SlideShare a Scribd company logo
Doctorate in Agricultural Sciences
Facultad de Agronomía - Universidad de la República
Collaborating Institutions: Cornell University – CIAT - FLAR
GWAS of Resistance to Stem and Sheath
Diseases of Uruguayan Advanced Rice
Breeding Germplasm
Juan Rosas
Advisors: Jean-Luc Jannink – Lucía Gutierrez
Special Comittee: Marcos Malosetti (Wageningen University)
Álvaro Roel (INIA)
Funding: MBBISP, INIA (Rice Program, Rice GWAS
Overview
1. Timeline
2. Background & Review Why?
3. Objectives What?
4. Materials & Methods How?
5. Preliminary Results Ouch! Wow!
6. Future work
7. Schedule When?
Doctorate Program Timeline
2012 2013 2014 2015 2016
Cornell U.
1st. Anual
Committee
Meeting
CIAT CU/UW
Field pheno
typing
Greenhouse phenotyping (ROS & SCL)
GH ph.
(R.Solani)
MBBISP Scholarship
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Official start
Oct 2012
Expected
completion
Thesis Project
Defense
Sep 2013
2nd Anual
Committee
Meeting
Paper I Paper II
Paper III
Paper IV
Year 1 Year 2 Year 3 Year 4 Year 5
Training in Statistics
Rice facts
Why rice matters to
Uruguay?
– Rice is the 3rd top
Uruguayan export.
– It accounts for 7% of
country’s total income
Source: www.uruguayxxi.gub.uy
0
200
400
600
800
1000
1200
1400
1600
2009 2010 2011 2012
USDx106
Soybeans
Meat
Rice
Wheat
Uruguay facts
Why Uruguay matters to rice?
Uruguay is the 7th major world rice exporter
Source: FAOSTAT
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
tx106
Top Ten World Rice Exporters
Uruguay facts
Why Uruguay matters to rice?
Uruguayan rice
yields are among
the highest of the
world
Source: http://ricestat.irri.org
(Alphabetic order)
CountryAverageYieldin2010(t/ha)
Rice’s biggest adversaries
What are the major constraints to rice production worldwide?
Abiotic:
 Water scarcity, poor soil conditions
 Extreme temperatures
Biotic (fungal diseases):
1. Blast (Pyricularia oryzae)
2. Sheath and stem diseases
Worldwide: Uruguay & other temperate areas:
Rhizoctonia solani Sclerotium oryzae
Rhizoctonia oryzae-sativae
Stem Rot
Causal agent
Sclerotium oryzae (A. Cattaneo, Italy 1876)
Geographical distribution:
Irrigated rice growing areas worldwide
Stem Rot
• The fungus forms sclerotia
• Sclerotia can survive 1-2
years in soil surface or water,
but prefers rice stubble.
Stem Rot
• Flooding help floating sclerotia reach the stems
Early flooding = early infection = more severity
• Stem surface promotes sclerotia germination
• During the first day of contact, mycelium start
developing
• Appresoria penetrates host tissue and hyphae
invades it
Stem Rot
• First symptoms at tillering
• Blackish lesions.
Stem Rot
g)
• Stresses (strong wind, herbicides,
shadowing) promotes diseases
progression
• The fungus invades outer sheaths
and progressively penetrates the
stem.
• High plant stand promotes disease
Stem Rot
Stem Rot
• Stem rotting prevents
nutrient translocation
• Bad starch formation
• Chalky and brittle grains
• Bad milling quality
Stem Rot
• Advanced rotting weaken
stems and promotes lodging
• Not easy to harvest!
• The fungus forms new
sclerotia
• Sclerotia can survive 1-2
years in soil surface or water,
but prefers rice stubble.
Aggregated Sheath Spot
Causal agent
• Rhizoctonia oryzae-sativae (Mordue
1974).
• Geographical distribution:
Irrigated rice growing areas worldwide,
most relevant in sub-tropical and
temperate areas.
Aggregated Sheath Spot
• Very similar cycle to that of Stem rot
• First days of infection may be
asymptomatic
Aggregated Sheath Spot
• Oval lesions with green or gray
centers surrounded by a brown
margin
Aggregated Sheath Spot
• Disease progress upward
the leaf sheath
• Lesions aggregate
Aggregated Sheath Spot
• Reaching panicle at booting
stage can cause severe sterility
Aggregated Sheath Spot
• Rhizoctonia oryzae-sativae also
produces sclerotia
• Sclerotia can survive in soil surface or
water, but prefers rice stubble.
Rice’s adversaries strike again
Major constraints to rice production
Abiotic:
 Water scarcity
 Poor soil conditions
 Extreme temperatures
Biotic (fungal diseases):
1. Blast (Pyricularia oryzae)
2. Sheath and stem diseases
Worldwide: Uruguay & other temperate areas:
Rhizoctonia solani Sclerotium oryzae
Rhizoctonia oryzae-sativae
The Uruguayan Rice Defensive Line
How do we face to these constraints to get those high yields?
Abiotic:
 Water scarcity
 Poor soil conditions
 Extreme temperatures
Biotic (fungal diseases):
1. Blast (Pyricularia oryzae)
2. Sheath and stem diseases
Worldwide: Uruguay & other temperate areas:
Rhizoctonia solani Sclerotium oryzae
Rhizoctonia oryzae-sativae
New high-yield cold
tolerant varieties
New molecular markers
for cold tolerance
Resistance genes in high-
yielding advanced lines
Extended use of
optimum
management
practices
100% Irrigated
A Hole in the Defensive Line
Top Uruguayan varieties are susceptible to St & Sh diseases
Source: Avila 2000 & 2001.
Sterility, dead sheaths and
lodging caused by Aggregated
Sheath Spot in INIA Tacuarí
(grown in 15% of the area)
Severe lodging caused by
Stem Rot in El Paso 144
(grown in 50% of the area)
Patching the Hole with Fungicide
– Varietal susceptibility = Dependence on fungicide
– Dependence on fungicide = higher input costs
= trace levels in grain and environment
– Trace levels = less top markets, lower price, environmental impact
Dependence on fungicide = less economic and environmental sustainability
Genetic resistance to
St&Sh diseases is
environmentally and economically
the best option.
Genetics of the resistance to StR
• Quantitatively inherited (Ferreira & Webster 1975)
• RILs with O. rufipogon introgressions (Ni et al 2001):
– QTL in ch. 2, AFLP marker TAA/GTA167 45% phen. var.
– QTL in ch. 3, RM232 - RM251 40% phen. var.
Genetics of the resistance to AShS
•Unknown but most likely quantitatively inherited as for to other
Rhizoctonias.
•QTL reported for resistance to R. solani (Srinivasachary et al.
2011):
–16 consistent QTL (at least in 2 independent reports)
• 7 QTL for escape mechanism (morphology or cycle, often
undesirable traits)
• 9 QTL hypothetically physiologic resistance mechanisms
Importance of phenotyping to detect relevant QTL.
Quantitative Trait Loci Discovery
GWAS
•Uses pre-existent populations
•Simultaneously consider all allele diversity
•Exploits multiple recombination events
•“ready-to-use” SNP into the breeding
germplasm
Traditional bi-parental QTL studies
•Population generation is time and
resource consuming
•Limited # and significance of
detectable QTL (low allelic diversity)
•Low mapping precision (few
recombinations)
GWAS
SNP 1
Alelles: 0 or 1
Genotype Phenotype
0 6 9 1 7 5
Disease scores
Do not reject identity
between phenotypic means,
p-value >>0.001
-log10(p-value) << 3
Phenotype
Genotype0 1
No association (negative)
-log10(p-value)
SNP1
Loci or position
GWAS
SNP 2
Alelles: 0 or 1
Genotype Phenotype
0 6 9 1 7 5
Disease scores
Phenotype
Genotype0 1
Reject identity between
phenotypic means,
p-value <0.001
-log10(p-value) > 3
-log10(p-value)
SNP1
SNP2
Association (positive)
Loci or position
GWAS
The same for every SNP
Alelles: 0 or 1
Genotype Phenotype
0 6 9 1 7 5
Disease scores
-log10(p-value)
Manhattan plot
Loci or position
GWAS
What are the key issues for GWAS?
As GWAS relies on correlation between phenotype & allelic
states of marker’s loci
– Non-linkage correlations between loci leads to false positives
– i.e., False positives due to relationship among lines:
• CROASE: Population estructure (sub-species, origin)
• FINE: Kinship or co-ancestry (shared close ancestors)
Correcting for Population Structure
• Pritchard et al. 2000:
•Correlations between unlinked markers to estimate p
sub-populations
•Probabilistic assignation of each n individual to one or
more (admixtures) p.
•STRUCTURE software facilitates to build a Q matrix n x p
(estimates of each n belonging to a p)
Correcting for Population Structure
•Patterson et al.2006
Principal component analysis (PCA)
• Statistically determines the minimum number of
sub-groups (axes) which significantly explain genetic
variation (from genotypic data).
Correcting for Kinship
• Loiselle et al. 1995 and Hardy & Vekemans, 2002
SPAGeDi software
• Estimates the probability of identity-by-state (not by
common ancestry) of alleles of random molecular
markers = kinship coeficient.
GWAS: Unified Mixed Model
y: phenotypic data
S: incidence matrix that relates y with the SNP effects
α : vector of SNP effects
Q: relates y with the p fitting values
v: vector of estimates of fitting to a sub-population (estimated with
STRUCTURE)
K: relates y with the estimated kinship coefficients
u : vector of kinship coefficients
e: vector of residual effects
e  KuQvSy
• Yu et al. 2006
Keys for a succesful GWAS
– Increase power optimizing phenotyping:
• Minimize Phenotypic variance
• Maximize Heritability
–Minimize false positive discovery by correcting causes of
marker correlation other than linkage:
• Population structure and kinship (subspecies, common
ancestry)
–In rice: consider ancient divergence between subspecies
(explore separate analyses)
Recap…
• Uruguay is a top rice exporter; Rice is a top Uruguayan
commodity
• Top Uruguayan varieties are susceptible to Sclerotium oryzae
(SCL) and Rhizoctonia oryzae-sativae (ROS), suffering losses
up to 20%.
• Genetic resistance is the best strategy
• Resistance to St & Sh diseases is quantitative
• GWAS is a good option for QTL discovery in breeding
population
• Good phenotyping is key for GWAS
Objectives
General Objective: Identify QTL for SCL and ROS that enable breeding new high-
yielding cultivars with improved resistance to these diseases.
Specific Objectives / Papers:
I. Greenhouse phenotyping methodology (Paper 1).
a. Choosing best inoculation method
b. Applying it in high-throughput phenotyping greenhouse experiments
II. QTL for resistance to SCL and ROS in greenhouse and field (Papers 2 and 3).
III. Explore correlations between resistance to the three diseases (SCL, ROS and R.
solani) Paper 4.
Materials & Methods 1: Inoculation Methods
• Inoculation Methods
Method Description
I 5-mm agar disc with growing micellium attached to stems
II Flooded trays spread with sclerotia
III Suspension of sclerotia in CMC
IV Suspension of sclerotia in CMC covered with foil
V Detached stems in test tube with water + sclerotia
Materials & Methods 1: Inoculation Methods
• Plant Materials
Cultivar Subsp. Origin ROS SCL R. Solani
El Paso 144 Indica Uy Int Int ?
INIA Olimar Indica Uy Int Int ?
Tetep Indica Vietnam ? Res Res
INIA Tacuari Trop. Jap. Uy Int Int ?
Parao Trop. Jap. Uy Int Int ?
Lemont Trop. Jap. US ? Sus Sus
Materials & Methods 1: Inoculation Methods
• Greenhouse conditions
• Temperature: 28/18 °C day/night
• RH: 80/90% relative humidity
• Light time: 12 h
• Fungal Isolates
• ROS: soil after INIA Tacuarí in UEPL 200
• SCL: plant Samba cv. In UEPL 2011
• Experimental Design: CRD, 6 rep. EU: pot with 4 plants
• Analysis:
Model with design factors
Method compared by
r
H
G
G
22
2
2
e



ijig e ijY
Results 1: Inoculation Methods
• Best IM: I (agarose disk with micellium), for both pathogens
Pathogen Method 2
G 2
R H2
ROS I (agar disk) 0.03 0.06 0.75
ROS II (flooded trays) 0.07 0.20 0.67
ROS III (CMC) 0.00 0.31 0.05
ROS IV (CMC+foil) 0.16 0.69 0.58
ROS V (tiller in tube) 1.25 5.24 0.59
SCL I (agar disk) 1.35 0.56 0.94
SCL II (flooded trays) 0.94 0.61 0.90
SCL III (CMC) 0.73 1.05 0.81
SCL IV (CMC+foil) 1.31 1.00 0.89
SCL V (tiller in tube) 0.92 2.04 0.73
2
G 2
e 2
H2
G 2
e 2
H
Results 1: Inoculation Methods
• High correlation, low interaction among IM
SCL ROS
M & M 2: Greenhouse Phenotyping
• 3 exp. for ROS, 2 exp. for SCL
• Population: 641 advanced INIA’s inbred lines
• 316 indica
• 325 tropical japonica
• Inoculation I (Agar discs)
• Same greenhouse conditions and fungal isolates than IM
• Experimental Design:
• Federer’s unrep, augmented RCBD, 12 blocks
• Replicated checks: El Paso 144, INIA Olimar, Tetep, Parao, INIA Tacuarí and Lemont
• EU: pot with 4 plants
• Stem width measured as covariate.
M & M 2: Greenhouse Phenotyping
• Statistical Models:
BAS Compared based
SPA on
(Cullis et al. 2006)
Yij, Yijmn disease score
 intercept
g Random block effect with and j={1,...,12}
Gj = gk + cl genotypic effect,
gk random effect of kth genoline with gk ~N(0,2
G), k={1,...,641}
cl fixed effect of lth check, l={1,…,6}
Rm random row effect, Rm ~N(0,2
r), m={1,...,35}
Cn random column effect , Cn ~N(0,2
c), n={1,...,26}
eij, eijmn residual, gk ~N(0,2
G)
ijjiij GY eg 
ijmninimjiijmn CRGY eg  )()(
),0(~ 2
Bi N g
2
2
2
1
G
BLUP
g
v
H


Results 2: Greenhouse Phenotyping
• Medium to high H2. GxE interaction. Adapted sources of partial resistance
M & M 3: Field Phenotyping
• Same population than Greenhouse exp.
• 2010, 2011, 2012: “Historical” data
RCBD, 3 rep, natural infection. Checks:
El Paso 144, INIA Olimar, Parao, INIA Tacuarí
• 2013:
Augmented alpha-lattice design, 6 rep, artificial inoculation
• Same fungal isolates than greenhouse experiments.
• Replicated checks: El Paso 144, INIA Olimar, Tetep, Parao, INIA Tacuarí and Lemont
• EU: hill plots with ~10 adult plants
• Length of life cycle measured as covariate.
Materials & Methods 3: Field Phenotyping
• Statistical Models:
BAS Compared based
COV on
SPA (Cullis et al. 2006)
CSP
Yij, Yijmn disease score
 overall mean
g block effect, j={1,...,6}
Gj = gk + cl genotypic effect,
gk random effect of kth genoline, gk ~N(0,2
G), k={1,...,641}
cl fixed effect of lth check, l={1,…,6}
eij, eijmn residual, gk ~N(0,2
G)
Rm row effect, Rm ~N(0,2
r), m={1,...,90}
Cn column effect, Cn ~N(0,2
c), n={1,...,45}
xij length of life cycle of ith genotype in jth block
b regression slope of covariate
ijjiij GY eg 
ijijjiij xGY ebg 
ijmnnmjiijmn CRGY eg 
ijmnnmijjiijmn CRxGY ebg 
2
2
2
1
G
BLUP
g
v
H


Results 3: Field Phenotyping (ROS)
• Low to medium H2. GxE interaction. Adapted sources of partial resistance
H2=0.42
H2=0.15
H2=0.06
H2=0.43
Results 3: Field Phenotyping (SCL)
• Medium to high H2. Lesser GxE interaction. Adapted sources of partial R
H2=0.50
H2=0.24
H2=0.45
H2=0.72
M & M 4: Genotypic data
GBS raw
data
HapMaps
130K SNP
Bioinformatic processing
• Tag count (collapse identical reads)
• Alignment with reference genome (Nipponbare)
• Tassel Pipeline
• Hapmap filtering
• Lines with ≥5% SNP
• SNP called in ≥5% lines
• Allele frequency (intra line) ≥5%
Indica 316 lines
94K SNP
641 lines
57K SNP
FILLIN
Imputation Japonica 325 lin.
44K SNP
Indica 316 lines
18K SNP
Japonica 325 lin.
12K SNP
Conjoint
SNP
filtering
Separate
SNP
filtering
•SNP w/Allele frequency
(inter lines) ≥5%
•Lines w/ ≥5% SNP data
< 50% missing
Results 4: Genotypic data, whole, non imputed
641 lines
57K SNP
• Genotype data:
Most of the SNP are
between-subesp.
polymorphisms
Results 4: Genotypic data, partial results
Indica 316 lines
94K SNP
641 lines
57K SNP
FILLIN
Imputation Japonica 325 lin.
44K SNP
Indica 316 lines
18K SNP
Japonica 325 lin.
12K SNP
Conjoint
SNP
filtering
Separate
SNP
filtering
•SNP w/Allele frequency
(inter lines) ≥5%
•Lines w/ ≥5% SNP data
< 50% missing
Results 4: Genotypic data, whole population
641 lines
57K SNP
• Genetic Map:
dense SNP
evenly distributed
in all 12 chr.
Results 4: Genotypic data, whole population
641 lines
57K SNP
• PCA:
PC1: inter subspecies
variation
PC2: inter indica variation
indica
japonica
Results 4: Genotypic data, whole population
641 lines
57K SNP
• PCA:
PC1 ~50% gv
PC2 ~5% gv
Results 4: Genotypic data, Indica ssp
• Genotype data:
Some big blocks with
low LD decay.
Indica 316 lines
18K SNP
Results 4: Genotypic data, Indica ssp
• Genetic Map:
Many fixed
regions, including
all Chr. 11
Indica 316 lines
18K SNP
Results 4: Genotypic data, Indica ssp
• PCA:
Over-represented
“Olimar-like” lines from
FLAR and INIA
Indica 316 lines
18K SNP
El Paso 144
INIA Olimar FLAR
INIA
Results 4: Genotypic data, Indica ssp
• PCA:
PC1 to 8 explain
~50%gv
Indica 316 lines
18K SNP
Results 4: Genotypic data, Japonica, non imputed
• Genotype data:
Haplotype blocks
.
Japonica 325 lin.
12K SNP
Results 4: Genotypic data, Japonica ssp
• Genetic Map:
Many fixed
regions
Japonica 325 lin.
12K SNP
Results 4: Genotypic data, Japonica ssp
• PCA: weak intra-
subspecies structure.
Japonica 325 lin.
12K SNP
L5287
EEA 404
INIA Tacuari
Results 4: Genotypic data, Japonica ssp
• PCA: More than 10
PC to explain 50% gv
Japonica 325 lin.
12K SNP
Materials & Methods 5: GWAS
y: phenotypic data
b : vector of SNP fixed effects
X: incidence matrix that relates y with the SNP effects
v: vector of fixed estimates of fitting to a sub-
population (estimated with STRUCTURE)
Q: incidence matrix for population effects
u : vector of kinship coefficients, Var(u)=K2 , K
kinship matrix
Z: relates y with the estimated kinship coefficients
e: vector of residual effects, Var(e)=I2
e
eb  ZuQvXy
• Mixed model (Yu et al. 2006, Malosetti et al. 2007)
“Q+K”, as implemented in GWAS
function from rrBLUP package:
eb  QvXy
“Eigenstrat”, as implemented in
GWAS.analysis function from
mmQTL package:
y: phenotypic data
b : vector of SNP fixed effects
X: incidence matrix that relates y with the SNP effects
v: vector of random PC scores (eigenvalues).
Q: relates y with the PC scores
e: vector of residual effects, Var(e)=I2
e
Results 5: GWAS
Indica 316 lines
94K SNP
641 lines
57K SNP
FILLIN
Imputation Japonica 325 lin.
44K SNP
Indica 316 lines
18K SNP
Japonica 325 lin.
12K SNP
Conjoint
SNP
filtering
Separate
SNP
filtering
•SNP w/Allele frequency
(inter lines) ≥5%
•Lines w/ ≥5% SNP data
< 50% missing
Field GH
Eigenstrat ROS SCL ROS SCL
Q+K ROS SCL ROS SCL
Eigenstrat ROS SCL ROS SCL
Q+K ROS SCL ROS SCL
Eigenstrat ROS SCL ROS SCL
Q+K ROS SCL ROS SCL
Eigenstrat ROS SCL ROS SCL
K ROS SCL ROS SCL
Eigenstrat ROS SCL ROS SCL
K ROS SCL ROS SCL
Results 5: GWAS – ROS in Japonica
• QTLxE interaction.
• Consistent QTL: chr. 3 ~1 Kb
Field 2010 Field 2011 Field 2012 Field 2013
GH ROS1 GH ROS2 GH ROS3
Results 5: GWAS – ROS in Indica
• QTLxE interaction
• Consistent QTL: chr. 3 ~1 Kb
•. QTL chr. 3Field 2010 Field 2011 Field 2012 Field 2013
GH ROS1 GH ROS2 GH ROS3
Results 5: GWAS – SCL in Japonica
• QTLxE interaction.
• Consistent QTL: chr. 3 ~1 Mb chr. 9 ~14 Mb
Field 2010 Field 2011 Field 2012 Field 2013
GH SCL1 GH SCL2
Results 4: GWAS – SCL in Indica
Field 2010 Field 2011 Field 2012 Field 2013
GH SCL1 GH SCL2
• QTLxE interaction.
• Consistent QTL: chr. 3 ~1 Mb chr. 9 ~14 Mb
Results 4: GWAS
Summary:
• QTL at ~1 Kb Chr. 1 for both pathogens, both
subspecies and all environments
• QTL at ~14 Kb Chr. 9 for SCL, both subspecies,
almost all environments
Future Work
• Greenhouse phenotyping for resistance to R. solani at CIAT
• Analysis of phenotypic means
• Association analysis:
• LD blocks and haplotypes
• GWAS for R. solani
Coordinación
Victoria Bonnecarrere
Mejoramiento
Pedro Blanco
Fernando Pérez de Vida
Fitopatología
Sebastián Martínez
Bioinformática
Silvia Garaycochea
Schubert Fernández
Marcadores moleculares
Victoria Bonnecarrere
Wanda Iriarte
Bioestadística
Lucía Gutierrez
Gastón Quero
Natalia Berberián
Juan Rosas
Cornell University
Eliana Monteverde
Susan McCouch
Jean-Luc Jannink
Proyecto Mapeo Asociativo en
Arroz Uruguayo
GWAS of Resistance to Stem and Sheath Diseases of Uruguayan Advanced Rice Breeding Germplasm

More Related Content

What's hot

Development of chromosome substitution lines and their utilization in crop im...
Development of chromosome substitution lines and their utilization in crop im...Development of chromosome substitution lines and their utilization in crop im...
Development of chromosome substitution lines and their utilization in crop im...
PranayReddy71
 
Magic population
Magic populationMagic population
Magic population
Balaji Thorat
 
Report- Genome wide association studies.
Report- Genome wide association studies.Report- Genome wide association studies.
Report- Genome wide association studies.
Varsha Gayatonde
 
Concept of combining ability
Concept of combining abilityConcept of combining ability
Concept of combining ability
RaviTejaSeelam
 
Genomic selection, prediction models, GEBV values, genomic selection in plant...
Genomic selection, prediction models, GEBV values, genomic selection in plant...Genomic selection, prediction models, GEBV values, genomic selection in plant...
Genomic selection, prediction models, GEBV values, genomic selection in plant...
Mahesh Biradar
 
Allele mining in crop improvement
Allele mining in crop improvementAllele mining in crop improvement
Allele mining in crop improvement
GAYATRI KUMAWAT
 
Advanced biometrical and quantitative genetics akshay
Advanced biometrical and quantitative genetics akshayAdvanced biometrical and quantitative genetics akshay
Advanced biometrical and quantitative genetics akshay
Akshay Deshmukh
 
Association mapping
Association mappingAssociation mapping
Association mapping
Senthil Natesan
 
Biparental mating design
Biparental mating designBiparental mating design
Biparental mating design
Lokesh Gour
 
Biometrical Techniques in Plant Breeding
Biometrical Techniques in Plant Breeding Biometrical Techniques in Plant Breeding
Biometrical Techniques in Plant Breeding
Akshay Deshmukh
 
Smart breeding final
Smart breeding finalSmart breeding final
Smart breeding final
Pavan R
 
Molecular markers and Functional molecular markers
Molecular markers and Functional molecular markersMolecular markers and Functional molecular markers
Molecular markers and Functional molecular markers
Chandana B.R.
 
Synthetic hexploid wheat
Synthetic hexploid wheatSynthetic hexploid wheat
Synthetic hexploid wheat
vijay kamal
 
Molecular basis of heterosis in crop plants
Molecular basis of heterosis in crop plantsMolecular basis of heterosis in crop plants
Molecular basis of heterosis in crop plants
Manjappa Ganiger
 
MAPPING POPULATIONS
MAPPING POPULATIONS MAPPING POPULATIONS
MAPPING POPULATIONS
Shivani Upadhyay
 
Genepyramiding for biotic resistance
Genepyramiding for biotic resistanceGenepyramiding for biotic resistance
Genepyramiding for biotic resistance
Senthil Natesan
 
Allele mining
Allele miningAllele mining
Allele mining
arjun pimple
 
QTL mapping for crop improvement
QTL mapping for crop improvementQTL mapping for crop improvement
QTL mapping for crop improvement
Dr. Sandeep Kumar Singh
 
Genetics and plant breeding seminar
Genetics and plant breeding seminarGenetics and plant breeding seminar
Genetics and plant breeding seminar
Jaydev Upadhyay
 
Bioetcnology applications in male sterility and hybrid production
Bioetcnology applications in male sterility and hybrid production Bioetcnology applications in male sterility and hybrid production
Bioetcnology applications in male sterility and hybrid production
Anilkumar C
 

What's hot (20)

Development of chromosome substitution lines and their utilization in crop im...
Development of chromosome substitution lines and their utilization in crop im...Development of chromosome substitution lines and their utilization in crop im...
Development of chromosome substitution lines and their utilization in crop im...
 
Magic population
Magic populationMagic population
Magic population
 
Report- Genome wide association studies.
Report- Genome wide association studies.Report- Genome wide association studies.
Report- Genome wide association studies.
 
Concept of combining ability
Concept of combining abilityConcept of combining ability
Concept of combining ability
 
Genomic selection, prediction models, GEBV values, genomic selection in plant...
Genomic selection, prediction models, GEBV values, genomic selection in plant...Genomic selection, prediction models, GEBV values, genomic selection in plant...
Genomic selection, prediction models, GEBV values, genomic selection in plant...
 
Allele mining in crop improvement
Allele mining in crop improvementAllele mining in crop improvement
Allele mining in crop improvement
 
Advanced biometrical and quantitative genetics akshay
Advanced biometrical and quantitative genetics akshayAdvanced biometrical and quantitative genetics akshay
Advanced biometrical and quantitative genetics akshay
 
Association mapping
Association mappingAssociation mapping
Association mapping
 
Biparental mating design
Biparental mating designBiparental mating design
Biparental mating design
 
Biometrical Techniques in Plant Breeding
Biometrical Techniques in Plant Breeding Biometrical Techniques in Plant Breeding
Biometrical Techniques in Plant Breeding
 
Smart breeding final
Smart breeding finalSmart breeding final
Smart breeding final
 
Molecular markers and Functional molecular markers
Molecular markers and Functional molecular markersMolecular markers and Functional molecular markers
Molecular markers and Functional molecular markers
 
Synthetic hexploid wheat
Synthetic hexploid wheatSynthetic hexploid wheat
Synthetic hexploid wheat
 
Molecular basis of heterosis in crop plants
Molecular basis of heterosis in crop plantsMolecular basis of heterosis in crop plants
Molecular basis of heterosis in crop plants
 
MAPPING POPULATIONS
MAPPING POPULATIONS MAPPING POPULATIONS
MAPPING POPULATIONS
 
Genepyramiding for biotic resistance
Genepyramiding for biotic resistanceGenepyramiding for biotic resistance
Genepyramiding for biotic resistance
 
Allele mining
Allele miningAllele mining
Allele mining
 
QTL mapping for crop improvement
QTL mapping for crop improvementQTL mapping for crop improvement
QTL mapping for crop improvement
 
Genetics and plant breeding seminar
Genetics and plant breeding seminarGenetics and plant breeding seminar
Genetics and plant breeding seminar
 
Bioetcnology applications in male sterility and hybrid production
Bioetcnology applications in male sterility and hybrid production Bioetcnology applications in male sterility and hybrid production
Bioetcnology applications in male sterility and hybrid production
 

Viewers also liked

Rice diseasei dphotolink
Rice diseasei dphotolinkRice diseasei dphotolink
Rice diseasei dphotolink
Thị Thanh Mỹ Bùi
 
Diseases in rice
Diseases in riceDiseases in rice
Diseases in rice
Love Sharma
 
Single Nucleotide Polymorphism Analysis (SNPs)
Single Nucleotide Polymorphism Analysis (SNPs)Single Nucleotide Polymorphism Analysis (SNPs)
Single Nucleotide Polymorphism Analysis (SNPs)
Data Science Thailand
 
Genetic polymorphism
Genetic polymorphismGenetic polymorphism
Genetic polymorphism
Dandu Prasad Reddy
 
Common rice diseases (am sinohin)
Common rice diseases (am sinohin)Common rice diseases (am sinohin)
Common rice diseases (am sinohin)
macky75
 
Snp
SnpSnp
Single nucleotide polymorphism
Single nucleotide polymorphismSingle nucleotide polymorphism
Single nucleotide polymorphism
Bipul Das
 

Viewers also liked (7)

Rice diseasei dphotolink
Rice diseasei dphotolinkRice diseasei dphotolink
Rice diseasei dphotolink
 
Diseases in rice
Diseases in riceDiseases in rice
Diseases in rice
 
Single Nucleotide Polymorphism Analysis (SNPs)
Single Nucleotide Polymorphism Analysis (SNPs)Single Nucleotide Polymorphism Analysis (SNPs)
Single Nucleotide Polymorphism Analysis (SNPs)
 
Genetic polymorphism
Genetic polymorphismGenetic polymorphism
Genetic polymorphism
 
Common rice diseases (am sinohin)
Common rice diseases (am sinohin)Common rice diseases (am sinohin)
Common rice diseases (am sinohin)
 
Snp
SnpSnp
Snp
 
Single nucleotide polymorphism
Single nucleotide polymorphismSingle nucleotide polymorphism
Single nucleotide polymorphism
 

Similar to GWAS of Resistance to Stem and Sheath Diseases of Uruguayan Advanced Rice Breeding Germplasm

Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...
Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...
Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...
ExternalEvents
 
Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...
Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...
Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...
John Blue
 
The challenge of climate-related infectious livestock diseases in undermining...
The challenge of climate-related infectious livestock diseases in undermining...The challenge of climate-related infectious livestock diseases in undermining...
The challenge of climate-related infectious livestock diseases in undermining...
ILRI
 
Genetics: Genes in Populations
Genetics: Genes in PopulationsGenetics: Genes in Populations
Genetics: Genes in Populations
Shaina Mavreen Villaroza
 
Using pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseases Using pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseases
Bioversity International
 
Using pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseasesUsing pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseases
ExternalEvents
 
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Agriculture Journal IJOEAR
 
Control options rice_bacterial_panicle_blight
Control options rice_bacterial_panicle_blightControl options rice_bacterial_panicle_blight
Control options rice_bacterial_panicle_blight
CIAT
 
002 control options for rice bacterial panicle blight, don groth
002   control options for rice bacterial panicle blight, don groth002   control options for rice bacterial panicle blight, don groth
002 control options for rice bacterial panicle blight, don groth
FLAR - Fondo Latinoamericano para Arroz de Riego
 
002 control options for rice bacterial panicle blight, don groth
002   control options for rice bacterial panicle blight, don groth002   control options for rice bacterial panicle blight, don groth
002 control options for rice bacterial panicle blight, don groth
FLAR - Fondo Latinoamericano para Arroz de Riego
 
Breeding for stress in potato
Breeding for stress in potatoBreeding for stress in potato
Breeding for stress in potato
Delince Samuel
 
Advances in the research to achieve resistance to wheat rusts
Advances in the research to achieve resistance to wheat rustsAdvances in the research to achieve resistance to wheat rusts
Advances in the research to achieve resistance to wheat rusts
CIMMYT
 
Arabadopsis Thaliana Quorum Sensing Proposal
Arabadopsis Thaliana Quorum Sensing ProposalArabadopsis Thaliana Quorum Sensing Proposal
Arabadopsis Thaliana Quorum Sensing Proposal
Beau Smith
 
Unlocking the value and use potential of genetic resources
Unlocking the value and use potential of genetic resourcesUnlocking the value and use potential of genetic resources
Unlocking the value and use potential of genetic resources
CGIAR Research Program on Roots, Tubers and Bananas
 
Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...
Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...
Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...
World Agroforestry (ICRAF)
 
Pd bioversity 19 5 2011
Pd bioversity 19 5 2011Pd bioversity 19 5 2011
Pd bioversity 19 5 2011
World Agroforestry (ICRAF)
 
Use of Agrobiodiversity for Pest and Disease Management
Use of Agrobiodiversity for Pest and Disease ManagementUse of Agrobiodiversity for Pest and Disease Management
Use of Agrobiodiversity for Pest and Disease Management
World Agroforestry (ICRAF)
 
Izmir 2014 lesley boyd
Izmir 2014 lesley boydIzmir 2014 lesley boyd
Izmir 2014 lesley boyd
ICARDA
 
Participatory mapping for the systematic monitoring of biodiversity
Participatory mapping for the systematic monitoring of biodiversityParticipatory mapping for the systematic monitoring of biodiversity
Participatory mapping for the systematic monitoring of biodiversity
CGIAR Research Program on Roots, Tubers and Bananas
 
Class 12 Cbse Biology Syllabus 2014-15
Class 12 Cbse Biology Syllabus 2014-15Class 12 Cbse Biology Syllabus 2014-15
Class 12 Cbse Biology Syllabus 2014-15
Sunaina Rawat
 

Similar to GWAS of Resistance to Stem and Sheath Diseases of Uruguayan Advanced Rice Breeding Germplasm (20)

Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...
Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...
Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...
 
Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...
Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...
Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...
 
The challenge of climate-related infectious livestock diseases in undermining...
The challenge of climate-related infectious livestock diseases in undermining...The challenge of climate-related infectious livestock diseases in undermining...
The challenge of climate-related infectious livestock diseases in undermining...
 
Genetics: Genes in Populations
Genetics: Genes in PopulationsGenetics: Genes in Populations
Genetics: Genes in Populations
 
Using pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseases Using pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseases
 
Using pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseasesUsing pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseases
 
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
 
Control options rice_bacterial_panicle_blight
Control options rice_bacterial_panicle_blightControl options rice_bacterial_panicle_blight
Control options rice_bacterial_panicle_blight
 
002 control options for rice bacterial panicle blight, don groth
002   control options for rice bacterial panicle blight, don groth002   control options for rice bacterial panicle blight, don groth
002 control options for rice bacterial panicle blight, don groth
 
002 control options for rice bacterial panicle blight, don groth
002   control options for rice bacterial panicle blight, don groth002   control options for rice bacterial panicle blight, don groth
002 control options for rice bacterial panicle blight, don groth
 
Breeding for stress in potato
Breeding for stress in potatoBreeding for stress in potato
Breeding for stress in potato
 
Advances in the research to achieve resistance to wheat rusts
Advances in the research to achieve resistance to wheat rustsAdvances in the research to achieve resistance to wheat rusts
Advances in the research to achieve resistance to wheat rusts
 
Arabadopsis Thaliana Quorum Sensing Proposal
Arabadopsis Thaliana Quorum Sensing ProposalArabadopsis Thaliana Quorum Sensing Proposal
Arabadopsis Thaliana Quorum Sensing Proposal
 
Unlocking the value and use potential of genetic resources
Unlocking the value and use potential of genetic resourcesUnlocking the value and use potential of genetic resources
Unlocking the value and use potential of genetic resources
 
Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...
Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...
Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...
 
Pd bioversity 19 5 2011
Pd bioversity 19 5 2011Pd bioversity 19 5 2011
Pd bioversity 19 5 2011
 
Use of Agrobiodiversity for Pest and Disease Management
Use of Agrobiodiversity for Pest and Disease ManagementUse of Agrobiodiversity for Pest and Disease Management
Use of Agrobiodiversity for Pest and Disease Management
 
Izmir 2014 lesley boyd
Izmir 2014 lesley boydIzmir 2014 lesley boyd
Izmir 2014 lesley boyd
 
Participatory mapping for the systematic monitoring of biodiversity
Participatory mapping for the systematic monitoring of biodiversityParticipatory mapping for the systematic monitoring of biodiversity
Participatory mapping for the systematic monitoring of biodiversity
 
Class 12 Cbse Biology Syllabus 2014-15
Class 12 Cbse Biology Syllabus 2014-15Class 12 Cbse Biology Syllabus 2014-15
Class 12 Cbse Biology Syllabus 2014-15
 

More from CIAT

Agricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio ClimáticoAgricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio Climático
CIAT
 
Resumen mesas trabajo
Resumen mesas trabajoResumen mesas trabajo
Resumen mesas trabajo
CIAT
 
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
CIAT
 
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
CIAT
 
El rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogarEl rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogar
CIAT
 
Scaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate changeScaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate change
CIAT
 
Impacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República DominicanaImpacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República Dominicana
CIAT
 
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
CIAT
 
Investigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao ColombianoInvestigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao Colombiano
CIAT
 
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
CIAT
 
Tackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to forkTackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to fork
CIAT
 
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
CIAT
 
Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...
CIAT
 
Contenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacaoContenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacao
CIAT
 
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoterasTécnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
CIAT
 
Cacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn StateCacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn State
CIAT
 
Aportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacaoAportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacao
CIAT
 
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚCENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
CIAT
 
Investigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao ColombianoInvestigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao Colombiano
CIAT
 
Avances de investigación en cd en cacao
Avances de investigación en cd en cacaoAvances de investigación en cd en cacao
Avances de investigación en cd en cacao
CIAT
 

More from CIAT (20)

Agricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio ClimáticoAgricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio Climático
 
Resumen mesas trabajo
Resumen mesas trabajoResumen mesas trabajo
Resumen mesas trabajo
 
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
 
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
 
El rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogarEl rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogar
 
Scaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate changeScaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate change
 
Impacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República DominicanaImpacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República Dominicana
 
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
 
Investigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao ColombianoInvestigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao Colombiano
 
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
 
Tackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to forkTackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to fork
 
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
 
Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...
 
Contenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacaoContenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacao
 
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoterasTécnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
 
Cacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn StateCacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn State
 
Aportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacaoAportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacao
 
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚCENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
 
Investigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao ColombianoInvestigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao Colombiano
 
Avances de investigación en cd en cacao
Avances de investigación en cd en cacaoAvances de investigación en cd en cacao
Avances de investigación en cd en cacao
 

Recently uploaded

NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
pablovgd
 
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Leonel Morgado
 
Compexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titrationCompexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titration
Vandana Devesh Sharma
 
20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx
Sharon Liu
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
Gokturk Mehmet Dilci
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
Aditi Bajpai
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills MN
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
Anagha Prasad
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
muralinath2
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
Leonel Morgado
 
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero WaterSharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Texas Alliance of Groundwater Districts
 
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
AbdullaAlAsif1
 
Eukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptxEukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptx
RitabrataSarkar3
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
University of Hertfordshire
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
PRIYANKA PATEL
 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
European Sustainable Phosphorus Platform
 
Immersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths ForwardImmersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths Forward
Leonel Morgado
 
8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
by6843629
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
vluwdy49
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
Sérgio Sacani
 

Recently uploaded (20)

NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
 
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
 
Compexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titrationCompexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titration
 
20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
 
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero WaterSharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
 
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
 
Eukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptxEukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptx
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
 
Immersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths ForwardImmersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths Forward
 
8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
 

GWAS of Resistance to Stem and Sheath Diseases of Uruguayan Advanced Rice Breeding Germplasm

  • 1. Doctorate in Agricultural Sciences Facultad de Agronomía - Universidad de la República Collaborating Institutions: Cornell University – CIAT - FLAR GWAS of Resistance to Stem and Sheath Diseases of Uruguayan Advanced Rice Breeding Germplasm Juan Rosas Advisors: Jean-Luc Jannink – Lucía Gutierrez Special Comittee: Marcos Malosetti (Wageningen University) Álvaro Roel (INIA) Funding: MBBISP, INIA (Rice Program, Rice GWAS
  • 2. Overview 1. Timeline 2. Background & Review Why? 3. Objectives What? 4. Materials & Methods How? 5. Preliminary Results Ouch! Wow! 6. Future work 7. Schedule When?
  • 3. Doctorate Program Timeline 2012 2013 2014 2015 2016 Cornell U. 1st. Anual Committee Meeting CIAT CU/UW Field pheno typing Greenhouse phenotyping (ROS & SCL) GH ph. (R.Solani) MBBISP Scholarship 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 Official start Oct 2012 Expected completion Thesis Project Defense Sep 2013 2nd Anual Committee Meeting Paper I Paper II Paper III Paper IV Year 1 Year 2 Year 3 Year 4 Year 5 Training in Statistics
  • 4. Rice facts Why rice matters to Uruguay? – Rice is the 3rd top Uruguayan export. – It accounts for 7% of country’s total income Source: www.uruguayxxi.gub.uy 0 200 400 600 800 1000 1200 1400 1600 2009 2010 2011 2012 USDx106 Soybeans Meat Rice Wheat
  • 5. Uruguay facts Why Uruguay matters to rice? Uruguay is the 7th major world rice exporter Source: FAOSTAT 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 tx106 Top Ten World Rice Exporters
  • 6. Uruguay facts Why Uruguay matters to rice? Uruguayan rice yields are among the highest of the world Source: http://ricestat.irri.org (Alphabetic order) CountryAverageYieldin2010(t/ha)
  • 7. Rice’s biggest adversaries What are the major constraints to rice production worldwide? Abiotic:  Water scarcity, poor soil conditions  Extreme temperatures Biotic (fungal diseases): 1. Blast (Pyricularia oryzae) 2. Sheath and stem diseases Worldwide: Uruguay & other temperate areas: Rhizoctonia solani Sclerotium oryzae Rhizoctonia oryzae-sativae
  • 8. Stem Rot Causal agent Sclerotium oryzae (A. Cattaneo, Italy 1876) Geographical distribution: Irrigated rice growing areas worldwide
  • 9. Stem Rot • The fungus forms sclerotia • Sclerotia can survive 1-2 years in soil surface or water, but prefers rice stubble.
  • 10. Stem Rot • Flooding help floating sclerotia reach the stems Early flooding = early infection = more severity • Stem surface promotes sclerotia germination • During the first day of contact, mycelium start developing • Appresoria penetrates host tissue and hyphae invades it
  • 11. Stem Rot • First symptoms at tillering • Blackish lesions.
  • 12. Stem Rot g) • Stresses (strong wind, herbicides, shadowing) promotes diseases progression • The fungus invades outer sheaths and progressively penetrates the stem. • High plant stand promotes disease
  • 14. Stem Rot • Stem rotting prevents nutrient translocation • Bad starch formation • Chalky and brittle grains • Bad milling quality
  • 15. Stem Rot • Advanced rotting weaken stems and promotes lodging • Not easy to harvest! • The fungus forms new sclerotia • Sclerotia can survive 1-2 years in soil surface or water, but prefers rice stubble.
  • 16. Aggregated Sheath Spot Causal agent • Rhizoctonia oryzae-sativae (Mordue 1974). • Geographical distribution: Irrigated rice growing areas worldwide, most relevant in sub-tropical and temperate areas.
  • 17. Aggregated Sheath Spot • Very similar cycle to that of Stem rot • First days of infection may be asymptomatic
  • 18. Aggregated Sheath Spot • Oval lesions with green or gray centers surrounded by a brown margin
  • 19. Aggregated Sheath Spot • Disease progress upward the leaf sheath • Lesions aggregate
  • 20. Aggregated Sheath Spot • Reaching panicle at booting stage can cause severe sterility
  • 21. Aggregated Sheath Spot • Rhizoctonia oryzae-sativae also produces sclerotia • Sclerotia can survive in soil surface or water, but prefers rice stubble.
  • 22. Rice’s adversaries strike again Major constraints to rice production Abiotic:  Water scarcity  Poor soil conditions  Extreme temperatures Biotic (fungal diseases): 1. Blast (Pyricularia oryzae) 2. Sheath and stem diseases Worldwide: Uruguay & other temperate areas: Rhizoctonia solani Sclerotium oryzae Rhizoctonia oryzae-sativae
  • 23. The Uruguayan Rice Defensive Line How do we face to these constraints to get those high yields? Abiotic:  Water scarcity  Poor soil conditions  Extreme temperatures Biotic (fungal diseases): 1. Blast (Pyricularia oryzae) 2. Sheath and stem diseases Worldwide: Uruguay & other temperate areas: Rhizoctonia solani Sclerotium oryzae Rhizoctonia oryzae-sativae New high-yield cold tolerant varieties New molecular markers for cold tolerance Resistance genes in high- yielding advanced lines Extended use of optimum management practices 100% Irrigated
  • 24. A Hole in the Defensive Line Top Uruguayan varieties are susceptible to St & Sh diseases Source: Avila 2000 & 2001. Sterility, dead sheaths and lodging caused by Aggregated Sheath Spot in INIA Tacuarí (grown in 15% of the area) Severe lodging caused by Stem Rot in El Paso 144 (grown in 50% of the area)
  • 25. Patching the Hole with Fungicide – Varietal susceptibility = Dependence on fungicide – Dependence on fungicide = higher input costs = trace levels in grain and environment – Trace levels = less top markets, lower price, environmental impact Dependence on fungicide = less economic and environmental sustainability Genetic resistance to St&Sh diseases is environmentally and economically the best option.
  • 26. Genetics of the resistance to StR • Quantitatively inherited (Ferreira & Webster 1975) • RILs with O. rufipogon introgressions (Ni et al 2001): – QTL in ch. 2, AFLP marker TAA/GTA167 45% phen. var. – QTL in ch. 3, RM232 - RM251 40% phen. var.
  • 27. Genetics of the resistance to AShS •Unknown but most likely quantitatively inherited as for to other Rhizoctonias. •QTL reported for resistance to R. solani (Srinivasachary et al. 2011): –16 consistent QTL (at least in 2 independent reports) • 7 QTL for escape mechanism (morphology or cycle, often undesirable traits) • 9 QTL hypothetically physiologic resistance mechanisms Importance of phenotyping to detect relevant QTL.
  • 28. Quantitative Trait Loci Discovery GWAS •Uses pre-existent populations •Simultaneously consider all allele diversity •Exploits multiple recombination events •“ready-to-use” SNP into the breeding germplasm Traditional bi-parental QTL studies •Population generation is time and resource consuming •Limited # and significance of detectable QTL (low allelic diversity) •Low mapping precision (few recombinations)
  • 29. GWAS SNP 1 Alelles: 0 or 1 Genotype Phenotype 0 6 9 1 7 5 Disease scores Do not reject identity between phenotypic means, p-value >>0.001 -log10(p-value) << 3 Phenotype Genotype0 1 No association (negative) -log10(p-value) SNP1 Loci or position
  • 30. GWAS SNP 2 Alelles: 0 or 1 Genotype Phenotype 0 6 9 1 7 5 Disease scores Phenotype Genotype0 1 Reject identity between phenotypic means, p-value <0.001 -log10(p-value) > 3 -log10(p-value) SNP1 SNP2 Association (positive) Loci or position
  • 31. GWAS The same for every SNP Alelles: 0 or 1 Genotype Phenotype 0 6 9 1 7 5 Disease scores -log10(p-value) Manhattan plot Loci or position
  • 32. GWAS What are the key issues for GWAS? As GWAS relies on correlation between phenotype & allelic states of marker’s loci – Non-linkage correlations between loci leads to false positives – i.e., False positives due to relationship among lines: • CROASE: Population estructure (sub-species, origin) • FINE: Kinship or co-ancestry (shared close ancestors)
  • 33. Correcting for Population Structure • Pritchard et al. 2000: •Correlations between unlinked markers to estimate p sub-populations •Probabilistic assignation of each n individual to one or more (admixtures) p. •STRUCTURE software facilitates to build a Q matrix n x p (estimates of each n belonging to a p)
  • 34. Correcting for Population Structure •Patterson et al.2006 Principal component analysis (PCA) • Statistically determines the minimum number of sub-groups (axes) which significantly explain genetic variation (from genotypic data).
  • 35. Correcting for Kinship • Loiselle et al. 1995 and Hardy & Vekemans, 2002 SPAGeDi software • Estimates the probability of identity-by-state (not by common ancestry) of alleles of random molecular markers = kinship coeficient.
  • 36. GWAS: Unified Mixed Model y: phenotypic data S: incidence matrix that relates y with the SNP effects α : vector of SNP effects Q: relates y with the p fitting values v: vector of estimates of fitting to a sub-population (estimated with STRUCTURE) K: relates y with the estimated kinship coefficients u : vector of kinship coefficients e: vector of residual effects e  KuQvSy • Yu et al. 2006
  • 37. Keys for a succesful GWAS – Increase power optimizing phenotyping: • Minimize Phenotypic variance • Maximize Heritability –Minimize false positive discovery by correcting causes of marker correlation other than linkage: • Population structure and kinship (subspecies, common ancestry) –In rice: consider ancient divergence between subspecies (explore separate analyses)
  • 38. Recap… • Uruguay is a top rice exporter; Rice is a top Uruguayan commodity • Top Uruguayan varieties are susceptible to Sclerotium oryzae (SCL) and Rhizoctonia oryzae-sativae (ROS), suffering losses up to 20%. • Genetic resistance is the best strategy • Resistance to St & Sh diseases is quantitative • GWAS is a good option for QTL discovery in breeding population • Good phenotyping is key for GWAS
  • 39. Objectives General Objective: Identify QTL for SCL and ROS that enable breeding new high- yielding cultivars with improved resistance to these diseases. Specific Objectives / Papers: I. Greenhouse phenotyping methodology (Paper 1). a. Choosing best inoculation method b. Applying it in high-throughput phenotyping greenhouse experiments II. QTL for resistance to SCL and ROS in greenhouse and field (Papers 2 and 3). III. Explore correlations between resistance to the three diseases (SCL, ROS and R. solani) Paper 4.
  • 40. Materials & Methods 1: Inoculation Methods • Inoculation Methods Method Description I 5-mm agar disc with growing micellium attached to stems II Flooded trays spread with sclerotia III Suspension of sclerotia in CMC IV Suspension of sclerotia in CMC covered with foil V Detached stems in test tube with water + sclerotia
  • 41. Materials & Methods 1: Inoculation Methods • Plant Materials Cultivar Subsp. Origin ROS SCL R. Solani El Paso 144 Indica Uy Int Int ? INIA Olimar Indica Uy Int Int ? Tetep Indica Vietnam ? Res Res INIA Tacuari Trop. Jap. Uy Int Int ? Parao Trop. Jap. Uy Int Int ? Lemont Trop. Jap. US ? Sus Sus
  • 42. Materials & Methods 1: Inoculation Methods • Greenhouse conditions • Temperature: 28/18 °C day/night • RH: 80/90% relative humidity • Light time: 12 h • Fungal Isolates • ROS: soil after INIA Tacuarí in UEPL 200 • SCL: plant Samba cv. In UEPL 2011 • Experimental Design: CRD, 6 rep. EU: pot with 4 plants • Analysis: Model with design factors Method compared by r H G G 22 2 2 e    ijig e ijY
  • 43. Results 1: Inoculation Methods • Best IM: I (agarose disk with micellium), for both pathogens Pathogen Method 2 G 2 R H2 ROS I (agar disk) 0.03 0.06 0.75 ROS II (flooded trays) 0.07 0.20 0.67 ROS III (CMC) 0.00 0.31 0.05 ROS IV (CMC+foil) 0.16 0.69 0.58 ROS V (tiller in tube) 1.25 5.24 0.59 SCL I (agar disk) 1.35 0.56 0.94 SCL II (flooded trays) 0.94 0.61 0.90 SCL III (CMC) 0.73 1.05 0.81 SCL IV (CMC+foil) 1.31 1.00 0.89 SCL V (tiller in tube) 0.92 2.04 0.73 2 G 2 e 2 H2 G 2 e 2 H
  • 44. Results 1: Inoculation Methods • High correlation, low interaction among IM SCL ROS
  • 45. M & M 2: Greenhouse Phenotyping • 3 exp. for ROS, 2 exp. for SCL • Population: 641 advanced INIA’s inbred lines • 316 indica • 325 tropical japonica • Inoculation I (Agar discs) • Same greenhouse conditions and fungal isolates than IM • Experimental Design: • Federer’s unrep, augmented RCBD, 12 blocks • Replicated checks: El Paso 144, INIA Olimar, Tetep, Parao, INIA Tacuarí and Lemont • EU: pot with 4 plants • Stem width measured as covariate.
  • 46. M & M 2: Greenhouse Phenotyping • Statistical Models: BAS Compared based SPA on (Cullis et al. 2006) Yij, Yijmn disease score  intercept g Random block effect with and j={1,...,12} Gj = gk + cl genotypic effect, gk random effect of kth genoline with gk ~N(0,2 G), k={1,...,641} cl fixed effect of lth check, l={1,…,6} Rm random row effect, Rm ~N(0,2 r), m={1,...,35} Cn random column effect , Cn ~N(0,2 c), n={1,...,26} eij, eijmn residual, gk ~N(0,2 G) ijjiij GY eg  ijmninimjiijmn CRGY eg  )()( ),0(~ 2 Bi N g 2 2 2 1 G BLUP g v H  
  • 47. Results 2: Greenhouse Phenotyping • Medium to high H2. GxE interaction. Adapted sources of partial resistance
  • 48. M & M 3: Field Phenotyping • Same population than Greenhouse exp. • 2010, 2011, 2012: “Historical” data RCBD, 3 rep, natural infection. Checks: El Paso 144, INIA Olimar, Parao, INIA Tacuarí • 2013: Augmented alpha-lattice design, 6 rep, artificial inoculation • Same fungal isolates than greenhouse experiments. • Replicated checks: El Paso 144, INIA Olimar, Tetep, Parao, INIA Tacuarí and Lemont • EU: hill plots with ~10 adult plants • Length of life cycle measured as covariate.
  • 49. Materials & Methods 3: Field Phenotyping • Statistical Models: BAS Compared based COV on SPA (Cullis et al. 2006) CSP Yij, Yijmn disease score  overall mean g block effect, j={1,...,6} Gj = gk + cl genotypic effect, gk random effect of kth genoline, gk ~N(0,2 G), k={1,...,641} cl fixed effect of lth check, l={1,…,6} eij, eijmn residual, gk ~N(0,2 G) Rm row effect, Rm ~N(0,2 r), m={1,...,90} Cn column effect, Cn ~N(0,2 c), n={1,...,45} xij length of life cycle of ith genotype in jth block b regression slope of covariate ijjiij GY eg  ijijjiij xGY ebg  ijmnnmjiijmn CRGY eg  ijmnnmijjiijmn CRxGY ebg  2 2 2 1 G BLUP g v H  
  • 50. Results 3: Field Phenotyping (ROS) • Low to medium H2. GxE interaction. Adapted sources of partial resistance H2=0.42 H2=0.15 H2=0.06 H2=0.43
  • 51. Results 3: Field Phenotyping (SCL) • Medium to high H2. Lesser GxE interaction. Adapted sources of partial R H2=0.50 H2=0.24 H2=0.45 H2=0.72
  • 52. M & M 4: Genotypic data GBS raw data HapMaps 130K SNP Bioinformatic processing • Tag count (collapse identical reads) • Alignment with reference genome (Nipponbare) • Tassel Pipeline • Hapmap filtering • Lines with ≥5% SNP • SNP called in ≥5% lines • Allele frequency (intra line) ≥5% Indica 316 lines 94K SNP 641 lines 57K SNP FILLIN Imputation Japonica 325 lin. 44K SNP Indica 316 lines 18K SNP Japonica 325 lin. 12K SNP Conjoint SNP filtering Separate SNP filtering •SNP w/Allele frequency (inter lines) ≥5% •Lines w/ ≥5% SNP data < 50% missing
  • 53. Results 4: Genotypic data, whole, non imputed 641 lines 57K SNP • Genotype data: Most of the SNP are between-subesp. polymorphisms
  • 54. Results 4: Genotypic data, partial results Indica 316 lines 94K SNP 641 lines 57K SNP FILLIN Imputation Japonica 325 lin. 44K SNP Indica 316 lines 18K SNP Japonica 325 lin. 12K SNP Conjoint SNP filtering Separate SNP filtering •SNP w/Allele frequency (inter lines) ≥5% •Lines w/ ≥5% SNP data < 50% missing
  • 55. Results 4: Genotypic data, whole population 641 lines 57K SNP • Genetic Map: dense SNP evenly distributed in all 12 chr.
  • 56. Results 4: Genotypic data, whole population 641 lines 57K SNP • PCA: PC1: inter subspecies variation PC2: inter indica variation indica japonica
  • 57. Results 4: Genotypic data, whole population 641 lines 57K SNP • PCA: PC1 ~50% gv PC2 ~5% gv
  • 58. Results 4: Genotypic data, Indica ssp • Genotype data: Some big blocks with low LD decay. Indica 316 lines 18K SNP
  • 59. Results 4: Genotypic data, Indica ssp • Genetic Map: Many fixed regions, including all Chr. 11 Indica 316 lines 18K SNP
  • 60. Results 4: Genotypic data, Indica ssp • PCA: Over-represented “Olimar-like” lines from FLAR and INIA Indica 316 lines 18K SNP El Paso 144 INIA Olimar FLAR INIA
  • 61. Results 4: Genotypic data, Indica ssp • PCA: PC1 to 8 explain ~50%gv Indica 316 lines 18K SNP
  • 62. Results 4: Genotypic data, Japonica, non imputed • Genotype data: Haplotype blocks . Japonica 325 lin. 12K SNP
  • 63. Results 4: Genotypic data, Japonica ssp • Genetic Map: Many fixed regions Japonica 325 lin. 12K SNP
  • 64. Results 4: Genotypic data, Japonica ssp • PCA: weak intra- subspecies structure. Japonica 325 lin. 12K SNP L5287 EEA 404 INIA Tacuari
  • 65. Results 4: Genotypic data, Japonica ssp • PCA: More than 10 PC to explain 50% gv Japonica 325 lin. 12K SNP
  • 66. Materials & Methods 5: GWAS y: phenotypic data b : vector of SNP fixed effects X: incidence matrix that relates y with the SNP effects v: vector of fixed estimates of fitting to a sub- population (estimated with STRUCTURE) Q: incidence matrix for population effects u : vector of kinship coefficients, Var(u)=K2 , K kinship matrix Z: relates y with the estimated kinship coefficients e: vector of residual effects, Var(e)=I2 e eb  ZuQvXy • Mixed model (Yu et al. 2006, Malosetti et al. 2007) “Q+K”, as implemented in GWAS function from rrBLUP package: eb  QvXy “Eigenstrat”, as implemented in GWAS.analysis function from mmQTL package: y: phenotypic data b : vector of SNP fixed effects X: incidence matrix that relates y with the SNP effects v: vector of random PC scores (eigenvalues). Q: relates y with the PC scores e: vector of residual effects, Var(e)=I2 e
  • 67. Results 5: GWAS Indica 316 lines 94K SNP 641 lines 57K SNP FILLIN Imputation Japonica 325 lin. 44K SNP Indica 316 lines 18K SNP Japonica 325 lin. 12K SNP Conjoint SNP filtering Separate SNP filtering •SNP w/Allele frequency (inter lines) ≥5% •Lines w/ ≥5% SNP data < 50% missing Field GH Eigenstrat ROS SCL ROS SCL Q+K ROS SCL ROS SCL Eigenstrat ROS SCL ROS SCL Q+K ROS SCL ROS SCL Eigenstrat ROS SCL ROS SCL Q+K ROS SCL ROS SCL Eigenstrat ROS SCL ROS SCL K ROS SCL ROS SCL Eigenstrat ROS SCL ROS SCL K ROS SCL ROS SCL
  • 68. Results 5: GWAS – ROS in Japonica • QTLxE interaction. • Consistent QTL: chr. 3 ~1 Kb Field 2010 Field 2011 Field 2012 Field 2013 GH ROS1 GH ROS2 GH ROS3
  • 69. Results 5: GWAS – ROS in Indica • QTLxE interaction • Consistent QTL: chr. 3 ~1 Kb •. QTL chr. 3Field 2010 Field 2011 Field 2012 Field 2013 GH ROS1 GH ROS2 GH ROS3
  • 70. Results 5: GWAS – SCL in Japonica • QTLxE interaction. • Consistent QTL: chr. 3 ~1 Mb chr. 9 ~14 Mb Field 2010 Field 2011 Field 2012 Field 2013 GH SCL1 GH SCL2
  • 71. Results 4: GWAS – SCL in Indica Field 2010 Field 2011 Field 2012 Field 2013 GH SCL1 GH SCL2 • QTLxE interaction. • Consistent QTL: chr. 3 ~1 Mb chr. 9 ~14 Mb
  • 72. Results 4: GWAS Summary: • QTL at ~1 Kb Chr. 1 for both pathogens, both subspecies and all environments • QTL at ~14 Kb Chr. 9 for SCL, both subspecies, almost all environments
  • 73. Future Work • Greenhouse phenotyping for resistance to R. solani at CIAT • Analysis of phenotypic means • Association analysis: • LD blocks and haplotypes • GWAS for R. solani
  • 74. Coordinación Victoria Bonnecarrere Mejoramiento Pedro Blanco Fernando Pérez de Vida Fitopatología Sebastián Martínez Bioinformática Silvia Garaycochea Schubert Fernández Marcadores moleculares Victoria Bonnecarrere Wanda Iriarte Bioestadística Lucía Gutierrez Gastón Quero Natalia Berberián Juan Rosas Cornell University Eliana Monteverde Susan McCouch Jean-Luc Jannink Proyecto Mapeo Asociativo en Arroz Uruguayo