as opposed to an infinite, but infrequent, number of times). Almost sure convergence is also called strong convergence of random variables. This version is called the strong law because random variables which converge strongly (almost surely) are guaranteed to converge weakly (in probability). The strong law implies the weak law.
  • 31. 3131 SOLO Review of Probability The Law of Large Numbers Proof of the Weak Law of Large Numbers ( ) iXE i ∀= µ ( ) iXVar i ∀= 2 σ ( )( )[ ] jiXXE ji ≠∀=−− 0µµ ( ) ( ) ( )[ ] µµ ==++= nnnXEXEXE nn //1  ( ) ( )[ ]{ } ( ) ( ) ( )( )[ ] ( )[ ] ( )[ ] nn n n XEXE n XX E n XX EXEXEXVar n jiXXE nn nnn ji 2 2 2 2 22 1 0 2 1 2 12 σσµµ µµ µ µµ == −++− =               −++− =               − ++ =−= ≠∀=−−   Given we have: Using Chebyshev’s inequality on we obtain:nX ( ) 2 2 / Pr ε σ εµ n Xn ≤≥− Using this equation we obtain: ( ) ( ) ( ) n XXX nnn 2 2 1Pr1Pr1Pr ε σ εµεµεµ −≥≥−−≥>−−=≤− As n approaches infinity, the expression approaches 1. Chebyshev’s inequality q.e.d. Monte Carlo Integration Monte Carlo Integration Table of Content
  • 32. 3232 SOLO Review of Probability Central Limit Theorem The first version of this theorem was first postulated by the French-born English mathematician Abraham de Moivre in 1733, using the normal distribution to approximate the distribution of the number of heads resulting from many tosses of a fair coin. This was published in1756 in “The Doctrine of Chance” 3th Ed. Pierre-Simon Laplace (1749-1827) Abraham de Moivre (1667-1754) This finding was forgotten until 1812 when the French mathematician Pierre-Simon Laplace recovered it in his work “Théory Analytique des Probabilités”, in which he approximate the binomial distribution with the normal distribution. This is known as the De Moivre – Laplace Theorem. De Moivre – Laplace Theorem The present form of the Central Limit Theorem was given by the Russian mathematician Alexandr Lyapunov in 1901. Alexandr Mikhailovich Lyapunov (1857-1918)
  • 33. 3333 SOLO Review of Probability Central Limit Theorem (continue – 1) Let X1, X2, …, Xm be a sequence of independent random variables with the same probability distribution function pX (x). Define the statistical mean: m XXX X m m +++ = 21 ( ) ( ) ( ) ( ) µ= +++ = m XEXEXE XE m m 21 ( ) ( )[ ]{ } ( ) ( ) ( ) mm m m XXX EXEXEXVar m mmmXm 2 2 22 21 22 σσµµµ σ ==               −++−+− =−==  Define also the new random variable ( ) ( ) ( ) ( ) m XXXXEX Y m X mm m σ µµµ σ −++−+− = − = 21 : We have: The probability distribution of Y tends to become gaussian (normal) as m tends to infinity, regardless of the probability distribution of the random variable, as long as the mean μ and the variance σ2 are finite.
  • 34. 3434 SOLO Review of Probability Central Limit Theorem (continue – 2) ( ) ( ) ( ) ( ) m XXXXEX Y m X mm m σ µµµ σ −++−+− = − = 21 : Proof The Characteristic Function ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) m X m i m i i m Y m X m j E m X jE m XXX jEYjE i               Φ=                     − =               − =               −++−+− ==Φ − = ∏ ω σ µω σ µ ω σ µµµ ωωω σ µexpexp expexp 1 21  ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0/lim 2 1 !3 / !2 / !1 / 1 2222 33 1 22 0 =      Ο/      Ο/+−= +               − +               − +      − +=      Φ ∞→ − mmmm X E mjX E mjX E mj m m iii Xi ωωωω σ µω σ µω σ µωω σ µ     Develop in a Taylor series( )       Φ − miX ω σ µ
  • 35. 35 SOLO Review of Probability Central Limit Theorem (continue – 3) Proof (continue – 1) The Characteristic Function ( ) ( ) m XY m E i               Φ=Φ − ω ω σ µ ( ) 0/lim 2 1 2222 =      Ο/      Ο/+−=      Φ ∞→ − mmmmm m Xi ωωωωω σ µ ( ) ( )2/exp 2 1 2 22 ω ωω ω −→            Ο/+−=Φ ∞→m m Y mm Therefore ( ) ( ) ( ) ( ) ( )2/exp 2 1 2/exp 2 1 exp 2 1 22 ydyjdyjyp m YY −=−−→Φ−= ∫∫ +∞ ∞− ∞→+∞ ∞− π ωωω π ωωω π The probability distribution of Y tends to become gaussian (normal) as m tends to infinity (Convergence in Distribution). Characteristic Function of Normal Distribution Convergence Concepts Monte Carlo Integration Table of Content
  • 36. 36 SOLO Review of Probability Central Limit Theorem (continue – 2) ( ) ( ) ( ) ( ) m XXXXEX Y m X mm m σ µµµ σ −++−+− = − = 21 : Proof The Characteristic Function ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) m X m i m i i m Y m X m j E m X jE m XXX jEYjE i               Φ=                     − =               − =               −++−+− ==Φ − = ∏ ω σ µω σ µ ω σ µµµ ωωω σ µexpexp expexp 1 21  ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0/lim 2 1 !3 / !2 / !1 / 1 2222 33 1 22 0 =      Ο/      Ο/+−= +               − +               − +      − +=      Φ ∞→ − mmmm X E mjX E mjX E mj m m iii Xi ωωωω σ µω σ µω σ µωω σ µ     Develop in a Taylor series( )       Φ − miX ω σ µ
  • 37. 37 SOLO Review of Probability Central Limit Theorem (continue – 3) Proof (continue – 1) The Characteristic Function ( ) ( ) m XY m E i               Φ=Φ − ω ω σ µ ( ) 0/lim 2 1 2222 =      Ο/      Ο/+−=      Φ ∞→ − mmmmm m Xi ωωωωω σ µ ( ) ( )2/exp 2 1 2 22 ω ωω ω −→            Ο/+−=Φ ∞→m m Y mm Therefore ( ) ( ) ( ) ( ) ( )2/exp 2 1 2/exp 2 1 exp 2 1 22 ydyjdyjyp m YY −=−−→Φ−= ∫∫ +∞ ∞− ∞→+∞ ∞− π ωωω π ωωω π The probability distribution of Y tends to become gaussian (normal) as m tends to infinity (Convergence in Distribution). Characteristic Function of Normal Distribution Convergence Concepts Table of Content
  • 38. 38 SOLO Review of Probability Existence Theorems Existence Theorem 1 Given a function G (x) such that ( ) ( ) ( ) 1lim,1,0 ==∞+=∞− ∞→ xGGG x ( ) ( ) 2121 0 xxifxGxG <=≤ ( G (x) is monotonic non-decreasing) ( ) ( ) ( )xGxGxG n xx xx n n == ≥ → + lim We can find an experiment X and a random variable x, defined on X, such that its distribution function P (x) equals the given function G (x). Proof of Existence Theorem 1 Assume that the outcome of the experiment X is any real number -∞ <x < +∞. We consider as events all intervals, the intersection or union of intervals on the real axis. 5x 1x 2x 3x 4x 6x 7x 8x ∞− ∞+ To specify the probability of those events we define P (x)=Prob { x ≤ x1}= G (x1). From our definition of G (x) it follows that P (x) is a distribution function. Existence Theorem 2 Existence Theorem 3
  • 39. 39 SOLO Review of Probability Existence Theorems Existence Theorem 2 If a function F (x,y) is such that ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,,,, 1,,0,, 11122122 ≥+−− =+∞∞+=−∞=∞− yxFyxFyxFyxF FxFyF for every x1 < x2, y1 < y2, then two random variables x and y can be found such that F (x,y) is their joint distribution function. Proof of Existence Theorem 2 Assume that the outcome of the experiment X is any real number -∞ <x < +∞. Assume that the outcome of the experiment Y is any real number -∞ <y < +∞. We consider as events all intervals, the intersection or union of intervals on the real axes x and y. To specify the probability of those events we define P (x,y)=Prob { x ≤ x1, y ≤ y1, }= F (x1,y1). From our definition of F (x,y) it follows that P (x,y) is a joint distribution function. The proof is similar to that in the Existence Theorem 1
  • 40. 40 SOLO Review of Probability Monte Carlo Method Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling to compute their results. Monte Carlo methods are often used when simulating physical and mathematical systems. Because of their reliance on repeated computation and random or pseudo-random numbers, Monte Carlo methods are most suited to calculation by a computer. Monte Carlo methods tend to be used when it is infeasible or impossible to compute an exact result with a deterministic algorithm. The term Monte Carlo method was coined in the 1940s by physicists Stanislaw Ulam, Enrico Fermi, John von Neumann, and Nicholas Metropolis, working on nuclear weapon projects in the Los Alamos National Laboratory (reference to the Monte Carlo Casino in Monaco where Ulam's uncle would borrow money to gamble) Stanislaw Ulam 1909 - 1984 Enrico - Fermi 1901 - 1954 John von Neumann 1903 - 1957 Monte Carlo Casino Nicholas Constantine Metropolis (1915 –1999)
  • 41. 41 SOLO Review of Probability Monte Carlo Approximation Monte Carlo runs, generate a set of random samples that approximate the distribution p (x). So, with P samples, expectations with respect to the filtering distribution are approximated by ( ) ( ) ( ) ( )∑∫ = ≈ P L L xf P dxxpxf 1 1 and , in the usual way for Monte Carlo, can give all the moments etc. of the distribution up to some degree of approximation. { } ( ) ( ) ∑∫ = ≈== P L L x P dxxpxxE 1 1 1 µ ( ){ } ( ) ( ) ( ) ( )∑∫ = −≈−=−= P L nLnn n x P dxxpxxE 1 111 1 µµµµ  Table of Content x(L) are generated (draw) samples from distribution p (x) ( ) ( )xpx L ~
  • 42. 42 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (Unknown Statistics) { } { } jimxExE ji ,∀== Define Estimation of the Population mean ∑= = k i ik x k m 1 1 :ˆ A random variable, x, may take on any values in the range - ∞ to + ∞. Based on a sample of k values, xi, i = 1,2,…,k, we wish to compute the sample mean, , and sample variance, , as estimates of the population mean, m, and variance, σ2 . 2 ˆkσ kmˆ ( ) { } ( ) ( ) ( )[ ] ( ) ( )[ ] 2 1 2 1 222 2 22222 1 11 2 1 2 2 11 2 1 2 11 1 1 1 1 1 21 11 2 1 ˆˆ2 1 ˆ 1 σσ σσσ k k kk mkmkk k mmk k m k xx k Ex k xExE k mxmxE k mx k E k i k i k i k l l k j j k j jii k k i ik k i i k i ki − =      −=       ++−+++−−+=               +       −=       +−=       − ∑ ∑ ∑ ∑∑∑ ∑∑∑ = = = === === { } { } jimxExE ji ,2222 ∀+== σ { } { } mxE k mE k i ik == ∑=1 1 ˆ { } { } { } jimxExExxE ji tindependenxx ji ji ,2 , ∀== Compute Biased Unbiased Monte Carlo simulations assume independent and identical distributed (i.i.d.) samples.
  • 43. 43 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (continue - 1) { } { } jimxExE ji ,∀== Define Estimation of the Population mean ∑= = k i ik x k m 1 1 :ˆ A random variable, x, may take on any values in the range - ∞ to + ∞. Based on a sample of k values, xi, i = 1,2,…,k, we wish to compute the sample mean, , and sample variance, , as estimates of the population mean, m, and variance, σ2 . 2 ˆkσ kmˆ ( ) 2 1 2 1 ˆ 1 σ k k mx k E k i ki − =       −∑= { } { } jimxExE ji ,2222 ∀+== σ { } { } mxE k mE k i ik == ∑=1 1 ˆ { } { } { } jimxExExxE ji tindependenxx ji ji ,2 , ∀== Biased Unbiased Therefore, the unbiased estimation of the sample variance of the population is defined as: ( )∑= − − = k i kik mx k 1 22 ˆ 1 1 :ˆσ since { } ( ) 2 1 22 ˆ 1 1 :ˆ σσ =       − − = ∑= k i kik mx k EE Unbiased Monte Carlo simulations assume independent and identical distributed (i.i.d.) samples.
  • 44. 44 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (continue - 2) A random variable, x, may take on any values in the range - ∞ to + ∞. Based on a sample of k values, xi, i = 1,2,…,k, we wish to compute the sample mean, , and sample variance, , as estimates of the population mean, m, and variance, σ2 . 2 ˆkσ kmˆ { } { } mxE k mE k i ik == ∑=1 1 ˆ { } ( ) 2 1 22 ˆ 1 1 :ˆ σσ =       − − = ∑= k i kik mx k EE Monte Carlo simulations assume independent and identical distributed (i.i.d.) samples.
  • 45. 45 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (continue - 3) { } { } mxE k mE k i ik == ∑=1 1 ˆ { } ( ) 2 1 22 ˆ 1 1 :ˆ σσ =       − − = ∑= k i kik mx k EEWe found: Let Compute: ( ){ } ( ) ( ){ } ( ) ( ){ } ( ){ } ( ){ } ( ){ } k mxEmxEmxE k mxmxEmxE k mx k Emx k EmmE k i k ij j ji k i i k i k ij j ji k i i k i i k i ikmk 2 1 1 00 1 2 2 1 11 2 2 2 1 2 1 22 ˆ 2 1 1 11 ˆ: σ σ σ =           −−+−=           −−+−=               −=               −=−= ∑ ∑∑ ∑∑∑ ∑∑ = ≠ == = ≠ == ==  ( ){ } k mmE kmk 2 22 ˆ ˆ: σ σ =−=
  • 46. 46 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (continue - 4) Let Compute: ( ){ } ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )               −− − +− − − +− − =               −−+−−+− − =               −−+− − =               −− − =−= ∑∑ ∑ ∑∑ == = == 2 22 11 2 2 2 1 22 2 2 1 2 2 2 1 22222 ˆ ˆ 11 ˆ2 1 1 ˆˆ2 1 1 ˆ 1 1 ˆ 1 1 ˆ:2 σ σ σσσσσσ k k i i k k i i k i kkii k i ki k i kik mm k k mx k mm mx k E mmmmmxmx k E mmmx k Emx k EE k ( ) ( ){ } ( ){ } ( ){ } ( ){ } ( ) ( ){ } ( ) ( ){ } ( ){ } ( ) ( ){ } ( ){ } ( ) ( ){ } ( ) ( ){ } ( ){ } ( ) ( ){ } ( ){ } ( ) ( ){ } ( ) ( ){ }                 k k k i i k k i i k k k i i k k i i k k k i i k k k k i i k k k i k ij j ji k k i i mmE k k mxE k mmE mxE k mmEk mxE k mxE k mmEk mxE k mmE mmE k k mxE k mmE mxEmxEmxE kk / 2 2 1 0 2 0 1 0 2 3 1 2 2 1 2 2 / 2 1 3 2 0 44 2 2 1 2 2 / 2 1 1 22 1 4 2 2 ˆ 2 222 22 22 4 2 ˆ 1 2 1 ˆ4 1 ˆ4 1 2 1 ˆ2 1 ˆ4 ˆ 11 ˆ4 1 1 σ σσσ σσ σσ µ σ σσ σ σσ − − −− − − −− − − + − − −− − − +− − − + +− − +− − − +             −−+− − ≈ ∑∑ ∑∑∑ ∑∑ ∑∑ == === == ≠ == Since (xi – m), (xj - m) and are all independent for i ≠ j:( )kmm ˆ−
  • 47. 47 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (continue - 4) Since (xi – m), (xj - m) and are all independent for i ≠ j:( )kmm ˆ− ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }4 2 2 4 22 4 44 2 4 44 2 2 2 4 2 4 2 42 ˆ ˆ 11 7 11 2 1 2 1 2 ˆ 11 4 1 1 1 2 k k mmE k k k k k k kk k k k mmE k k kk kk k k k − − + − +− + − = − − − − − + +− − + − + − − + − ≈ σ µσσσ σ σσµ σσ kk 4 42 ˆ 2 σµ σσ − ≈ ( ){ }4 4 : mxE i −=µ ( ) ( ){ } ( ){ } ( ){ } ( ){ } ( ) ( ){ } ( ) ( ){ } ( ){ } ( ) ( ){ } ( ){ } ( ) ( ){ } ( ) ( ){ } ( ){ } ( ) ( ){ } ( ){ } ( ) ( ){ } ( ) ( ){ }                 k k k i i k k i i k k k i i k k i i k k k i i k k k k i i k k k i k ij j ji k k i i mmE k k mxE k mmE mxE k mmEk mxE k mxE k mmEk mxE k mmE mmE k k mxE k mmE mxEmxEmxE kk / 2 2 1 0 2 0 1 0 2 3 1 2 2 1 2 2 / 2 1 3 2 0 44 2 2 1 2 2 / 2 1 1 22 1 4 2 2 ˆ 2 222 22 22 4 2 ˆ 1 2 1 ˆ4 1 ˆ4 1 2 1 ˆ2 1 ˆ4 ˆ 11 ˆ4 1 1 σ σσσ σσ σσ µ σ σσ σ σσ − − −− − − −− − − + − − −− − − +− − − + +− − +− − − +             −−+− − ≈ ∑∑ ∑∑∑ ∑∑ ∑∑ == === == ≠ ==
  • 48. 48 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (continue - 5) { } { } mxE k mE k i ik == ∑=1 1 ˆ { } ( ) 2 1 22 ˆ 1 1 :ˆ σσ =       − − = ∑= k i kik mx k EE We found: ( ){ } k mmE kmk 2 22 ˆ ˆ: σ σ =−= ( ){ } ( ) k mx k EE k i kik k 4 4 2 2 1 22222 ˆ ˆ 1 1 ˆ:2 σµ σσσσσ − ≈               −− − =−= ∑= ( ){ }4 4 : mxE i −=µ Kurtosis of random variable xi Define 4 4 : σ µ λ = ( ){ } ( ) ( ) k mx k EE k i kik k 42 2 1 22222 ˆ 1 ˆ 1 1 ˆ:2 σλ σσσσσ − ≈               −− − =−= ∑=
  • 49. 49 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (continue - 6) [ ] ϕσσσ σσ =≤≤ 2 ˆ 2 k 2 k ˆ-0Prob n For high values of k, according to the Central Limit Theorem the estimations of mean and of variance are approximately Gaussian Random Variables. kmˆ 2 ˆkσ We want to find a region around that will contain σ2 with a predefined probability φ as function of the number of iterations k. 2 ˆkσ Since are approximately Gaussian Random Variables nσ is given by solving: 2 ˆkσ ϕζζ π σ σ =      −∫ + − n n d2 2 1 exp 2 1 nσ φ 1.000 0.6827 1.645 0.9000 1.960 0.9500 2.576 0.9900 Cumulative Probability within nσ Standard Deviation of the Mean for a Gaussian Random Variable 22 k 22 1 ˆ- 1 σ λ σσσ λ σσ k n k n − ≤≤ − − 22 k 2 1 1 ˆ-1 1 σ λ σσ λ σσ         − − ≤≤        + − − k n k n ( ) ( ) ( ) ( )( )42222 1,0;ˆ~ˆ&,0;ˆ~ˆ σλσσσσ −−− kkkk kmmmk NN
  • 50. 50 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (continue - 7) [ ] ϕσσσ σσ =≤≤ 2 ˆ 2 k 2 k ˆ-0Prob n 22 k 22 1 ˆ- 1 σ λ σσσ λ σσ k n k n − ≤≤ − − 22 k 2 1 1 ˆ-1 1 σ λ σσ λ σσ         − − ≤≤        + − − k n k n 22 ˆ 1 2 k σ λ σσ k − = 22 k 2 1 1ˆ 1 1 σ λ σσ λ σσ         − −≥≥        − + k n k n         − − ≥≥         − + k n k n 1 1 ˆ 1 1 2 2 k 2 λ σ σ λ σ σσ k n k n 1 1 :ˆ: 1 1 k − − =≥≥= − + λ σ σσσ λ σ σσ
  • 51. 51 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (continue - 8)
  • 52. 52 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (continue - 9)
  • 53. 53 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (continue - 10) k n k n kk 1ˆ 1 :& 1ˆ 1 : 00 − − = − + = λ σ σ λ σ σ σσ Monte-Carlo Procedure Choose the Confidence Level φ and find the corresponding nσ using the normal (Gaussian) distribution. nσ φ 1.000 0.6827 1.645 0.9000 1.960 0.9500 2.576 0.9900 1 Run a few sample k0 > 20 and estimate λ according to2 ( ) ( ) 2 1 2 0 1 4 0 0 0 0 0 0 ˆ 1 ˆ 1 :ˆ       − − = ∑ ∑ = = k i ki k i ki k mx k mx k λ∑= = 0 0 10 1 :ˆ k i ik x k m 3 Compute and as function of kσ σ 4 Find k for which [ ] ϕσσσ σσ =≤≤ 2 ˆ 2 k 2 k ˆ-0Prob n 5 Run k-k0 simulations
  • 54. 54 SOLO Review of Probability Estimation of the Mean and Variance of a Random Variable (continue – 11) Monte-Carlo Procedure Choose the Confidence Level φ = 95% that gives the corresponding nσ=1.96. nσ φ 1.000 0.6827 1.645 0.9000 1.960 0.9500 2.576 0.9900 1 The kurtosis λ = 32 3 Find k for which ϕσ λ σσ σ σ =             − ≤≤  2 kˆ 22 k 2 1 ˆ-0Prob k n 4 Run k>800 simulations Example: Assume a Gaussian distribution λ = 3 95.0 2 96.1ˆ-0Prob 2 kˆ 22 k 2 =             ≤≤  σ σσσ k Assume also that we require also that with probability φ = 95 %22 k 2 1.0ˆ- σσσ ≤ 1.0 2 96.1 = k 800≈k
  • 55. 55 SOLO Review of Probability Generating Discrete Random Variables Pseudo-Random Number Generators • First attempts to generate “random numbers”: - Draw balls out of a stirred urn - Roll dice • 1927: L.H.C. Tippett published a table of 40,000 digits taken “at random” from census reports. • 1939: M.G. Kendall and B. Babington-Smith create a mechanical machine to generate random numbers. They published a table of 100,000 digits. • 1946: J. Von Neumann proposed the “middle square method”. • 1948: D.H. Lehmer introduced the “linear congruential method”. • 1955: RAND Corporation published a table of 1,000,000 random digits obtained from electronic noise. • 1965: M.D. MacLaren and G. Marsaglia proposed to combine two congruential generators. • 1989: R.S. Wikramaratna proposed the additive congruential method.
  • 56. 56 SOLO Review of Probability Generating Discrete Random Variables Pseudo-Random Number Generators A Random Number represents the value of a random variable uniform distributed on (0,1). Pseudo-Random Numbers constitute a sequence of values, which although are deterministically generated, have all the appearances of being independent uniform distributed on (0,1). One approach 1. Define x0 = integer initial condition or seed 2. Using integers a and m recursively compute mxax nn modulo1−= mxIntegerxkmaxmkxa nnn <∈+⋅=− ,,,1 Therefore xn takes the values 0,1,…,m-1 and the quantity un=xn/m , called a pseudo-random number is an approximation to the value of uniform (0,1) random variable. In general the integers a and m should be chose to satisfy three criteria: 1. For any initial seed, the resultant sequence has the “appearance” of being a sequence of independent (0,1) random variables. For any initial seed, the number of variables that can be generated before repetition begins is large. The values can be computed efficiently on a digital computer. Multiplicative congruential method Return to Monte Carlo Approximation
  • 57. 57 SOLO Review of Probability Generating Discrete Random Variables Pseudo-Random Number Generators (continue – 1) A guideline is to choose m to be a large prime number compared to the computer word size. Examples: 32 bits word computer: 807,16712 531 ==−= am 125,35312 535 ==−= am36 bits word computer: Another generator of pseudo-random numbers uses recursions of the type: ( ) mcxax nn modulo1 += − mxIntegerxkmcaxmkcxa nnn <∈+⋅=+− ,,,,1 Mixed congruential method
  • 58. 58 SOLO Review of Probability Generating Discrete Random Variables Histograms Return to Table of Content A histogram is a graphical display of tabulated frequencies, shown as bars. It shows what proportion of cases fall into each of several categories: it is a form of data binning. The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent. The intervals (or bands, or bins) are generally of the same size. Histograms are used to plot density of data, and often for density estimation: estimating the probability density function of the underlying variable. The total area of a histogram always equals 1. If the length of the intervals on the x-axis are all 1, then a histogram is identical to a relative frequency plot. A cumulative histogram is a mapping that counts the cumulative number of observations in all of the bins up to the specified bin. That is, the cumulative histogram Mi of a histogram mi is defined as: An ordinary and a cumulative histogram of the same data. The data shown is a random sample of 10,000 points from a normal distribution with a mean of 0 and a standard deviation of 1. Mathematical Definition ∑= = k i imn 1 In a more general mathematical sense, a histogram is a mapping mi that counts the number of observations that fall into various disjoint categories (known as bins), whereas the graph of a histogram is merely one way to represent a histogram. Thus, if we let n be the total number of observations and k be the total number of bins, the histogram mi meets the following conditions: ∑= = i j ji mM 1
  • 59. 59 SOLO Review of Probability Generating Discrete Random Variables The Inverse Transform Method Suppose we want to generate a discrete random variable X having probability density function: ( ) 1,1,0)( ==−= ∑j jjj pjxxpxp δ To accomplish this, let generate a random number U that is uniformly distributed over (0,1) and set:            <≤ +<≤ < = ∑∑ = − =   j i i j i ij pUpifx ppUpifx pUifx X 1 1 1 1001 00 j j i i j i ij ppUpPxXP =       <<== ∑∑ = − = 1 1 1 )( Since , for any a and b such that 0 < a < b < 1, and U is uniformly distributed P (a ≤ U < b) = b-a, we have: and so X has the desired distribution.
  • 60. 60 SOLO Review of Probability Generating Discrete Random Variables The Inverse Transform Method (continue – 1) Suppose we want to generate a discrete random variable X having probability density function: ( ) 1,1,0)( ==−= ∑j jjj pjxxpxp δ Draw X, N times, from p (x) Histogram of the Results
  • 61. 61 SOLO Review of Probability Generating Discrete Random Variables The Inverse Transform Method (continue – 2) Generating a Poisson Random Variable: 1,1,0 ! )( ===== ∑− i i i i pi i eiXPp  λλ ( ) 1 ! !1 1 1 + = + = − + − + i i e i e p p i i i i λ λ λ λ λ Draw X , N times, from Poisson Distribution Histogram of the Results
  • 62. 62 SOLO Review of Probability Generating Discrete Random Variables The Inverse Transform Method (continue – 3) Generating Binominal Random Variable: ( ) ( ) 1,1,01 !! ! )( ==− − === ∑− i i ini i pipp ini n iXPp  ( ) ( ) ( ) ( ) ( ) p p i in pp ini n pp ini n p p ini ini i i −+ − = − − − −−+ = − −−+ + 111 !! ! 1 !1!1 ! 11 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 k ( )nkP , Histogram of the Results
  • 63. 63 SOLO Review of Probability Generating Discrete Random Variables The Accaptance-Rejection Technique Suppose we have an efficient method for simulating a random variable having a probability density function { qj, j ≥0 }. We want to use this to obtain a random variable that has the probability density function { pj, j ≥0 }. Let c be a constant such that: 0.. ≠∀≤ j j j qtsjc q p If such a c exists, it must satisfy: cqcp j j j j ≤⇒≤ ∑∑ 1 11  Rejection Method Step 1: Simulate the value of Y, having probability density function qj. Step 2: Generate a random number U (that is uniformly distributed over (0,1) ). Step 3: If U < pY/c qY, set X = Y and stop. Otherwise return to Step 1.
  • 64. 64 SOLO Review of Probability Generating Discrete Random Variables The Acceptance-Rejection Technique (continue – 1) Theorem The random variable X obtained by the rejection method has probability density function P { X=i } = pi. Proof { } { } { } { } { }Acceptance , Acceptance Acceptance, Acceptance Method Acceptance Method Acceptance P qc p UiYP P iYP iYPiXP i i Bayes       ≤= = = ==== { } { } { } { }AcceptanceAcceptanceAcceptance (0,1)ddistribute uniformlyU ceindependen by Pc p P qc p q P qc p UPiYP ii i i i i qi ==      ≤= =  Summing over all i, yields { } { }Acceptance 1 1 Pc p iXP i i i   ∑ ∑ == { } 1Acceptance =Pc { } ipiXP == { } 1 1 Acceptance ≤= c P q.e.d.
  • 65. 65 SOLO Review of Probability Generating Discrete Random Variables The Acceptance-Rejection Technique (continue – 2) Example Generate a truncated Gaussian using the Accept-Reject method. Consider the case with ( ) [ ]     −∈ ≈ − otherwise xe xp x 0 4,42/2/2 π Consider the Uniform proposal function ( ) [ ]    −∈ ≈ otherwise x xq 0 4,48/1 In Figure we can see the results of the Accept-Reject method using N=10,000 samples.
  • 66. 66 SOLO Review of Probability Generating Continuous Random Variables The Inverse Transform Algorithm Let U be a uniform (0,1) random variable. For any continuous distribution function F the random variable X defined by ( )UFX 1− = has distribution F. [ F-1 (u) is defined to be that value of x such that F (x) = u ] Proof Let Px(x) denote the Probability Distribution Function X=F-1 (U) ( ) { } ( ){ }xUFPxXPxPx ≤=≤= −1 Since F is a distribution function, it means that F (x) is a monotonic increasing function of x and so the inequality “a ≤ b” is equivalent to the inequality “F (a) ≤ F (b)”, therefore ( ) ( )[ ] ( ){ } ( )[ ] ( ){ } ( ) ( ) ( )xFxFUP xFUFFPxP uniformU xF UUFF x 1,0 10 1 1 ≤≤ = − =≤= ≤= −
  • 67. 67 SOLO Review of Probability Importance Sampling Let Y = (Y1,…,Ym) a vector of random variables having a joint probability density function f (y1,…,ym), and suppose that we are interested in estimating ( )[ ] ( ) ( )∫== mmmmf dydyyyfyyhYYhE  1111 ,,,,,,θ Suppose that a direct generation of the random vector Y so as to compute h (Y) is inefficient possible because (a) is difficult to generate the random vector Y, or (b) the variance of h (Y) is large, or (c) both of the above Suppose that W=(W1,…,Wm) is another random vector, which takes values in the same domain as Y, and has a joint density function g(w1,…,wm) that can be easily generated. The estimation θ can be expressed as: ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )       === ∫ Wg WfWh Edwdwwwg wwg wwfwwh YYhE gmm m mm mf     11 1 11 1 ,, ,, ,,,, ,,θ Therefore, we can estimate θ by generating values of random vector W, and then using as the estimator the resulting average of the values h (W) f (W)/ g (W). Return to Particle Filters
  • 68. 68 SOLO Review of Probability Monte Carlo Integration Monte Carlo Method can be used to numerically evaluate multidimensional integrals ( ) ( )∫∫ == xdxgdxdxxxgI mm  11 ,, To use Monte Carlo we factorize ( ) ( ) ( )xpxfxg ⋅= ( ) ( ) 1&0 =≥ ∫ xdxpxp in such a way that is interpreted as a Probability Density Function such that( )xp We assume that we can draw NS samples from ( )xp( )S i Nix ,,1, = ( ) S i Nixpx ,,1~ = Using Monte Carlo we can approximate ( ) ( )∑= −≈ SN i S i Nxxxp 1 /δ ( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑∫ ∫ ∑∫ == = =−⋅= −⋅=≈⋅= SS S S N i i S N i i S N i S i N xf N xdxxxf N xdNxxxfIxdxpxfI 11 1 11 / δ δ
  • 69. 69 SOLO Review of Probability Monte Carlo Integration we draw NS samples from ( )xp( )S i Nix ,,1, = ( ) S i Nixpx ,,1~ = ( ) ( ) ( )∑∫ = =≈⋅= S S N i i S N xf N IxdxpxfI 1 1 If the samples are independent, then INS is an unbiased estimate of I. i x According to the Law of Large Numbers INS will almost surely converge to I: II sa N N S S .. ∞→ → ( )[ ] ( ) ∞<−= ∫ xdxpIxff 22 :σIf the variance of is finite; i.e.:( )xf then the Central Limit Theorem holds and the estimation error converges in distribution to a Normal Distribution: ( ) ( )2 ,0~lim fNS N IIN S S σN− ∞→ The error of the MC estimate, e = INS – I, is of the order of O (NS -1/2 ), meaning that the rate of convergence of the estimate is independent of the dimension of the integrand. Numerical Integration of and ( )kk xzp |( )1| −kk xxp Return to Particle Filters
  • 70. 70 SOLO Review of Probability Existence Theorems Existence Theorem 3 Given a function S (ω)= S (-ω) or, equivalently, a positive-defined function R (τ), (R (τ) = R (-τ), and R (0)=max R (τ), for all τ ), we can find a stochastic process x (t) having S (ω) as its power spectrum or R (τ) as its autocorrelation. Proof of Existence Theorem 3 Define ( ) ( ) ( ) ( ) ( )ω π ω π ω ωωω π −= − === ∫ +∞ ∞− f a S a S fdSa 22 2 :& 1 : Since , according to Existence Theorem 1, we can find a random variable ω with the even density function f (ω), and probability density function ( ) ( ) 1&0 =≥ ∫ +∞ ∞− ωωω dff ( ) ( )∫∞− = ω ττω dfP : We now form the process , where is a random variable uniform distributed in the interval (-π,+π) and independent of ω. ( ) ( )ϑω += tatx cos: ϑ
  • 71. 71 SOLO Review of Probability Existence Theorems Existence Theorem 3 Proof of Existence Theorem 3 (continue – 1) Since is uniform distributed in the interval (-π,+π) and independent of ω, its spectrum is ( ){ } ( ){ } ( ){ } ( ){ } ( ){ } 0sinsincoscos 00 , =−=  ϑωϑω ϑωϑω ϑω EtEaEtEatxE tindependen ϑ ( ) { } ( ) ϖπ ϖπ ϖπϖπ ϑ π ϖ πϖπϖπ π ϑϖπ π ϑϖϑϖ ϑϑ sin 2 1 2 1 2 1 = − ==== −+ − + − ∫ j ee j e deeES jjj jj or { } ( ){ } ( ){ } ( ) ϖπ ϖπ ϑϖϑϖ ϑϑ ϑϖ ϑ sin sincos =+= EjEeE j 1=ϖ 1=ϖ ( ) ( ){ } ( ) ( )[ ]{ } ( ){ } ( )[ ]{ } ( ){ } ( )[ ]{ } ( ){ } ( )[ ]{ } ( ){ }  0 2 0 22, 22 2 2sin2sin 2 2cos2cos 2 cos 2 22cos 2 cos 2 coscos ϑτωϑτωτω ϑτωτω ϑτωϑωτ ϑωϑωω ϑω EtE a EtE a E a tE a E a ttEatxtxE tindependen +−++= +++= +++=+ 2=ϖ 2=ϖ Given a function S (ω)= S (-ω) or, equivalently, a positive-defined function R (τ), (R (τ) = R (-τ), and R (0)=max R (τ), for all τ ), we can find a stochastic process x (t) having S (ω) as its power spectrum or R (τ) as its autocorrelation.
  • 72. 72 SOLO Review of Probability Existence Theorems Existence Theorem 3 Proof of Existence Theorem 3 (continue – 2) ( ){ } 0=txE ( ) ( ){ } ( ){ } ( ) ( ) ( )τωωτωτωτ ω xRdf a E a txtxE ===+ ∫ +∞ ∞− cos 2 cos 2 22 ( ) ( )ϑω += tatx cos:We have Because of those two properties x (t) is wide-sense stationary with a power spectrum given by: ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )∫∫ +∞ ∞− −=+∞ ∞− =−= ττωτττωτωτω ττ dRdjRS x RR xx xx cossincos ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )∫∫ +∞ ∞− −=+∞ ∞− =+= ωτωω π ωτωτωω π τ ωω dSdjSR x SS xx xx cos 2 1 sincos 2 1 Therefore ( ) ( )ωπω faSx 2 = q.e.d. Fourier Inverse Fourier ( ) ( )∫ +∞ ∞− = ωωτω df a cos 2 2 f (ω) definition ( )ωS= Given a function S (ω)= S (-ω) or, equivalently, a positive-defined function R (τ), (R (τ) = R (-τ), and R (0)=max R (τ), for all τ ), we can find a stochastic process x (t) having S (ω) as its power spectrum or R (τ) as its autocorrelation.
  • 73. 73 SOLO Markov Processes A Markov Process is defined by: Andrei Andreevich Markov 1856 - 1922 ( ) ( )( ) ( ) ( )( ) 111 ,|,,,|, tttxtxptxtxp >∀ΩΩ=≤ΩΩ ττ i.e. the Random Process, the past up to any time t1 is fully defined by the process at t1. Examples of Markov Processes: 1. Continuous Dynamic System ( ) ( ) ( ) ( )vuxthtz wuxtftx ,,, ,,, = = 2. Discrete Dynamic System ( ) ( ) ( ) ( )kkkkk kkkkk vuxthtz wuxtftx ,,, ,,, 1111 = = −−−− x - state space vector (n x 1) u - input vector (m x 1) - measurement vector (p x 1)z v - white measurement noise vector (p x 1) - white input noise vector (n x 1)w Recursive Bayesian Estimation
  • 74. 74 Recursive Bayesian EstimationSOLO Using this property we obtain: ( ) ( )1021 |,,,| −−− = kkkkk xxpxxxxp  Markov Processes ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∏= − −−−− −−−−−− = = = −− − k i ii k xxp kkkk kk xxp kkkkkk xxpxp xxpxxxpxxp xxxpxxxxpxxxxp kk kk 1 10 02 | 0211 021 | 021021 | ,,,,|| ,,,,,,|,,,, 21 1           Markov Process: Table of Content the present discrete state probability depends only on the previous state. The Markov Process is defined if we know p (x0) and p(xi|xi-1) for each i.
  • 75. 75 Recursive Bayesian EstimationSOLO In a Markovian system the probability of the current true state depends only on the previous state, and is independent of the other earlier states ( ) ( )1021 |,,,| −−− = kkkkk xxpxxxxp  Similarly the measurements at the k-th time- step is dependent upon the current true state, so is conditionally independent of all other earlier states, given the current state ( ) ( )kkkkk xzpxxxzp |,,,| 01 =−  ( ) ( ) ( ) ( ) ( )kkkkkkkk zpzxpxpxzpxzp ||, == From the definition of the Markovian system (see Figure) p (xk|xk-1) is defined by f and the statistics of x and w and p (zk|xk) is defined by h and statistics of x and v. kx1−kx kz1−kz 0x 1x 2x 1z 2z kZ :11:1 −kZ ( )111 ,, −−− kkk wuxf ( )kk vxh , Markov Processes ( )000 ,, wuxf ( )11,vxh ( )111 ,, wuxf ( )22 ,vxh Hidden States Measurements
  • 76. 76 Recursive Bayesian EstimationSOLO ( ) ( ) ( ) ( ) ( )kvkkk xkkwkkkk vpgivenvxhz xpuwpgivenwuxfx :, ,,:,, 011111 0 = = −−−−− Markov Processes ( ) ( )j kkkkxkkkw j k wuxfxtsNjuxxfw k 11111 1 1 ,,..,..,1,, −−−−− − − === Suppose that we can obtain all for which j kw 1− ( ) ( ) ( )∑= − −−−−− ∇= kxN j j kkkw j kwkk wuxfwpxxp 1 1 11111 ,,|then ( ) ( ) ( )∑= − ∇= kx k N j j kkv j kvkk vxhvpxzp 1 1 ,| ( ) ( )j kkkzkkv j k vxhztsNjxzhv k ,..,..,1,1 === − In the same way, suppose that we can obtain all for whichj kv then ( ) ( ) ( ) ( ) ( )∑ ∑ = − −−−− = −−−− ∇= =+≤≤= kx kx N j k j kkkw j kw N j j k j kwkkkkkkkk xdwuxfwp wdwpxxdxXxxdxxp 1 1 1111 1 1111 ,, |Pr| This is a Conceptual Not a Practical Procedure Analytic Computations of and .( )kk xzp |( )1| −kk xxp
  • 77. 77 Recursive Bayesian EstimationSOLO ( ) ( ) ( ) ( ) ( )kvkkk xkkwkkkk vpgivenvxhz xpuwpgivenwuxfx : ,,:, 011111 0 += += −−−−− kx1−kx kz1−kz ( ) 111, −−− + kkk wuxf ( ) kk vxh + Markov Processes ( ) ( )[ ]111 ,| −−− −= kkkwkk uxfxpxxptherefore ( ) ( )[ ]kkvkk xhzpxzp −=|and For additive noise we have ( ) ( )kkk kkkk xhzv uxfxw −= −= −−− 111 , Analytic Computations of and (continue – 1)( )kk xzp |( )1| −kk xxp
  • 78. 78 SOLO ( ) ( )kkk kkk vxhz wxfx , , 11 = = −− kk vw &1− are system and measurement white-noise sequences independent of past and current states and on each other and having known P.D.F.s ( ) ( )kk vpwp &1− We want to compute p (xk|Z1:k) recursively, assuming knowledge of p(xk-1|Z1:k-1) in two stages, prediction (before) and update (after measurement) ( ) ( )( ) ( )∫ −−−−− −= 11111 ,| kkkkkkk wdwpwxfxxxp δ We need to evaluate the following integrals: ( ) ( )( ) ( )∫ −= kkkkkkk vdvpvxhzxzp ,| δ We use the numeric Monte Carlo Method to evaluate the integrals: Generate (Draw): ( ) ( ) Sk i kk i k Nivpvwpw ,,1~&~ 11 =−− ( ) ( )( ) S N i i k i k i kkk Nwxfxxxp S ∑= −−− −≈ 1 111 /,| δ ( ) ( )( ) S N i i k i k i kkk Nvxhzxzp S ∑= −≈ 1 /,| δ or ( ) ( ) ( ) S N i i kkkk i k i k i k Nxxxxpwxfx S ∑= −−− −≈→= 1 111 /|, δ ( ) ( ) ( ) S N i i kkkk i k i k i k Nzzxzpvxhz S ∑= −≈→= 1 /|, δ Analytic solutions for those integral equations do not exist in the general case. Recursive Bayesian Estimation Numerical Computations of and .( )kk xzp |( )1| −kk xxp Markov Processes Prediction (before measurement) ( ) ( ) ( )∫ −−−−− = 11:1111:1 ||| kkkkkkk xdZxpxxpZxp1 Update (after measurement) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ − − − − = − === kkkkk kkkk kk kkkk Bayes bp apabp bap kkkkk xdZxpxzp Zxpxzp Zzp Zxpxzp ZzxpZxp 1:1 1:1 1:1 1:1 | | 1:1:1 || || | || ,|| 2
  • 79. 79 Recursive Bayesian EstimationSOLO ( ) ( ) ( ) ( ) ( )kvkkk xkkwkkkk vpgivenvxhz xpuwpgivenwuxfx :, ,,:,, 011111 0 = = −−−−− Markov Processes Monte Carlo Computations of and .( )kk xzp |( )1| −kk xxp Generate (Draw) ( ) Sx i Nixpx ,,1~ 00 0 = For { }∞∈ ,,1 k Initialization0 1 At stage k-1 Generate (Draw) NS samples ( ) Skw i k Niwpw ,,1~ 11 =−− 2 State Update ( ) S i kk i k i k Niwuxfx ,,1,, 111 == −−− 3 Generate (Draw) Measurement Noise ( ) Skv i k Nivpv ,,1~ = k:=k+1 & return to 1 Compute Histograms of to obtain ( )kk xzp | kk xz | ( ) ( )∑= − −≈ SN i S i kkkk Nxxxxp 1 1 /| δ ( ) ( )∑= −≈ SN i S i kkkk Nzzxzp 1 /| δ Compute Histograms of to obtain 1| −kk xx ( )1| −kk xxp 4 Measurement , Update ( ) S i k i k i k Nivxhz ,,1, ==kz
  • 80. SOLO Stochastic Processes deal with systems corrupted by noise. A description of those processes is given in “Stochastic Processes” Presentation. Here we give only one aspect of those processes. ( ) ( ) ( ) [ ]fttttwddttxftxd ,, 0∈+= A continuous dynamic system is described by: Stochastic Processes ( )tx - n- dimensional state vector ( )twd - n- dimensional process noise vector Assuming system measurements at discrete time tk given by: ( ) ( )( ) [ ]fkkkkk tttvttxhtz ,,, 0∈= kv - m- dimensional measurement noise vector at tk We are interested in the probability of the state at time t given the set of discrete measurements until (included) time tk < t. x ( )kZtxp |, { }kk zzzZ ,,, 21 = - set of all measurements up to and including time tk. The time evolution of the probability density function is described by the Fokker–Planck equation.
  • 81. A solution to the one-dimensional Fokker–Planck equation, with both the drift and the diffusion term. The initial condition is a Dirac delta function in x = 1, and the distribution drifts towards x = 0. The Fokker–Planck equation describes the time evolution of the probability density function of the position of a particle, and can be generalized to other observables as well. It is named after Adriaan Fokker and Max Planck and is also known as the Kolmogorov forward equation. The first use of the Fokker– Planck equation was the statistical description of Brownian motion of a particle in a fluid. In one spatial dimension x, the Fokker–Planck equation for a process with drift D1(x,t) and diffusion D2(x,t) is More generally, the time-dependent probability distribution may depend on a set of N macrovariables xi. The general form of the Fokker–Planck equation is then where D1 is the drift vector and D2 the diffusion tensor; the latter results from the presence of the stochastic force. Fokker – Planck Equation Adriaan Fokker 1887 - 1972 Max Planck 1858 - 1947 SOLO Adriaan Fokker „Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld" Annalen der Physik 43, (1914) 810- 820 Max Plank, „Ueber einen Satz der statistichen Dynamik und eine Erweiterung in der Quantumtheorie“, Sitzungberichte der Preussischen Akadademie der Wissenschaften (1917) p. 324-341 Stochastic Processes ( ) ( ) ( )[ ] ( ) ( )[ ]txftxD x txftxD x txf t ,,,,, 22 2 1 ∂ ∂ + ∂ ∂ −= ∂ ∂ ( )[ ] ( )[ ]∑∑∑ = == ∂∂ ∂ + ∂ ∂ −= ∂ ∂ N i N j Nji ji N i Ni i ftxxD xx ftxxD x f t 1 1 1 2 2 1 1 1 ,,,,,, 
  • 82. Fokker – Planck Equation (continue – 1) The Fokker–Planck equation can be used for computing the probability densities of stochastic differential equations. where is the state and is a standard M-dimensional Wiener process. If the initial probability distribution is , then the probability distribution of the state is given by the Fokker – Planck Equation with the drift and diffusion terms: Similarly, a Fokker–Planck equation can be derived for Stratonovich stochastic differential equations. In this case, noise-induced drift terms appear if the noise strength is state-dependent. SOLO Consider the Itô stochastic differential equation: ( ) ( ) ( )[ ] ( ) ( )[ ]txftxD x txftxD x txf t ,,,,, 22 2 1 ∂ ∂ + ∂ ∂ −= ∂ ∂
  • 83. Fokker – Planck Equation (continue – 2) Derivation of the Fokker–Planck Equation SOLO Start with ( ) ( ) ( )11|1, 111 |, −−− −−− = kxkkxxkkxx xpxxpxxp kkkkk and ( ) ( ) ( ) ( )∫∫ +∞ ∞− −−− +∞ ∞− −− −−− == 111|11, 111 |, kkxkkxxkkkxxkx xdxpxxpxdxxpxp kkkkkk define ( ) ( )ttxxtxxttttt kkkk ∆−==∆−== −− 11 ,,, ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )∫ +∞ ∞− ∆−∆− ∆−∆−∆−= ttxdttxpttxtxptxp ttxttxtxtx || Let use the Characteristic Function of ( ) ( ) ( ) ( ) ( )[ ]{ } ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )ttxtxtxtxdttxtxpttxtxss ttxtxttxtx ∆−−=∆∆−∆−−−=Φ ∫ +∞ ∞− ∆−∆−∆ |exp: || ( ) ( ) ( ) ( )[ ]ttxtxp ttxtx ∆−∆− || The inverse transform is ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( ) ( )∫ ∞+ ∞− ∆−∆∆− Φ∆−−=∆− j j ttxtxttxtx sdsttxtxs j ttxtxp || exp 2 1 | π Using Chapman-Kolmogorov Equation we obtain: ( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ]{ } ( ) ( ) ( ) ( ) ( )[ ] ( )ttxdsdttxpsttxtxs j ttxdttxpsdsttxtxs j txp j j ttxttxtx ttx ttxtxp j j ttxtxtx ttxtx ∆−∆−Φ∆−−= ∆−∆−Φ∆−−= ∫ ∫ ∫ ∫ ∞+ ∞− ∞+ ∞− ∆−∆−∆ +∞ ∞− ∆− ∆− ∞+ ∞− ∆−∆ ∆− | | | exp 2 1 exp 2 1 | π π    Stochastic Processes
  • 84. Fokker – Planck Equation (continue – 3) Derivation of the Fokker–Planck Equation (continue – 1) SOLO The Characteristic Function can be expressed in terms of the moments about x (t-Δt) as: ( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( ) ( ) ( ) ( )[ ] ( )ttxdsdttxpsttxtxs j txp j j ttxttxtxtx ∆−∆−Φ∆−−= ∫ ∫ +∞ ∞− ∞+ ∞− ∆−∆−∆ |exp 2 1 π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ){ }∑ ∞ = ∆−∆∆−∆ ∆−∆−− − +=Φ 1 || | ! 1 i i ttxtx i ttxtx ttxttxtxE i s s Therefore ( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ] ( )ttxdsdttxpttxttxtxE i s ttxtxs j txp j j ttx i i ttxtx i tx ∆−∆−       ∆−∆−− − +∆−−= ∫ ∫ ∑ +∞ ∞− ∞+ ∞− ∆− ∞ = ∆− 1 | | ! 1exp 2 1 π Use the fact that ( ) ( ) ( )[ ]{ } ( ) ( ) ( )[ ] ( )[ ] ,2,1,01exp 2 1 = ∂ ∆−−∂ −=∆−−−∫ ∞+ ∞− i tx ttxtx sdttxtxss j i i i j j i δ π ( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( )[ ] ( ) ( )[ ] ( ){ } ( ) ( )[ ] ( )∫∑ ∫ ∫ ∞+ ∞− ∞ = ∆− +∞ ∞− ∆− ∞+ ∞− ∆−∆−∆−∆−− ∂ ∆−−∂− + ∆−∆−∆−−= 1 | ! 1 exp 2 1 i ttx i i ii ttx j j tx ttxdttxpttxttxtxE tx ttxtx i ttxdttxpsdttxtxs j txp δ π where δ [u] is the Dirac delta function: [ ] { } ( ) [ ] ( ) ( ) ( ) ( ) ( )000..0exp 2 1 FFFtsuFFduuuFsdus j u j j ==∀== −+ +∞ ∞− ∞+ ∞− ∫∫ δ π δ Stochastic Processes
  • 85. Fokker – Planck Equation (continue – 4) Derivation of the Fokker–Planck Equation (continue – 2) SOLO [ ] ( ){ } ( ) [ ] ( ) ( ) ( ) ( ) ( )afafaftsufufduuaufsduas j ua au j j ==∀=−−=− −+= +∞ ∞− ∞+ ∞− ∫∫ ..exp 2 1 δ π δ [ ] ( ){ } ( ) ( ) { } ( ) ( ) { }∫∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− =→=− − =− j j j j j j sdussFs j uf du d sdussF j ufsduass j ua ud d exp 2 1 exp 2 1 exp 2 1 πππ δ ( ) [ ] ( ) ( ){ } ( ) ( ){ } { } ( ) { } { } ( ) ( ) au j j j j j j j j ud ufd sdsFass j sdduusufass j sdduuasufs j dusduass j ufduua ud d uf = ∞+ ∞− ∞+ ∞− ∞+ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− −= − =− − = − − =− − =− ∫∫ ∫ ∫ ∫∫ ∫∫ exp 2 1 expexp 2 1 exp 2 1 exp 2 1 ππ ππ δ [ ] ( ) ( ){ } ( ) ( ) { } ( ) ( ) { }∫∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− =→=− − =− j j i i ij j j j i i i i sdussFs j uf du d sdussF j ufsduass j ua ud d exp 2 1 exp 2 1 exp 2 1 πππ δ ( ) [ ] ( ) ( ) ( ){ } ( ) ( ) ( ){ } ( ) { } ( ) { } ( ) ( ) { } ( ) ( ) au i i i j j i ij j i i j j i ij j i i i i ud ufd sdassFs j sdduusufass j sdduuasufs j dusduass j ufduua ud d uf = −= − =− − = − − =− − =− ∫∫ ∫ ∫ ∫∫ ∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− 1exp 2 1 expexp 2 1 exp 2 1 exp 2 1 ππ ππ δ Useful results related to integrals involving Delta (Dirac) function Stochastic Processes
  • 86. Fokker – Planck Equation (continue – 5) Derivation of the Fokker–Planck Equation (continue – 3) SOLO ( ) ( )[ ]{ } ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ]txpttxdttxpttxtxttxdttxpsdttxtxs j ttxttxttx ttxtx j j ∆− +∞ ∞− ∆− +∞ ∞− ∆− ∆−− ∞+ ∞− =∆−∆−∆−−=∆−∆−∆−− ∫∫ ∫ δ π δ    exp 2 1 ( ) ( ) ( )[ ] ( )[ ] ( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( )[ ] ( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ]( ) ( )[ ]∑ ∑ ∫ ∫∑ ∞ = =∆ ∆−∆− ∞ = ∞+ ∞− ∆−∆− +∞ ∞− ∞ = ∆−∆− ∂ ∆−∆−−∂− = ∆−∆−∆−∆−− ∂ ∆−−∂− = ∆−∆−∆−∆−− ∂ ∆−−∂− 1 0 | 1 | 1 | | ! 1 | ! 1 | ! 1 i t i ttx i ttxtx ii i ttx i ttxtxi ii i ttx i ttxtxi ii tx txpttxttxtxE i ttxdttxpttxttxtxE tx ttxtx i ttxdttxpttxttxtxE tx ttxtx i δ δ ( ) [ ] ( ) ( ) ( ) [ ] [ ] ( ) auau i i i i i i i i i ud ufd duua uad d uf ud ufd duua ud d uf == =− − →−=− ∫∫ +∞ ∞− +∞ ∞− δδ 1We found ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ]( ) ( )[ ]∑ ∞ = =∆ ∆−∆− ∆− ∂ ∆−∆−−∂− += 1 0 | | ! 1 i t i ttx i ttxtx ii ttxtx tx txpttxttxtxE i txptxp ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ]( ) ( )[ ]∑ ∞ = ∆− →∆ ∆− →∆ ∂ ∆−∆−−∂ ∆ − = ∆ − 1 00 |1 lim ! 1 lim i i ttx ii t i ttxtx t tx txpttxttxtxE tit txptxp Therefore Rearranging, dividing by Δt, and tacking the limit Δt→0, we obtain: Stochastic Processes
  • 87. Fokker – Planck Equation (continue – 6) Derivation of the Fokker–Planck Equation (continue – 4) SOLO We found ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( )[ ]( ) ( )[ ]∑ ∞ = ∆−∆− →∆ ∆− →∆ ∂ ∆−∆−−∂ ∆ − = ∆ − 1 | 00 |1 lim ! 1 lim i i ttx i ttxtx i t i ttxtx t tx txpttxttxtxE tit txptxp Define: ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ){ } t ttxttxtxE txtxm i ttxtx t i ∆ ∆−∆−− =− ∆− →∆ − | lim: | 0 Therefore ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )[ ]( ) ( )[ ]∑ ∞ = − ∂ −∂− = ∂ ∂ 1 ! 1 i i tx iii tx tx txptxtxm it txp ( ) ( )ttxtx t ∆−= →∆ − 0 lim: and: This equation is called the Stochastic Equation or Kinetic Equation. It is a partial differential equation that we must solve, with the initial condition: ( ) ( )[ ] ( )[ ]000 0 txptxp tx === Stochastic Processes
  • 88. Fokker – Planck Equation (continue – 7) Derivation of the Fokker–Planck Equation (continue – 5) SOLO We want to find px(t) [x(t)] where x(t) is the solution of ( ) ( ) ( ) [ ]fg ttttntxf dt txd ,, 0∈+= ( ){ } 0: == tnEn gg  ( )tng ( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( )τδττ −=−− ttQnntntnE gggg ˆˆ Wiener (Gauss) Process ( ) ( )[ ] ( ) ( )[ ] ( ){ } [ ] ( ){ } [ ]{ } ( )tQnEtxnE t ttxttxtxE txtxm gg t === ∆ ∆−∆−− =− →∆ − 22 2 2 0 2 | | lim: ( ) ( )[ ] ( ) ( )[ ] ( ){ } ( ) ( ) ( ) ( ) ( )txfnEtxftx td txd E t ttxttxtxE txtxm g t ,,| | lim: 0 0 1 =+=             = ∆ ∆−∆−− =− →∆ −  ( ) ( )[ ] ( ) ( )[ ] ( ){ } 20 | lim: 0 >= ∆ ∆−∆−− =− →∆ − i t ttxttxtxE txtxm i t i Therefore we obtain: ( ) ( )[ ] ( )[ ] ( ) ( )[ ]( ) ( ) ( ) ( ) ( )[ ] ( )[ ]2 2 2 1, tx txp tQ tx txpttxf t txp txtxtx ∂ ∂ + ∂ ∂ −= ∂ ∂ Stochastic Processes Fokker–Planck Equation Return to Daum
  • 89. 89 Recursive Bayesian EstimationSOLO Given a nonlinear discrete stochastic Markovian system we want to use k discrete measurements Z1:k={z1,z2,…,zk} to estimate the hidden state xk. For this we want to compute the probability of xk given all the measurements Z1:k={z1,z2,…,zk} . If we know p ( xk| Z1:k ) then xk is estimated using: { } ( )∫== kkkkkkkk xdZxpxZxEx :1:1| ||:ˆ ( )( ){ } ( )( ) ( )∫ −−=−−= kkk T kkkkk T kkkkkk xdZxpxxxxZxxxxEP :1:1| |ˆˆ|ˆˆ or more general we can compute all moments of the probability distribution p ( xk| Z1:k ): ( ){ } ( ) ( )∫= kkkkkk xdZxpxgZxgE :1:1 || Bayesian Estimation Introduction Problem: Estimate the hidden States of a Non-linear Dynamic Stochastic System from Noisy Measurements. kx1−kx kz1−kz 0x 1x 2x 1z 2z kZ :11:1 −kZ ( )11, −− kk wxf ( )kk vxh , ( )00 ,wxf ( )11,vxh ( )11,wxf ( )22 ,vxh The knowledge of p ( xk| Z1:k ) allows also the computation of Maximum a Posteriori (MAP) estimate using: ( )kk x MAP kk Zxpx k :1| |maxargˆ =
  • 90. 90 Recursive Bayesian EstimationSOLO To find the expression for p ( xk| Z1:k ) we use the theorem of joint probability (Bayes Rule): ( ) ( ) ( )k kk RuleBayes kk Zp Zxp Zxp :1 :1 :1 , | = Since Z1:k ={ zk, Z1:k-1 }: ( ) ( ) ( )1:1 1:1 :1 , ,, | − − = kk kkk kk Zzp Zzxp Zxp The denominator of this expression is ( ) ( ) ( )1:11:11:1 ,,|,, −−− = kkkkk RuleBayes kkk ZxpZxzpZzxp ( ) ( ) ( )    1:11:11:1 |,| −−−= kkkkkk ZpZxpZxzp Since the knowledge of xk supersedes the need for Z1:k-1 = {z1, z2,…,zk-1} ( ) ( )kkkkk xzpZxzp |,| 1:1 ≡− ( ) ( ) ( ) ( ) ( ) ( )1:11:1 1:11:1 :1 | || | −− −− = kkk kkkkk kk ZpZzp ZpZxpxzp ZxpTherefore: ( ) ( ) ( )1:11:11:1 |, −−− = kkk RuleBayes kk ZpZzpZzp and the nominator is Bayesian Estimation Introduction
  • 91. 91 Recursive Bayesian EstimationSOLO The final result is: ( ) ( ) ( ) ( )1:1 1:1 :1 | || | − − = kk kkkk kk Zzp Zxpxzp Zxp Therefore: Since p ( xk| Z1:k ) is a probability distribution it must satisfy: ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ − − − − === 1:1 1:1 1:1 1:1 :1 | || | || |1 kk kkkkk k kk kkkk kkk Zzp xdZxpxzp xd Zzp Zxpxzp xdZxp ( ) 1| :1 =∫ kkk xdZxp ( ) ( ) ( )∫ −− = kkkkkkk xdZxpxzpZzp 1:11:1 ||| ( ) ( ) ( ) ( ) ( )∫ − − = kkkkk kkkk kk xdZxpxzp Zxpxzp Zxp 1:1 1:1 :1 || || | and: This is a recursive relation that needs the value of p (xk|Z1:k-1), assuming that p (zk|xk) is obtained from the Markovian system definition ( zk = h (xk,vk) ). Bayesian Estimation Introduction kx1−kx kz1−kz 0x 1x 2x 1z 2z kZ :11:1 −kZ ( )11, −− kk wxf ( )kk vxh , ( )00 ,wxf ( )11,vxh ( )11,wxf ( )22 ,vxh Hidden States Measurements
  • 92. 92 Recursive Bayesian EstimationSOLO The Correction Step is: ( ) ( ) ( ) ( )1:1 1:1 :1 | || | − − = kk kkkk kk Zzp Zxpxzp Zxp Bayesian Estimation Introduction evidence priorlikeliood posterior ⋅ = or: prior: given by prediction equation ( )kk xzp | likelihood: given by observation model ( )1:1| −kk Zxp evidence: the normalized constant on the denominator ( ) ( ) ( )∫ −− = kkkkkkk xdZxpxzpZzp 1:11:1 |||
  • 93. 93 Recursive Bayesian EstimationSOLO ( ) ( ) ( )1:111:111:11 |,||, −−−−−− = kkkkk Bayes kkk ZxpZxxpZxxp ( ) ( ) ( ) ( )∫∫ −−−−−−−− == 11:11111:111:1 |||,| kkkkkkkkkkk xdZxpxxpxdZxxpZxp Using: We obtain: Since for a Markov Process the knowledge of xk-1 supersedes the need for Z1:k-1 = {z1, z2,…,zk-1} ( ) ( )11:11 |,| −−− = kkkkk xxpZxxp Chapman – Kolmogorov Equation Sydney Chapman 1888 - 1970 Andrey Nikolaevich Kolmogorov 1903-1987 Bayesian Estimation Introduction kx1−kx kz1−kz 0x 1x 2x 1z 2z kZ :11:1 −kZ ( )11, −− kk wxf ( )kk vxh , ( )00 ,wxf ( )11,vxh ( )11,wxf ( )22 ,vxh Hidden States Measurements
  • 94. 94 Recursive Bayesian EstimationSOLO ( ) ( ) ( ) ( )∫∫ −−−−−−−− == 11:11111:111:1 |||,| kkkkkkkkkkk xdZxpxxpxdZxxpZxp Using p (xk-1|Z1:k-1) from time-step k-1 and p (xk|xk-1) of the Markov system, compute: Initialize with p (x0) ( ) ( ) ( ) ( ) ( )∫ − − = kkkkk kkkk kk xdZxpxzp Zxpxzp Zxp 1:1 1:1 :1 || || | Using p (xk|Z1:k-1) from Prediction phase and p (zk|xk) of the Markov system, compute: { } ( )∫== kkkkkkkk xdZxpxZxEx :1:1| ||ˆ ( )( ){ } ( )( ) ( )∫ −−=−−= kkk T kkkkk T kkkkkk xdZxpxxxxZxxxxEP :1:1| |ˆˆ|ˆˆ At stage k k:=k+1 ( )1|11| ˆˆ −−− = kkkk xfx 0 Prediction phase (before zk measurement) 1 Correction Step (after zk measurement)2 Filtering3 kx1−kx kz1−kz 0x 1x 2x 1z 2z kZ :11:1 −kZ ( )11, −− kk wxf ( )kk vxh , ( )00 ,wxf ( )11,vxh ( )11,wxf ( )22 ,vxh Bayesian Estimation Introduction - Summary
  • 95. 95 Recursive Bayesian EstimationSOLO ( ) ( ) ( ) ( )∫∫ −−−−−−−− == 11:11111:111:1 |||,| kkkkkkkkkkk xdZxpxxpxdZxxpZxp ( ) ( ) ( ) ( ) ( )∫ − − = kkkkk kkkk kk xdZxpxzp Zxpxzp Zxp 1:1 1:1 :1 || || | Prediction phase (before zk measurement) 1 Correction Step (after zk measurement)2 kx1−kx kz1−kz 0x 1x 2x 1z 2z kZ :11:1 −kZ ( )11, −− kk wxf ( )kk vxh , ( )00 ,wxf ( )11,vxh ( )11,wxf ( )22 ,vxh Bayesian Estimation Introduction - Summary This is a Conceptual Solution because the Integrals are Often Not Tractable. An optimal solution is possible for some restricted cases: • Linear Systems with Gaussian Noises (system and measurements) • Grid-Based Filters Table of Content
  • 96. 96 SOLO Linear Gaussian Systems A Linear Combination of Independent Gaussian random vectors is also a Gaussian random vector mmm XaXaXaS +++= 2211: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )    +++++++−=     +−    +−    +−= ΦΦ⋅Φ==Φ ∫ ∫ +∞ ∞− +∞ ∞− mmmm mmmm YYYm YpYp mYYmS aaajaaa ajaajaaja YdYdYYpSj m mmYY mm µµµωσσσω µωσωµωσωµωσω ωωωωω          2211 222 2 2 2 2 1 2 1 2 222 22 2 2 2 2 2 11 2 1 2 1 2 11,, 2 1 exp 2 1 exp 2 1 exp 2 1 exp ,,exp 21 11 1 ( ) ( )       − −= 2 2 2 exp 2 1 ,; i ii i iiiX X Xp i σ µ σπ σµ ( ) ( ) ( )     +−==Φ ∫ +∞ ∞− iiiiXiX jXdXpXj ii µωσωωω 22 2 1 expexp: Moment- Generating Function Gaussian distribution Define Proof: ( ) ( )iX ii i X i iYiii Xp aa Y p a YpXaY iii 11 : =      =→= ( ) ( ) ( ) ( ) ( ) ( )       +−=Φ===Φ ∫∫ +∞ ∞− +∞ ∞− iiiiiiX asign asign ii i iX iiiiYiY ajaXaXda a Xp XajYdYpYj i i ii µωσωωωω 222 2 1 expexpexp: 1 1 Review of Probability
  • 97. 97 SOLO Linear Gaussian Systems (continue – 1) A Linear Combination of Independent Gaussian random vectors is also a Gaussian random vector mmm XaXaXaS +++= 2211: Therefore the Linear Combination of Independent Gaussian Random Variables is a Gaussian Random Variable with mmS mmS aaa aaa m m µµµµ σσσσ +++= +++=   2211 222 2 2 2 2 1 2 1 2 Therefore the Sm probability distribution is: ( ) ( )         − −= 2 2 2 exp 2 1 ,; m m m mm S S S SSm x Sp σ µ σπ σµ Proof (continue – 1): ( ) ( ) ( )      +++++++−=Φ mmmmS aaajaaam µµµωσσσωω  2211 222 2 2 2 2 1 2 1 2 2 1 exp We found: Review of Probability q.e.d.
  • 98. 98 Recursive Bayesian EstimationSOLO Linear Gaussian Markov Systems (continue – 2) ( ) ( )kkkk kkkk vuxkhz wuxkfx ,,, ,,,1 111 = −= −−− kkkk kkkkkkk vxHz wuGxx += Γ++Φ= −−−−−− 111111 wk-1 and vk, white noises, zero mean, Gaussian, independent ( ) ( ) ( ){ } ( ) ( ){ } ( )kPkekeEkxEkxke x T xxx =−= &: ( ) ( ) ( ){ } ( ) ( ){ } ( ) lk T www kQlekeEkwEkwke , 0 &: δ=−=  ( ) ( ) ( ){ } ( ) ( ){ } ( ) lk T vvv kRlekeEkvEkvke , 0 &: δ=−=  ( ) ( ){ } { }0=lekeE T vw    = ≠ = lk lk lk 1 0 ,δ ( ) ( )Qwwpw ,0;N= ( ) ( )Rvvpv ,0;N= ( ) ( )       −= − wQw Q wp T nw 1 2/12/ 2 1 exp 2 1 π ( ) ( )     −= − vRv R vp T pv 1 2/12/ 2 1 exp 2 1 π A Linear Gaussian Markov Systems is defined as ( ) ( )0|0000 ,;0 Pxxxp ttx == = N ( ) ( ) ( ) ( )    −−−= = − == 00 1 0|0002/1 0|0 2/0 2 1 exp 2 1 0 xxPxx P xp t T tntx π
  • 99. 99 Recursive Bayesian EstimationSOLO Linear Gaussian Markov Systems (continue – 3) 111111 −−−−−− Γ++Φ= kkkkkkk wuGxx Prediction phase (before zk measurement) { } { } { }   0 1:111111:1111:11| |||:ˆ −−−−−−−−−− Γ++Φ== kkkkkkkkkkkk ZwEuGZxEZxEx or 111|111| ˆˆ −−−−−− +Φ= kkkkkkk uGxx The expectation is { }[ ] { }[ ]{ } ( )[ ] ( )[ ]{ }1:1111|111111|111 1:11|1|1| |ˆˆ |ˆˆ: −−−−−−−−−−−−− −−−− Γ+−ΦΓ+−Φ= −−= k T kkkkkkkkkkkk k T kkkkkkkk ZwxxwxxE ZxExxExEP ( ) ( ){ } ( ){ } ( ){ } { } T k Q T kkk T k T kkkkk T k T kkkkk T k P T kkkkkkk wwExxwE wxxExxxxE kk 11111 0 1|1111 1 0 11|11111|111|111 ˆ ˆˆˆ 1|1 −−−−−−−−−− −−−−−−−−−−−−−− ΓΓ+Φ−Γ+ Γ−Φ+Φ−−Φ= −−         T kk T kkkkkk QPP 1111|111| −−−−−−− ΓΓ+ΦΦ= { } ( )1|1|1:1 ,ˆ;| −−− = kkkkkkk PxxZxP N Since is a Linear Combination of Independent Gaussian Random Variables: 111111 −−−−−− Γ++Φ= kkkkkkk wuGxx
  • 100. 100 SOLO For the particular vector measurement equation where the measurement noise, is Gaussian (normal), with zero mean: ( ) ( )kkkv Rvvp ,0;N= ( ) ( ) ( )xp zxp xzp x zx xz , | , | = and independent of , the conditional probability can be written, using Bayes rule as: kx ( )xzp xz || ( )           − − ==−= 1 111 1111 1 1 , nxpp nx pxnxpxnpxpx xHz xHz zxfxHzv xn xn  ( ) ( ) 2/1 ,, /,, T vxzx JJvxpzxp = The measurement noise can be related to and by the function:v zx pxp p pp p I z f z f z f z f z f J =                 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ =      ∂ ∂ =    1 1 1 1 ( ) ( ) ( ) ( )vpxpvxpzxp vxvxzx ⋅== ,, ,, kv Since the measurement noise is independent of :xv zThe joint probability of and is given by:x Recursive Bayesian Estimation Linear Gaussian Markov Systems (continue – 4) kkkk vxHz += Correction Step (after zk measurement) - 1st Way ( ) ( ) ( ) ( )1:1 1:1 :1 | || | − − = kk kkkk kk Zzp Zxpxzp Zxp
  • 101. 101 ( ) ( )kkkv Rvvp ,0;N= kkkk vxHz += Consider a Gaussian vector , where , measurement, , where the Gaussian noise is independent of and . v kx ( ) [ ]1|1| ,; −−= kkkkkkx Pxxxp  N kx ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− == kkxkkxzkkkzxkz xdxpxzpxdzxpzp |, |, is Gaussian with( )kz zp ( ) ( ) ( ) ( ) 1| 0 −=+=+= kkkkkkkkk xHvExEHvxHEzE   ( ) ( )[ ] ( )[ ]{ } [ ][ ]{ } ( )[ ] ( )[ ]{ } [ ]{ } [ ]{ } [ ]{ } { } k T kkkk T kk T k T kkkk T kkkkk T k T kkkkkkk T kkkkkkkkkk T kkkkkkkkkkkk T kkkkk RHPHvvEHxxvEvxxEH HxxxxEHvxxHvxxHE xHvxHxHvxHEzEzzEzEz +=+−−−− −−=+−+−= −+−+=−−= −−− −−−− −− 1| 0 1| 0 1| 1|1|1|1| 1|1|cov           ( ) ( ) ( ) ( )[ ] ( )[ ] ( )[ ]       −−+−−−− +− = − xHzRHPHxHz RHPH zp TT Tpz ˆˆ 2 1 exp 2 1 1 2/12/ π ( ) ( ) ( ) ( )      −−−= − − −− − −− 1| 1 1|1|2/1 1| 2/1:1| 2 1 exp 2 1 |1:1 kkkkk T kkk kk nkkZx xxPxx P Zxp kk  π ( ) ( ) ( ) ( ) ( )    −−−=−= − kkk T kkkpkkkvkkxz xHzRxHz R xHzpxzp 1 2/12/| 2 1 exp 2 1 | π Recursive Bayesian EstimationSOLO Linear Gaussian Markov Systems (continue – 5) Correction Step (after zk measurement) 1st Way (continue – 1)
  • 102. 102 Recursive Bayesian EstimationSOLO Linear Gaussian Markov Systems (continue – 6) kkkk vxHz += ( ) ( )Rvvpv ,0;N= ( ) ( )       −= − vRv R vp T pv 1 2/12/ 2 1 exp 2 1 π Correction Step (after zk measurement) 1st Way (continue – 2) ( ) ( ) ( ) ( )    −−−= − − −− − −− 1| 1 1|1|2/1 1| 2/1:1| 2 1 exp 2 1 |1:1 kkkkk T kkk kk nkkZx xxPxx P Zxp kk  π ( ) ( ) ( ) ( ) ( )    −−−=−= − kkk T kkkpkkkvkkxz xHzRxHz R xHzpxzp 1 2/12/| 2 1 exp 2 1 | π ( ) ( ) [ ] [ ] [ ]       −+−− + = − − −− − 1| 1 1|1|2/1 1| 2/ ˆˆ 2 1 exp 2 1 kkkk T kkkk T kkk k T kkkk p kz xHzRHPHxHz RHPH zp π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] [ ] [ ]      −+−+−−−−−−⋅ + == − − −−− − −− − − −− − 1| 1 1|1|1| 1 1|1| 1 2/1 1| 2/12/1 1|2/1:1 1:1 :1 ˆˆ 2 1 2 1 2 1 exp 2 1 | || | kkkkk T kkkk T kkkkkkkkk T kkkkkkk T kkk k T kkkk kkknkk kkkk kk xHzRHPHxHzxxPxxxHzRxHz RHPH RPZzp Zxpxzp Zxp  π from which
  • 103. 103 ( ) ( ) ( ) ( ) ( ) [ ] ( )1| 1 1|1|1| 1 1|1| 1 − − −−− − −− − −+−−−−+−− kkkk T kkkkk T kkkkkkkkk T kkkkkkk T kkk xHzHPHRxHzxxPxxxHzRxHz  ( )[ ] ( )[ ] ( ) ( ) ( ) [ ] ( ) ( ) [ ]{ }( ) ( ) ( ) ( ) ( ) ( ) [ ]( )1| 11 1|1|1| 1 1|1| 1 1| 1| 1 1| 1 1|1| 1 1|1| 1| 1 1|1|1|1| 1 1|1| − −− −−− − −− − − − − − − −− − −− − − −−−− − −− −+−+−−−−−− −+−−=−+−− −−+−−−−−−= kkkkk T kkk T kkkkkkkk T kkkkkkkkk T k T kkk kkkk T kkkkkk T kkkkkkkk T kkkkk T kkkk kkkkk T kkkkkkkkkkkk T kkkkkkkk xxHRHPxxxxHRxHzxHzRHxx xHzHPHRRxHzxHzHPHRxHz xxPxxxxHxHzRxxHxHz    [ ] [ ] 1111 1| 1111 1| 1 −−−− − −−−− − − ++/−/=+− k T kkk T kkkkkkk LemmaMatrixInverse T kkkkkk RHHRHPHRRRHPHRRwe have Define: [ ] [ ] 1 1| 1 1| 1 1| 1 1| 111 1|| : − − − − − − − − −−− − +−=+= kk T k T kkkkkkkkkk LemmaMatrixInverse kk T kkkkk PHHPHRHPPHRHPP ( )[ ] ( )[ ]1| 1 |1| 1 |1| 1 |1| − − − − − − − −+−−+−= kkkkk T kkkkkkkk T kkkkk T kkkkkk xHzRHPxxPxHzRHPxx  ( ) ( ) ( )[ ] ( )[ ]      −+−−+−−⋅= − − − − − − − 1| 1 |1| 1 |1| 1 |1|2/1 | 2/:1| 2 1 exp 2 1 | kkkkk T kkkkkkkk T kkkkk T kkkkkk kk nkkzx xHzRHPxxPxHzRHPxx P Zxp  π Recursive Bayesian EstimationSOLO Linear Gaussian Markov Systems (continue – 7) Correction Step (after zk measurement) 1st Way (continue – 3) then ( ) ( ) ( ) ( ) ( ) [ ] ( )1| 1 1|1|1| 1 1|1| 1 − − −−− − −− − −+−−−−+−− kkkkk T kkkk T kkkkkkkkk T kkkkkkk T kkk xHzRHPHxHzxxPxxxHzRxHz  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1| 1 |1|1| 1 || 1 1| 1| 1 | 1 |1|1| 1 | 1 || 1 1| − − −− −− − − −− −− −−− − −−+−−− −−−−−= kkkkk T kkkkkkkkkkkk T kkkk kkkkk T kkkkk T kkkkkkkk T kkkkkkkkk T kkkk xxPxxxxPPHRxHz xHzRHPPxxxHzRHPPPHRxHz  
  • 104. 104 then ( )kkzx x Zxp k :1| |max ( ) { }kk kkkkk T kkkkkkkk ZxE xHzRHPxxx :1 1| 1 |1| * | | ˆˆ:ˆ = −+== − − − Recursive Bayesian EstimationSOLO Linear Gaussian Markov Systems (continue – 8) Correction Step (after zk measurement) 1st Way (continue – 4) ( ) ( ) ( )[ ] ( )[ ]      −+−−+−−⋅= − − − − − − − 1| 1 1| 1 |1| 1 1|2/1 | 2/:1| 2 1 exp 2 1 | kkkkk T kkkkkk T kkkkk T kkkk kk nkkzx xHzRHxxPxHzRHxx P Zxp  π where:[ ] ( )( ){ }k T kkkkkkkk T kkkkk ZxxxxEHRHPP :1|| 111 1|| ˆˆ: −−=+= −−− −
  • 105. 105 { } ( ) ( )  ki kkkkkkkkkkkkkkkkk zzKxxHzKxZxEx 1|1|1|1|:1| ˆ| −−−− −+=−+== Recursive Bayesian EstimationSOLO Linear Gaussian Markov Systems (continue – 9) Summary 1st Way – Kalman Filter Initial Conditions: [ ] 111 1|| : −−− − += kk T kkkkk HRHPP Prediction phase (before zk measurement) 111|111| ˆˆ −−−−−− +Φ= kkkkkkk uGxx Correction Step (after zk measurement) T kk T kkkkkk QPP 1111|111| −−−−−−− ΓΓ+ΦΦ= 1 |: − = k T kkkk RHPK { }00|0 ˆ xEx = ( ) ( ){ }T xxxxEP 0|000|000|0 ˆˆ: −−= kkkk wxHz += { } { } { } 0 1:11|1:11:11| |ˆ||ˆ −−−−− +=+== kkkkkkkkkkkkk ZwExHZwxHEZzEz 1|1| ˆˆ −− = kkkkk xHz
  • 106. 106 Recursive Bayesian EstimationSOLO Linear Gaussian Markov Systems (continue – 10) kkkk vxHz += ( ) ( )Rvvpv ,0;N= ( ) ( )       −= − vRv R vp T pv 1 2/12/ 2 1 exp 2 1 π ( ) ( ) [ ] [ ] [ ]       −+−− + = − − −− − 1| 1 1|1|2/1 1| 2/ ˆˆ 2 1 exp 2 1 kkkkk T kkkk T kkkk k T kkkk p kz xHzRHPHxHz RHPH zp π from which { } 1|1:11| ˆ|ˆ −−− == kkkkkkk xHZzEz ( ) ( ){ } kk T kkkkk T kkkkkk zz kk SRHPHZzzzzEP =+=−−= −−−−− :ˆˆ 1|1:11|1|1| [ ][ ]{ } [ ] ( )[ ]{ } T kkkk T kkkkkkkk k T kkkkkk xz kk HPZvxxHxxE ZzzxxEP 1|1:11|1| 1:11|1|1| ˆˆ ˆˆ −−−− −−−− =+−−= −−= We also have Correction Step (after zk measurement) 2nd Way Define the innovation: 1|1| ˆˆ: −− −=−= kkkkkk xHzzzi
  • 107. 107 Recursive Bayesian EstimationSOLO Joint and Conditional Gaussian Random Variables       = k k k z x yDefine: assumed that they are Gaussian distributed Prediction phase (before zk measurement) 2nd way (continue -1) { }         =             = − − − − − 1| 1| 1:1 1:1 1:1 ˆ ˆ | | | kk kk kk kk kk z x Zz Zx EZyE         =                 − −         − − = −− −− − − − − − − zz kk zx kk xz kk xx kk k T kkk kkk kkk kkkyy kk PP PP Z zz xx zz xx EP 1|1| 1|1| 1:1 1| 1| 1| 1| 1| ˆ ˆ ˆ ˆ where: [ ][ ]{ } 1|1:11|1|1| ˆˆ −−−−− =−−= kkk T kkkkkk xx kk PZxxxxEP [ ][ ]{ } kk T kkkkk T kkkkkk zz kk SRHPHZzzzzEP =+=−−= −−−−− :ˆˆ 1|1:11|1|1| [ ][ ]{ } T kkkk T kkkkkk xz kk HPZzzxxEP 1|1:11|1|1| ˆˆ −−−−− =−−= Linear Gaussian Markov Systems (continue – 11)
  • 108. 108 ( ) ( ) ( )    −−−= − − −− − − 1| 1 1|1|2/1 1| 1:1, ˆˆ 2 1 exp 2 1 |, kkk yy kk T kkk yy kk kkkzx yyPyy P Zzxp π Recursive Bayesian EstimationSOLO Joint and Conditional Gaussian Random Variables The conditional probability distribution function (pdf) of xk given zk is given by: Prediction phase (before zk measurement) 2nd Way (continue – 2) ( ) ( ) ( )      −−−= − − −− − − 1| 1 1|1|2/1 1| 1:1 ˆˆ 2 1 exp 2 1 | kkk zz kk T kkk zz kk kkz zzPzz P Zzp π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )    −−−     −−− === − − −− − − −− − − − − − 1| 1 1|1| 1| 1 1|1| 2/1 1| 2/1 1| 1:1 1:1, |1:1| ˆˆ 2 1 exp ˆˆ 2 1 exp 2 2 | |, |,| kkk zz kk T kkk kkk yy kk T kkk yy kk zz kk kkz kkkzx kkzxkkkzx zzPzz yyPyy P P Zzp Zzxp zxpZzxp π π ( ) ( ) ( ) ( )    −−+−−−= − − −−− − −− − − 1| 1 1|1|1| 1 1|1|2/1 1| 2/1 1| ˆˆ 2 1 ˆˆ 2 1 exp 2 2 kkk zz kk T kkkkkk yy kk T kkk yy kk zz kk zzPzzyyPyy P P π π Linear Gaussian Markov Systems (continue – 12) We assumed that is Gaussian distributed:      = k k k z x y
  • 109. 109 Recursive Bayesian EstimationSOLO Joint and Conditional Gaussian Random Variables Prediction phase (before zk measurement) 2nd Way (continue – 3) ( ) ( ) ( ) ( ) ( )    −−+−−−= − − −−− − −− − − 1| 1 1|1|1| 1 1|1|2/1 1| 2/1 1| | ˆˆ 2 1 ˆˆ 2 1 exp 2 2 | kkk zz kk T kkkkkk zz kk T kkk yy kk zz kk kkzx zzPzzyyPyy P P zxp π π Define: 1|1| ˆ:&ˆ: −− −=−= kkkkkkkk zzxx ςξ ( ) ( ) ( ) ( ) k zz kk T kk zz kk T kk zx kk T kk xz kk T kk xx kk T k kkkzz T k k k zz kk zx kk xz kk xx kk T k k k zz kk T k k k zz kk zx kk xz kk xx kk T k k kkk zz kk T kkkkkk yy kk T kkk PTTTT P TT TT P PP PP zzPzzyyPyyq ςςςςξςςξξξ ςς ς ξ ς ξ ςς ς ξ ς ξ 1 1|1|1|1|1| 1 1| 1|1| 1|1| 1 1| 1 1|1| 1|1| 1| 1 1|1|1| 1 1|1| ˆˆˆˆ: − −−−−− − − −− −− − − − −− −− − − −−− − −− −+++= −                    = −                    = −−−−−= Linear Gaussian Markov Systems (continue – 13)
  • 110. 110 Recursive Bayesian EstimationSOLO Joint and Conditional Gaussian Random Variables Prediction phase (before zk measurement) 2nd way (continue – 4) Using Inverse Matrix Lemma: ( ) ( ) ( ) ( )         −−− −−− =      −−−−− −−−−−− 11111 111111 nxmnxnmxnmxmmxnmxmnxmnxnmxnmxm mxmnxmmxnmxmnxmnxnmxnmxmnxmnxn mxmmxn nxmnxn BADCDCBADC CBDCBADCBA CD BA         =         −− −− − −− −− zz kk zx kk xz kk xx kk zz kk zx kk xz kk xx kk TT TT PP PP 1|1| 1|1| 1 1|1| 1|1| in 1 1|1|1| 1 1| 1| 1 1|1|1| 1 1| 1| 1 1|1|1| 1 1| − −−− − − − − −−− − − − − −−− − − −= −= −= zz kk xz kk xz kk xx kk xz kk xx kk zx kk zz kk zz kk kkzxkkzzkkxzkkxxkkxx PPTT TTTTP PPPPT k zz kk T kk zz kk T kk zx kk T kk xz kk T kk xx kk T k PTTTTq ςςςςξςςξξξ 1 1|1|1|1|1| − −−−−− −+++= ( ) k zz kk T kk zz kk T k k xz kk xx kk zx kk T kk xz kk xx kk zx kk T kk xz kk T kk xx kk xx kk zx kk T k T k PT TTTTTTTTTT ςςςς ςςςςςξξςξ 1 1|1| 1| 1 1|1|1| 1 1|1|1|1| 1 1|1| − −− − − −−− − −−−− − −− −+ −+++= ( ) ( ) ( ) ( ) ( )k xz kk xx kkk xx kk T k xz kk xx kkkk zz kk xz kk xx kkkkzx zz kk T k k xz kk xx kk xx kk T k xz kk xx kkkk xx kk T k xz kk xx kkk TT TTTTTPTTTT TTTTTTTT zx kk Txz kk ςξςξςς ςςξξςξ 1| 1 1|1|1| 1 1| 0 1|1| 1 1|1|1| 1| 1 1|1|1| 1 1|1|1| 1 1| 1|1| − − −−− − −−− − −−− − − −−− − −−− − − = ++=−−+ +++= −−    Linear Gaussian Markov Systems (continue – 14)
  • 111. 111 Recursive Bayesian EstimationSOLO Joint and Conditional Gaussian Random Variables Prediction phase (before zk measurement) 2nd way (continue – 5)         =         −− −− − −− −− zz kk zx kk xz kk xx kk zz kk zx kk xz kk xx kk TT TT PP PP 1|1| 1|1| 1 1|1| 1|1| 1 1|1|1| 1 1| 1| 1 1|1|1| 1 1| 1| 1 1|1|1| 1 1| − −−− − − − − −−− − − − − −−− − − −= −= −= zz kk xz kk xz kk xx kk xz kk xx kk zx kk zz kk zz kk kkzxkkzzkkxzkkxxkkxx PPTT TTTTP PPPPT ( ) ( )k xz kk xx kkk xx kk T k xz kk xx kkk TTTTTq ςξςξ 1| 1 1|1|1| 1 1| − − −−− − − ++= 1|1| ˆ:&ˆ: −− −=−= kkkkkkkk zzxx ςξ ( ) ( )[ ] ( )[ ]       −−−−−−−=       −= −−−−− − − − − 1|1|1|1|1|2/1 1| 2/1 1| 2/1 1| 2/1 1| | ˆˆˆˆ 2 1 exp 2 2 2 1 exp 2 2 | kkkkkkk xx kk T kkkkkkk yy kk zz kk yy kk zz kk kkzx zzKxxTzzKxx P P q P P zxp π π π π ( )1| 1 1|1|1| 1 1|1| ˆˆ − − −−− − −− −−−=+ kkk K zz kk xz kkkkkk xx kk xz kkk zzPPxxTT k   ςξ Linear Gaussian Markov Systems (continue – 15)
  • 112. 112 Recursive Bayesian EstimationSOLO Joint and Conditional Gaussian Random Variables Prediction phase (before zk measurement) 2nd Way (continue – 6) ( ) ( )[ ] ( )[ ]      −−−−−−−= − − −−−−− − −−− 1| 1 1|1|1|1|1| 1 1|1|1|| ˆˆˆˆ 2 1 exp| kkk xx kk xz kkkkk xx kk T kkk xx kk xz kkkkkkkzx zzPPxxTzzPPxxczxp From this we can see that { } ( )1| 1 1|1|1|| ˆˆˆ| − − −−− −+== kkk K zz kk xz kkkkkkkk zzPPxxzxE k    ( )( ){ } T k zz kkk xx kk zx kk zz kk xz kk xx kk xx kkk T kkkkkk xx kk KPKP PPPPTZxxxxEP 1|1| 1| 1 1|1|1| 1 1|:1||| ˆˆ −− − − −−− − − −= −==−−= [ ][ ]{ } 1|1:11|1|1| ˆˆ −−−−− =−−= kkk T kkkkkk xx kk PZxxxxEP [ ][ ]{ } k T kkkkkk T kkkkkk zz kk SHPHRZzzzzEP =+=−−= −−−−− :ˆˆ 1|1:11|1|1| [ ][ ]{ } T kkkk T kkkkkk xz kk HPZzzxxEP 1|1:11|1|1| ˆˆ −−−−− =−−= Linear Gaussian Markov Systems (continue – 16)
  • 113. 113 Recursive Bayesian EstimationSOLO Joint and Conditional Gaussian Random Variables Prediction phase (before zk measurement) 2nd Way (continue – 7) From this we can see that ( ) [ ] 111 1|1| 1 1|1|1|| −−− −− − −−− +=+−= kk T kkkkkk T kkkkk T kkkkkkk HRHPPHHPHRHPPP ( ) 1 1| 1 1|1| 1 1|1| − − − −− − −− =+== k T kkk T kkkkk T kkk zz kk xz kkk SHPHPHRHPPPK Linear Gaussian Markov Systems (continue – 17) kk T kkkkk KSKPP −= −1|| or [ ][ ]{ } 1|1:11|1|1| ˆˆ −−−−− =−−= kkk T kkkkkk xx kk PZxxxxEP [ ][ ]{ } k T kkkkkk T kkkkkk zz kk SHPHRZzzzzEP =+=−−= −−−−− :ˆˆ 1|1:11|1|1| [ ][ ]{ } T kkkk T kkkkkk xz kk HPZzzxxEP 1|1:11|1|1| ˆˆ −−−−− =−−=
  • 114. 114 We found that the optimal Kk is [ ] 1 1|1| − −− += T kkkkk T kkkk HPHRHPK [ ] [ ] 1111 |1 11 & 1 |1 1 1| 1 −−−− + −−− + +−=+ − − − k T kkk T kkkkkk LemmaMatrixInverse existPR T kkkkk RHHRHPHRRHPHR kkk [ ] 1111 1| 1 1| 1 1| −−−− − − − − − +−= k T kkk T kkkkk T kkkk T kkkk RHHRHPHRHPRHPK [ ]{ } [ ] 1111 |1 111 |1|1 −−−− + −−− ++ +−+= k T kkk T kkkkk T kkk T kkkkk RHHRHPHRHHRHPP [ ] 1 | 1111 |1 −−−−− + =+= RHPRHHRHPK T kkk T kkk T kkkk If Rk -1 and Pk|k-1 -1 exist: Recursive Bayesian EstimationSOLO Linear Gaussian Markov Systems (continue – 18) Relation Between 1st and 2nd ways 2nd Way 1st Way = 2nd Way

Editor's Notes

  1. John Minkoff, “Signals, Noise, and Active Sensors - Radar, Sonar, Laser Radar”
  2. A. Papoulis, “Probability, Random Variables and Stochastic Processes”,McGraw-Hill, 1965, pp.147-148
  3. Papoulis, “Probability, Random Variables and Stochastic Processes”,McGraw-Hill, 1965, pp.126-132
  4. Papoulis, “Probability, Random Variables and Stochastic Processes”,McGraw-Hill, 1965, pp.126-132
  5. John Minkoff, “Signals, Noise, and Active Sensors - Radar, Sonar, Laser Radar”
  6. A. Papoulis, “Probability, Random Variables and Stochastic Processes”,McGraw-Hill, 1965, pp.147-148
  7. A.Papoulis, “Probability, Random Variables and Stochastic Processes”,McGraw-Hill, 1965, pp.263-266 http://en.wikipedia.org/wiki/Law_of_large_numbers
  8. Papoulis, “Probability, Random Variables and Stochastic Processes”,McGraw-Hill, 1965, pp.263-266 http://en.wikipedia.org/wiki/Law_of_large_numbers
  9. A.Papoulis, “Probability, Random Variables and Stochastic Processes”,McGraw-Hill, 1965, pp.260-263 http://en.wikipedia.org/wiki/Law_of_large_numbers
  10. http://en.wikipedia.org/wiki/Central_limit_theorem
  11. A. Papoulis, “ Probability, Random Variables and StochasticProcesses”, McGraw-Hill, 1965, pp.99-100
  12. A. Papoulis, “ Probability, Random Variables and StochasticProcesses”, McGraw-Hill, 1965, pp.169
  13. http://en.wikipedia.org/wiki/Monte_Carlo_sampling http://www.lanl.gov/news/pdf/Metropolis_bio.pdf
  14. A. Gelb, Ed., “Applied Optimal Estimation”,MIT Press, 1974, pg.147, Prob. 4-10
  15. A. Gelb, Ed., “Applied Optimal Estimation”,MIT Press, 1974, pg.147, Problem 4-10
  16. A. Gelb, Ed., “Applied Optimal Estimation”,MIT Press, 1974, pg.147, Problem 4-10
  17. Taylor, J., H., “Handbook of the Direct Statistical Analysis of Missile Guidance Systems via CADET”,“ The Analytic Sciences Corporation”, NTIS, AD-A013 397, 31 May 1975, Appendix C, “The Monte-Carlo Method: Application and Reliability”
  18. Taylor, J., H., “Handbook of the Direct Statistical Analysis of Missile Guidance Systems via CADET”,“ The Analytic Sciences Corporation”, NTIS, AD-A013 397, 31 May 1975, Appendix C, “The Monte-Carlo Method: Application and Reliability”
  19. Taylor, J., H., “Handbook of the Direct Statistical Analysis of Missile Guidance Systems via CADET”,“ The Analytic Sciences Corporation”, NTIS, AD-A013 397, 31 May 1975, Appendix C, “The Monte-Carlo Method: Application and Reliability”
  20. Taylor, J., H., “Handbook of the Direct Statistical Analysis of Missile Guidance Systems via CADET”,“ The Analytic Sciences Corporation”, NTIS, AD-A013 397, 31 May 1975, Appendix C, “The Monte-Carlo Method: Application and Reliability”
  21. Taylor, J., H., “Handbook of the Direct Statistical Analysis of Missile Guidance Systems via CADET”,“ The Analytic Sciences Corporation”, NTIS, AD-A013 397, 31 May 1975, Appendix C, “The Monte-Carlo Method: Application and Reliability”
  22. Taylor, J., H., “Handbook of the Direct Statistical Analysis of Missile Guidance Systems via CADET”,“ The Analytic Sciences Corporation”, NTIS, AD-A013 397, 31 May 1975, Appendix C, “The Monte-Carlo Method: Application and Reliability”
  23. Taylor, J., H., “Handbook of the Direct Statistical Analysis of Missile Guidance Systems via CADET”,“ The Analytic Sciences Corporation”, NTIS, AD-A013 397, 31 May 1975, Appendix C, “The Monte-Carlo Method: Application and Reliability”
  24. Taylor, J., H., “Handbook of the Direct Statistical Analysis of Missile Guidance Systems via CADET”,“ The Analytic Sciences Corporation”, NTIS, AD-A013 397, 31 May 1975, Appendix C, “The Monte-Carlo Method: Application and Reliability”
  25. Taylor, J., H., “Handbook of the Direct Statistical Analysis of Missile Guidance Systems via CADET”,“ The Analytic Sciences Corporation”, NTIS, AD-A013 397, 31 May 1975, Appendix C, “The Monte-Carlo Method: Application and Reliability”
  26. Bar-Shalom, Y., Xiao-Rong, L., “Estimation and Tracking: Principles, Techniques, and Software”, Artech House, 1993, pp. 108-109
  27. University of Alberta “ Principles of Monte Carlo Simulation”, February 2001
  28. S.M. Ross, “ A Course in Simulation”, Macmillan &amp; Collier MacmillanPublishers, 1990, pp. 36 - 37
  29. S.M. Ross, “ A Course in Simulation”, Macmillan &amp; Collier MacmillanPublishers, 1990, pp. 36 - 37
  30. S.M. Ross, “ A Course in Simulation”, Macmillan &amp; Collier MacmillanPublishers, 1990, pp. 36 – 37 Coddington, P., “Monte Carlo Simulation for Statistical Physics”, CPS 713, Northest Parallel Architectures Center, January 1996 http://en.wikipedia.org/wiki/Histogram
  31. S.M. Ross, “ A Course in Simulation”, Macmillan &amp; Collier MacmillanPublishers, 1990, pp. 44 - 50
  32. S.M. Ross, “ A Course in Simulation”, Macmillan &amp; Collier MacmillanPublishers, 1990, pp. 44 - 45
  33. S.M. Ross, “ A Course in Simulation”, Macmillan &amp; Collier MacmillanPublishers, 1990, pp. 49 - 50
  34. S.M. Ross, “ A Course in Simulation”, Macmillan &amp; Collier MacmillanPublishers, 1990, pp. 50 - 51
  35. S.M. Ross, “ A Course in Simulation”, Macmillan &amp; Collier MacmillanPublishers, 1990, pp. 51 - 52
  36. S.M. Ross, “ A Course in Simulation”, Macmillan &amp; Collier MacmillanPublishers, 1990, pp. 51 - 52
  37. Karlsson, R., “ Simulation Based Methods for Target Tracking”, Linkoping Studies in Science and Technology, Thesis No. 930, 2002, pp. 34 – 35, , http://www.control.isy.liu.se/research/reports/LicentiateThesis/Lic930.pdf
  38. S.M. Ross, “ A Course in Simulation”, Macmillan &amp; Collier MacmillanPublishers, 1990, pp. 59 - 60
  39. S.M. Ross, “ A Course in Simulation”, Macmillan &amp; Collier MacmillanPublishers, 1990, pp.135 - 136
  40. Ristic, B., Arulampalam, S., Gordon, N., “Beyond the Kalman Filter – Particle Filter for Tracking Applications”, Artech House, 2004, pp. 35-36
  41. Ristic, B., Arulampalam, S., Gordon, N., “Beyond the Kalman Filter – Particle Filter for Tracking Applications”, Artech House, 2004, pp. 35-36
  42. A. Papoulis, “ Probability, Random Variables and StochasticProcesses”, McGraw-Hill, 1965, pp.350
  43. A. Papoulis, “ Probability, Random Variables and StochasticProcesses”, McGraw-Hill, 1965, pp.350
  44. A. Papoulis, “ Probability, Random Variables and StochasticProcesses”, McGraw-Hill, 1965, pp.303, 350
  45. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  46. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  47. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  48. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  49. Gordon, N.J., Salmond, D.J., Smith, A.M.F., “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation”, IEE Proceedings Radar and Signal Processing, vol. 140, No. 2, April 1993, pp. 107 - 113
  50. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 77- 82
  51. http://en.wikipedia.org/wiki/Adriaan_Fokker http://en.wikipedia.org/wiki/Max_Planck http://jeff560.tripod.com/f.html http://en.wikipedia.org/wiki/Fokker-Planck_equation
  52. http://en.wikipedia.org/wiki/Adriaan_Fokker http://en.wikipedia.org/wiki/Max_Planck http://en.wikipedia.org/wiki/Fokker-Planck_equation
  53. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 77- 82
  54. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 77- 82
  55. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 77- 82
  56. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 77- 82
  57. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 77- 82
  58. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 77- 82
  59. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  60. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  61. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  62. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  63. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  64. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  65. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  66. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  67. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  68. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  69. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  70. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  71. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  72. Bar-Shalom, Y., Li, X-R., “Estimation and Tracking: Principles, Techniques and Software”, Artech House, 1993, pp. 43-44, 132
  73. Bar-Shalom, Y., Li, X-R., “Estimation and Tracking: Principles, Techniques and Software”, Artech House, 1993, pp. 43-44, 132
  74. Bar-Shalom, Y., Li, X-R., “Estimation and Tracking: Principles, Techniques and Software”, Artech House, 1993, pp. 43-44, 132
  75. Bar-Shalom, Y., Li, X-R., “Estimation and Tracking: Principles, Techniques and Software”, Artech House, 1993, pp. 43-44, 132
  76. Bar-Shalom, Y., Li, X-R., “Estimation and Tracking: Principles, Techniques and Software”, Artech House, 1993, pp. 43-44, 132
  77. Bar-Shalom, Y., Li, X-R., “Estimation and Tracking: Principles, Techniques and Software”, Artech House, 1993, pp. 43-44, 132
  78. Bar-Shalom, Y., Li, X-R., “Estimation and Tracking: Principles, Techniques and Software”, Artech House, 1993, pp. 43-44, 132
  79. Kailath, T., Sayed, A.H., Hassibi, B, “Linear Estimators”, Prentice Hall, 2000,pp.96
  80. Kailath, T., Sayed, A.H., Hassibi, B, “Linear Estimators”, Prentice Hall, 2000,pp.96
  81. Kailath, T., Sayed, A.H., Hassibi, B, “Linear Estimators”, Prentice Hall, 2000,pp.96
  82. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  83. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 272 - 283
  84. http://en.wikipedia.org/wiki/Rudolf_Kalman
  85. http://en.wikipedia.org/wiki/Rudolf_Kalman
  86. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005
  87. http://en.wikipedia.org/wiki/Rudolf_Kalman
  88. http://en.wikipedia.org/wiki/Rudolf_Kalman
  89. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 Ito, Kazufumi, Xiong Kaiqi, “Gaussian Filters for Nonlinear Filtering Problems”, IEEE Transactions on Automatic Control, Vol. 45, No. 5, May 2000, pp. 910 - 927
  90. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 Ito, Kazufumi, Xiong Kaiqi, “Gaussian Filters for Nonlinear Filtering Problems”, IEEE Transactions on Automatic Control, Vol. 45, No. 5, May 2000, pp. 910 - 927
  91. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 Ito, Kazufumi, Xiong Kaiqi, “Gaussian Filters for Nonlinear Filtering Problems”, IEEE Transactions on Automatic Control, Vol. 45, No. 5, May 2000, pp. 910 - 927
  92. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 Ito, Kazufumi, Xiong Kaiqi, “Gaussian Filters for Nonlinear Filtering Problems”, IEEE Transactions on Automatic Control, Vol. 45, No. 5, May 2000, pp. 910 - 927
  93. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 Ito, Kazufumi, Xiong Kaiqi, “Gaussian Filters for Nonlinear Filtering Problems”, IEEE Transactions on Automatic Control, Vol. 45, No. 5, May 2000, pp. 910 - 927
  94. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 Ito, Kazufumi, Xiong Kaiqi, “Gaussian Filters for Nonlinear Filtering Problems”, IEEE Transactions on Automatic Control, Vol. 45, No. 5, May 2000, pp. 910 - 927
  95. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 Ito, Kazufumi, Xiong Kaiqi, “Gaussian Filters for Nonlinear Filtering Problems”, IEEE Transactions on Automatic Control, Vol. 45, No. 5, May 2000, pp. 910 - 927
  96. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 Ito, Kazufumi, Xiong Kaiqi, “Gaussian Filters for Nonlinear Filtering Problems”, IEEE Transactions on Automatic Control, Vol. 45, No. 5, May 2000, pp. 910 - 927
  97. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 Ito, Kazufumi, Xiong Kaiqi, “Gaussian Filters for Nonlinear Filtering Problems”, IEEE Transactions on Automatic Control, Vol. 45, No. 5, May 2000, pp. 910 - 927
  98. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 Ito, Kazufumi, Xiong Kaiqi, “Gaussian Filters for Nonlinear Filtering Problems”, IEEE Transactions on Automatic Control, Vol. 45, No. 5, May 2000, pp. 910 - 927
  99. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/
  100. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/
  101. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/
  102. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/
  103. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/
  104. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/
  105. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/
  106. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/
  107. Wan, E.,A., van der Merwe, R., “The Unscented Kalman Filter”, Ch.7 of Haykin, S., Ed., “Kalman Filter and Neural Networks”, John Wiley &amp; Sons, 2001, pp. 272
  108. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/
  109. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/ http://cslu.cse.ogi.edu/nsel/Doc/snow00-presentation/sld001.htm
  110. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/ http://cslu.cse.ogi.edu/nsel/Doc/snow00-presentation/sld001.htm
  111. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/ http://cslu.cse.ogi.edu/nsel/Doc/snow00-presentation/sld001.htm
  112. http://en.wikipedia.org/wiki/Rudolf_Kalman
  113. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/ http://cslu.cse.ogi.edu/nsel/Doc/snow00-presentation/sld001.htm
  114. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005
  115. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005
  116. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005
  117. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005
  118. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005
  119. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/ http://cslu.cse.ogi.edu/nsel/Doc/snow00-presentation/sld001.htm
  120. http://en.wikipedia.org/wiki/Rudolf_Kalman
  121. Gordon, N.J., Salmond, D.J., Smith, A.M.F., “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation”, IEE Proceedings Radar and Signal Processing, vol. 140, No. 2, April 1993, pp. 107 - 113
  122. Gordon, N.J., Salmond, D.J., Smith, A.M.F., “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation”, IEE Proceedings Radar and Signal Processing, vol. 140, No. 2, April 1993, pp. 107 - 113
  123. Gordon, N.J., Salmond, D.J., Smith, A.M.F., “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation”, IEE Proceedings Radar and Signal Processing, vol. 140, No. 2, April 1993, pp. 107 - 113
  124. Gordon, N.J., Salmond, D.J., Smith, A.M.F., “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation”, IEE Proceedings Radar and Signal Processing, vol. 140, No. 2, April 1993, pp. 107 - 113
  125. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  126. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  127. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  128. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  129. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  130. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  131. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  132. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  133. University of Alberta, “Principles of Monte Carlo Simulation”, February 2001 http://en.wikipedia.org/wiki/Bootstrapping_(statistics) Efron, B., “Bootstrap methods: another look at the jacknife”, The Annals of Statistics”, 1979, no.7, pp. 1-26
  134. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  135. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  136. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  137. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  138. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  139. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005 http://www.ece.iastate.edu/~namrata/EE520/Gordonnovelapproach.pdf Arulampalam,S., Maskell,S., Gordon,N., Clapp,T., “A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 50, No. 2, February 2002 Istic,B., Arulampalam,S., Gordon,N., “Beyond the Kalman Filter Particle Filters for Tracking Applications”, Artech House, 2004 Karlsson, R., “Simulation Based Metods for Target Tracking”, Department of Electrical Engineering Linköpings Universitet, 2002
  140. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005
  141. Haug, A.J., “A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes”, MITRE Corporation, January 2005
  142. Julier, S.J., Uhlmann, J.K., “A New Extension of the Kalman Filter to Nonlinear Systems”, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls., 1997 http://cslu.cse.ogi.edu/nsel/ukf/ http://cslu.cse.ogi.edu/nsel/Doc/snow00-presentation/sld001.htm
  143. http://en.wikipedia.org/wiki/Rudolf_Kalman
  144. F. Daum, J. Huang, Prticle Flow for Nonlinear Filters, Bayesian Decision and Transport, 7 April 2014
  145. F. Daum, J. Huang, Prticle Flow for Nonlinear Filters, Bayesian Decision and Transport, 7 April 2014
  146. F. Daum, J. Huang, Prticle Flow for Nonlinear Filters, Bayesian Decision and Transport, 7 April 2014
  147. F. Daum, J. Huang, Prticle Flow for Nonlinear Filters, Bayesian Decision and Transport, 7 April 2014
  148. http://en.wikipedia.org/wiki/Homotopy
  149. F. Daum, J. Huang, Prticle Flow for Nonlinear Filters, Bayesian Decision and Transport, 7 April 2014
  150. F. Daum, J. Huang, Prticle Flow for Nonlinear Filters, Bayesian Decision and Transport, 7 April 2014
  151. F. Daum, J. Huang, Prticle Flow for Nonlinear Filters, Bayesian Decision and Transport, 7 April 2014
  152. F. Daum, J. Huang, Prticle Flow for Nonlinear Filters, Bayesian Decision and Transport, 7 April 2014
  153. Sage, A.P., &amp; Melsa, J.L., “Estimation Theory with Applications to Communications and Control”, McGraw Hill, 1971, pp. 77- 82
  154. Zhu, Dellaert, Tu, ICCV05 Tutorial MCMC for Vision, October 2005 Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E., “ Equations of state calculations by fast computing machine”, Journal of Chemical Physics, 1953, Vol. 21(6), pp.1087-1092 Hastings, W., “Monte Carlo simulation methods using Markov Chains and their Applications”, Biometrica, 1970, No. 57, pp.97 - 109 Geman, S. and Geman, D., “ Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images”, IEEE Transactions of Pattern Analysis and Machine Intelligence, 1984, No. 6, pp. 721-741
  155. http://civs.stat.ucla.edu/MCMC/MCMC_tutorial.htm Zhu, Dellaert, Tu, ICCV05 Tutorial MCMC for Vision, October 2005
  156. http://en.wikipedia.org/wiki/Rao%E2%80%93Blackwell_theorem http://www.scholarpedia.org/article/Rao-Blackwell_theorem
  157. Zhe Chen, “Bayesian Filtering From Kalman Filters to Particle Filters, and Beyond”, 18.05.06, Manuscript, pg. 15 http://www.dsi.unifi.it/users/chisci/idfric/Nonlinear_filtering_Chen.pdf
  158. Zhe Chen, “Bayesian Filtering From Kalman Filters to Particle Filters, and Beyond”, 18.05.06, Manuscript, pg. 15 http://www.dsi.unifi.it/users/chisci/idfric/Nonlinear_filtering_Chen.pdf