SlideShare a Scribd company logo
1
Matched Filters and
Ambiguity Functions for
RADAR Signals
Part 2
SOLO HERMELIN
Updated: 01.12.08http://www.solohermelin.com
2
SOLO
Matched Filters and Ambiguity Functions for RADAR Signals
Table of Content
RADAR RF Signals
Maximization of Signal-to-Noise Ratio
The Matched Filter
The Matched Filter Approximations
1.Single RF Pulse
2. Linear FM Modulated Pulse (Chirp)
Continuous Linear Systems
Discrete Linear Systems
RADAR Signals
Signal Duration and Bandwidth
Complex Representation of Bandpass Signals
Matched Filter Response to a Band Limited Radar Signal
Matched Filter Response to Phase Coding
Matched Filter Response to its Doppler-Shifted Signal
M
A
T
C
H
E
D
F
I
L
T
E
R
S
3
SOLO
Matched Filters and Ambiguity Functions for RADAR Signals
Table of Content (continue – 1)
Ambiguity Function for RADAR Signals
Definition of Ambiguity Function
Ambiguity Function Properties
Cuts Through the Ambiguity Function
Ambiguity as a Measure of Range and Doppler Resolution
Ambiguity Function Close to Origin
Ambiguity Function for Single RF Pulse
Ambiguity Function for Linear FM Modulation Pulse
Ambiguity Function for a Coherent Pulse Train
Ambiguity Function Examples (Rihaczek, A.W.,
“Principles of High Resolution Radar”)
References
4
SOLO
Matched Filters and Ambiguity Functions for RADAR Signals
Continue from
Matched Filters
5
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Definition of Ambiguity Function:
( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]tjta
tjttatsjtstg QI
θ
θθ
exp
sincos:
=
+=+=
• Ambiguity Function is an analytic tool for investigating the effect of target motion
on the matching filter response.
• It is a function of waveform only.
• It can be used to characterize:
- Range Resolution
- Doppler Resolution
- Range – Doppler coupling
- Loses due to mismatched Doppler
Ambiguity Function for RADAR Signals
Return to Table of Content
6
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]tjta
tjttatsjtstg QI
θ
θθ
exp
sincos:
=
+=+=
SOLO
Definition of Ambiguity Function:
Ambiguity Function has the following properties:
( ) ( ) 1
2
1 22
== ∫∫
+∞
∞−
+∞
∞−
ωω
π
dGdttgAssume that the complex signal envelope has a unit energy:
( ) ( ) 10,0, =≤ XfX Dτ1
( ) 1, =∫ ∫
+∞
∞−
+∞
∞−
DD dfdfX ττ2
( ) ( )DD fXfX ,, ττ =−−3
4 ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
∗
−=−= fdfjfGffGtdtfjtgtgfX DDD τππττ 2exp*2exp:,
5 ( ) ( )DD fXfX −=− ,, ττ
Ambiguity Function Properties
7
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Definition of Ambiguity Function:
Ambiguity Function properties (continue - 1):
( ) ( ) 10,0, =≤ XfX Dτ1
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) 1
2exp
2exp,
1
2
1
2
22
2
2
=−=
−≤
−=
∫∫
∫∫
∫
∞+
∞−
∗
∞+
∞−
∞+
∞−
∗
∞+
∞−
∞+
∞−
∗
  
dttgdttg
dttfjtgdttg
dttfjtgtgfX
D
DD
τ
πτ
πττ
( ) ( ) 1
2
1
:
22
=== ∫∫
+∞
∞−
+∞
∞−
ωω
π
dGdttgEs
( ) 1,
2
≤DfX τ ( ) ( ) 10,0, =≤ XfX Dτ
Proof:
Schwarz
inequality
8
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Definition of Ambiguity Function:
Ambiguity Function properties (continue – 2):
( ) 1, =∫ ∫
+∞
∞−
+∞
∞−
DD dfdfX ττ2
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
( )DfX ,τ is the Fourier Transform of ( ) ( )τ−∗
tgtg
Using Parseval’s Theorem: ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
∗
=− DD dffXdttgtg
22
,ττ
Integrating both sides on τ we obtain: ( ) ( ) ( ) VddffXddttgtg DD ==− ∫ ∫∫ ∫
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−
∗
ττττ
22
,
V is the volume under the Ambiguity Function.
( ) ( ) ( ) ( ) ( )∫ ∫∫ ∫
+∞
∞−
+∞
∞−
∗
=
=−
+∞
∞−
+∞
∞−
∗
=−= 2121
2
21
2
,
1
2
dtdtttJtgtgddttgtgV
tt
tt τ
ττ ( ) 1
11
01
//
//
,
22
11
21 =
−
=
∂∂∂∂
∂∂∂∂
=
τ
τ
ttt
ttt
ttJ
( ) ( ) ( ) ( ) ( )∫ ∫∫∫∫ ∫
+∞
∞−
+∞
∞−
+∞
∞−
∗
+∞
∞−
+∞
∞−
+∞
∞−
∗
==== DD dfdfXdttgdttgdtdttgtg ττ
2
1
2
2
2
1
1
2
121
2
2
2
1 ,1
  
Proof:
9
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Definition of Ambiguity Function:
Ambiguity Function properties (continue – 3):
( ) ( )DD fXfX ,, ττ =−−3
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,Proof:
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
*
1111
1111
1111
2exp2exp
2exp2exp
2exp2exp:,
1






−=
−−=
−−−=−+=−−
∫
∫
∫∫
∞+
∞−
∗
∞+
∞−
∗
+∞
∞−
∗
=++∞
∞−
∗
dttfjtgtgfj
dttfjtgtgfj
dttfjtgtgdttfjtgtgfX
DD
DD
D
tt
DD
πττπ
πττπ
τπτπττ
τ
( ) ( ) ( )DDD fXfjfX ,2exp, *
ττπτ =−−
( ) ( ) ( ) ( )DDDD fXfXfjfX ,,2exp, *
τττπτ ==−−
10
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
( ) ( ){ } ( ) ( )∫
+∞
∞−
−== dttfjtgtgfG π2exp:F
SOLO
Definition of Ambiguity Function:
Ambiguity Function properties (continue – 4):
4
Proof:
( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
∗
−=−= fdfjfGffGtdtfjtgtgfX DDD τππττ 2exp*2exp:,
( ) ( ){ } ( ) ( )∫
+∞
∞−
== fdtfjfGGtg πω 2exp:1-
F
( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫
+∞
∞−
∗
+∞
∞−
+∞
∞−
∗
−





−=−= tdtgfdtfjffGtdtgtfjtgfX DDD τπτπτ 2exp2exp,
( )tg -1
F
F
( )fG
( ) ( ) ( )[ ]∫
+∞
∞−
−=− fdtfjfGtg τπτ 2exp ( )τ−tg -1
F
F ( ) ( )τπ fjfG 2exp −
( ) ( ) ( )[ ] ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
−−=−−= fdfjffGfjfdtffjffGtg DDDD πππ 2exp2exp2exp
( ) ( ) ( ) ( )∫
+∞
∞−
−= fdfjffGfjtg DD ππ 2exp2exp ( ) ( )Dfjtg π2exp -1
F
F
( )DffG −
( ) ( ) ( )∫
+∞
∞−
−= fdfjfGffG D τπ2exp*
( ) ( ) ( ) ( ) ( ) ( )[ ]∫∫ ∫
∞+
∞−
∞+
∞−
∞+
∞−
−−=





−−−= fdfjfGffGfdtdtfjtgffG DD
*
*
2exp2exp τππτ
q.e.d.
11
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Definition of Ambiguity Function:
( ) ( ) ( )DDD fXfjfX −−=− ,*2exp, ττπτ
Ambiguity Function properties (continue – 5):
5 ( ) ( )DD fXfX −=− ,, ττ
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )[ ] ( ) ( ) ( ) ( )
**
'
*
''2exp''2exp''2exp''
2exp2exp:,






−−=





−−−=






−+=+=−
∫∫
∫∫
∞+
∞−
∗
∞+
∞−
∗
−→
∞+
∞−
∗
∞+
∞−
∗
dttfjtgtgfjdttfjtgtg
dttfjtgtgdttfjtgtgfX
DDD
tt
DDD
πττπτπτ
πτπττ
τ
Proof:
or
From which
( ) ( ) ( ) ( )DDDD fXfXfjfX −=−−=− ,,*2exp,
1
τττπτ
  
Return to Table of Content
12
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Definition of Ambiguity Function:
Cuts Through the Ambiguity Function
( ) ( ) ( ) ( )τττ ggD RdttgtgfX =−== ∫
+∞
∞−
∗
0,Cut through the delay axis:
where Rgg (τ) is the autocorrelation function of the signal envelope.
The cut along the Ambiguity Function
along the delay axis is the shape of the
“range window” at zero Doppler. This is
how the envelope of the Matched Filter
will look as a function of time.
Linear FM pulse
Single pulse
13
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Definition of Ambiguity Function:
Cuts Through the Ambiguity Function (continue – 1)
Cut through the frequency axis:
This is the Fourier Transform of signal envelope energy, and the cut at τ = 0 is
independent of any phase or frequency modulation and is determined only by the
magnitude of the complex envelope of the signal – that is by amplitude modulation.
( ) ( ) ( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
∗
=== dttfjtgdttfjtgtgfX DDD ππτ 2exp2exp,0
2
( )DfX ,0=τ( ) 2
tg
F
F-1
Return to Table of Content
14
Ambiguity Function for RADAR SignalsSOLO
Ambiguity as a Measure of Range and Doppler Resolution
Suppose that the transmitted signal s (t) is returned by two targets whose signals s1 (t)
and s2 (t) differ only in range (delay time τ) and Doppler (frequency fD).
The Resolution of the Radar is related to how it can distinguish between the two
signals. A tractable criteria of resolution is the integrated square difference
magnitude, denoted by |ε|2
, and defined by
( ) ( ) tfj
etgts 02
: π
=
( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ }∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
−−+=−−=−= dttstststststsdttstststsdttsts 2121
2
2
2
12121
2
21
2
****ε
In order to obtain a difference in delay and Doppler we will define the complex signals:
( ) ( ) ( ) ( ) ( )[ ] ( )[ ] ( )[ ]
( ) ( ) ( )[ ] ( )[ ] ( )[ ]∫
∫∫∫
∞+
∞−
+∞
∞−
+∞
∞−
+∞
∞−
−−−−−−−
−−−−−−−−−+=
dttfjtfjfjtgtg
dttfjtfjfjtgtgdttgdttg
DD
DD
221121021
221121021
222
2exp2exp2exp*
2exp2exp2exp*
τπτπττπττ
τπτπττπτττε
Note: The real signals are ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] 2/*&2/* 222111 tstststststs +=+=
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )




−=
−=
−+
−+
220
110
2
22
2
11
:
:
τπ
τπ
τ
τ
tffj
tffj
D
D
etgts
etgts
- Transmitted signal
- Received signals
15
Ambiguity Function for RADAR SignalsSOLO
Ambiguity as a Measure of Range and Doppler Resolution (continue – 1)
( ) ( ) ( ) ( ) ( )[ ] ( )[ ] ( )[ ]
( ) ( ) ( )[ ] ( )[ ] ( )[ ]∫
∫∫∫
∞+
∞−
+∞
∞−
+∞
∞−
+∞
∞−
−−−−−−−
−−−−−−−−−+=
dttfjtfjfjtgtg
dttfjtfjfjtgtgdttgdttg
DD
DD
221121021
221121021
222
2exp2exp2exp*
2exp2exp2exp*
τπτπττπττ
τπτπττπτττε
2121 :&: DDD fff −=∆−=∆ τττDefine
We found
( ) ( ) ( ) ( ) ( )[ ] ( )[ ] ( )[ ]
( ) ( ) ( )[ ] ( )[ ] ( )[ ]∫
∫∫∫
∞+
∞−
+∞
∞−
+∞
∞−
+∞
∞−
−+−−−+−
−+−−−−+−−+=
""2exp"2exp2exp""*
''2exp'2exp2exp'*'
212121012
212121021
222
dttfjtfjfjtgtg
dttfjtfjfjtgtgdttgdttg
DD
DD
πττπττπττ
ττππττπτττε
( ) ( )[ ] ( ) ( ) ( )[ ]
( )[ ] ( ) ( ) ( )[ ]∫
∫∫
∞+
∞−
+∞
∞−
+∞
∞−
∆−∆−∆+−
∆∆+∆+−−=
""2exp""*2exp
''2exp'*'2exp2
10
20
22
dttfjtgtgffj
dttfjtgtgffjdttg
DD
DD
πττπ
πττπε
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,where ( ) ( ) ( )DDD fXfjfX −−=− ,2exp, *
ττπτ
( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )DDDD fXffjfXffjdttgdttsts ∆−∆∆+−∆∆−∆+−−=−= ∫∫
+∞
∞−
+∞
∞−
,2exp,2exp2 1020
22
21
2
ττπττπε
16
Ambiguity Function for RADAR SignalsSOLO
Ambiguity as a Measure of Range and Doppler Resolution (continue – 2)
We found
( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )DDDD fXffjfXffjdttgdttsts ∆−∆∆+−∆∆−∆+−−=−= ∫∫
+∞
∞−
+∞
∞−
,2exp,2exp2 1020
22
21
2
ττπττπε
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,where ( ) ( ) ( )DDD fXfjfX −−=− ,2exp, *
ττπτ
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )
( ) ( )[ ] ( ) ( )[ ] ( )DDDD
DDD
f
DDD
fXffjfXffjdttg
fXffjfXffjffjdttgdttsts
D
∆−∆∆+−∆−∆∆+−−=
∆−∆∆+−∆−∆








∆−−∆+−−=−=
∫
∫∫
∞+
∞−
∆
∞+
∞−
∞+
∞−
,2exp,*2exp2
,2exp,*2exp2exp2
1010
2
102120
22
21
2
ττπττπ
ττπττπτπε

( ) ( ) ( ) ( )[ ] ( ){ }DD fXffjdttgdttsts ∆−∆∆+−=−= ∫∫
+∞
∞−
+∞
∞−
,2expRe22 10
22
21
2
ττπε
( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )
( ) ( )[ ] ( ) ( )[ ] ( )[ ] ( )DDDDDD
DDDD
fXffjffjfXffjdttg
fXffjfXffjdttgdttsts
∆∆−∆−∆+−∆∆−∆+−−=
∆−∆∆+−∆∆−∆+−−=−=
∫
∫∫
∞+
∞−
+∞
∞−
+∞
∞−
,*2exp2exp,2exp2
,2exp,2exp2
211020
2
1020
22
21
2
ττπτπττπ
ττπττπε
( ) ( ) ( ) ( )[ ] ( ){ }DD fXffjdttgdttsts ∆∆−∆+−−=−= ∫∫
+∞
∞−
+∞
∞−
,2expRe22 20
22
21
2
ττπε
17
Ambiguity Function for RADAR SignalsSOLO
Ambiguity as a Measure of Range and Doppler Resolution (continue – 3)
( ) ( ) ( )
( )
( )[ ] ( ){ }
( )
( )
( )[ ] ( ){ }DD
tgofEnergy
DD
tgofEnergy
fXffjdttg
fXffjdttgdttsts
∆∆−∆+−−=
∆−∆∆+−=−=
∫
∫∫
∞+
∞−
+∞
∞−
+∞
∞−
,2expRe22
,2expRe22
20
2
10
22
21
2
ττπ
ττπε


2121 :&: DDD fff −=∆−=∆ τττDefine
Good Resolution requires that |ε|2
be large for any delay Δτ ≠0 and Doppler ΔfD ≠0.
The first term is the energies (positive) of the complex envelopes of the two signals.
The second term has a minus sign, hence |ε|2
will be increased when the second term
will decrease.
( )[ ] ( ){ } ( ) ( )[ ] ( ){ }( )DDDDD fXffjfXfXffj ∆∆∆+−∆∆=∆∆∆+− ,2expargcos,,2expRe 2020 ττπτττπ
Good resolution is obtained when (Ambiguity Function) is minimum for
non-zero target delay Δτ and Doppler ΔfD.
( )DfX ∆∆ ,τ
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )




−=
−=
−+
−+
220
110
2
22
2
11
:
:
τπ
τπ
τ
τ
tffj
tffj
D
D
etgts
etgts
Received complex signal
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,where ( ) ( ) ( )DDD fXfjfX −−=− ,*2exp, ττπτ
18
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
∗
==−== fdfjfGfGRdttgtgfX ggD τπτττ 2exp*:0,
SOLO
Ambiguity as a Measure of Range and Doppler Resolution (continue – 4)
Range Resolution
( )
( ) 2
2
0,0
0,
:
X
dfX
T
D
res
∫
+∞
∞−
=
=
ττ
Assume the two signals have the same Doppler fD = 0. The range resolution is defined as:
( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
∗
−=−= fdfjfGffGtdtfjtgtgfX DDD τππττ 2exp*2exp:,
Using
we have
( )τggR -1
F
F ( ) 2
fG
( ) ( ) ( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
∗
====== fdfGfGRdttgtgfX ggD *0:0,0 ττ
( )
( )
( )
( )
2
2
4
2
2
0






==
∫
∫∫
∞+
∞−
+∞
∞−
+∞
∞−
fdfG
fdfG
R
dR
T
gg
gg
res
ττ
Parseval’s Theoremand
19
Ambiguity Function for RADAR SignalsSOLO
Ambiguity as a Measure of Range and Doppler Resolution (continue – 5)
Doppler Resolution
( )
( ) 2
2
0,0
,0
:
X
fdfX
F
DD
res
∫
+∞
∞−
=
=
τ
Assume the two signals have the same range delay τ = 0. The Doppler resolution
is defined as:
( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
∗
−=−= fdfjfGffGtdtfjtgtgfX DDD τππττ 2exp*2exp:,
Using
we have
( ) 2
tg -1
F
F ( )DGG fR
( ) ( ) ( ) ( ) ( ) ( ) ( )0*0:0,0 ====== ∫∫
+∞
∞−
+∞
∞−
∗
fRfdfGfGRdttgtgX GGgg τ
( )
( )
( )
( )
2
2
4
2
2
0






==
∫
∫∫
∞+
∞−
+∞
∞−
+∞
∞−
tdtg
tdtg
R
fdfR
F
GG
GG
res
Parseval’s Theoremand
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )DGGDGGDDD fRfRfdfGffGtdtfjtgtgfX =−=−=== ∫∫
+∞
∞−
+∞
∞−
∗
*2exp:,0 πτ
20
Ambiguity Function for RADAR SignalsSOLO
Ambiguity as a Measure of Range and Doppler Resolution (continue – 6)
Range – Doppler Resolution
( )
( )
( )
( )
2
2
4
2
2
0






==
∫
∫∫
∞+
∞−
+∞
∞−
+∞
∞−
tdtg
tdtg
R
fdfR
F
GG
GG
res
( )
( )
( )
( )
2
2
4
2
2
0






==
∫
∫∫
∞+
∞−
+∞
∞−
+∞
∞−
fdfG
fdfG
R
dR
T
gg
gg
res
ττ
From Schwarz Inequality: ( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
≤ dtthdttfdtthtf
22
Choose ( ) ( ) ( ) ( ) ( )tg
td
tgd
thtgttf ':& ===
( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
≤ dttsdttstdttstst
22
''we obtain
21
Ambiguity Function for RADAR SignalsSOLO
Ambiguity as a Measure of Range and Doppler Resolution (continue – 7)
Good resolution is obtained when (Ambiguity Function) is minimum for
non-zero target delay τ and Doppler fD.
( )DfX ,τ
A waveform has an Ideal Ambiguity Function if it has a “Thumbtack” shape:
• No response unless the echo is closely matched to the Doppler for which the filter
is designed.
• And a very narrow peak in range, yielding good range resolution.
Can’t get rid of the pedestal because of the “constant volume” property.
Return to Table of Content
22
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Ambiguity Function Close to Origin
( ) ( ) ( ) ( ) DfD
D
fDD ffX
f
fXXfX DD 0
02
0
0222
,,0,0, =
=
=
=
∂
∂
+
∂
∂
+= ττ
τττ
τ
τ
Let develop the Square of the Ambiguity Function in a Taylor series around the
origin τ=0, fD=0
Since |X (0,0)|2
is the maximum of the continuous |X (τ,fD)|2
we must have
( ) ( ) 0,, 0
02
0
02
=
∂
∂
=
∂
∂
=
=
=
=
DD fD
D
fD fX
f
fX ττ
ττ
τ
( ) ( ) ( ) +






∂
∂
+
∂
∂
∂
∂
+
∂
∂
+ =
=
=
=
=
= 2
0
02
2
2
0
022
0
02
2
2
,,2,
2
1
DfD
D
DfD
D
fD ffX
f
ffX
f
fX DDD
τττ
τττ
τ
ττ
τ
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( )
∫ ∫∫ ∫
∫ ∫
∞+
∞−
∞+
∞−
∗
∞+
∞−
∞+
∞−
∗
+∞
∞−
+∞
∞−
∗
=
−−
∂
∂
+−−
∂
∂
=






−−
∂
∂
=
∂
∂
    
ττ
ττ
τ
ττ
τ
ττ
τ
τ
τ
gggg
D
RR
fD
dttgtgdttgtgdttgtgdttgtg
dtdttgtgtgtgfX
111222
*
222111
2122110
2
**
*,
also
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
00*0,
000
0
02
=
∂
∂
=






∂
∂
+
∂
∂
=
∂
∂
=≠
+∞
∞−
+∞
∞−
∗
≠
=
=
∫∫
τ
τ
τ
τ
τ
τ
gg
gggg
f
D
R
Rdttg
t
tgdttg
t
tgRfX D

23
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0*
2
*
==




−
=− ∫∫
+∞
∞−
+∞
∞−
mnd
d
Sd
S
j
dt
td
tsd
tstj m
m
n
n
n
n
mm
ω
ω
ω
ωω
π
SOLO
Ambiguity Function Close to Origin (continue – 1)
( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
∗
= −
∂
∂
+−
∂
∂
=
∂
∂
ττ
τ
ττ
τ
τ
τ
ggggfD RdttgtgRdttgtgfX D 2221110
2
**,
( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ( )
( )
∫∫
∫∫
∞+
∞−
∞+
∞−
+∞
∞−
∗
+∞
∞−
∗
=
∂
∂
−
∂
∂
+−
∂
∂
+
∂
∂
−
∂
∂
+−
∂
∂
=
∂
∂
τ
τ
τ
τ
ττ
τ
τ
τ
τ
τ
ττ
τ
τ
τ
gg
gg
gg
ggfD
R
dttgtgRdttgtg
R
dttgtgRdttgtgfX D
222222
2
2
111112
2
10
2
2
2
**
*
*,
Since is a maximum for τ=0, we have( ) ( ) sgggg ERR 20*0 ==
( ) ( )
0
0*0
=
∂
=∂
=
∂
=∂
τ
τ
τ
τ gggg RR
( ) ( ) ( ) ( ) ( ) ( )






∂
∂
+
∂
∂
=
∂
∂
∫∫
+∞
∞−
+∞
∞−
∗
=
=
dttgtgdttgtgRfX
s
D
E
gg
f
D 2
2
2
2
2
0
02
2
2
*0,
ττ
τ
τ
τ

n=2
m=0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )
  
sE
ggss
f
s
Parseval
dffGffEdffGfEdGG
E
2
222222
2
2
222:2222*
2
22
∫∫∫
+∞
∞−
+∞
∞−
=+∞
∞−
+∆−=−=−= πππωωωω
π
πω
Relationship
from Parseval’s
Theory
24
Signal Duration and BandwidthSOLO
( )tf
-1
F
F
( )ωFRelationships from Parseval’s Formula
( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
= ωωω
π
dFFdttftf 2
*
12
*
1
2
1
Parseval’s Formula7
Choose ( ) ( ) ( ) ( )tstjtftf
m
−== 21
( ) ( ) ,2,1,0
2
1
2
22
== ∫∫
∞+
∞−
∞+
∞−
nd
d
Sd
dttst m
m
m
ω
ω
ω
π
( ) ( )tftj
n
−
-1
F
F ( )ω
ω
F
d
d
n
n
and use 5a
Choose ( ) ( ) ( )
n
n
td
tsd
tftf == 21 and use 5b
( )tf
td
d
n
n
-1
F
F
( ) ( )ωω Fj
n
( ) ( ) ,2,1,0
2
1 22
2
== ∫∫
∞+
∞−
∞+
∞−
ndSdt
td
tsd m
n
n
ωωω
π
Choose or the oppositec
( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0
2
*
*
==





= ∫∫
∞+
∞−
∞+
∞−
mnd
d
Sd
S
j
dt
td
tsd
tstj m
m
n
n
n
n
mm
ω
ω
ω
ωω
π
( ) ( )
n
n
td
tsd
tf =1
( ) ( ) ( )tstjtf
m
−=2
( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0*
2
*
==




−
=− ∫∫
+∞
∞−
+∞
∞−
mnd
d
Sd
S
j
dt
td
tsd
tstj m
m
n
n
n
n
mm
ω
ω
ω
ωω
π
c1
c2
25
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
( ) ( ) ( )[ ]222
0
02
2
2
22, ggsfD ffEfX D
+∆−=
∂
∂
=
=τ
τ
τ
( )
( ) ( ) ( )
( )∫
∫
∞+
∞−
+∞
∞−
−
=∆
dffG
dffGff
f
g
g
2
222
2
2
22
:
π
ππ
SOLO
Ambiguity Function Close to Origin (continue -2)
We found:
where:
Δfg – is signal envelope bandwidth
Es – is signal energy ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
=== tdtgfdfGtdtsEs
222
2
1
2
2
1
: π
fg – is signal envelope frequency median
( ) ( )
( )∫
∫
∞+
∞−
+∞
∞−
=
dffG
dffGf
fg
2
2
2
22
:
π
ππ
( )
( ) ( )
( )∫
∫
∞+
∞−
+∞
∞−
=+∆
dffG
dffGf
ff gg
2
222
22
2
22
π
ππ
26
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Ambiguity Function Close to Origin (continue -3)
In the same way:
( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]∫ ∫
∫ ∫
∞+
∞−
∞+
∞−
+∞
∞−
+∞
∞−
∗∗
−−=






−
∂
∂
=
∂
∂
2121
2
2
2
121
21212211
2
2exp2
2exp,0
dtdtttfjtgtgttj
dtdtttfjtgtgtgtg
f
fX
f
D
D
D
D
D
ππ
π
Since |X (0,0)|2
is the maximum of the continuous |X (τ,fD)|2
we must have
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 022
2,
21
1
2
12
2
222
2
21
2
11
21
2
2
2
121
0
0
2
≡−=
−=
∂
∂
⇔
∞+
∞−
∞+
∞−
∞+
∞−
∞+
∞−
+∞
∞−
+∞
∞−=
=
∫ ∫∫ ∫
∫ ∫
tt
f
D
D
dttgdttgtjdttgdttgtj
dtdttgtgttjfX
f D
ππ
πτ
τ
27
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Ambiguity Function Close to Origin (continue -4)
Return to:
( ) ( ) ( ) ( ) ( )[ ]∫ ∫
+∞
∞−
+∞
∞−
−−=
∂
∂
2121
2
2
2
121
2
2exp2,0 dtdtttfjtgtgttjfX
f
DD
D
ππ
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )












+−−=
−−=
∂
∂
∫∫∫ ∫∫ ∫
∫ ∫
∞+
∞−
∞+
∞−
∞+
∞−
∞+
∞−
∞+
∞−
∞+
∞−
+∞
∞−
+∞
∞−
=
=
2
2
2
2
2
2
1
2
12
2
221
2
11
2
2
2
21
2
1
2
1
2
21
2
2
2
1
2
21
2
0
0
2
2
2
22
2,
dttgtdttgdttgtdttgtdttgdttgt
dtdttgtgttfX
f
ss
D
EE
f
D
D

π
πτ
τ
Define:
( )
( )
( )
( ) ( )
( )
( )
( )
( )∫
∫
∫
∫
∫
∫
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
=+∆⇒
−
=∆=
dttg
dttgt
tt
dttg
dttgtt
t
dttg
dttgt
t gg
g
gg
2
22
22
2
22
2
2
2
::
( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) 2222222222
0
0
2
2
2
222222, gsgggggs
f
D
D
tEtttttEfX
f D
∆−=+∆+−+∆−=
∂
∂
=
=
ππτ
τ
28
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Ambiguity Function Close to Origin (continue -5)
In the same way:
( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( )[ ]∫ ∫
∫ ∫
∞+
∞−
∞+
∞−
∗
+∞
∞−
+∞
∞−
∗
−−−−=






−−−
∂
∂
=
∂
∂
2121221121
21212211
2
2exp*2
2exp*,
dtdtttfjtgtgtgtgttj
dtdtttfjtgtgtgtg
f
fX
f
D
D
D
D
D
πττπ
πτττ
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )∫ ∫
∫ ∫
∞+
∞−
∞+
∞−
+∞
∞−
+∞
∞−=
=
∂
∂
−−
∂
∂
−−=
∂∂
∂
212
2
21121
21221
1
121
0
0
2
2
**2
**2,
dtdttg
t
tgtgtgttj
dtdttgtgtg
t
tgttjfX
f Df
D
D
π
πτ
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫ ∫
∫ ∫∫ ∫
∞+
∞−
∞+
∞−
∞+
∞−
∞+
∞−
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−
∂
∂
+
∂
∂
−
∂
∂
+
∂
∂
−=
22
2
2211122
2
21111
222211
1
122211
1
11
**2**2
**2**2
dttg
t
tgtdttgtgjdttg
t
tgdttgtgtj
dttgtgtdttg
t
tgjdttgtgdttg
t
tgtj
ππ
ππ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ ∫
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−






∂
∂
−
∂
∂
−





∂
∂
−
∂
∂
+= dttg
t
tgtg
t
tgdttgtgtjdttg
t
tgtg
t
tgtdttgtgj ***2***2 ππ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )






∂
∂






−






∂
∂






=
∂∂
∂
∫∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−=
=
dttg
t
tgdttgtgtdttg
t
tgtdttgtgfX
f Df
D
D
*Im*4*Im*4,0
0
0
2
2
ππ
τ
τ
29
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Ambiguity Function Close to Origin (continue -6)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )
( ) ( ) ( ) ( ) ( ) gs fEdffGfGf
dGGdGGGGdttg
t
tgtg
t
tgj
22222*22
*2****2
22
ππππ
ωωωωωωωωωωωπ
==
=+=





∂
∂
−
∂
∂
∫
∫∫∫
∞+
∞−
+∞
∞−
+∞
∞−
+∞
∞−
( ) ( ) sEdttgtg 2* =∫
+∞
∞−
( ) ( ) ( )
( )
( )
( ) gs tE
dttg
dttgt
dttgdttgtgt 2*
2
2
2
==
∫
∫
∫∫ ∞+
∞−
+∞
∞−
∞+
∞−
∞+
∞−
( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0
2
*
*
==





= ∫∫
∞+
∞−
∞+
∞−
mnd
d
Sd
S
j
dt
td
tsd
tstj m
m
n
n
n
n
mm
ω
ω
ω
ωω
π
( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0*
2
*
==




−
=− ∫∫
+∞
∞−
+∞
∞−
mnd
d
Sd
S
j
dt
td
tsd
tstj m
m
n
n
n
n
mm
ω
ω
ω
ωω
π
c1
c2
Relationships
from Parseval’s
Theorem
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
∫∫
+∞
∞−
+∞
∞− 









−



−=





∂
∂
−
∂
∂
− ω
ω
ω
ω
ω
ω
ωωπ d
d
Sd
S
d
Sd
Sjdttg
t
tgttg
t
tgtj
*
***2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ggss
f
D
D
ftEdttg
t
tgtEfX
f D
22
0
0
2
2
222*Im222,0 ππ
τ
τ
+






∂
∂
=
∂∂
∂
∫
+∞
∞−=
=
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ ∫
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−=
=






∂
∂
−
∂
∂
−





∂
∂
−
∂
∂
+=
∂∂
∂
dttg
t
tgtg
t
tgdttgtgtjdttg
t
tgtg
t
tgtdttgtgjfX
f Df
D
D
***2***2,0
0
0
2
2
ππ
τ
τ
30
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Ambiguity Function Close to Origin (continue -7)
( ) ( ) ( ) ( ) ( ) +
∂
∂
+
∂∂
∂
+
∂
∂
+=
=
=
=
=
=
=
2
0
0
2
2
2
0
0
2
2
2
0
0
2
2
2
22
,
2
1
,,
2
1
0,0, D
f
D
D
D
f
D
Df
DD ffX
f
ffX
f
fXXfX
DDD
τττ
τττ
τ
ττ
τ
τ
( ) ( ) ( )[ ]( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) +∆−








+





∂
∂
++∆−= ∫
+∞
∞−
2222
22222222
22
222*Im22222,
Dgs
DggsssggsD
ftE
fftEdttg
t
tgtEEffEfX
π
τππττ
( )
( )
( )[ ] ( )
( )
( ) ( ) ( ) ( ) ( ) +∆−








+





∂
∂
++∆−= ∫
∞+
∞−
222222
2
2
222*Im
2
2
21
0,0
,
DgDggs
s
gg
D
ftfftEdttg
t
tgt
E
ff
X
fX
πτπ
π
τ
τ
If we choose the time and frequency origins such that
( )
( )
( ) ( )
( )
0
2
22
:&0:
2
2
2
2
====
∫
∫
∫
∫
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
dffG
dffGf
f
dttg
dttgt
t gg
π
ππ
( )
( )
( ) ( )
( )
( ) ( ) ( ) +∆−





∂
∂
+∆−= ∫
∞+
∞−
=
=
22222
0
0
2
2
2*Im
2
2
21
0,0
,
DgD
s
g
t
f
D
ftfdttg
t
tgt
E
f
X
fX
g
g
πτ
π
τ
τ
31
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Ambiguity Function Close to Origin (continue -8)
( )
( )
( ) ( )
( )
( ) ( ) ( ) +∆−





∂
∂
+∆−= ∫
∞+
∞−
=
=
22222
0
0
2
2
2*Im
2
2
21
0,0
,
DgD
s
g
t
f
D
ftfdttg
t
tgt
E
f
X
fX
g
g
πτ
π
τ
τ
Helstrom’s Uncertainty Ellipse
The curve resulting from the interception of a plane parallel to the τ, fD plane and the
Normalized Ambiguity Function is an ellipse. The ellipse computed when the plane is at
a height of 0.75 is referred to as Helstrom’s Uncertainty Ellipse.
( )
( )
( ) ( )
( )
( ) ( ) ( )
4
3
2*Im
2
2
21
0,0
, 22222
0
0
2
2
=+∆−





∂
∂
+∆−= ∫
∞+
∞−
=
=
DgD
s
g
t
f
D
ftfdttg
t
tgt
E
f
X
fX
g
g
πτ
π
τ
τ
( ) ( )
( )
( ) ( ) ( )
4
1
2*Im
2
2
2
22222
=∆+





∂
∂
−∆ ∫
+∞
∞−
DgD
s
g ftfdttg
t
tgt
E
f πτ
π
τ
32
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Ambiguity Function Close to Origin (continue -4)
( ) ( ) ( ) ( ) ( ) ( ) ( )
∫∫ ∫
+∞
∞−
+∞
∞−
+∞
∞−






−=
∂
∂
− ω
ω
ω
ωωπ d
d
Gd
GEjdttgtgdttg
t
tgtj s *2**2 22211
1
11
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
∫∫∫ ∫
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−





−
=
∂
∂
+ ω
ω
ω
ωωωωω
π
π d
d
Gd
GdGG
j
dttgtgtdttg
t
tgj
*
222211
1
1 *
2
**2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ ∫
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−




=
∂
∂
− ωωωω
π
ω
ω
ω
ωπ dGG
j
d
d
Gd
Gdttg
t
tgdttgtgtj *
2
***2 22
2
21111
( ) ( ) ( ) ( ) ( ) ( ) ( )
∫∫ ∫
+∞
∞−
+∞
∞−
+∞
∞−






=
∂
∂
+ ω
ω
ω
ωωπ d
d
Gd
GEjdttg
t
tgtdttgtgj s
*
22
2
22111 2**2
c2 m=n=1
c2 m=0
n=1
c1
m=1
n=0
c2 m=1
n=0
c1
m=0
n=1
c1 m=n=1
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
∫∫
∫
∞+
∞−
∞+
∞−
∞+
∞−=
=












−



−












−



=
∂∂
∂
ω
ω
ω
ω
ω
ω
ωωωωω
π
ω
ω
ω
ω
ω
ω
ωω
τ
τ
d
d
Gd
G
d
Gd
GjdGG
d
d
Gd
G
d
Gd
GjEfX
f
s
f
D
D D
**
2
1
*2,0
*
*
0
0
2
2
( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0
2
*
*
==





= ∫∫
∞+
∞−
∞+
∞−
mnd
d
Sd
S
j
dt
td
tsd
tstj m
m
n
n
n
n
mm
ω
ω
ω
ωω
π
( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0*
2
*
==




−
=− ∫∫
+∞
∞−
+∞
∞−
mnd
d
Sd
S
j
dt
td
tsd
tstj m
m
n
n
n
n
mm
ω
ω
ω
ωω
π
c1
c2
Relationships
from Parseval’s
Theorem
33
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
( ) ( ) ( )
  
s
D
E
g
f
D dffGffX
2
22
0
0
2
2
22, ∫
+∞
∞−
=
= ∆−=
∂
∂
πτ
τ
τ
( )
( ) ( )
( )∫
∫
∞+
∞−
+∞
∞−
=∆
dffG
dffGf
fg
2
222
2
2
22
:
π
ππ
SOLO
Ambiguity Function Close to Origin (continue -1)
( ) ( ) ( ) ( ) ( ) ( ) ( )
  
s
D
E
g
f
D
D
dttgtgtdttgtgtfX
f
2
222
0
0
2
2
22, ∫∫
+∞
∞−
∗
+∞
∞−
∗
=
= ∆−=−=
∂
∂
ππτ τ
We found:
where:
Δfg – is signal envelope bandwidth
Es – is signal energy ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
=== tdtgfdfGtdtsEs
222
2
1
2
2
1
: π
or ( ) ( ) ( ) ( )
  
s
D
E
g
f
D
D
dttgtgtfX
f
2
2
0
0
2
2
2, ∫
+∞
∞−
∗
=
= ∆−=
∂
∂
πτ τ
Δtg – is signal envelope duration ( )
( )
( )∫
∫
∞+
∞−
+∞
∞−
=∆
tdtg
tdtgt
tg
2
22
2
:
34
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
SOLO
Ambiguity Function Close to Origin (continue -2)
( ) ( ) ( ) ( ) ( ) ( ) ( )






∂
∂
=






−
∂
∂
=






∂
∂
∂
∂
=
∂
∂
∂
∂
∫∫
+∞
∞−
∗
+∞
∞−
∗
=
=
=
= dttg
t
tgtdttfjtgtgtjfX
f
fX
f
DfD
D
f
D
D
DD
ππτ
τ
πτ
τ
τ
τ
ττ 2Im2exp2Re,Re, 0
0
0
0
Define
( ) ( )
( ) ( )
( )
( ) ( )






∂
∂
∆∆
−=





∂
∂
∆∆
−= ∫
∫
∫ ∞+
∞−
∗
∞+
∞−
∗
+∞
∞−
∗
dttg
t
tgt
Eft
dttgtg
dttg
t
tgt
ft sgggg 2
1
Im
1
:ρ
Error Coupling
Coefficient
We obtain
( ) ( ) ( ) ( ) ggs
f
D
D
ftEdttg
t
tgtfX
f D
∆∆−=






∂
∂
=
∂
∂
∂
∂
∫
+∞
∞−
∗
=
= ρππτ
τ
τ 222Im,
0
0
35
Ambiguity Function for RADAR SignalsSOLO
Ambiguity Function for Single RF Pulse
( )
( )




>
≤≤−
=
2/0
2/2/cos 0
p
pp
SPi
tt
ttttA
ts
ω
The complex envelope is
( )





>
≤≤−
=
2/0
2/2/
1
p
pp
pSP
tt
ttt
ttg
( ) ( ) ( ) ( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )









<
<
=








<
<
=−= ++
−
+
+−
+
−
+
+−
∞+
∞−
∗
∫
∫
∫
02exp
2
1
02exp
2
1
02exp
1
02exp
1
2exp:, 2/
2/
2/
2/
2/
2/
2/
2/
τπ
π
τπ
π
τπ
τπ
πττ τ
τ
τ
τ
p
p
p
p
p
p
p
p
t
t
D
pD
t
t
D
pD
t
t
D
p
t
t
D
p
DDSP
tfj
tfj
tfj
tfj
tdtfj
t
tdtfj
t
tdtfjtgtgfX











<





 +
−−




 +
<













 −
−−




 −






=











<






−−













+
<














+−−





=
0
2
2
2exp
2
2exp
0
2
2
2exp
2
2exp
2
2exp
0
2
2
2exp
2
2exp
0
2
2
2exp
2
2exp
τ
π
τ
π
τ
π
τ
π
τ
τ
π
τ
π
τ
π
τ
π
πτπ
τ
π
τππ
pD
p
D
p
D
pD
p
D
p
D
D
pD
p
D
p
D
pD
p
D
p
D
tfj
t
fj
t
fj
tfj
t
fj
t
fj
fj
tfj
t
fj
t
fj
tfj
t
fj
t
fj
36
Ambiguity Function for RADAR SignalsSOLO
Ambiguity Function for Single RF Pulse (continue – 1)
( ) ( )
( )[ ] ( ) ( ) ( )[ ]
( ) p
ppD
ppD
pD
pD
pD
DDSP t
ttf
ttf
tfj
tf
tf
fjfX ≤
−
−
−=
−
= τ
τπ
τπ
ττπ
π
τπ
τπτ
/1
/1sin
/1exp
sin
exp,
Therefore:
( )
( ) ( )[ ]
( )





≤
−
−
−
=
elsewere
t
ttf
ttf
t
fX
p
ppD
ppD
p
DSP
0
/1
/1sin
/1
,
τ
τπ
τπ
τ
τ
( ) ( ) ppSP ttX ≤−= τττ /10,
( )
[ ]
pD
pD
DSP
tf
tf
fX
π
πsin
,0 =
37
Ambiguity Function for RADAR Signals
( )
( )
p
t
p
t
pSP
DSP
res t
t
d
tX
dfX
T
pp
=








−=








−=
=
= ∫
∫
+∞
∞−
0
2
0
2
2
2
212
0,0
0,
:
τ
ττ
τ
ττ
( )
( )
( )
( )
p
t
p
SP
SP
SP
DDSP
res
t
td
t
tdtg
tdtg
X
fdfX
F
p
12
0,0
,0
:
2/
0
2
1
2
2
4
1
2
2
==






=
=
= ∫
∫
∫∫
∞+
∞−
+∞
∞−
+∞
∞−
  

τ
( )





>
≤≤−
=
2/0
2/2/
1
p
pp
pSP
tt
ttt
ttg
SOLO
Ambiguity Function for Single RF Pulse (continue – 2)
( )
( ) ( )[ ]
( )





≤
−
−
−
=
elsewere
t
ttf
ttf
t
fX
p
ppD
ppD
p
DSP
0
/1
/1sin
/1
,
τ
τπ
τπ
τ
τ
( ) ( ) ppSP ttX ≤−= τττ /10,
Range Resolution
( ) 10,0 =SPX
Doppler Resolution
p
resres
t
FV
22
λλ
==
Return to Table of Content
38
Ambiguity Function for RADAR Signals
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )∫∫
+∞
∞−
∗
+∞
∞−
∗
−−−=−= tdtfjtkjtgtkjtgtdtfjtgtgfX DSPSPDFMSPFMSPDFMSP πτπτππττ 2expexpexp2exp:,
22
SOLO
Ambiguity Function for Linear FM Modulation Pulse
( )







>
≤





+
=
2
0
22
cos
2
0
τ
τπ
ω
t
t
tk
tA
ts FMSPi
( )
[ ]
( ) [ ]2
2
exp
2
0
2
exp
1
tkjtg
t
t
t
ttkj
t
tg SP
p
p
p
FMSP π
π
=







>
≤
=
The signal
of Single Pulse
Frequency Modulated
The complex envelope
of Single Pulse
Frequency Modulated
( )tgSP
- the complex envelope of Single RF Pulse
( ) ( ) ( ) ( ) ( )[ ] ( ) ( )τττπτπττπτ kfXkjtdtkfjtgtgkjfX DSPDSPSPDFMSP +−=+−−= ∫
+∞
∞−
∗
,exp2expexp, 22
( ) ( ) ( )[ ]
( ) p
ppD
ppD
pDSP t
ttf
ttf
tfX ≤
−
−
−= τ
τπ
τπ
ττ
/1
/1sin
/1,where Ambiguity Function of the Single
Frequency Pulse
( )
( ) ( ) ( )[ ]
( ) ( )





≤
−+
−+
−
=
elsewere
t
ttkf
ttkf
t
fX
p
ppD
ppD
p
DFMSP
0
/1
/1sin
/1
,
τ
ττπ
ττπ
τ
τ
39
Ambiguity Function for RADAR SignalsSOLO
Ambiguity Function for Linear FM Modulation Pulse (continue – 1)
( )
( ) ( ) ( )[ ]
( ) ( )
( )ττ
τ
ττπ
ττπ
τ
τ
kfX
elsewere
t
ttkf
ttkf
t
fX
DSP
p
ppD
ppD
p
DFMSP
+=





≤
−+
−+
−
=
,
0
/1
/1sin
/1
,
40
Ambiguity Function for RADAR SignalsSOLO
Ambiguity Function for Linear FM Modulation Pulse (continue – 2)
( )
( ) ( ) ( )[ ]
( ) ( )
( )ττ
τ
ττπ
ττπ
τ
τ
kfX
elsewere
t
ttkf
ttkf
t
fX
DSP
p
ppD
ppD
p
DFMSP
+=





≤
−+
−+
−
=
,
0
/1
/1sin
/1
,
( ) ( )
( )0,
,,
τ
τττττ
SP
SPFMSP
X
kkXkX
=
+−=−
41
Ambiguity Function for RADAR SignalsSOLO
Ambiguity Function for Linear FM Modulation Pulse (continue – 3)
( )
( )
( )
p
p
p
p
p
p
DFMSP t
t
tk
t
tk
t
fX ≤








−
















−








−== τ
τ
τπ
τ
τπ
τ
τ
1
1sin
10,
tp
τ1’st null
( ) π
τ
τπ =








−
p
p
t
tk 1
p
tk
pp
nullst
tkk
tt p
11
42
42
'1
2
>>
≈−−=τ
k tp = Δf is the total frequency
deviation during the pulse.
p
nullst
p
p
tk
nullst tf
t
DrationCompressio
ftk
p
∆===
∆
=≈
>>
'1
4
'1
11
2
τ
τ
Return to Table of Content
42
Ambiguity Function for RADAR SignalsSOLO
Ambiguity Function for a Coherent Pulse Train
The envelope of each pulse is of unit energy and the
coherence is maintained from pulse to pulse.
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )∑ ∑ ∫
∫∑ ∑∫
−
=
−
=
∞+
∞−
+∞
∞−
−
=
−
=
+∞
∞−
−−−=
−−−=−=
1
0
1
0
1
0
1
0
*
2exp*
1
2exp*
1
2exp,
N
n
N
m
DRSPRSP
D
N
n
N
m
RSPRSPDPTPTDPT
tdtfjTmtgTntg
N
tdtfjTmtgTntg
N
tdtfjtgtgfX
πτ
πτπττ
( ) ( ) ( ) ( )[ ] ( )∑ ∑ ∫
−
=
−
=
+∞
∞−
−=
−−−=
1
0
1
0
1111 2exp*2exp
1
,
1 N
n
N
m
DRSPSPRD
Tntt
DPT tdtfjTnmtgtgTnfj
N
fX
R
πτπτ
( ) [ ] ( ) ( )
( ) ( )[ ]
( ) ( )





≤
−
−
−
==−∫
∞+
∞−
elsewere
tfj
ttf
ttf
t
fXtdtfjtgtg
pD
ppD
ppD
p
DSPDSPSP
0
2exp
/1
/1sin
/1
,2exp* 1111
ττπ
τπ
τπ
τ
τπτ
( )





>
≤≤−
=
2/0
2/2/
1
p
pp
pSP
tt
ttt
ttg Envelope of
Single Pulse
( ) ( )∑
−
=
−=
1
0
1 N
n
RSPPT Tntg
N
tg
Envelope of a
Pulse Train
( ) ( ) ( ){ }tfjtgts PT 02expRe π= Pulse Train Signal
For a Coherent Pulse Train:
where for a Single Pulse, we found:
implies coherency
43
Ambiguity Function for RADAR SignalsSOLO
Ambiguity Function for a Coherent Pulse Train
(continue – 1)
( ) ( ) ( )∑ ∑
−
=
−
=
−=−=
1
0
1
0
:,2exp
1
,
N
n
N
m
DRSPRDDPT mnpfTpXTnfj
N
fX τπτ
For a Coherent Pulse Train:
Construction Table for the
Double Sum with p=n-m
n
m 0 1 2 … N-1
0 0 1 2 … N-1
1 -1 0 1 … N-2
2 -2 -1 0 … N-3
… … … … … …
N-1 -N-1 -N-2 -N-3 … 0
p=n-m
( )
    
BlockTriangularRight
pmn
N
p
pN
m
DiagonalBlockTriangularLow
pnm
Np
pN
n
N
n
N
m
+=
−
=
−−
=
−=
−−=
−−
=
−
=
−
=
∑ ∑∑ ∑∑ ∑ +=
1
1
1
0
&
0
1
1
0
1
0
1
0
( ) ( ) ( )
( )
( ) ( ) ( )∑ ∑
∑ ∑
−
=
−−
=
−−=
−−
=
−+
−=
1
1
1
1
0
1
1
0
2exp,2exp
1
2exp,
1
,
N
p
pN
m
RDDRSPRD
Np
pN
n
RDDRSPDPT
TmfjfTpXTpfj
N
TnfjfTpX
N
fX
πτπ
πττ
44
Ambiguity Function for RADAR SignalsSOLO
Ambiguity Function for a Coherent Pulse Train
(continue – 2)
For a Coherent Pulse Train:
( ) ( ) ( )
( )
( ) ( ) ( )∑ ∑
∑ ∑
−
=
−−
=
−−=
−−
=
−+
−=
1
1
1
0
0
1
1
0
2exp,2exp
1
2exp,
1
,
N
p
pN
m
RDDRSPRD
Np
pN
n
RDDRSPDPT
TmfjfTpXTpfj
N
TnfjfTpX
N
fX
πτπ
πττ
To compute the sums of the exponents, we use:
( ) ( ) ( )
2/12/1
2/2/
2/1
2/1
0 1
1
yy
yy
y
y
y
y
y
pNpNpNpNpN
n
n
−
−
=
−
−
= −
−−−−−−−
=
∑
take: ( )RD Tfjy π2exp=
( ) ( )[ ] ( )[ ]
( )RD
RD
RD
pN
n
RD
Tf
TpNf
TpNfjTnfj
π
π
ππ
sin
sin
1exp2exp
1
0
−
−−=∑
−−
=
Using this result we obtain:
( ) ( )[ ] ( )
( )[ ]
( )( )
∑
−
−−=
−
−+−=
1
1 sin
sin
,1exp
1
,
N
Np RD
RD
DRSPRDDPT
Tf
TpNf
fTpXTpNfj
N
fX
π
π
τπτ
45
Ambiguity Function for RADAR SignalsSOLO
Ambiguity Function for a Coherent Pulse Train
(continue – 3)
For a Coherent Pulse Train:
( ) ( )[ ] ( )
( )[ ]
( )( )
∑
−
−−=
−
−+−=
1
1 sin
sin
,1exp
1
,
N
Np RD
RD
DRSPRDDPT
Tf
TpNf
fTpXTpNfj
N
fX
π
π
τπτ
where
The expression |XPT (τ,fD)| can be simplified if the separation between pulses is larger
than the duration of individual pulses.
( ) ( )
( )[ ]
( )( )
( ) ( )[ ]
( )
( )[ ]
( )( )
2/
sin
sin
/1
/1sin
/1
1
sin
sin
,
1
,
1
1
1
1
Rp
N
Np RD
RD
pRpD
pRpD
pR
N
Np RD
RD
DRSPDPT
Tt
Tf
TpNf
tTptf
tTptf
tTp
N
Tf
TpNf
fTpX
N
fX
<
−
−−
−−
−−=
−
−=
∑
∑
−
−−=
−
−−=
π
π
τπ
τπ
τ
π
π
ττ
( )
( ) ( )[ ]
( ) ( )





≤
−
−
−
=
elsewere
tfj
ttf
ttf
t
fX
pD
ppD
ppD
p
DSP
0
2exp
/1
/1sin
/1
,
ττπ
τπ
τπ
τ
τ
46
Ambiguity Function for RADAR SignalsSOLO
Ambiguity Function for a Coherent Pulse Train
(continue – 4)
The Ambiguity Function for a Coherent Pulse Train:
Setting fD = 0 we obtain:
( ) ( ) ( )[ ]
( )
( )[ ]
( )( )
2/
sin
sin
/1
/1sin
/1
1
,
1
1
Rp
N
Np RD
RD
pRpD
pRpD
pRDPT Tt
Tf
TpNf
tTptf
tTptf
tTp
N
fX <
−
−−
−−
−−= ∑
−
−−= π
π
τπ
τπ
ττ
( )
( )[ ]
( )( ) ( )
( )pN
Tf
Tf
TpNf
TpNf
t
Tp
N
fX
DD
fRD
RD
N
Np
fRD
RD
p
R
DPT −
−
−







 −
−=
=
−
−−=
=
∑
    
1
0
1
1
1
0
sin
sin
1
1
,
π
π
π
πτ
τ
( )
( )
pR
N
Np p
R
DPT tTp
N
p
t
Tp
fX <−







−







 −
−== ∑
−
−−=
τ
τ
τ 110,
1
1
or
47
Ambiguity Function for RADAR SignalsSOLO
Ambiguity Function for a Coherent Pulse Train
(continue – 5)
The Ambiguity Function for a Coherent Pulse Train:
( )
( ) ( )[ ]
( )
( )[ ]
( )( )
2/
sin
sin
/1
/1sin
/1
1
,
1
1
Rp
N
Np RD
RD
pRpD
pRpD
pR
DPT
Tt
Tf
TpNf
tTptf
tTptf
tTp
N
fX
<
−
−−
−−
−−= ∑
−
−−= π
π
τπ
τπ
τ
τ
48
Pulse bi-phase Barker coded of length 7
Digital Correlation
At the Receiver the coded pulse enters a
7 cells delay lane (from left to right),
a bin at each clock.
The signals in the cells are multiplied
by ck* and summed.
clock
-1 = -11
+1 -1 = 02
-1 +1 -1 = -13
-1 -1 +1-( -1) = 04
+1 -1 -1 –(+1)-( -1) = -15
+1 +1 -1-(-1) –(+1)-1= 06
+1+1 +1-( -1)-(-1) +1-(-1)= 77
+1+1 –(+1)-( -1) -1-( +1)= 08
+1-(+1) –(+1) -1-( -1)= -19
-(+1)-(+1) +1 -( -1)= 010
-(+1)+1-(+1) = -111
+1-(+1) = 012
-(+1) = -1
13
0 = 014
SOLO Pulse Compression Techniques
-1-1 -1+1+1+1+1 { }*
kc
49
SOLO
50
SOLO
Return to Table of Content
51
52
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
53
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
54
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
55
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
56
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
57
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
58
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
59
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
60
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
61
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
62
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
63
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
64
SOLO
Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
65
Ambiguity function for a square pulse
Ambiguity function for an LFM pulse Return to Table of Content
66
Matched Filters for RADAR SignalsSOLO
References
J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201
C.E. Cook, M. Bernfeld, “RADAR Signals An Introduction to Theory and Application”,
Artech House, 1993
D. C. Schleher, “MTI and Pulsed Doppler RADAR”, Artech House, 1991, Appendix B
J. Minkoff, “Signals, Noise, and Active Sensors”, John Wiley & Sons, 1992, Ch.5
M.A. Richards, ECE 6272, “Fundamentals of Signal Processing”, Georgia Institute of
Technology, Spring 2000, Appendix A, Optimum and Sub-optimum Filters
W.B. Davenport,Jr., W.L. Root,”An Introduction to the Theory of Random Signals
and Noise”, McGraw Hill, 1958, pp. 244-246
N. Levanon, “Radar Principles”, John Wiley & Sons, 1988, Ch.5 & 6
Peeble, P.Z. Jr, “Radar Principles”, John Wiley & Sons, 1998
N. Levanon, “Waveform Analysis and Design”, 2008 IEEE Radar Conference,
Tutorial, MA2, May 26 – 30, 2008, Rome, Italy
Hermelin, S., “Pulse Compression Techniques”, Power Point Presentation
Return to Table of Content
January 19, 2015 67
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 –2013
Stanford University
1983 – 1986 PhD AA
Vector Analysis
68
Fourier Transform
( ) ( ){ } ( ) ( )∫
+∞
∞−
−== dttjtftfF ωω exp:F
SOLO
Jean Baptiste Joseph
Fourier
1768-1830
F (ω) is known as Fourier Integral or Fourier Transform
and is in general complex
( ) ( ) ( ) ( ) ( )[ ]ωφωωωω jAFjFF expImRe =+=
Using the identities
( ) ( )t
d
tj δ
π
ω
ω =∫
+∞
∞− 2
exp
we can find the Inverse Fourier Transform ( ) ( ){ }ωFtf -1
F=
( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )[ ]00
2
1
2
exp
2
expexp
2
exp
++−=−=−=




−=
∫∫ ∫
∫ ∫∫
∞+
∞−
∞+
∞−
∞+
∞−
+∞
∞−
+∞
∞−
+∞
∞−
tftfdtfd
d
tjf
d
tjdjf
d
tjF
ττδττ
π
ω
τωτ
π
ω
ωττωτ
π
ω
ωω
( ) ( ){ } ( ) ( )∫
+∞
∞−
==
π
ω
ωωω
2
exp:
d
tjFFtf -1
F
( ) ( ) ( ) ( )[ ]00
2
1
++−=−∫
+∞
∞−
tftfdtf ττδτ
If f (t) is continuous at t, i.e. f (t-0) = f (t+0)
This is true if (sufficient not necessary)
f (t) and f ’ (t) are piecewise continue in every finite interval1
2 and converge, i.e. f (t) is absolute integrable in (-∞,∞)( )∫
+∞
∞−
dttf
69
( )atf −
-1
F
F ( ) ( )ωω ajF −exp
Fourier TransformSOLO
( )tf
-1
F
F
( )ωFProperties of Fourier Transform (Summary)
Linearity1
( ) ( ){ } ( ) ( )[ ] ( ) ( ) ( )ωαωαωαααα 221122112211 exp: FFdttjtftftftf +=−+=+ ∫
+∞
∞−
F
Symmetry2
( )tF
-1
F
F
( )ωπ −f2
Conjugate Functions3 ( )tf *
-1
F
F
( )ω−*
F
Scaling4 ( )taf
-1
F
F






a
F
a
ω1
Derivatives5 ( ) ( )tftj
n
−
-1
F
F ( )ω
ω
F
d
d
n
n
( )tf
td
d
n
n
-1
F
F
( ) ( )ωω Fj
n
Convolution6
( ) ( )tftf 21
-1
F
F ( ) ( )ωω 21
* FF( ) ( ) ( ) ( )∫
+∞
∞−
−= τττ dtfftftf 2121
:*
-1
F
F ( ) ( )ωω 21
FF
( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
= ωωω dFFdttftf 2
*
12
*
1
Parseval’s Formula7
Shifting: for any a real8
( ) ( )tajtf exp
-1
F
F ( )aF −ω
Modulation9 ( ) ttf 0
cos ω -1
F
F
( ) ( )[ ]00
2
1
ωωωω −++ FF
( ) ( ) ( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
−=−= ωωω
π
ωωω
π
dFFdFFdttftf 212121
2
1
2
1
70
Fourier Transform
( )tf
( ) ( )∑
∞
=
−=
0n
T Tntt δδ
( ) ( ) ( ) ( ) ( )∑
∞
=
−==
0
*
n
T
TntTnfttftf δδ
( )tf *
( )tf
T t
( ) ( ){ } ( ) σσ <== +∫
∞
−
f
ts
dtetftfsF
0
L
SOLO
Sampling and z-Transform
( ) ( ){ } ( ) σδδ <
−
==






−== −
∞
=
−
∞
=
∑∑ 0
1
1
00
sT
n
sTn
n
T
e
eTnttsS LL
( ) ( ){ }
( ) ( ) ( )
( ) ( ){ } ( ) ( )






<<
−
=
=






−
==
−
∞+
∞−
−−
∞
=
−
∞
=
+∫
∑∑
0
00
**
1
1
2
1
σσσξξ
π
δ
δ
ξ
σ
σ
ξ f
j
j
tsT
n
sTn
n
d
e
F
j
ttf
eTnfTntTnf
tfsF
L
L
L
( )
( ) ( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )













−
=
−
−
=
−
=
∑∫
∑∫
∑
−−
−
−−
Γ
−−
−−
Γ
−−
∞
=
−
ts
e
ofPoles
tsts
F
ofPoles
tsts
n
nsT
e
F
Resd
e
F
j
e
F
Resd
e
F
j
eTnf
sF
ξ
ξξ
ξ
ξξ
ξ
ξ
ξ
π
ξ
ξ
ξ
π
1
1
0
*
112
1
112
1
2
1
Poles of
( ) Ts
e ξ−−
−1
1
Poles of
( )ξF
planes
T
nsn
π
ξ
2
+=
ωj
ωσ j+
0=s
Laplace Transforms
The signal f (t) is sampled at a time period T.
1Γ
2
Γ
∞→R
∞→R
Poles of
( ) Ts
e ξ−−
−1
1
Poles of
( )ξF
planeξ
T
nsn
π
ξ
2
+=
ωj
ωσ j+
0=s
71
Fourier Transform
( )tf
( ) ( )∑
∞
=
−=
0n
T Tntt δδ
( ) ( ) ( ) ( ) ( )∑
∞
=
−==
0
*
n
T
TntTnfttftf δδ
( )tf *
( )tf
T t
SOLO
Sampling and z-Transform (continue – 1)
( ) ( )
( )
( )
( )
( ) ( ) ∑∑
∑∑
∞+
−∞=
∞+
−∞=
−−→
∞+
−∞=
−−
+→
+=
−
−−






+=
−






+
−=






+












−
−−
−=
−
−=
−−
−−
nn
Tse
n
ts
T
n
js
T
n
js
e
ofPoles
ts
T
n
jsF
TeT
T
n
jsF
T
n
jsF
e
T
n
js
e
F
RessF
ts
n
ts
π
π
π
π
ξ
ξ
ξ
ξπ
ξ
π
ξ
ξ
ξ
ξ
21
2
lim
2
1
2
lim
1
1
2
2
1
1
*
Poles of
( )ξF
ωj
σ
0=s
T
π2
T
π2
T
π2
Poles of
( )ξ*
F plane
js ωσ +=
The signal f (t) is sampled at a time period T.
The poles of are given by( )ts
e ξ−−
−1
1
( )
( )
T
n
jsnjTsee n
njTs π
ξπξπξ 2
21 2
+=⇒=−−⇒==−−
( ) ∑
+∞
−∞=






+=
n T
n
jsF
T
sF
π21*
72
Fourier Transform
( )tf
( ) ( )∑
∞
=
−=
0n
T Tntt δδ
( ) ( ) ( ) ( ) ( )∑
∞
=
−==
0
*
n
T
TntTnfttftf δδ
( )tf *
( )tf
T t
SOLO
Sampling and z-Transform (continue – 2)
0=z
planez
Poles of
( )zF
C
The signal f (t) is sampled at a time period T.
The z-Transform is defined as:
( ){ } ( ) ( )
( )
( ) ( )
( )








−
−===
∑
∑
=
−
→
∞
=
−
=
iF
iF
i
iF
Ts
FofPoles
T
F
n
n
ze
ze
F
zTnf
zFsFtf
ξξ
ξ
ξ
ξξ
ξξξ
1
0
*
1
lim:Z
( )
( )





<
>≥
= ∫
−
00
0
2
1 1
n
RzndzzzF
jTnf
fC
C
n
π
73
Fourier TransformSOLO
Sampling and z-Transform (continue – 3)
( ) ( ) ( )∑∑
∞
=
−
+∞
−∞=
=





+=
0
* 21
n
nsT
n
eTnf
T
n
jsF
T
sF
πWe found
The δ (t) function we have:
( ) 1=∫
+∞
∞−
dttδ ( ) ( ) ( )τδτ fdtttf =−∫
+∞
∞−
The following series is a periodic function: ( ) ( )∑ −=
n
Tnttd δ:
therefore it can be developed in a Fourier series:
( ) ( ) ∑∑ 





−=−=
n
n
n T
tn
jCTnttd πδ 2exp:
where: ( )
T
dt
T
tn
jt
T
C
T
T
n
1
2exp
1
2/
2/
=





= ∫
+
−
πδ
Therefore we obtain the following identity:
( )∑∑ −=





−
nn
TntT
T
tn
j δπ2exp
Second Way
74
Fourier Transform
( ) ( ){ } ( ) ( )∫
+∞
∞−
−== dttjtftfF νπνπ 2exp:2 F
( ) ( ) ( )∑∑
∞
=
−
+∞
−∞=
=





+=
0
* 21
n
nsT
n
eTnf
T
n
jsF
T
sF
π
( ) ( ){ } ( ) ( )∫
+∞
∞−
== ννπνπνπ dtjFFtf 2exp2:2-1
F
SOLO
Sampling and z-Transform (continue – 4)
We found
Using the definition of the Fourier Transform and it’s inverse:
we obtain ( ) ( ) ( )∫
+∞
∞−
= ννπνπ dTnjFTnf 2exp2
( ) ( ) ( ) ( ) ( ) ( )∑∫∑
∞
=
+∞
∞−
∞
=
−=−=
0
111
0
*
exp2exp2exp
nn
n
sTndTnjFsTTnfsF ννπνπ
( ) ( ) ( )[ ]∫ ∑
+∞
∞−
+∞
−∞=
−−== 111
*
2exp22 νννπνπνπ dTnjFjsF
n
( ) ( ) ∑∫ ∑
+∞
−∞=
+∞
∞−
+∞
−∞=












−=





−−==
nn T
n
F
T
d
T
n
T
FjsF νπνννδνπνπ 2
11
22 111
*
We recovered (with –n instead of n) ( ) ∑
+∞
−∞=






+=
n T
n
jsF
T
sF
π21*
Second Way (continue)
Making use of the identity: with 1/T instead of T
and ν - ν 1 instead of t we obtain: ( )[ ] ∑∑ 





−−=−−
nn T
n
T
Tnj 11
1
2exp ννδννπ
( )∑∑ −=





−
nn
TntT
T
tn
j δπ2exp
75
Fourier TransformSOLO
Henry Nyquist
1889 - 1976
http://en.wikipedia.org/wiki/Harry_Nyquist
Nyquist-Shannon Sampling Theorem
Claude Elwood Shannon
1916 – 2001
http://en.wikipedia.org/wiki/Claude_E._Shannon
The sampling theorem was implied by the work of Harry Nyquist in
1928 ("Certain topics in telegraph transmission theory"), in which
he showed that up to 2B independent pulse samples could be sent
through a system of bandwidth B; but he did not explicitly consider
the problem of sampling and reconstruction of continuous signals.
About the same time, Karl Küpfmüller showed a similar result, and
discussed the sinc-function impulse response of a band-limiting
filter, via its integral, the step response Integralsinus; this band-
limiting and reconstruction filter that is so central to the sampling
theorem is sometimes referred to as a Küpfmüller filter (but seldom
so in English).
The sampling theorem, essentially a dual of Nyquist's result,
was proved by Claude E. Shannon in 1949 ("Communication in
the presence of noise"). V. A. Kotelnikov published similar
results in 1933 ("On the transmission capacity of the 'ether' and
of cables in electrical communications", translation from the
Russian), as did the mathematician E. T. Whittaker in 1915
("Expansions of the Interpolation-Theory", "Theorie der
Kardinalfunktionen"), J. M. Whittaker in 1935 ("Interpolatory
function theory"), and Gabor in 1946 ("Theory of
communication").
http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
76
SignalsSOLO
Signal Duration and Bandwidth
then
( ) ( )∫
+∞
∞−
−
= tdetsfS tfi π2
( ) ( )∫
+∞
∞−
= fdefSts tfi π2
t
t∆2
t
( ) 2
ts
f
f
f∆2
( ) 2
fS
( ) ( )
( )
2/1
2
22
:














−
=∆
∫
∫
∞+
∞−
+∞
∞−
tdts
tdtstt
t
( )
( )∫
∫
∞+
∞−
+∞
∞−
=
tdts
tdtst
t
2
2
:
Signal Duration Signal Median
( ) ( )
( )
2/1
2
22
2
4
:














−
=∆
∫
∫
∞+
∞−
+∞
∞−
fdfS
fdfSff
f
π ( )
( )∫
∫
∞+
∞−
+∞
∞−
=
fdfS
fdfSf
f
2
2
2
:
π
Signal Bandwidth Frequency Median
Fourier
77
Signals
( ) ( )∫
+∞
∞−
= fdefSts tfi π2
SOLO
Signal Duration and Bandwidth (continue – 1)
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )∫∫ ∫
∫ ∫∫ ∫∫
∞+
∞−
∞+
∞−
∞+
∞−
−
∞+
∞−
∞+
∞−
−
∞+
∞−
∞+
∞−
∞+
∞−
=







=








=







=
dffSfSdfdesfS
dfdefSsdfdefSsdss
tfi
tfitfi
ττ
τττττττ
π
ππ
2
22
( ) ( )∫
+∞
∞−
= fdefSts tfi π2 ( ) ( ) ( )∫
+∞
∞−
== fdefSfi
td
tsd
ts tfi π
π 2
2'
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )∫∫ ∫
∫ ∫∫ ∫∫
∞+
∞−
∞+
∞−
∞+
∞−
−
+∞
∞−
+∞
∞−
−
+∞
∞−
+∞
∞−
−
+∞
∞−
=







−=








−=







−=
dffSfSfdfdesfSfi
dfdesfSfidfdefSfsidss
tfi
tfitfi
222
22
2'2
'2'2''
πττπ
ττπττπτττ
π
ππ
( ) ( )∫∫
+∞
∞−
+∞
∞−
= dffSds
22
ττ
Parseval Theorem
From
From
( ) ( )∫∫
+∞
∞−
+∞
∞−
= dffSfdtts
2222
4' π
78
Signals
( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )∫
∫
∫
∫ ∫
∫
∫ ∫
∫
∫
∫
∫
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
+∞
∞−
−
∞+
∞−
+∞
∞−
+∞
∞−
−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
=====
dffS
fd
fd
fSd
fS
i
dffS
fdtdetstfS
dffS
tdfdefStst
dffS
tdtstst
tdts
tdtst
t
fifi
22
2
2
2
22
2
2
:
π
ππ
SOLO
Signal Duration and Bandwidth
( ) ( )∫
+∞
∞−
−
= tdetsfS tfi π2
( ) ( )∫
+∞
∞−
= fdefSts tfi π2
Fourier
( ) ( )∫
+∞
∞−
−
−= tdetsti
fd
fSd tfi π
π 2
2
( ) ( )∫
+∞
∞−
= fdefSfi
td
tsd tfi π
π 2
2
( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )∫
∫
∫
∫ ∫
∫
∫ ∫
∫
∫
∫
∫
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
+∞
∞−
∞+
∞−
+∞
∞−
+∞
∞−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
−
=








====
tdts
td
td
tsd
tsi
tdts
tdfdefSfts
tdts
fdtdetsfSf
tdts
fdfSfSf
fdfS
fdfSf
f
fifi
22
2
2
2
22
2
2222
:
ππ
ππππ
79
Signals
( ) ( ) ( ) ( ) ( )∫∫∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−
=≤








dffSfdttstdttsdttstdtts
222222
2
2
4'
4
1
π
( ) ( )∫∫
+∞
∞−
+∞
∞−
= dffSdts
22
τ
SOLO
Signal Duration and Bandwidth (continue – 1)
0&0 == ftChange time and frequency scale to get
From Schwarz Inequality: ( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
≤ dttgdttfdttgtf
22
Choose ( ) ( ) ( ) ( ) ( )ts
td
tsd
tgtsttf ':& ===
( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
≤ dttsdttstdttstst
22
''we obtain
( ) ( )∫
+∞
∞−
dttstst 'Integrate by parts
( )



=
+=
→



=
=
sv
dtstsdu
dtsdv
stu '
'
( ) ( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
∞+
∞−
+∞
∞−
−−= dttststdttsstdttstst '' 2
0
2

( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
−= dttsdttstst 2
2
1
'
( ) ( )∫∫
+∞
∞−
+∞
∞−
= dffSfdtts
2222
4' π
( )
( )
( )
( )
( )
( )
( )
( )∫
∫
∫
∫
∫
∫
∫
∫
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
=≤
dffS
dffSf
dtts
dttst
dtts
dffSf
dtts
dttst
2
222
2
2
2
222
2
2
44
4
1
ππ
assume ( ) 0lim =
→∞
tst
t
80
SignalsSOLO
Signal Duration and Bandwidth (continue – 2)
( )
( )
( )
( )
( )
( )
    
22
2
222
2
2
4
4
1
ft
dffS
dffSf
dtts
dttst
∆
∞+
∞−
+∞
∞−
∆
∞+
∞−
+∞
∞−




























≤
∫
∫
∫
∫ π
Finally we obtain
( ) ( )ft ∆∆≤
2
1
0&0 == ftChange time and frequency scale to get
Since Schwarz Inequality: becomes an equality
if and only if g (t) = k f (t), then for:
( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
≤ dttgdttfdttgtf
22
( ) ( ) ( ) ( )tftsteAt
td
sd
tgeAts tt
ααα αα
222:
22
−=−=−==⇒= −−
we have ( ) ( )ft ∆∆=
2
1
81
SOLO
82
SOLO
83
SOLO

More Related Content

What's hot

Circular Convolution
Circular ConvolutionCircular Convolution
Circular Convolution
Sarang Joshi
 
Moving target indicator radar (mti)part2
Moving target indicator radar (mti)part2Moving target indicator radar (mti)part2
Moving target indicator radar (mti)part2
abdulrehmanali
 
Doppler radar
Doppler radarDoppler radar
Doppler radar
Jafar Hameed
 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
Amr E. Mohamed
 
1 radar basic - part ii
1 radar basic - part ii1 radar basic - part ii
1 radar basic - part ii
Solo Hermelin
 
Radar 2009 a 16 parameter estimation and tracking part2
Radar 2009 a 16 parameter estimation and tracking part2Radar 2009 a 16 parameter estimation and tracking part2
Radar 2009 a 16 parameter estimation and tracking part2
Forward2025
 
A Tutorial on Radar System Engineering
A Tutorial on Radar System EngineeringA Tutorial on Radar System Engineering
A Tutorial on Radar System Engineering
TBSS Group
 
Digital Signal Processing[ECEG-3171]-Ch1_L06
Digital Signal Processing[ECEG-3171]-Ch1_L06Digital Signal Processing[ECEG-3171]-Ch1_L06
Digital Signal Processing[ECEG-3171]-Ch1_L06
Rediet Moges
 
Radar 2009 a 13 clutter rejection doppler filtering
Radar 2009 a 13 clutter rejection   doppler filteringRadar 2009 a 13 clutter rejection   doppler filtering
Radar 2009 a 13 clutter rejection doppler filtering
Forward2025
 
communication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manualcommunication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manual
amirhosseinozgoli
 
Radar 2009 a 18 synthetic aperture radar
Radar 2009 a 18 synthetic aperture radarRadar 2009 a 18 synthetic aperture radar
Radar 2009 a 18 synthetic aperture radar
Forward2025
 
Study of Radar System
Study of Radar System Study of Radar System
Study of Radar System
Atul Sharma
 
Radar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler RadarsRadar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler Radars
VenkataRatnam14
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
Aamir Saeed
 
4 radio wave propagation over the earth
4 radio wave propagation over the earth4 radio wave propagation over the earth
4 radio wave propagation over the earth
Solo Hermelin
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
taha25
 
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Applied Digital Signal Processing 1st Edition Manolakis Solutions ManualApplied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
towojixi
 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transform
op205
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
Ritul Sonania
 
Nonlinearity
NonlinearityNonlinearity
Nonlinearity
Pei-Che Chang
 

What's hot (20)

Circular Convolution
Circular ConvolutionCircular Convolution
Circular Convolution
 
Moving target indicator radar (mti)part2
Moving target indicator radar (mti)part2Moving target indicator radar (mti)part2
Moving target indicator radar (mti)part2
 
Doppler radar
Doppler radarDoppler radar
Doppler radar
 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
 
1 radar basic - part ii
1 radar basic - part ii1 radar basic - part ii
1 radar basic - part ii
 
Radar 2009 a 16 parameter estimation and tracking part2
Radar 2009 a 16 parameter estimation and tracking part2Radar 2009 a 16 parameter estimation and tracking part2
Radar 2009 a 16 parameter estimation and tracking part2
 
A Tutorial on Radar System Engineering
A Tutorial on Radar System EngineeringA Tutorial on Radar System Engineering
A Tutorial on Radar System Engineering
 
Digital Signal Processing[ECEG-3171]-Ch1_L06
Digital Signal Processing[ECEG-3171]-Ch1_L06Digital Signal Processing[ECEG-3171]-Ch1_L06
Digital Signal Processing[ECEG-3171]-Ch1_L06
 
Radar 2009 a 13 clutter rejection doppler filtering
Radar 2009 a 13 clutter rejection   doppler filteringRadar 2009 a 13 clutter rejection   doppler filtering
Radar 2009 a 13 clutter rejection doppler filtering
 
communication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manualcommunication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manual
 
Radar 2009 a 18 synthetic aperture radar
Radar 2009 a 18 synthetic aperture radarRadar 2009 a 18 synthetic aperture radar
Radar 2009 a 18 synthetic aperture radar
 
Study of Radar System
Study of Radar System Study of Radar System
Study of Radar System
 
Radar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler RadarsRadar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler Radars
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
4 radio wave propagation over the earth
4 radio wave propagation over the earth4 radio wave propagation over the earth
4 radio wave propagation over the earth
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Applied Digital Signal Processing 1st Edition Manolakis Solutions ManualApplied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transform
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
 
Nonlinearity
NonlinearityNonlinearity
Nonlinearity
 

Viewers also liked

1 radar basic -part i 1
1 radar basic -part i 11 radar basic -part i 1
1 radar basic -part i 1
Solo Hermelin
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
Solo Hermelin
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loops
Solo Hermelin
 
Radar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radarRadar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radar
Forward2025
 
Radar Powerpoint
Radar PowerpointRadar Powerpoint
Radar Powerpoint
Ryan rice
 
Radar ppt
Radar pptRadar ppt
Radar ppt
pratibha007
 
ArbStudio Arbitrary Waveform Generators
ArbStudio Arbitrary Waveform GeneratorsArbStudio Arbitrary Waveform Generators
ArbStudio Arbitrary Waveform Generators
Premier Farnell
 
ECE 17 Final Presentation Portable Ultrasound Driver
ECE 17 Final Presentation Portable Ultrasound DriverECE 17 Final Presentation Portable Ultrasound Driver
ECE 17 Final Presentation Portable Ultrasound Driver
rivasd1214
 
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERSMO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERSgrssieee
 
Chapter 1-generality
Chapter 1-generalityChapter 1-generality
Chapter 1-generality
Rima Assaf
 
2-Bordoni_IGARSS11_APC.ppt
2-Bordoni_IGARSS11_APC.ppt2-Bordoni_IGARSS11_APC.ppt
2-Bordoni_IGARSS11_APC.pptgrssieee
 
Radar 2009 a 7 radar cross section 2
Radar 2009 a 7 radar cross section 2Radar 2009 a 7 radar cross section 2
Radar 2009 a 7 radar cross section 2
Forward2025
 
Radar 2009 a 7 radar cross section 1
Radar 2009 a 7 radar cross section 1Radar 2009 a 7 radar cross section 1
Radar 2009 a 7 radar cross section 1
Forward2025
 
WE3.L10.2: COMMUNICATION CODING OF PULSED RADAR SYSTEMS
WE3.L10.2: COMMUNICATION CODING OF PULSED RADAR SYSTEMSWE3.L10.2: COMMUNICATION CODING OF PULSED RADAR SYSTEMS
WE3.L10.2: COMMUNICATION CODING OF PULSED RADAR SYSTEMSgrssieee
 
4-IGARSS_2011_v4.ppt
4-IGARSS_2011_v4.ppt4-IGARSS_2011_v4.ppt
4-IGARSS_2011_v4.pptgrssieee
 
2 estimators
2 estimators2 estimators
2 estimators
Solo Hermelin
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
Solo Hermelin
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
Solo Hermelin
 
Introduction to elasticity, part i
Introduction to elasticity, part iIntroduction to elasticity, part i
Introduction to elasticity, part i
Solo Hermelin
 

Viewers also liked (20)

1 radar basic -part i 1
1 radar basic -part i 11 radar basic -part i 1
1 radar basic -part i 1
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loops
 
Radar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radarRadar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radar
 
Radar Powerpoint
Radar PowerpointRadar Powerpoint
Radar Powerpoint
 
Radar ppt
Radar pptRadar ppt
Radar ppt
 
ArbStudio Arbitrary Waveform Generators
ArbStudio Arbitrary Waveform GeneratorsArbStudio Arbitrary Waveform Generators
ArbStudio Arbitrary Waveform Generators
 
ECE 17 Final Presentation Portable Ultrasound Driver
ECE 17 Final Presentation Portable Ultrasound DriverECE 17 Final Presentation Portable Ultrasound Driver
ECE 17 Final Presentation Portable Ultrasound Driver
 
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERSMO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
 
The Most Effective Pain & Muscle Stimulation Units
The Most Effective Pain & Muscle Stimulation UnitsThe Most Effective Pain & Muscle Stimulation Units
The Most Effective Pain & Muscle Stimulation Units
 
Chapter 1-generality
Chapter 1-generalityChapter 1-generality
Chapter 1-generality
 
2-Bordoni_IGARSS11_APC.ppt
2-Bordoni_IGARSS11_APC.ppt2-Bordoni_IGARSS11_APC.ppt
2-Bordoni_IGARSS11_APC.ppt
 
Radar 2009 a 7 radar cross section 2
Radar 2009 a 7 radar cross section 2Radar 2009 a 7 radar cross section 2
Radar 2009 a 7 radar cross section 2
 
Radar 2009 a 7 radar cross section 1
Radar 2009 a 7 radar cross section 1Radar 2009 a 7 radar cross section 1
Radar 2009 a 7 radar cross section 1
 
WE3.L10.2: COMMUNICATION CODING OF PULSED RADAR SYSTEMS
WE3.L10.2: COMMUNICATION CODING OF PULSED RADAR SYSTEMSWE3.L10.2: COMMUNICATION CODING OF PULSED RADAR SYSTEMS
WE3.L10.2: COMMUNICATION CODING OF PULSED RADAR SYSTEMS
 
4-IGARSS_2011_v4.ppt
4-IGARSS_2011_v4.ppt4-IGARSS_2011_v4.ppt
4-IGARSS_2011_v4.ppt
 
2 estimators
2 estimators2 estimators
2 estimators
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Introduction to elasticity, part i
Introduction to elasticity, part iIntroduction to elasticity, part i
Introduction to elasticity, part i
 

Similar to 4 matched filters and ambiguity functions for radar signals-2

Ph ddefence
Ph ddefencePh ddefence
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
Akira Tanimoto
 
Chapter5
Chapter5Chapter5
Chapter5
Srinivas Naidu
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transforms
Lily Rose
 
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisDigital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisChandrashekhar Padole
 
lec_3.pdf
lec_3.pdflec_3.pdf
lec_3.pdf
AmirEWIDA1
 
Malik - Formal Element Report
Malik - Formal Element ReportMalik - Formal Element Report
Malik - Formal Element ReportJunaid Malik
 
DSP 2
DSP 2DSP 2
Asynchronous Differential Distributed Space-Time Coding
Asynchronous Differential Distributed Space-Time CodingAsynchronous Differential Distributed Space-Time Coding
Asynchronous Differential Distributed Space-Time Coding
mravendi
 
Ejercicio de fasores
Ejercicio de fasoresEjercicio de fasores
Ejercicio de fasores
dpancheins
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
VjekoslavKovac1
 
Numerical Algorithm for a few Special Functions
Numerical Algorithm for a few Special FunctionsNumerical Algorithm for a few Special Functions
Numerical Algorithm for a few Special Functions
Amos Tsai
 
Gamma function
Gamma functionGamma function
Gamma function
Solo Hermelin
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
Simen Li
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
Simen Li
 
Variable frequencyresponseanalysis8ed
Variable frequencyresponseanalysis8edVariable frequencyresponseanalysis8ed
Variable frequencyresponseanalysis8ed
xebiikhan
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 

Similar to 4 matched filters and ambiguity functions for radar signals-2 (20)

Ph ddefence
Ph ddefencePh ddefence
Ph ddefence
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
Chapter5
Chapter5Chapter5
Chapter5
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transforms
 
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisDigital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
 
lec_3.pdf
lec_3.pdflec_3.pdf
lec_3.pdf
 
Malik - Formal Element Report
Malik - Formal Element ReportMalik - Formal Element Report
Malik - Formal Element Report
 
DSP 2
DSP 2DSP 2
DSP 2
 
Asynchronous Differential Distributed Space-Time Coding
Asynchronous Differential Distributed Space-Time CodingAsynchronous Differential Distributed Space-Time Coding
Asynchronous Differential Distributed Space-Time Coding
 
Ejercicio de fasores
Ejercicio de fasoresEjercicio de fasores
Ejercicio de fasores
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Numerical Algorithm for a few Special Functions
Numerical Algorithm for a few Special FunctionsNumerical Algorithm for a few Special Functions
Numerical Algorithm for a few Special Functions
 
Gamma function
Gamma functionGamma function
Gamma function
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
Sk7 ph
Sk7 phSk7 ph
Sk7 ph
 
Sk7 ph
Sk7 phSk7 ph
Sk7 ph
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
Variable frequencyresponseanalysis8ed
Variable frequencyresponseanalysis8edVariable frequencyresponseanalysis8ed
Variable frequencyresponseanalysis8ed
 
Talk5
Talk5Talk5
Talk5
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 

More from Solo Hermelin

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
Solo Hermelin
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
Solo Hermelin
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
Solo Hermelin
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
Solo Hermelin
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
Solo Hermelin
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
Solo Hermelin
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
Solo Hermelin
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
Solo Hermelin
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
Solo Hermelin
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
Solo Hermelin
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
Solo Hermelin
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
Solo Hermelin
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
Solo Hermelin
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
Solo Hermelin
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
Solo Hermelin
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
Solo Hermelin
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
Solo Hermelin
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
Solo Hermelin
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
Solo Hermelin
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
Solo Hermelin
 

More from Solo Hermelin (20)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 

Recently uploaded

Phenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvementPhenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvement
IshaGoswami9
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
Wasswaderrick3
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdfMudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
frank0071
 
nodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptxnodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptx
alishadewangan1
 
Introduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptxIntroduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptx
zeex60
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
Abdul Wali Khan University Mardan,kP,Pakistan
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
sanjana502982
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Studia Poinsotiana
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
fafyfskhan251kmf
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills MN
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 

Recently uploaded (20)

Phenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvementPhenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvement
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
 
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdfMudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
 
nodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptxnodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptx
 
Introduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptxIntroduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptx
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 

4 matched filters and ambiguity functions for radar signals-2

  • 1. 1 Matched Filters and Ambiguity Functions for RADAR Signals Part 2 SOLO HERMELIN Updated: 01.12.08http://www.solohermelin.com
  • 2. 2 SOLO Matched Filters and Ambiguity Functions for RADAR Signals Table of Content RADAR RF Signals Maximization of Signal-to-Noise Ratio The Matched Filter The Matched Filter Approximations 1.Single RF Pulse 2. Linear FM Modulated Pulse (Chirp) Continuous Linear Systems Discrete Linear Systems RADAR Signals Signal Duration and Bandwidth Complex Representation of Bandpass Signals Matched Filter Response to a Band Limited Radar Signal Matched Filter Response to Phase Coding Matched Filter Response to its Doppler-Shifted Signal M A T C H E D F I L T E R S
  • 3. 3 SOLO Matched Filters and Ambiguity Functions for RADAR Signals Table of Content (continue – 1) Ambiguity Function for RADAR Signals Definition of Ambiguity Function Ambiguity Function Properties Cuts Through the Ambiguity Function Ambiguity as a Measure of Range and Doppler Resolution Ambiguity Function Close to Origin Ambiguity Function for Single RF Pulse Ambiguity Function for Linear FM Modulation Pulse Ambiguity Function for a Coherent Pulse Train Ambiguity Function Examples (Rihaczek, A.W., “Principles of High Resolution Radar”) References
  • 4. 4 SOLO Matched Filters and Ambiguity Functions for RADAR Signals Continue from Matched Filters
  • 5. 5 ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Definition of Ambiguity Function: ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]tjta tjttatsjtstg QI θ θθ exp sincos: = +=+= • Ambiguity Function is an analytic tool for investigating the effect of target motion on the matching filter response. • It is a function of waveform only. • It can be used to characterize: - Range Resolution - Doppler Resolution - Range – Doppler coupling - Loses due to mismatched Doppler Ambiguity Function for RADAR Signals Return to Table of Content
  • 6. 6 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]tjta tjttatsjtstg QI θ θθ exp sincos: = +=+= SOLO Definition of Ambiguity Function: Ambiguity Function has the following properties: ( ) ( ) 1 2 1 22 == ∫∫ +∞ ∞− +∞ ∞− ωω π dGdttgAssume that the complex signal envelope has a unit energy: ( ) ( ) 10,0, =≤ XfX Dτ1 ( ) 1, =∫ ∫ +∞ ∞− +∞ ∞− DD dfdfX ττ2 ( ) ( )DD fXfX ,, ττ =−−3 4 ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− ∗ −=−= fdfjfGffGtdtfjtgtgfX DDD τππττ 2exp*2exp:, 5 ( ) ( )DD fXfX −=− ,, ττ Ambiguity Function Properties
  • 7. 7 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Definition of Ambiguity Function: Ambiguity Function properties (continue - 1): ( ) ( ) 10,0, =≤ XfX Dτ1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2exp 2exp, 1 2 1 2 22 2 2 =−= −≤ −= ∫∫ ∫∫ ∫ ∞+ ∞− ∗ ∞+ ∞− ∞+ ∞− ∗ ∞+ ∞− ∞+ ∞− ∗    dttgdttg dttfjtgdttg dttfjtgtgfX D DD τ πτ πττ ( ) ( ) 1 2 1 : 22 === ∫∫ +∞ ∞− +∞ ∞− ωω π dGdttgEs ( ) 1, 2 ≤DfX τ ( ) ( ) 10,0, =≤ XfX Dτ Proof: Schwarz inequality
  • 8. 8 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Definition of Ambiguity Function: Ambiguity Function properties (continue – 2): ( ) 1, =∫ ∫ +∞ ∞− +∞ ∞− DD dfdfX ττ2 ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, ( )DfX ,τ is the Fourier Transform of ( ) ( )τ−∗ tgtg Using Parseval’s Theorem: ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− ∗ =− DD dffXdttgtg 22 ,ττ Integrating both sides on τ we obtain: ( ) ( ) ( ) VddffXddttgtg DD ==− ∫ ∫∫ ∫ +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞− ∗ ττττ 22 , V is the volume under the Ambiguity Function. ( ) ( ) ( ) ( ) ( )∫ ∫∫ ∫ +∞ ∞− +∞ ∞− ∗ = =− +∞ ∞− +∞ ∞− ∗ =−= 2121 2 21 2 , 1 2 dtdtttJtgtgddttgtgV tt tt τ ττ ( ) 1 11 01 // // , 22 11 21 = − = ∂∂∂∂ ∂∂∂∂ = τ τ ttt ttt ttJ ( ) ( ) ( ) ( ) ( )∫ ∫∫∫∫ ∫ +∞ ∞− +∞ ∞− +∞ ∞− ∗ +∞ ∞− +∞ ∞− +∞ ∞− ∗ ==== DD dfdfXdttgdttgdtdttgtg ττ 2 1 2 2 2 1 1 2 121 2 2 2 1 ,1    Proof:
  • 9. 9 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Definition of Ambiguity Function: Ambiguity Function properties (continue – 3): ( ) ( )DD fXfX ,, ττ =−−3 ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:,Proof: ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) * 1111 1111 1111 2exp2exp 2exp2exp 2exp2exp:, 1       −= −−= −−−=−+=−− ∫ ∫ ∫∫ ∞+ ∞− ∗ ∞+ ∞− ∗ +∞ ∞− ∗ =++∞ ∞− ∗ dttfjtgtgfj dttfjtgtgfj dttfjtgtgdttfjtgtgfX DD DD D tt DD πττπ πττπ τπτπττ τ ( ) ( ) ( )DDD fXfjfX ,2exp, * ττπτ =−− ( ) ( ) ( ) ( )DDDD fXfXfjfX ,,2exp, * τττπτ ==−−
  • 10. 10 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, ( ) ( ){ } ( ) ( )∫ +∞ ∞− −== dttfjtgtgfG π2exp:F SOLO Definition of Ambiguity Function: Ambiguity Function properties (continue – 4): 4 Proof: ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− ∗ −=−= fdfjfGffGtdtfjtgtgfX DDD τππττ 2exp*2exp:, ( ) ( ){ } ( ) ( )∫ +∞ ∞− == fdtfjfGGtg πω 2exp:1- F ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫ +∞ ∞− ∗ +∞ ∞− +∞ ∞− ∗ −      −=−= tdtgfdtfjffGtdtgtfjtgfX DDD τπτπτ 2exp2exp, ( )tg -1 F F ( )fG ( ) ( ) ( )[ ]∫ +∞ ∞− −=− fdtfjfGtg τπτ 2exp ( )τ−tg -1 F F ( ) ( )τπ fjfG 2exp − ( ) ( ) ( )[ ] ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− −−=−−= fdfjffGfjfdtffjffGtg DDDD πππ 2exp2exp2exp ( ) ( ) ( ) ( )∫ +∞ ∞− −= fdfjffGfjtg DD ππ 2exp2exp ( ) ( )Dfjtg π2exp -1 F F ( )DffG − ( ) ( ) ( )∫ +∞ ∞− −= fdfjfGffG D τπ2exp* ( ) ( ) ( ) ( ) ( ) ( )[ ]∫∫ ∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− −−=      −−−= fdfjfGffGfdtdtfjtgffG DD * * 2exp2exp τππτ q.e.d.
  • 11. 11 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Definition of Ambiguity Function: ( ) ( ) ( )DDD fXfjfX −−=− ,*2exp, ττπτ Ambiguity Function properties (continue – 5): 5 ( ) ( )DD fXfX −=− ,, ττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ** ' * ''2exp''2exp''2exp'' 2exp2exp:,       −−=      −−−=       −+=+=− ∫∫ ∫∫ ∞+ ∞− ∗ ∞+ ∞− ∗ −→ ∞+ ∞− ∗ ∞+ ∞− ∗ dttfjtgtgfjdttfjtgtg dttfjtgtgdttfjtgtgfX DDD tt DDD πττπτπτ πτπττ τ Proof: or From which ( ) ( ) ( ) ( )DDDD fXfXfjfX −=−−=− ,,*2exp, 1 τττπτ    Return to Table of Content
  • 12. 12 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Definition of Ambiguity Function: Cuts Through the Ambiguity Function ( ) ( ) ( ) ( )τττ ggD RdttgtgfX =−== ∫ +∞ ∞− ∗ 0,Cut through the delay axis: where Rgg (τ) is the autocorrelation function of the signal envelope. The cut along the Ambiguity Function along the delay axis is the shape of the “range window” at zero Doppler. This is how the envelope of the Matched Filter will look as a function of time. Linear FM pulse Single pulse
  • 13. 13 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Definition of Ambiguity Function: Cuts Through the Ambiguity Function (continue – 1) Cut through the frequency axis: This is the Fourier Transform of signal envelope energy, and the cut at τ = 0 is independent of any phase or frequency modulation and is determined only by the magnitude of the complex envelope of the signal – that is by amplitude modulation. ( ) ( ) ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− ∗ === dttfjtgdttfjtgtgfX DDD ππτ 2exp2exp,0 2 ( )DfX ,0=τ( ) 2 tg F F-1 Return to Table of Content
  • 14. 14 Ambiguity Function for RADAR SignalsSOLO Ambiguity as a Measure of Range and Doppler Resolution Suppose that the transmitted signal s (t) is returned by two targets whose signals s1 (t) and s2 (t) differ only in range (delay time τ) and Doppler (frequency fD). The Resolution of the Radar is related to how it can distinguish between the two signals. A tractable criteria of resolution is the integrated square difference magnitude, denoted by |ε|2 , and defined by ( ) ( ) tfj etgts 02 : π = ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ }∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− −−+=−−=−= dttstststststsdttstststsdttsts 2121 2 2 2 12121 2 21 2 ****ε In order to obtain a difference in delay and Doppler we will define the complex signals: ( ) ( ) ( ) ( ) ( )[ ] ( )[ ] ( )[ ] ( ) ( ) ( )[ ] ( )[ ] ( )[ ]∫ ∫∫∫ ∞+ ∞− +∞ ∞− +∞ ∞− +∞ ∞− −−−−−−− −−−−−−−−−+= dttfjtfjfjtgtg dttfjtfjfjtgtgdttgdttg DD DD 221121021 221121021 222 2exp2exp2exp* 2exp2exp2exp* τπτπττπττ τπτπττπτττε Note: The real signals are ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] 2/*&2/* 222111 tstststststs +=+= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )     −= −= −+ −+ 220 110 2 22 2 11 : : τπ τπ τ τ tffj tffj D D etgts etgts - Transmitted signal - Received signals
  • 15. 15 Ambiguity Function for RADAR SignalsSOLO Ambiguity as a Measure of Range and Doppler Resolution (continue – 1) ( ) ( ) ( ) ( ) ( )[ ] ( )[ ] ( )[ ] ( ) ( ) ( )[ ] ( )[ ] ( )[ ]∫ ∫∫∫ ∞+ ∞− +∞ ∞− +∞ ∞− +∞ ∞− −−−−−−− −−−−−−−−−+= dttfjtfjfjtgtg dttfjtfjfjtgtgdttgdttg DD DD 221121021 221121021 222 2exp2exp2exp* 2exp2exp2exp* τπτπττπττ τπτπττπτττε 2121 :&: DDD fff −=∆−=∆ τττDefine We found ( ) ( ) ( ) ( ) ( )[ ] ( )[ ] ( )[ ] ( ) ( ) ( )[ ] ( )[ ] ( )[ ]∫ ∫∫∫ ∞+ ∞− +∞ ∞− +∞ ∞− +∞ ∞− −+−−−+− −+−−−−+−−+= ""2exp"2exp2exp""* ''2exp'2exp2exp'*' 212121012 212121021 222 dttfjtfjfjtgtg dttfjtfjfjtgtgdttgdttg DD DD πττπττπττ ττππττπτττε ( ) ( )[ ] ( ) ( ) ( )[ ] ( )[ ] ( ) ( ) ( )[ ]∫ ∫∫ ∞+ ∞− +∞ ∞− +∞ ∞− ∆−∆−∆+− ∆∆+∆+−−= ""2exp""*2exp ''2exp'*'2exp2 10 20 22 dttfjtgtgffj dttfjtgtgffjdttg DD DD πττπ πττπε ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:,where ( ) ( ) ( )DDD fXfjfX −−=− ,2exp, * ττπτ ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )DDDD fXffjfXffjdttgdttsts ∆−∆∆+−∆∆−∆+−−=−= ∫∫ +∞ ∞− +∞ ∞− ,2exp,2exp2 1020 22 21 2 ττπττπε
  • 16. 16 Ambiguity Function for RADAR SignalsSOLO Ambiguity as a Measure of Range and Doppler Resolution (continue – 2) We found ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )DDDD fXffjfXffjdttgdttsts ∆−∆∆+−∆∆−∆+−−=−= ∫∫ +∞ ∞− +∞ ∞− ,2exp,2exp2 1020 22 21 2 ττπττπε ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:,where ( ) ( ) ( )DDD fXfjfX −−=− ,2exp, * ττπτ ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )[ ] ( )DDDD DDD f DDD fXffjfXffjdttg fXffjfXffjffjdttgdttsts D ∆−∆∆+−∆−∆∆+−−= ∆−∆∆+−∆−∆         ∆−−∆+−−=−= ∫ ∫∫ ∞+ ∞− ∆ ∞+ ∞− ∞+ ∞− ,2exp,*2exp2 ,2exp,*2exp2exp2 1010 2 102120 22 21 2 ττπττπ ττπττπτπε  ( ) ( ) ( ) ( )[ ] ( ){ }DD fXffjdttgdttsts ∆−∆∆+−=−= ∫∫ +∞ ∞− +∞ ∞− ,2expRe22 10 22 21 2 ττπε ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ] ( )DDDDDD DDDD fXffjffjfXffjdttg fXffjfXffjdttgdttsts ∆∆−∆−∆+−∆∆−∆+−−= ∆−∆∆+−∆∆−∆+−−=−= ∫ ∫∫ ∞+ ∞− +∞ ∞− +∞ ∞− ,*2exp2exp,2exp2 ,2exp,2exp2 211020 2 1020 22 21 2 ττπτπττπ ττπττπε ( ) ( ) ( ) ( )[ ] ( ){ }DD fXffjdttgdttsts ∆∆−∆+−−=−= ∫∫ +∞ ∞− +∞ ∞− ,2expRe22 20 22 21 2 ττπε
  • 17. 17 Ambiguity Function for RADAR SignalsSOLO Ambiguity as a Measure of Range and Doppler Resolution (continue – 3) ( ) ( ) ( ) ( ) ( )[ ] ( ){ } ( ) ( ) ( )[ ] ( ){ }DD tgofEnergy DD tgofEnergy fXffjdttg fXffjdttgdttsts ∆∆−∆+−−= ∆−∆∆+−=−= ∫ ∫∫ ∞+ ∞− +∞ ∞− +∞ ∞− ,2expRe22 ,2expRe22 20 2 10 22 21 2 ττπ ττπε   2121 :&: DDD fff −=∆−=∆ τττDefine Good Resolution requires that |ε|2 be large for any delay Δτ ≠0 and Doppler ΔfD ≠0. The first term is the energies (positive) of the complex envelopes of the two signals. The second term has a minus sign, hence |ε|2 will be increased when the second term will decrease. ( )[ ] ( ){ } ( ) ( )[ ] ( ){ }( )DDDDD fXffjfXfXffj ∆∆∆+−∆∆=∆∆∆+− ,2expargcos,,2expRe 2020 ττπτττπ Good resolution is obtained when (Ambiguity Function) is minimum for non-zero target delay Δτ and Doppler ΔfD. ( )DfX ∆∆ ,τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )     −= −= −+ −+ 220 110 2 22 2 11 : : τπ τπ τ τ tffj tffj D D etgts etgts Received complex signal ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:,where ( ) ( ) ( )DDD fXfjfX −−=− ,*2exp, ττπτ
  • 18. 18 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− ∗ ==−== fdfjfGfGRdttgtgfX ggD τπτττ 2exp*:0, SOLO Ambiguity as a Measure of Range and Doppler Resolution (continue – 4) Range Resolution ( ) ( ) 2 2 0,0 0, : X dfX T D res ∫ +∞ ∞− = = ττ Assume the two signals have the same Doppler fD = 0. The range resolution is defined as: ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− ∗ −=−= fdfjfGffGtdtfjtgtgfX DDD τππττ 2exp*2exp:, Using we have ( )τggR -1 F F ( ) 2 fG ( ) ( ) ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− ∗ ====== fdfGfGRdttgtgfX ggD *0:0,0 ττ ( ) ( ) ( ) ( ) 2 2 4 2 2 0       == ∫ ∫∫ ∞+ ∞− +∞ ∞− +∞ ∞− fdfG fdfG R dR T gg gg res ττ Parseval’s Theoremand
  • 19. 19 Ambiguity Function for RADAR SignalsSOLO Ambiguity as a Measure of Range and Doppler Resolution (continue – 5) Doppler Resolution ( ) ( ) 2 2 0,0 ,0 : X fdfX F DD res ∫ +∞ ∞− = = τ Assume the two signals have the same range delay τ = 0. The Doppler resolution is defined as: ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− ∗ −=−= fdfjfGffGtdtfjtgtgfX DDD τππττ 2exp*2exp:, Using we have ( ) 2 tg -1 F F ( )DGG fR ( ) ( ) ( ) ( ) ( ) ( ) ( )0*0:0,0 ====== ∫∫ +∞ ∞− +∞ ∞− ∗ fRfdfGfGRdttgtgX GGgg τ ( ) ( ) ( ) ( ) 2 2 4 2 2 0       == ∫ ∫∫ ∞+ ∞− +∞ ∞− +∞ ∞− tdtg tdtg R fdfR F GG GG res Parseval’s Theoremand ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )DGGDGGDDD fRfRfdfGffGtdtfjtgtgfX =−=−=== ∫∫ +∞ ∞− +∞ ∞− ∗ *2exp:,0 πτ
  • 20. 20 Ambiguity Function for RADAR SignalsSOLO Ambiguity as a Measure of Range and Doppler Resolution (continue – 6) Range – Doppler Resolution ( ) ( ) ( ) ( ) 2 2 4 2 2 0       == ∫ ∫∫ ∞+ ∞− +∞ ∞− +∞ ∞− tdtg tdtg R fdfR F GG GG res ( ) ( ) ( ) ( ) 2 2 4 2 2 0       == ∫ ∫∫ ∞+ ∞− +∞ ∞− +∞ ∞− fdfG fdfG R dR T gg gg res ττ From Schwarz Inequality: ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− ≤ dtthdttfdtthtf 22 Choose ( ) ( ) ( ) ( ) ( )tg td tgd thtgttf ':& === ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− ≤ dttsdttstdttstst 22 ''we obtain
  • 21. 21 Ambiguity Function for RADAR SignalsSOLO Ambiguity as a Measure of Range and Doppler Resolution (continue – 7) Good resolution is obtained when (Ambiguity Function) is minimum for non-zero target delay τ and Doppler fD. ( )DfX ,τ A waveform has an Ideal Ambiguity Function if it has a “Thumbtack” shape: • No response unless the echo is closely matched to the Doppler for which the filter is designed. • And a very narrow peak in range, yielding good range resolution. Can’t get rid of the pedestal because of the “constant volume” property. Return to Table of Content
  • 22. 22 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Ambiguity Function Close to Origin ( ) ( ) ( ) ( ) DfD D fDD ffX f fXXfX DD 0 02 0 0222 ,,0,0, = = = = ∂ ∂ + ∂ ∂ += ττ τττ τ τ Let develop the Square of the Ambiguity Function in a Taylor series around the origin τ=0, fD=0 Since |X (0,0)|2 is the maximum of the continuous |X (τ,fD)|2 we must have ( ) ( ) 0,, 0 02 0 02 = ∂ ∂ = ∂ ∂ = = = = DD fD D fD fX f fX ττ ττ τ ( ) ( ) ( ) +       ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ + = = = = = = 2 0 02 2 2 0 022 0 02 2 2 ,,2, 2 1 DfD D DfD D fD ffX f ffX f fX DDD τττ τττ τ ττ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫∫ ∫ ∫ ∫ ∞+ ∞− ∞+ ∞− ∗ ∞+ ∞− ∞+ ∞− ∗ +∞ ∞− +∞ ∞− ∗ = −− ∂ ∂ +−− ∂ ∂ =       −− ∂ ∂ = ∂ ∂      ττ ττ τ ττ τ ττ τ τ τ gggg D RR fD dttgtgdttgtgdttgtgdttgtg dtdttgtgtgtgfX 111222 * 222111 2122110 2 ** *, also ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 00*0, 000 0 02 = ∂ ∂ =       ∂ ∂ + ∂ ∂ = ∂ ∂ =≠ +∞ ∞− +∞ ∞− ∗ ≠ = = ∫∫ τ τ τ τ τ τ gg gggg f D R Rdttg t tgdttg t tgRfX D 
  • 23. 23 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, ( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0* 2 * ==     − =− ∫∫ +∞ ∞− +∞ ∞− mnd d Sd S j dt td tsd tstj m m n n n n mm ω ω ω ωω π SOLO Ambiguity Function Close to Origin (continue – 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− ∗ = − ∂ ∂ +− ∂ ∂ = ∂ ∂ ττ τ ττ τ τ τ ggggfD RdttgtgRdttgtgfX D 2221110 2 **, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫ ∫∫ ∞+ ∞− ∞+ ∞− +∞ ∞− ∗ +∞ ∞− ∗ = ∂ ∂ − ∂ ∂ +− ∂ ∂ + ∂ ∂ − ∂ ∂ +− ∂ ∂ = ∂ ∂ τ τ τ τ ττ τ τ τ τ τ ττ τ τ τ gg gg gg ggfD R dttgtgRdttgtg R dttgtgRdttgtgfX D 222222 2 2 111112 2 10 2 2 2 ** * *, Since is a maximum for τ=0, we have( ) ( ) sgggg ERR 20*0 == ( ) ( ) 0 0*0 = ∂ =∂ = ∂ =∂ τ τ τ τ gggg RR ( ) ( ) ( ) ( ) ( ) ( )       ∂ ∂ + ∂ ∂ = ∂ ∂ ∫∫ +∞ ∞− +∞ ∞− ∗ = = dttgtgdttgtgRfX s D E gg f D 2 2 2 2 2 0 02 2 2 *0, ττ τ τ τ  n=2 m=0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )    sE ggss f s Parseval dffGffEdffGfEdGG E 2 222222 2 2 222:2222* 2 22 ∫∫∫ +∞ ∞− +∞ ∞− =+∞ ∞− +∆−=−=−= πππωωωω π πω Relationship from Parseval’s Theory
  • 24. 24 Signal Duration and BandwidthSOLO ( )tf -1 F F ( )ωFRelationships from Parseval’s Formula ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− = ωωω π dFFdttftf 2 * 12 * 1 2 1 Parseval’s Formula7 Choose ( ) ( ) ( ) ( )tstjtftf m −== 21 ( ) ( ) ,2,1,0 2 1 2 22 == ∫∫ ∞+ ∞− ∞+ ∞− nd d Sd dttst m m m ω ω ω π ( ) ( )tftj n − -1 F F ( )ω ω F d d n n and use 5a Choose ( ) ( ) ( ) n n td tsd tftf == 21 and use 5b ( )tf td d n n -1 F F ( ) ( )ωω Fj n ( ) ( ) ,2,1,0 2 1 22 2 == ∫∫ ∞+ ∞− ∞+ ∞− ndSdt td tsd m n n ωωω π Choose or the oppositec ( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0 2 * * ==      = ∫∫ ∞+ ∞− ∞+ ∞− mnd d Sd S j dt td tsd tstj m m n n n n mm ω ω ω ωω π ( ) ( ) n n td tsd tf =1 ( ) ( ) ( )tstjtf m −=2 ( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0* 2 * ==     − =− ∫∫ +∞ ∞− +∞ ∞− mnd d Sd S j dt td tsd tstj m m n n n n mm ω ω ω ωω π c1 c2
  • 25. 25 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, ( ) ( ) ( )[ ]222 0 02 2 2 22, ggsfD ffEfX D +∆−= ∂ ∂ = =τ τ τ ( ) ( ) ( ) ( ) ( )∫ ∫ ∞+ ∞− +∞ ∞− − =∆ dffG dffGff f g g 2 222 2 2 22 : π ππ SOLO Ambiguity Function Close to Origin (continue -2) We found: where: Δfg – is signal envelope bandwidth Es – is signal energy ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− === tdtgfdfGtdtsEs 222 2 1 2 2 1 : π fg – is signal envelope frequency median ( ) ( ) ( )∫ ∫ ∞+ ∞− +∞ ∞− = dffG dffGf fg 2 2 2 22 : π ππ ( ) ( ) ( ) ( )∫ ∫ ∞+ ∞− +∞ ∞− =+∆ dffG dffGf ff gg 2 222 22 2 22 π ππ
  • 26. 26 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Ambiguity Function Close to Origin (continue -3) In the same way: ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]∫ ∫ ∫ ∫ ∞+ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− ∗∗ −−=       − ∂ ∂ = ∂ ∂ 2121 2 2 2 121 21212211 2 2exp2 2exp,0 dtdtttfjtgtgttj dtdtttfjtgtgtgtg f fX f D D D D D ππ π Since |X (0,0)|2 is the maximum of the continuous |X (τ,fD)|2 we must have ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 022 2, 21 1 2 12 2 222 2 21 2 11 21 2 2 2 121 0 0 2 ≡−= −= ∂ ∂ ⇔ ∞+ ∞− ∞+ ∞− ∞+ ∞− ∞+ ∞− +∞ ∞− +∞ ∞−= = ∫ ∫∫ ∫ ∫ ∫ tt f D D dttgdttgtjdttgdttgtj dtdttgtgttjfX f D ππ πτ τ
  • 27. 27 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Ambiguity Function Close to Origin (continue -4) Return to: ( ) ( ) ( ) ( ) ( )[ ]∫ ∫ +∞ ∞− +∞ ∞− −−= ∂ ∂ 2121 2 2 2 121 2 2exp2,0 dtdtttfjtgtgttjfX f DD D ππ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )             +−−= −−= ∂ ∂ ∫∫∫ ∫∫ ∫ ∫ ∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− ∞+ ∞− ∞+ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− = = 2 2 2 2 2 2 1 2 12 2 221 2 11 2 2 2 21 2 1 2 1 2 21 2 2 2 1 2 21 2 0 0 2 2 2 22 2, dttgtdttgdttgtdttgtdttgdttgt dtdttgtgttfX f ss D EE f D D  π πτ τ Define: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ∫ ∫ ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− =+∆⇒ − =∆= dttg dttgt tt dttg dttgtt t dttg dttgt t gg g gg 2 22 22 2 22 2 2 2 :: ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) 2222222222 0 0 2 2 2 222222, gsgggggs f D D tEtttttEfX f D ∆−=+∆+−+∆−= ∂ ∂ = = ππτ τ
  • 28. 28 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Ambiguity Function Close to Origin (continue -5) In the same way: ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ]∫ ∫ ∫ ∫ ∞+ ∞− ∞+ ∞− ∗ +∞ ∞− +∞ ∞− ∗ −−−−=       −−− ∂ ∂ = ∂ ∂ 2121221121 21212211 2 2exp*2 2exp*, dtdtttfjtgtgtgtgttj dtdtttfjtgtgtgtg f fX f D D D D D πττπ πτττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ∞+ ∞− ∞+ ∞− +∞ ∞− +∞ ∞−= = ∂ ∂ −− ∂ ∂ −−= ∂∂ ∂ 212 2 21121 21221 1 121 0 0 2 2 **2 **2, dtdttg t tgtgtgttj dtdttgtgtg t tgttjfX f Df D D π πτ τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫ ∫ ∫ ∫∫ ∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞− ∂ ∂ + ∂ ∂ − ∂ ∂ + ∂ ∂ −= 22 2 2211122 2 21111 222211 1 122211 1 11 **2**2 **2**2 dttg t tgtdttgtgjdttg t tgdttgtgtj dttgtgtdttg t tgjdttgtgdttg t tgtj ππ ππ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ ∫ +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞−       ∂ ∂ − ∂ ∂ −      ∂ ∂ − ∂ ∂ += dttg t tgtg t tgdttgtgtjdttg t tgtg t tgtdttgtgj ***2***2 ππ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )       ∂ ∂       −       ∂ ∂       = ∂∂ ∂ ∫∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞−= = dttg t tgdttgtgtdttg t tgtdttgtgfX f Df D D *Im*4*Im*4,0 0 0 2 2 ππ τ τ
  • 29. 29 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Ambiguity Function Close to Origin (continue -6) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) gs fEdffGfGf dGGdGGGGdttg t tgtg t tgj 22222*22 *2****2 22 ππππ ωωωωωωωωωωωπ == =+=      ∂ ∂ − ∂ ∂ ∫ ∫∫∫ ∞+ ∞− +∞ ∞− +∞ ∞− +∞ ∞− ( ) ( ) sEdttgtg 2* =∫ +∞ ∞− ( ) ( ) ( ) ( ) ( ) ( ) gs tE dttg dttgt dttgdttgtgt 2* 2 2 2 == ∫ ∫ ∫∫ ∞+ ∞− +∞ ∞− ∞+ ∞− ∞+ ∞− ( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0 2 * * ==      = ∫∫ ∞+ ∞− ∞+ ∞− mnd d Sd S j dt td tsd tstj m m n n n n mm ω ω ω ωω π ( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0* 2 * ==     − =− ∫∫ +∞ ∞− +∞ ∞− mnd d Sd S j dt td tsd tstj m m n n n n mm ω ω ω ωω π c1 c2 Relationships from Parseval’s Theorem ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫ +∞ ∞− +∞ ∞−           −    −=      ∂ ∂ − ∂ ∂ − ω ω ω ω ω ω ωωπ d d Sd S d Sd Sjdttg t tgttg t tgtj * ***2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ggss f D D ftEdttg t tgtEfX f D 22 0 0 2 2 222*Im222,0 ππ τ τ +       ∂ ∂ = ∂∂ ∂ ∫ +∞ ∞−= = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ ∫ +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞−= =       ∂ ∂ − ∂ ∂ −      ∂ ∂ − ∂ ∂ += ∂∂ ∂ dttg t tgtg t tgdttgtgtjdttg t tgtg t tgtdttgtgjfX f Df D D ***2***2,0 0 0 2 2 ππ τ τ
  • 30. 30 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Ambiguity Function Close to Origin (continue -7) ( ) ( ) ( ) ( ) ( ) + ∂ ∂ + ∂∂ ∂ + ∂ ∂ += = = = = = = 2 0 0 2 2 2 0 0 2 2 2 0 0 2 2 2 22 , 2 1 ,, 2 1 0,0, D f D D D f D Df DD ffX f ffX f fXXfX DDD τττ τττ τ ττ τ τ ( ) ( ) ( )[ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) +∆−         +      ∂ ∂ ++∆−= ∫ +∞ ∞− 2222 22222222 22 222*Im22222, Dgs DggsssggsD ftE fftEdttg t tgtEEffEfX π τππττ ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) +∆−         +      ∂ ∂ ++∆−= ∫ ∞+ ∞− 222222 2 2 222*Im 2 2 21 0,0 , DgDggs s gg D ftfftEdttg t tgt E ff X fX πτπ π τ τ If we choose the time and frequency origins such that ( ) ( ) ( ) ( ) ( ) 0 2 22 :&0: 2 2 2 2 ==== ∫ ∫ ∫ ∫ ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− dffG dffGf f dttg dttgt t gg π ππ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) +∆−      ∂ ∂ +∆−= ∫ ∞+ ∞− = = 22222 0 0 2 2 2*Im 2 2 21 0,0 , DgD s g t f D ftfdttg t tgt E f X fX g g πτ π τ τ
  • 31. 31 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Ambiguity Function Close to Origin (continue -8) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) +∆−      ∂ ∂ +∆−= ∫ ∞+ ∞− = = 22222 0 0 2 2 2*Im 2 2 21 0,0 , DgD s g t f D ftfdttg t tgt E f X fX g g πτ π τ τ Helstrom’s Uncertainty Ellipse The curve resulting from the interception of a plane parallel to the τ, fD plane and the Normalized Ambiguity Function is an ellipse. The ellipse computed when the plane is at a height of 0.75 is referred to as Helstrom’s Uncertainty Ellipse. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4 3 2*Im 2 2 21 0,0 , 22222 0 0 2 2 =+∆−      ∂ ∂ +∆−= ∫ ∞+ ∞− = = DgD s g t f D ftfdttg t tgt E f X fX g g πτ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) 4 1 2*Im 2 2 2 22222 =∆+      ∂ ∂ −∆ ∫ +∞ ∞− DgD s g ftfdttg t tgt E f πτ π τ
  • 32. 32 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Ambiguity Function Close to Origin (continue -4) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫ ∫ +∞ ∞− +∞ ∞− +∞ ∞−       −= ∂ ∂ − ω ω ω ωωπ d d Gd GEjdttgtgdttg t tgtj s *2**2 22211 1 11 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫∫ ∫ +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞−      − = ∂ ∂ + ω ω ω ωωωωω π π d d Gd GdGG j dttgtgtdttg t tgj * 222211 1 1 * 2 **2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ ∫ +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞−     = ∂ ∂ − ωωωω π ω ω ω ωπ dGG j d d Gd Gdttg t tgdttgtgtj * 2 ***2 22 2 21111 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫ ∫ +∞ ∞− +∞ ∞− +∞ ∞−       = ∂ ∂ + ω ω ω ωωπ d d Gd GEjdttg t tgtdttgtgj s * 22 2 22111 2**2 c2 m=n=1 c2 m=0 n=1 c1 m=1 n=0 c2 m=1 n=0 c1 m=0 n=1 c1 m=n=1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫ ∫ ∞+ ∞− ∞+ ∞− ∞+ ∞−= =             −    −             −    = ∂∂ ∂ ω ω ω ω ω ω ωωωωω π ω ω ω ω ω ω ωω τ τ d d Gd G d Gd GjdGG d d Gd G d Gd GjEfX f s f D D D ** 2 1 *2,0 * * 0 0 2 2 ( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0 2 * * ==      = ∫∫ ∞+ ∞− ∞+ ∞− mnd d Sd S j dt td tsd tstj m m n n n n mm ω ω ω ωω π ( ) ( ) ( ) ( ) ( ) ( )  ,2,1,0,,2,1,0* 2 * ==     − =− ∫∫ +∞ ∞− +∞ ∞− mnd d Sd S j dt td tsd tstj m m n n n n mm ω ω ω ωω π c1 c2 Relationships from Parseval’s Theorem
  • 33. 33 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, ( ) ( ) ( )    s D E g f D dffGffX 2 22 0 0 2 2 22, ∫ +∞ ∞− = = ∆−= ∂ ∂ πτ τ τ ( ) ( ) ( ) ( )∫ ∫ ∞+ ∞− +∞ ∞− =∆ dffG dffGf fg 2 222 2 2 22 : π ππ SOLO Ambiguity Function Close to Origin (continue -1) ( ) ( ) ( ) ( ) ( ) ( ) ( )    s D E g f D D dttgtgtdttgtgtfX f 2 222 0 0 2 2 22, ∫∫ +∞ ∞− ∗ +∞ ∞− ∗ = = ∆−=−= ∂ ∂ ππτ τ We found: where: Δfg – is signal envelope bandwidth Es – is signal energy ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− === tdtgfdfGtdtsEs 222 2 1 2 2 1 : π or ( ) ( ) ( ) ( )    s D E g f D D dttgtgtfX f 2 2 0 0 2 2 2, ∫ +∞ ∞− ∗ = = ∆−= ∂ ∂ πτ τ Δtg – is signal envelope duration ( ) ( ) ( )∫ ∫ ∞+ ∞− +∞ ∞− =∆ tdtg tdtgt tg 2 22 2 :
  • 34. 34 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, SOLO Ambiguity Function Close to Origin (continue -2) ( ) ( ) ( ) ( ) ( ) ( ) ( )       ∂ ∂ =       − ∂ ∂ =       ∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂ ∫∫ +∞ ∞− ∗ +∞ ∞− ∗ = = = = dttg t tgtdttfjtgtgtjfX f fX f DfD D f D D DD ππτ τ πτ τ τ τ ττ 2Im2exp2Re,Re, 0 0 0 0 Define ( ) ( ) ( ) ( ) ( ) ( ) ( )       ∂ ∂ ∆∆ −=      ∂ ∂ ∆∆ −= ∫ ∫ ∫ ∞+ ∞− ∗ ∞+ ∞− ∗ +∞ ∞− ∗ dttg t tgt Eft dttgtg dttg t tgt ft sgggg 2 1 Im 1 :ρ Error Coupling Coefficient We obtain ( ) ( ) ( ) ( ) ggs f D D ftEdttg t tgtfX f D ∆∆−=       ∂ ∂ = ∂ ∂ ∂ ∂ ∫ +∞ ∞− ∗ = = ρππτ τ τ 222Im, 0 0
  • 35. 35 Ambiguity Function for RADAR SignalsSOLO Ambiguity Function for Single RF Pulse ( ) ( )     > ≤≤− = 2/0 2/2/cos 0 p pp SPi tt ttttA ts ω The complex envelope is ( )      > ≤≤− = 2/0 2/2/ 1 p pp pSP tt ttt ttg ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )          < < =         < < =−= ++ − + +− + − + +− ∞+ ∞− ∗ ∫ ∫ ∫ 02exp 2 1 02exp 2 1 02exp 1 02exp 1 2exp:, 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ τπ π τπ π τπ τπ πττ τ τ τ τ p p p p p p p p t t D pD t t D pD t t D p t t D p DDSP tfj tfj tfj tfj tdtfj t tdtfj t tdtfjtgtgfX            <       + −−      + <               − −−      −       =            <       −−              + <               +−−      = 0 2 2 2exp 2 2exp 0 2 2 2exp 2 2exp 2 2exp 0 2 2 2exp 2 2exp 0 2 2 2exp 2 2exp τ π τ π τ π τ π τ τ π τ π τ π τ π πτπ τ π τππ pD p D p D pD p D p D D pD p D p D pD p D p D tfj t fj t fj tfj t fj t fj fj tfj t fj t fj tfj t fj t fj
  • 36. 36 Ambiguity Function for RADAR SignalsSOLO Ambiguity Function for Single RF Pulse (continue – 1) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) p ppD ppD pD pD pD DDSP t ttf ttf tfj tf tf fjfX ≤ − − −= − = τ τπ τπ ττπ π τπ τπτ /1 /1sin /1exp sin exp, Therefore: ( ) ( ) ( )[ ] ( )      ≤ − − − = elsewere t ttf ttf t fX p ppD ppD p DSP 0 /1 /1sin /1 , τ τπ τπ τ τ ( ) ( ) ppSP ttX ≤−= τττ /10, ( ) [ ] pD pD DSP tf tf fX π πsin ,0 =
  • 37. 37 Ambiguity Function for RADAR Signals ( ) ( ) p t p t pSP DSP res t t d tX dfX T pp =         −=         −= = = ∫ ∫ +∞ ∞− 0 2 0 2 2 2 212 0,0 0, : τ ττ τ ττ ( ) ( ) ( ) ( ) p t p SP SP SP DDSP res t td t tdtg tdtg X fdfX F p 12 0,0 ,0 : 2/ 0 2 1 2 2 4 1 2 2 ==       = = = ∫ ∫ ∫∫ ∞+ ∞− +∞ ∞− +∞ ∞−     τ ( )      > ≤≤− = 2/0 2/2/ 1 p pp pSP tt ttt ttg SOLO Ambiguity Function for Single RF Pulse (continue – 2) ( ) ( ) ( )[ ] ( )      ≤ − − − = elsewere t ttf ttf t fX p ppD ppD p DSP 0 /1 /1sin /1 , τ τπ τπ τ τ ( ) ( ) ppSP ttX ≤−= τττ /10, Range Resolution ( ) 10,0 =SPX Doppler Resolution p resres t FV 22 λλ == Return to Table of Content
  • 38. 38 Ambiguity Function for RADAR Signals ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )∫∫ +∞ ∞− ∗ +∞ ∞− ∗ −−−=−= tdtfjtkjtgtkjtgtdtfjtgtgfX DSPSPDFMSPFMSPDFMSP πτπτππττ 2expexpexp2exp:, 22 SOLO Ambiguity Function for Linear FM Modulation Pulse ( )        > ≤      + = 2 0 22 cos 2 0 τ τπ ω t t tk tA ts FMSPi ( ) [ ] ( ) [ ]2 2 exp 2 0 2 exp 1 tkjtg t t t ttkj t tg SP p p p FMSP π π =        > ≤ = The signal of Single Pulse Frequency Modulated The complex envelope of Single Pulse Frequency Modulated ( )tgSP - the complex envelope of Single RF Pulse ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )τττπτπττπτ kfXkjtdtkfjtgtgkjfX DSPDSPSPDFMSP +−=+−−= ∫ +∞ ∞− ∗ ,exp2expexp, 22 ( ) ( ) ( )[ ] ( ) p ppD ppD pDSP t ttf ttf tfX ≤ − − −= τ τπ τπ ττ /1 /1sin /1,where Ambiguity Function of the Single Frequency Pulse ( ) ( ) ( ) ( )[ ] ( ) ( )      ≤ −+ −+ − = elsewere t ttkf ttkf t fX p ppD ppD p DFMSP 0 /1 /1sin /1 , τ ττπ ττπ τ τ
  • 39. 39 Ambiguity Function for RADAR SignalsSOLO Ambiguity Function for Linear FM Modulation Pulse (continue – 1) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )ττ τ ττπ ττπ τ τ kfX elsewere t ttkf ttkf t fX DSP p ppD ppD p DFMSP +=      ≤ −+ −+ − = , 0 /1 /1sin /1 ,
  • 40. 40 Ambiguity Function for RADAR SignalsSOLO Ambiguity Function for Linear FM Modulation Pulse (continue – 2) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )ττ τ ττπ ττπ τ τ kfX elsewere t ttkf ttkf t fX DSP p ppD ppD p DFMSP +=      ≤ −+ −+ − = , 0 /1 /1sin /1 , ( ) ( ) ( )0, ,, τ τττττ SP SPFMSP X kkXkX = +−=−
  • 41. 41 Ambiguity Function for RADAR SignalsSOLO Ambiguity Function for Linear FM Modulation Pulse (continue – 3) ( ) ( ) ( ) p p p p p p DFMSP t t tk t tk t fX ≤         −                 −         −== τ τ τπ τ τπ τ τ 1 1sin 10, tp τ1’st null ( ) π τ τπ =         − p p t tk 1 p tk pp nullst tkk tt p 11 42 42 '1 2 >> ≈−−=τ k tp = Δf is the total frequency deviation during the pulse. p nullst p p tk nullst tf t DrationCompressio ftk p ∆=== ∆ =≈ >> '1 4 '1 11 2 τ τ Return to Table of Content
  • 42. 42 Ambiguity Function for RADAR SignalsSOLO Ambiguity Function for a Coherent Pulse Train The envelope of each pulse is of unit energy and the coherence is maintained from pulse to pulse. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑ ∫ ∫∑ ∑∫ − = − = ∞+ ∞− +∞ ∞− − = − = +∞ ∞− −−−= −−−=−= 1 0 1 0 1 0 1 0 * 2exp* 1 2exp* 1 2exp, N n N m DRSPRSP D N n N m RSPRSPDPTPTDPT tdtfjTmtgTntg N tdtfjTmtgTntg N tdtfjtgtgfX πτ πτπττ ( ) ( ) ( ) ( )[ ] ( )∑ ∑ ∫ − = − = +∞ ∞− −= −−−= 1 0 1 0 1111 2exp*2exp 1 , 1 N n N m DRSPSPRD Tntt DPT tdtfjTnmtgtgTnfj N fX R πτπτ ( ) [ ] ( ) ( ) ( ) ( )[ ] ( ) ( )      ≤ − − − ==−∫ ∞+ ∞− elsewere tfj ttf ttf t fXtdtfjtgtg pD ppD ppD p DSPDSPSP 0 2exp /1 /1sin /1 ,2exp* 1111 ττπ τπ τπ τ τπτ ( )      > ≤≤− = 2/0 2/2/ 1 p pp pSP tt ttt ttg Envelope of Single Pulse ( ) ( )∑ − = −= 1 0 1 N n RSPPT Tntg N tg Envelope of a Pulse Train ( ) ( ) ( ){ }tfjtgts PT 02expRe π= Pulse Train Signal For a Coherent Pulse Train: where for a Single Pulse, we found: implies coherency
  • 43. 43 Ambiguity Function for RADAR SignalsSOLO Ambiguity Function for a Coherent Pulse Train (continue – 1) ( ) ( ) ( )∑ ∑ − = − = −=−= 1 0 1 0 :,2exp 1 , N n N m DRSPRDDPT mnpfTpXTnfj N fX τπτ For a Coherent Pulse Train: Construction Table for the Double Sum with p=n-m n m 0 1 2 … N-1 0 0 1 2 … N-1 1 -1 0 1 … N-2 2 -2 -1 0 … N-3 … … … … … … N-1 -N-1 -N-2 -N-3 … 0 p=n-m ( )      BlockTriangularRight pmn N p pN m DiagonalBlockTriangularLow pnm Np pN n N n N m += − = −− = −= −−= −− = − = − = ∑ ∑∑ ∑∑ ∑ += 1 1 1 0 & 0 1 1 0 1 0 1 0 ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑ ∑ ∑ − = −− = −−= −− = −+ −= 1 1 1 1 0 1 1 0 2exp,2exp 1 2exp, 1 , N p pN m RDDRSPRD Np pN n RDDRSPDPT TmfjfTpXTpfj N TnfjfTpX N fX πτπ πττ
  • 44. 44 Ambiguity Function for RADAR SignalsSOLO Ambiguity Function for a Coherent Pulse Train (continue – 2) For a Coherent Pulse Train: ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑ ∑ ∑ − = −− = −−= −− = −+ −= 1 1 1 0 0 1 1 0 2exp,2exp 1 2exp, 1 , N p pN m RDDRSPRD Np pN n RDDRSPDPT TmfjfTpXTpfj N TnfjfTpX N fX πτπ πττ To compute the sums of the exponents, we use: ( ) ( ) ( ) 2/12/1 2/2/ 2/1 2/1 0 1 1 yy yy y y y y y pNpNpNpNpN n n − − = − − = − −−−−−−− = ∑ take: ( )RD Tfjy π2exp= ( ) ( )[ ] ( )[ ] ( )RD RD RD pN n RD Tf TpNf TpNfjTnfj π π ππ sin sin 1exp2exp 1 0 − −−=∑ −− = Using this result we obtain: ( ) ( )[ ] ( ) ( )[ ] ( )( ) ∑ − −−= − −+−= 1 1 sin sin ,1exp 1 , N Np RD RD DRSPRDDPT Tf TpNf fTpXTpNfj N fX π π τπτ
  • 45. 45 Ambiguity Function for RADAR SignalsSOLO Ambiguity Function for a Coherent Pulse Train (continue – 3) For a Coherent Pulse Train: ( ) ( )[ ] ( ) ( )[ ] ( )( ) ∑ − −−= − −+−= 1 1 sin sin ,1exp 1 , N Np RD RD DRSPRDDPT Tf TpNf fTpXTpNfj N fX π π τπτ where The expression |XPT (τ,fD)| can be simplified if the separation between pulses is larger than the duration of individual pulses. ( ) ( ) ( )[ ] ( )( ) ( ) ( )[ ] ( ) ( )[ ] ( )( ) 2/ sin sin /1 /1sin /1 1 sin sin , 1 , 1 1 1 1 Rp N Np RD RD pRpD pRpD pR N Np RD RD DRSPDPT Tt Tf TpNf tTptf tTptf tTp N Tf TpNf fTpX N fX < − −− −− −−= − −= ∑ ∑ − −−= − −−= π π τπ τπ τ π π ττ ( ) ( ) ( )[ ] ( ) ( )      ≤ − − − = elsewere tfj ttf ttf t fX pD ppD ppD p DSP 0 2exp /1 /1sin /1 , ττπ τπ τπ τ τ
  • 46. 46 Ambiguity Function for RADAR SignalsSOLO Ambiguity Function for a Coherent Pulse Train (continue – 4) The Ambiguity Function for a Coherent Pulse Train: Setting fD = 0 we obtain: ( ) ( ) ( )[ ] ( ) ( )[ ] ( )( ) 2/ sin sin /1 /1sin /1 1 , 1 1 Rp N Np RD RD pRpD pRpD pRDPT Tt Tf TpNf tTptf tTptf tTp N fX < − −− −− −−= ∑ − −−= π π τπ τπ ττ ( ) ( )[ ] ( )( ) ( ) ( )pN Tf Tf TpNf TpNf t Tp N fX DD fRD RD N Np fRD RD p R DPT − − −         − −= = − −−= = ∑      1 0 1 1 1 0 sin sin 1 1 , π π π πτ τ ( ) ( ) pR N Np p R DPT tTp N p t Tp fX <−        −         − −== ∑ − −−= τ τ τ 110, 1 1 or
  • 47. 47 Ambiguity Function for RADAR SignalsSOLO Ambiguity Function for a Coherent Pulse Train (continue – 5) The Ambiguity Function for a Coherent Pulse Train: ( ) ( ) ( )[ ] ( ) ( )[ ] ( )( ) 2/ sin sin /1 /1sin /1 1 , 1 1 Rp N Np RD RD pRpD pRpD pR DPT Tt Tf TpNf tTptf tTptf tTp N fX < − −− −− −−= ∑ − −−= π π τπ τπ τ τ
  • 48. 48 Pulse bi-phase Barker coded of length 7 Digital Correlation At the Receiver the coded pulse enters a 7 cells delay lane (from left to right), a bin at each clock. The signals in the cells are multiplied by ck* and summed. clock -1 = -11 +1 -1 = 02 -1 +1 -1 = -13 -1 -1 +1-( -1) = 04 +1 -1 -1 –(+1)-( -1) = -15 +1 +1 -1-(-1) –(+1)-1= 06 +1+1 +1-( -1)-(-1) +1-(-1)= 77 +1+1 –(+1)-( -1) -1-( +1)= 08 +1-(+1) –(+1) -1-( -1)= -19 -(+1)-(+1) +1 -( -1)= 010 -(+1)+1-(+1) = -111 +1-(+1) = 012 -(+1) = -1 13 0 = 014 SOLO Pulse Compression Techniques -1-1 -1+1+1+1+1 { }* kc
  • 51. 51
  • 52. 52 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 53. 53 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 54. 54 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 55. 55 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 56. 56 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 57. 57 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 58. 58 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 59. 59 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 60. 60 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 61. 61 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 62. 62 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 63. 63 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 64. 64 SOLO Rihaczek, A.W., “Principles of High Resolution Radar”, McGraw Hill, 1969
  • 65. 65 Ambiguity function for a square pulse Ambiguity function for an LFM pulse Return to Table of Content
  • 66. 66 Matched Filters for RADAR SignalsSOLO References J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 C.E. Cook, M. Bernfeld, “RADAR Signals An Introduction to Theory and Application”, Artech House, 1993 D. C. Schleher, “MTI and Pulsed Doppler RADAR”, Artech House, 1991, Appendix B J. Minkoff, “Signals, Noise, and Active Sensors”, John Wiley & Sons, 1992, Ch.5 M.A. Richards, ECE 6272, “Fundamentals of Signal Processing”, Georgia Institute of Technology, Spring 2000, Appendix A, Optimum and Sub-optimum Filters W.B. Davenport,Jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246 N. Levanon, “Radar Principles”, John Wiley & Sons, 1988, Ch.5 & 6 Peeble, P.Z. Jr, “Radar Principles”, John Wiley & Sons, 1998 N. Levanon, “Waveform Analysis and Design”, 2008 IEEE Radar Conference, Tutorial, MA2, May 26 – 30, 2008, Rome, Italy Hermelin, S., “Pulse Compression Techniques”, Power Point Presentation Return to Table of Content
  • 67. January 19, 2015 67 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 –2013 Stanford University 1983 – 1986 PhD AA Vector Analysis
  • 68. 68 Fourier Transform ( ) ( ){ } ( ) ( )∫ +∞ ∞− −== dttjtftfF ωω exp:F SOLO Jean Baptiste Joseph Fourier 1768-1830 F (ω) is known as Fourier Integral or Fourier Transform and is in general complex ( ) ( ) ( ) ( ) ( )[ ]ωφωωωω jAFjFF expImRe =+= Using the identities ( ) ( )t d tj δ π ω ω =∫ +∞ ∞− 2 exp we can find the Inverse Fourier Transform ( ) ( ){ }ωFtf -1 F= ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )[ ]00 2 1 2 exp 2 expexp 2 exp ++−=−=−=     −= ∫∫ ∫ ∫ ∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− +∞ ∞− tftfdtfd d tjf d tjdjf d tjF ττδττ π ω τωτ π ω ωττωτ π ω ωω ( ) ( ){ } ( ) ( )∫ +∞ ∞− == π ω ωωω 2 exp: d tjFFtf -1 F ( ) ( ) ( ) ( )[ ]00 2 1 ++−=−∫ +∞ ∞− tftfdtf ττδτ If f (t) is continuous at t, i.e. f (t-0) = f (t+0) This is true if (sufficient not necessary) f (t) and f ’ (t) are piecewise continue in every finite interval1 2 and converge, i.e. f (t) is absolute integrable in (-∞,∞)( )∫ +∞ ∞− dttf
  • 69. 69 ( )atf − -1 F F ( ) ( )ωω ajF −exp Fourier TransformSOLO ( )tf -1 F F ( )ωFProperties of Fourier Transform (Summary) Linearity1 ( ) ( ){ } ( ) ( )[ ] ( ) ( ) ( )ωαωαωαααα 221122112211 exp: FFdttjtftftftf +=−+=+ ∫ +∞ ∞− F Symmetry2 ( )tF -1 F F ( )ωπ −f2 Conjugate Functions3 ( )tf * -1 F F ( )ω−* F Scaling4 ( )taf -1 F F       a F a ω1 Derivatives5 ( ) ( )tftj n − -1 F F ( )ω ω F d d n n ( )tf td d n n -1 F F ( ) ( )ωω Fj n Convolution6 ( ) ( )tftf 21 -1 F F ( ) ( )ωω 21 * FF( ) ( ) ( ) ( )∫ +∞ ∞− −= τττ dtfftftf 2121 :* -1 F F ( ) ( )ωω 21 FF ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− = ωωω dFFdttftf 2 * 12 * 1 Parseval’s Formula7 Shifting: for any a real8 ( ) ( )tajtf exp -1 F F ( )aF −ω Modulation9 ( ) ttf 0 cos ω -1 F F ( ) ( )[ ]00 2 1 ωωωω −++ FF ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− −=−= ωωω π ωωω π dFFdFFdttftf 212121 2 1 2 1
  • 70. 70 Fourier Transform ( )tf ( ) ( )∑ ∞ = −= 0n T Tntt δδ ( ) ( ) ( ) ( ) ( )∑ ∞ = −== 0 * n T TntTnfttftf δδ ( )tf * ( )tf T t ( ) ( ){ } ( ) σσ <== +∫ ∞ − f ts dtetftfsF 0 L SOLO Sampling and z-Transform ( ) ( ){ } ( ) σδδ < − ==       −== − ∞ = − ∞ = ∑∑ 0 1 1 00 sT n sTn n T e eTnttsS LL ( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ } ( ) ( )       << − = =       − == − ∞+ ∞− −− ∞ = − ∞ = +∫ ∑∑ 0 00 ** 1 1 2 1 σσσξξ π δ δ ξ σ σ ξ f j j tsT n sTn n d e F j ttf eTnfTntTnf tfsF L L L ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )              − = − − = − = ∑∫ ∑∫ ∑ −− − −− Γ −− −− Γ −− ∞ = − ts e ofPoles tsts F ofPoles tsts n nsT e F Resd e F j e F Resd e F j eTnf sF ξ ξξ ξ ξξ ξ ξ ξ π ξ ξ ξ π 1 1 0 * 112 1 112 1 2 1 Poles of ( ) Ts e ξ−− −1 1 Poles of ( )ξF planes T nsn π ξ 2 += ωj ωσ j+ 0=s Laplace Transforms The signal f (t) is sampled at a time period T. 1Γ 2 Γ ∞→R ∞→R Poles of ( ) Ts e ξ−− −1 1 Poles of ( )ξF planeξ T nsn π ξ 2 += ωj ωσ j+ 0=s
  • 71. 71 Fourier Transform ( )tf ( ) ( )∑ ∞ = −= 0n T Tntt δδ ( ) ( ) ( ) ( ) ( )∑ ∞ = −== 0 * n T TntTnfttftf δδ ( )tf * ( )tf T t SOLO Sampling and z-Transform (continue – 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑∑ ∑∑ ∞+ −∞= ∞+ −∞= −−→ ∞+ −∞= −− +→ += − −−       += −       + −=       +             − −− −= − −= −− −− nn Tse n ts T n js T n js e ofPoles ts T n jsF TeT T n jsF T n jsF e T n js e F RessF ts n ts π π π π ξ ξ ξ ξπ ξ π ξ ξ ξ ξ 21 2 lim 2 1 2 lim 1 1 2 2 1 1 * Poles of ( )ξF ωj σ 0=s T π2 T π2 T π2 Poles of ( )ξ* F plane js ωσ += The signal f (t) is sampled at a time period T. The poles of are given by( )ts e ξ−− −1 1 ( ) ( ) T n jsnjTsee n njTs π ξπξπξ 2 21 2 +=⇒=−−⇒==−− ( ) ∑ +∞ −∞=       += n T n jsF T sF π21*
  • 72. 72 Fourier Transform ( )tf ( ) ( )∑ ∞ = −= 0n T Tntt δδ ( ) ( ) ( ) ( ) ( )∑ ∞ = −== 0 * n T TntTnfttftf δδ ( )tf * ( )tf T t SOLO Sampling and z-Transform (continue – 2) 0=z planez Poles of ( )zF C The signal f (t) is sampled at a time period T. The z-Transform is defined as: ( ){ } ( ) ( ) ( ) ( ) ( ) ( )         − −=== ∑ ∑ = − → ∞ = − = iF iF i iF Ts FofPoles T F n n ze ze F zTnf zFsFtf ξξ ξ ξ ξξ ξξξ 1 0 * 1 lim:Z ( ) ( )      < >≥ = ∫ − 00 0 2 1 1 n RzndzzzF jTnf fC C n π
  • 73. 73 Fourier TransformSOLO Sampling and z-Transform (continue – 3) ( ) ( ) ( )∑∑ ∞ = − +∞ −∞= =      += 0 * 21 n nsT n eTnf T n jsF T sF πWe found The δ (t) function we have: ( ) 1=∫ +∞ ∞− dttδ ( ) ( ) ( )τδτ fdtttf =−∫ +∞ ∞− The following series is a periodic function: ( ) ( )∑ −= n Tnttd δ: therefore it can be developed in a Fourier series: ( ) ( ) ∑∑       −=−= n n n T tn jCTnttd πδ 2exp: where: ( ) T dt T tn jt T C T T n 1 2exp 1 2/ 2/ =      = ∫ + − πδ Therefore we obtain the following identity: ( )∑∑ −=      − nn TntT T tn j δπ2exp Second Way
  • 74. 74 Fourier Transform ( ) ( ){ } ( ) ( )∫ +∞ ∞− −== dttjtftfF νπνπ 2exp:2 F ( ) ( ) ( )∑∑ ∞ = − +∞ −∞= =      += 0 * 21 n nsT n eTnf T n jsF T sF π ( ) ( ){ } ( ) ( )∫ +∞ ∞− == ννπνπνπ dtjFFtf 2exp2:2-1 F SOLO Sampling and z-Transform (continue – 4) We found Using the definition of the Fourier Transform and it’s inverse: we obtain ( ) ( ) ( )∫ +∞ ∞− = ννπνπ dTnjFTnf 2exp2 ( ) ( ) ( ) ( ) ( ) ( )∑∫∑ ∞ = +∞ ∞− ∞ = −=−= 0 111 0 * exp2exp2exp nn n sTndTnjFsTTnfsF ννπνπ ( ) ( ) ( )[ ]∫ ∑ +∞ ∞− +∞ −∞= −−== 111 * 2exp22 νννπνπνπ dTnjFjsF n ( ) ( ) ∑∫ ∑ +∞ −∞= +∞ ∞− +∞ −∞=             −=      −−== nn T n F T d T n T FjsF νπνννδνπνπ 2 11 22 111 * We recovered (with –n instead of n) ( ) ∑ +∞ −∞=       += n T n jsF T sF π21* Second Way (continue) Making use of the identity: with 1/T instead of T and ν - ν 1 instead of t we obtain: ( )[ ] ∑∑       −−=−− nn T n T Tnj 11 1 2exp ννδννπ ( )∑∑ −=      − nn TntT T tn j δπ2exp
  • 75. 75 Fourier TransformSOLO Henry Nyquist 1889 - 1976 http://en.wikipedia.org/wiki/Harry_Nyquist Nyquist-Shannon Sampling Theorem Claude Elwood Shannon 1916 – 2001 http://en.wikipedia.org/wiki/Claude_E._Shannon The sampling theorem was implied by the work of Harry Nyquist in 1928 ("Certain topics in telegraph transmission theory"), in which he showed that up to 2B independent pulse samples could be sent through a system of bandwidth B; but he did not explicitly consider the problem of sampling and reconstruction of continuous signals. About the same time, Karl Küpfmüller showed a similar result, and discussed the sinc-function impulse response of a band-limiting filter, via its integral, the step response Integralsinus; this band- limiting and reconstruction filter that is so central to the sampling theorem is sometimes referred to as a Küpfmüller filter (but seldom so in English). The sampling theorem, essentially a dual of Nyquist's result, was proved by Claude E. Shannon in 1949 ("Communication in the presence of noise"). V. A. Kotelnikov published similar results in 1933 ("On the transmission capacity of the 'ether' and of cables in electrical communications", translation from the Russian), as did the mathematician E. T. Whittaker in 1915 ("Expansions of the Interpolation-Theory", "Theorie der Kardinalfunktionen"), J. M. Whittaker in 1935 ("Interpolatory function theory"), and Gabor in 1946 ("Theory of communication"). http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
  • 76. 76 SignalsSOLO Signal Duration and Bandwidth then ( ) ( )∫ +∞ ∞− − = tdetsfS tfi π2 ( ) ( )∫ +∞ ∞− = fdefSts tfi π2 t t∆2 t ( ) 2 ts f f f∆2 ( ) 2 fS ( ) ( ) ( ) 2/1 2 22 :               − =∆ ∫ ∫ ∞+ ∞− +∞ ∞− tdts tdtstt t ( ) ( )∫ ∫ ∞+ ∞− +∞ ∞− = tdts tdtst t 2 2 : Signal Duration Signal Median ( ) ( ) ( ) 2/1 2 22 2 4 :               − =∆ ∫ ∫ ∞+ ∞− +∞ ∞− fdfS fdfSff f π ( ) ( )∫ ∫ ∞+ ∞− +∞ ∞− = fdfS fdfSf f 2 2 2 : π Signal Bandwidth Frequency Median Fourier
  • 77. 77 Signals ( ) ( )∫ +∞ ∞− = fdefSts tfi π2 SOLO Signal Duration and Bandwidth (continue – 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫ ∫ ∫∫ ∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− − ∞+ ∞− ∞+ ∞− − ∞+ ∞− ∞+ ∞− ∞+ ∞− =        =         =        = dffSfSdfdesfS dfdefSsdfdefSsdss tfi tfitfi ττ τττττττ π ππ 2 22 ( ) ( )∫ +∞ ∞− = fdefSts tfi π2 ( ) ( ) ( )∫ +∞ ∞− == fdefSfi td tsd ts tfi π π 2 2' ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫ ∫ ∫∫ ∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− − +∞ ∞− +∞ ∞− − +∞ ∞− +∞ ∞− − +∞ ∞− =        −=         −=        −= dffSfSfdfdesfSfi dfdesfSfidfdefSfsidss tfi tfitfi 222 22 2'2 '2'2'' πττπ ττπττπτττ π ππ ( ) ( )∫∫ +∞ ∞− +∞ ∞− = dffSds 22 ττ Parseval Theorem From From ( ) ( )∫∫ +∞ ∞− +∞ ∞− = dffSfdtts 2222 4' π
  • 78. 78 Signals ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− − ∞+ ∞− +∞ ∞− +∞ ∞− − ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ===== dffS fd fd fSd fS i dffS fdtdetstfS dffS tdfdefStst dffS tdtstst tdts tdtst t fifi 22 2 2 2 22 2 2 : π ππ SOLO Signal Duration and Bandwidth ( ) ( )∫ +∞ ∞− − = tdetsfS tfi π2 ( ) ( )∫ +∞ ∞− = fdefSts tfi π2 Fourier ( ) ( )∫ +∞ ∞− − −= tdetsti fd fSd tfi π π 2 2 ( ) ( )∫ +∞ ∞− = fdefSfi td tsd tfi π π 2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− − =         ==== tdts td td tsd tsi tdts tdfdefSfts tdts fdtdetsfSf tdts fdfSfSf fdfS fdfSf f fifi 22 2 2 2 22 2 2222 : ππ ππππ
  • 79. 79 Signals ( ) ( ) ( ) ( ) ( )∫∫∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞− =≤         dffSfdttstdttsdttstdtts 222222 2 2 4' 4 1 π ( ) ( )∫∫ +∞ ∞− +∞ ∞− = dffSdts 22 τ SOLO Signal Duration and Bandwidth (continue – 1) 0&0 == ftChange time and frequency scale to get From Schwarz Inequality: ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− ≤ dttgdttfdttgtf 22 Choose ( ) ( ) ( ) ( ) ( )ts td tsd tgtsttf ':& === ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− ≤ dttsdttstdttstst 22 ''we obtain ( ) ( )∫ +∞ ∞− dttstst 'Integrate by parts ( )    = += →    = = sv dtstsdu dtsdv stu ' ' ( ) ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− −−= dttststdttsstdttstst '' 2 0 2  ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− −= dttsdttstst 2 2 1 ' ( ) ( )∫∫ +∞ ∞− +∞ ∞− = dffSfdtts 2222 4' π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− =≤ dffS dffSf dtts dttst dtts dffSf dtts dttst 2 222 2 2 2 222 2 2 44 4 1 ππ assume ( ) 0lim = →∞ tst t
  • 80. 80 SignalsSOLO Signal Duration and Bandwidth (continue – 2) ( ) ( ) ( ) ( ) ( ) ( )      22 2 222 2 2 4 4 1 ft dffS dffSf dtts dttst ∆ ∞+ ∞− +∞ ∞− ∆ ∞+ ∞− +∞ ∞−                             ≤ ∫ ∫ ∫ ∫ π Finally we obtain ( ) ( )ft ∆∆≤ 2 1 0&0 == ftChange time and frequency scale to get Since Schwarz Inequality: becomes an equality if and only if g (t) = k f (t), then for: ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− ≤ dttgdttfdttgtf 22 ( ) ( ) ( ) ( )tftsteAt td sd tgeAts tt ααα αα 222: 22 −=−=−==⇒= −− we have ( ) ( )ft ∆∆= 2 1

Editor's Notes

  1. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Richards, M.E., ECE 6272, “Fundamentals of Radar Signal Processing”, Spring 2000, Georgiatech http://en.wikipedia.org/wiki/Ambiguity_function
  2. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Richards, M.E., ECE 6272, “Fundamentals of Radar Signal Processing”, Spring 2000, Georgiatech
  3. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Richards, M.E., ECE 6272, “Fundamentals of Radar Signal Processing”, Spring 2000, Georgiatech
  4. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Richards, M.E., ECE 6272, “Fundamentals of Radar Signal Processing”, Spring 2000, Georgiatech
  5. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Richards, M.E., ECE 6272, “Fundamentals of Radar Signal Processing”, Spring 2000, Georgiatech
  6. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Richards, M.E., ECE 6272, “Fundamentals of Radar Signal Processing”, Spring 2000, Georgiatech
  7. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Richards, M.E., ECE 6272, “Fundamentals of Radar Signal Processing”, Spring 2000, Georgiatech
  8. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Richards, M.E., ECE 6272, “Fundamentals of Radar Signal Processing”, Spring 2000, Georgiatech
  9. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Richards, M.E., ECE 6272, “Fundamentals of Radar Signal Processing”, Spring 2000, Georgiatech
  10. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  11. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  12. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  13. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  14. Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, “Radar Resolution”, pp.355 - 375
  15. Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, “Radar Resolution”, pp.355 - 375
  16. Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, “Radar Resolution”, pp.355 - 375
  17. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  18. Cook, C.E., Bernfeld, M., “Radar Signals – An Introduction to Theory and Application”, Artech House, 1993, pp.80-83
  19. Cook, C.E., Bernfeld, M., “Radar Signals – An Introduction to Theory and Application”, Artech House, 1993, pp.80-83
  20. Cook, C.E., Bernfeld, M., “Radar Signals – An Introduction to Theory and Application”, Artech House, 1993, pp.80-83
  21. Cook, C.E., Bernfeld, M., “Radar Signals – An Introduction to Theory and Application”, Artech House, 1993, pp.80-83
  22. Cook, C.E., Bernfeld, M., “Radar Signals – An Introduction to Theory and Application”, Artech House, 1993, pp.80-83
  23. Cook, C.E., Bernfeld, M., “Radar Signals – An Introduction to Theory and Application”, Artech House, 1993, pp.80-83
  24. Cook, C.E., Bernfeld, M., “Radar Signals – An Introduction to Theory and Application”, Artech House, 1993, pp.80-83
  25. Cook, C.E., Bernfeld, M., “Radar Signals – An Introduction to Theory and Application”, Artech House, 1993, pp.80-83
  26. Cook, C.E., Bernfeld, M., “Radar Signals – An Introduction to Theory and Application”, Artech House, 1993, pp.80-83 Brookner, E., Ed., “Radar Technology”, Artech House, 1982, Ch.7, Sinsky,”Waveform Selection and Processing”
  27. Cook, C.E., Bernfeld, M., “Radar Signals – An Introduction to Theory and Application”, Artech House, 1993, pp.80-83
  28. Cook, C.E., Bernfeld, M., “Radar Signals – An Introduction to Theory and Application”, Artech House, 1993, pp.80-83
  29. Cook, C.E., Bernfeld, M., “Radar Signals – An Introduction to Theory and Application”, Artech House, 1993, pp.80-83
  30. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.129-132 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  31. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.129-132 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  32. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.129-132 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  33. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.132-136 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  34. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.132-136 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  35. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.132-136 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  36. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.132-136 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  37. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.132-136 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  38. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.132-136 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  39. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.132-136 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  40. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.132-136 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  41. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.132-136 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  42. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.132-136 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 8, Radar Resolution, pp.355 - 375
  43. Levanon, N., “Waveform Analysis and Design”, 2008 IEEE Radar Conference, May 26 – 30, Rome, Italy
  44. http://en.wikipedia.org/wiki/Radar_ambiguity_function
  45. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75 Ralph Deutsch, “System Analysis Techniques”, Prentice-Hall, Inc., 1969, § 4.7, “Effective Bandwidth”, pp.126-138 Athanasios Papoulis, “signal Analysis”, McGraw-Hill, 1977, § 8-2, Uncertainty Principle and Sophisticated Signals, pp.273-278
  46. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75
  47. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75 Ralph Deutsch, “System Analysis Techniques”, Prentice-Hall, Inc., 1969, § 4.7, “Effective Bandwidth”, pp.126-138
  48. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75
  49. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75