SlideShare a Scribd company logo
‫ر‬َ‫ـد‬ْ‫ق‬‫ِـ‬‫ن‬،،،‫لما‬‫اننا‬ ‫نصدق‬ْْ‫ق‬ِ‫ن‬‫ر‬َ‫د‬
LECTURE (08)
The Discrete Fourier Transform
Assist. Prof. Amr E. Mohamed
Introduction
 The discrete-time Fourier transform (DTFT) provided the frequency-
domain (ω) representation for absolutely summable sequences.
 The z-transform provided a generalized frequency-domain (z)
representation for arbitrary sequences.
 These transforms have two features in common.
 First, the transforms are defined for infinite-length sequences.
 Second, and the most important, they are functions of continuous variables
(ω or z).
 In other words, the discrete-time Fourier transform and the z-transform
are not numerically computable transforms.
 The Discrete Fourier Transform (DFT) avoids the two problems
mentioned and is a numerically computable transform that is suitable
for computer implementation.
2
Representation of Periodic
Sequences --- DFS
3
Periodic Sequences
 Let 𝑥(𝑛) is a periodic sequence with period N-Samples (the fundamental
period of the sequence).
 Notation: a sequence with period N is satisfying the condition
 where r is any integer.
4
   ),...1(),...,1(),0(),1(),...,1(),0(...,)(~  NxxxNxxxnx
x(n) x(n)
)(~)(~ rNnxnx 
Periodic Sequences
 From Fourier analysis we know that the periodic functions can be synthesized
as a linear combination of complex exponentials whose frequencies are
multiples (or harmonics) of the fundamental frequency (which in our case is
2π/N).
 The discrete version of the Fourier Series can be written as
 where { 𝑋(𝑘), 𝑘 = 0, ± 1, . . . , ∞} are called the discrete Fourier series
coefficients.
 Note That, for integer values of m, we have
(it is called Twiddle Factor)
5
 

k
kn
N
k
N
kn
j
k
kn
N
j
k WkX
N
ekX
N
eXnx )(
~1
)(
~1
)(~ 2
2


nmNk
N
N
nmNk
j
N
kn
j
kn
N WeeW )(
)(
22





Periodic Sequences
 As a result, the summation in the Discrete Fourier Series (DFS) should
contain only N terms:
 The Harmonics are
6





1
0
)(
~1
)(~
N
k
kn
NWkX
N
nx
knNj
k ene )/2(
)( 
 ,2,1,0 k
Inverse DFS
 The DFS coefficients are given by
 Proof
7







1
0
1
0
2
)(~)(~)(
~ N
k
kn
N
N
k
N
kn
j
WnxenxkX

DFSInverse
)(
~
)()(
~
)(~
1
)(
~
)(~
)(
~1
)(~
1
0
1
0
2
1
0
1
0
)(
21
0
2
1
0
21
0
21
0
2
kXkpPXenx
e
N
PXenx
eePX
N
enx
N
P
N
k
N
kn
j
N
P
N
k
N
nkP
jN
k
N
kn
j
N
k
N
kn
jN
P
N
Pn
jN
k
N
kn
j
















 
 























Synthesis and Analysis (DFS-Pairs)
8
Notation
)/2( Nj
N eW 

Synthesis





1
0
)(
~1
)(~
N
k
kn
NWkX
N
nx
Analysis
)(
~
)(~ kXnx  DFS
Both have
Period N




1
0
)(~)(
~ N
k
kn
NWnxKX
Example
9
k
k
n
kn
W
W
WkX
10
5
10
4
0
10
1
1
)(
~


 
0 1 2 3 4 5 6 7 8 9 n
)10/sin(
)2/sin()10/4(
k
k
e kj


 
Example
10
k
k
n
kn
W
W
WkX
10
5
10
4
0
10
1
1
)(
~


 
0 1 2 3 4 5 6 7 8 9 n
)10/sin(
)2/sin()10/4(
k
k
e kj


 
Example
11
k
k
n
kn
W
W
WkX
10
5
10
4
0
10
1
1
)(
~


 
0 1 2 3 4 5 6 7 8 9 n
)10/sin(
)2/sin()10/4(
k
k
e kj


 
DFS vs. FT
12
)(~ nx
0 N nN
0 n
)(nx





0
)()(
n
njj
enxeX





1
0
)(
N
n
nj
enx





1
0
)/2(
)(~)(
~ N
n
knNj
enxkX
Nk
j
eXkX
/2
)()(
~



Example
13
0 1 2 3 4 5 6 7 8 9 n
0 1 2 3 4 5 6 7 8 9 n
)(~ nx
)(nx
)2/sin(
)2/5sin(
1
1
)( 2
54
0 




 




 j
j
j
n
njj
e
e
e
eeX
)10/sin(
)2/sin(
)()(
~ )10/4(
10/2 k
k
eeXkX kj
k
j


 


Example
0 1 2 3 4 5 6 7 8 9 n
0 1 2 3 4 5 6 7 8 9 n
)(~ nx
)(nx
)2/sin(
)2/5sin(
1
1
)( 2
54
0 




 




 j
j
j
n
njj
e
e
e
eeX
14
)10/sin(
)2/sin(
)()(
~ )10/4(
10/2 k
k
eeXkX kj
k
j


 


0 1 2 3 4 5 6 7 8 9 n
0 1 2 3 4 5 6 7 8 9 n
)(~ nx
)(nx
Example
15
)2/sin(
)2/5sin(
1
1
)( 2
54
0 




 




 j
j
j
n
njj
e
e
e
eeX
)10/sin(
)2/sin(
)()(
~ )10/4(
10/2 k
k
eeXkX kj
k
j


 


Relation To The Z-transform
 Let 𝑥(𝑛) be a finite-duration sequence of duration 𝑁 such that
 Then we can compute its z-transform:
 Now we construct a periodic sequence 𝑥 𝑛 by periodically repeating
𝑥(𝑛) with period 𝑁, that is,
 The DFS of 𝑥 𝑛 is given by

16


 

Elsewhere
NnNonzero
nx
,0
)1(0,
)(





1
0
)(z)(
N
n
n
znxX


 

Elsewhere
Nnnx
nx
,0
)1(0),(~
)(











1
0
2
)(k)(
~ N
n
n
k
N
j
enxX

k
N
j
ez
zXX 2
)(k)(
~


Relation To The Z-transform
 which means that the DFS 𝑿(𝑘) represents 𝑁 evenly spaced samples of
the z-transform 𝑋(𝑧) around the unit circle.
17
Re(z)
Im(z)
z0
z1
z2
z3
z4
z5
z6
z7
1
N = 8


 
,)()( j
ez
j
zHeH
10,][
)()(
21
0
/2





 Nkenx
eXkX
N
nk
jN
n
Nk
j
k










N
kj
zk
2
exp
Re(z)
Im(z)
z0
z1
z2
z3
z4
z5
z6
z7
1
N = 8
18
Relation To The DTFT
Discrete Fourier Transform(DFT)
19
Recall of DTFT
 DTFT is not suitable for DSP applications because
 In DSP, we are able to compute the spectrum only at specific discrete values of ω
 Any signal in any DSP application can be measured only in a finite number of points.
 A finite signal measures at N-points:
 Where y(n) are the measurements taken at N-points
20









Nn
Nnny
n
nx
,0
)1(0),(
00
)(
Computation of DFT
 Recall of DTFT
 The DFT can be computed by:
 Truncate the summation so that it ranges over finite limits x[n] is a finite-length
sequence.
 Discretize ω to ωk  evaluate DTFT at a finite number of discrete frequencies.
 For an N-point sequence, only N values of frequency samples of X(ejw) at N
distinct frequency points, are sufficient to determine x[n]
and X(ejw) uniquely.
 So, by sampling the spectrum X(ω) in frequency domain
21
DFTenxX
N
X
N
n
N
kn
j





1
0
2
)(k)(
2
),X(kk)(



10,  Nkk
Computation of DFT
 The inverse DFT is given by:
 Proof
22
IDFTekX
N
x
N
k
N
kn
j
 


1
0
2
)(
1
n)(


 
 




























1
0
1
0
1
0
)(
2
1
0
21
0
2
)()()(n)(
1
)(n)(
)(
1
n)(
N
m
N
m
N
n
N
nmk
j
N
k
N
kn
jN
m
N
mk
j
nxnmmxx
e
N
mxx
eemx
N
x



The DFT Pair
23
N
j
N
N
k
kn
N
N
k
N
kn
j
N
n
kn
N
N
n
N
kn
j
eWwhere
NnWkX
N
x
ekX
N
xSynthesis
NkWnxX
enxXAnalysis



2
1
0
1
0
2
1
0
1
0
2
1,...,1,0)(
1
n)(
)(
1
n)(
1,...,1,0)(k)(
)(k)(




















Example
 Find the discrete Fourier Transform of the following N-points discrete
time signal
 Solution:
 On the board
24
   )1(,...),1(),0()(  Nxxxnx
Nth Root of Unity
252
1
2
1
10)
19)
2
1
2
1
8)
7)
2
1
2
1
6)
15)
2
1
2
1
4)
3)
2
1
2
1
2)
11)
9
8
2
9
8
8
8
2
8
8
7
8
2
7
8
6
8
2
6
8
5
8
2
5
8
4
8
2
4
8
3
8
2
3
8
2
8
2
2
8
1
8
2
1
8
0
8
2
0
8
jeW
eW
jeW
jeW
jeW
eW
jeW
jeW
jeW
eW
j
j
j
j
j
j
j
j
j
j






























1*
2/
2
)2/(







NN
k
N
k
N
k
N
Nk
N
k
N
Nk
N
WW
WW
WW
WW
N
j
N eW
2


Relation To The Z-transform
 Let 𝑥(𝑛) be a finite-duration sequence of duration 𝑁 such that
 Then we can compute its z-transform:
 Now we construct a periodic sequence 𝑥 𝑛 by periodically repeating
𝑥(𝑛) with period 𝑁, that is,
 The DFS of 𝑥 𝑛 is given by

26


 

Elsewhere
NnNonzero
nx
,0
)1(0,
)(





1
0
)(z)(
N
n
n
znxX


 

Elsewhere
Nnnx
nx
,0
)1(0),(~
)(











1
0
2
)(k)(
~ N
n
n
k
N
j
enxX

k
N
j
ez
zXX 2
)(k)(
~


Relation To The Z-transform
 which means that the DFS 𝑿(𝑘) represents 𝑁 evenly spaced samples of
the z-transform 𝑋(𝑧) around the unit circle.
27
Re(z)
Im(z)
z0
z1
z2
z3
z4
z5
z6
z7
1
N = 8


 
,)()( j
ez
j
zHeH
10,][
)()(
21
0
/2





 Nkenx
eXkX
N
nk
jN
n
Nk
j
k










N
kj
zk
2
exp
Re(z)
Im(z)
z0
z1
z2
z3
z4
z5
z6
z7
1
N = 8
28
Relation To The DTFT
DFT - Matrix Formulation
xWX
Nx
x
x
x
WWW
WWW
WWW
NX
X
X
X
NN
N
N
N
N
N
N
NNN
N
NNN


















































 


]1[
]2[
]1[
]0[
1
1
1
1111
)1(
)2(
)1(
)0(
)1)(1()1(21
)1(242
121







29
Computation Complexity
 To calculate the DFT of N-Points discrete time signal, we need:
 (N-1)2 Complex Multiplications
 N(N-1) Complex Additions.
30
IDFT - Matrix Formulation
XW
N
x
XWx
NX
X
X
X
WWW
WWW
WWW
N
Nx
x
x
x
NN
N
N
N
N
N
N
NNN
N
NNN
*
1
)1)(1()1(2)1(
)1(242
)1(21
1
]1[
]2[
]1[
]0[
1
1
1
1111
1
)1(
)2(
)1(
)0(































































31
Matrix Formulation
 Result: Inverse DFT is given by
 which follows easily by checking WHW = WWH = NI, where I denotes the
identity matrix. Hermitian transpose:
 Also, “*” denotes complex conjugation.
32
DFT Interpretation
 DFT sample X(k) specifies the magnitude and phase angle of the kth spectral
component of x[n].
 The amount of power that x[n] contains at a normalized frequency, fk, can be
determined from the power density spectrum defined as
33
)(spectrumPhase
|)(|spectrumMagnitude
kX
kX


10,
|)(|
)(
2
 Nk
N
kX
kSN
Periodicity of DFT Spectrum
 The DFT spectrum is periodic with period N (which is expected, since the DTFT
spectrum is periodic as well, but with period 2π).
34
)()(N)k(
)(N)k(
)(N)k(
2
2
1
0
2
1
0
)(
2
kXekXX
eenxX
enxX
nj
nj
N
n
N
nk
j
N
n
N
nNk
j






















Example
 Example: DFT of a rectangular pulse:
 the rectangular pulse is “interpreted” by the DFT as a spectral line at
frequency ω = 0. DFT and DTFT of a rectangular pulse (N=5)
35
Zero Padding
 What happens with the DFT of this rectangular pulse if we increase N by
zero padding:
 where x(0) = · · · = x(M − 1) = 1. Hence, DFT is
36
   0,...,0,0,0),1(,...),1(),0()(  Mxxxnx
(N-M) Positions
Zero Padding
 DFT and DTFT of a Rectangular Pulse with Zero Padding (N = 10, M = 5)
37
Zero Padding
 Zero padding of analyzed sequence results in “approximating” its DTFT
better,
 Zero padding cannot improve the resolution of spectral components,
because the resolution is “proportional” to 1/M rather than 1/N,
 Zero padding is very important for fast DFT implementation (FFT).
38
Frequency Interval/Resolution
 Frequency Interval/Resolution: DFT’s frequency resolution
 and covered frequency interval
 Frequency resolution is determined only by the length of the observation
interval, whereas the frequency interval is determined by the length of
sampling interval. Thus
 Increase sampling rate =) expand frequency interval,
 Increase observation time =) improve frequency resolution.
 Question: Does zero padding alter the frequency resolution?
 Answer: No, because resolution is determined by the length of observation
interval, and zero padding does not increase this length.
39
Example (DFT Resolution)
 Example (DFT Resolution): Two complex exponentials with two close frequencies
F1 = 10 Hz and F2 = 12 Hz sampled with the sampling interval T = 0.02 seconds.
Consider various data lengths N = 10, 15, 30, 100 with zero padding to 512 points.
 DFT with N=10 and zero padding to 512 points. Not resolved: F2−F1 = 2 Hz < 1/(NT) = 5 Hz.
40
Example (DFT Resolution)
 DFT with N = 30 and zero padding to 512 points. Resolved: F2 − F1 = 2 Hz > 1/(NT)=1.7 Hz.
41
Example (DFT Resolution)
 DFT with N=100 and zero padding to 512 points. Resolved: F2−F1 = 2 Hz > 1/(NT) = 0.5 Hz.
42
DSF VS DFT
 DFS and DFT pairs are identical, except that
 DFT is applied to finite sequence x(n),
 DFS is applied to periodic sequence .
 Conventional (continuous-time) FS vs. DFS
 CFS represents a continuous periodic signal using an infinite number of
complex exponentials, whereas
 DFS represents a discrete periodic signal using a finite number of complex
exponentials.
43
)(~ nx
Linear & Circular Convolution
44
Linear Convolution
 By Discrete Time Fourier Transform (DTFT)
45









-k
-k
x(k)k)-h(ny(n)
k)-x(nh(k)y(n)
x(n)*h(n)y(n)
)()()(  jjj
eXeHeY 
 )()( j
eYIDTFTny 
Circular Convolution
 Circular convolution of length N is
 By DFT
46
     
     
     








1
0k
C
1
0k
C
NC
kxk-nhny
k-nxkhny
nxnhny
N
N
N
N
)()()( kXkHkY 
 )()( kYIDFTnyC 
Convolution of two periodic sequences
47
How to Compute Circular Convolutions
 Method #1:
48
How to Compute Circular Convolutions
 Method #2:
 Compute the linear convolution and then alias it:
49
How to Compute Circular Convolutions
 Method #3:
 Compute 4-point DFTs, multiply, compute 4-point inverse DFT:
50
Using Cyclic Convs and DFTs to Compute Linear Convs:
51
52

More Related Content

What's hot

Digital Filters Part 1
Digital Filters Part 1Digital Filters Part 1
Digital Filters Part 1
Premier Farnell
 
D ecimation and interpolation
D ecimation and interpolationD ecimation and interpolation
D ecimation and interpolationSuchi Verma
 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
Abhishek Choksi
 
FILTER BANKS
FILTER BANKSFILTER BANKS
FILTER BANKS
Sanjana Prasad
 
Discrete-Time Signal Processing
Discrete-Time Signal ProcessingDiscrete-Time Signal Processing
Discrete-Time Signal Processing
lancer350
 
Dsp U Lec04 Discrete Time Signals & Systems
Dsp U   Lec04 Discrete Time Signals & SystemsDsp U   Lec04 Discrete Time Signals & Systems
Dsp U Lec04 Discrete Time Signals & Systems
taha25
 
digital signal processing lecture 1.pptx
digital signal processing lecture 1.pptxdigital signal processing lecture 1.pptx
digital signal processing lecture 1.pptx
ImranHasan760046
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
Amr E. Mohamed
 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
Amr E. Mohamed
 
Dft and its applications
Dft and its applicationsDft and its applications
Dft and its applicationsAgam Goel
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
Amr E. Mohamed
 
Basics of Digital Filters
Basics of Digital FiltersBasics of Digital Filters
Basics of Digital Filters
op205
 
IIR filter realization using direct form I & II
IIR filter realization using direct form I & IIIIR filter realization using direct form I & II
IIR filter realization using direct form I & II
Sarang Joshi
 
Voltage Regulators IC
Voltage Regulators ICVoltage Regulators IC
Voltage Regulators IC
Kundan Parmar
 
Design of digital filters
Design of digital filtersDesign of digital filters
Design of digital filters
Naila Bibi
 
Fir filter design using Frequency sampling method
Fir filter design using Frequency sampling methodFir filter design using Frequency sampling method
Fir filter design using Frequency sampling method
Sarang Joshi
 
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
SAMPLING & RECONSTRUCTION  OF DISCRETE TIME SIGNALSAMPLING & RECONSTRUCTION  OF DISCRETE TIME SIGNAL
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
karan sati
 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transform
op205
 
Angle Modulation
Angle ModulationAngle Modulation
Angle Modulation
sangeetha rakhi
 

What's hot (20)

Digital Filters Part 1
Digital Filters Part 1Digital Filters Part 1
Digital Filters Part 1
 
digital filters
digital filtersdigital filters
digital filters
 
D ecimation and interpolation
D ecimation and interpolationD ecimation and interpolation
D ecimation and interpolation
 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
 
FILTER BANKS
FILTER BANKSFILTER BANKS
FILTER BANKS
 
Discrete-Time Signal Processing
Discrete-Time Signal ProcessingDiscrete-Time Signal Processing
Discrete-Time Signal Processing
 
Dsp U Lec04 Discrete Time Signals & Systems
Dsp U   Lec04 Discrete Time Signals & SystemsDsp U   Lec04 Discrete Time Signals & Systems
Dsp U Lec04 Discrete Time Signals & Systems
 
digital signal processing lecture 1.pptx
digital signal processing lecture 1.pptxdigital signal processing lecture 1.pptx
digital signal processing lecture 1.pptx
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
 
Dft and its applications
Dft and its applicationsDft and its applications
Dft and its applications
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
 
Basics of Digital Filters
Basics of Digital FiltersBasics of Digital Filters
Basics of Digital Filters
 
IIR filter realization using direct form I & II
IIR filter realization using direct form I & IIIIR filter realization using direct form I & II
IIR filter realization using direct form I & II
 
Voltage Regulators IC
Voltage Regulators ICVoltage Regulators IC
Voltage Regulators IC
 
Design of digital filters
Design of digital filtersDesign of digital filters
Design of digital filters
 
Fir filter design using Frequency sampling method
Fir filter design using Frequency sampling methodFir filter design using Frequency sampling method
Fir filter design using Frequency sampling method
 
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
SAMPLING & RECONSTRUCTION  OF DISCRETE TIME SIGNALSAMPLING & RECONSTRUCTION  OF DISCRETE TIME SIGNAL
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transform
 
Angle Modulation
Angle ModulationAngle Modulation
Angle Modulation
 

Similar to DSP_FOEHU - Lec 08 - The Discrete Fourier Transform

lec07_DFT.pdf
lec07_DFT.pdflec07_DFT.pdf
lec07_DFT.pdf
shannlevia123
 
Dft
DftDft
Circular conv_7767038.ppt
Circular conv_7767038.pptCircular conv_7767038.ppt
Circular conv_7767038.ppt
ASMZahidKausar
 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSP
roykousik2020
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representationNikolay Karpov
 
ch3-2
ch3-2ch3-2
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
Alexander Litvinenko
 
Radix-2 DIT FFT
Radix-2 DIT FFT Radix-2 DIT FFT
Radix-2 DIT FFT
Sarang Joshi
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Alexander Litvinenko
 
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
TANVIRAHMED611926
 
Digital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdfDigital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdf
AbrahamGadissa
 
UNIT-2 DSP.ppt
UNIT-2 DSP.pptUNIT-2 DSP.ppt
UNIT-2 DSP.ppt
shailaja68
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
ssuser2797e4
 
Module1_dsffffffffffffffffffffgggpa.pptx
Module1_dsffffffffffffffffffffgggpa.pptxModule1_dsffffffffffffffffffffgggpa.pptx
Module1_dsffffffffffffffffffffgggpa.pptx
realme6igamerr
 
An Optimized Transform for ECG Signal Compression
An Optimized Transform for ECG Signal CompressionAn Optimized Transform for ECG Signal Compression
An Optimized Transform for ECG Signal Compression
IDES Editor
 
lecture_16.ppt
lecture_16.pptlecture_16.ppt
lecture_16.ppt
AkasGkamal2
 
Image trnsformations
Image trnsformationsImage trnsformations
Image trnsformationsJohn Williams
 
Convolution and FFT
Convolution and FFTConvolution and FFT
Convolution and FFT
Chenghao Jin
 
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier AnalysisDSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
Amr E. Mohamed
 

Similar to DSP_FOEHU - Lec 08 - The Discrete Fourier Transform (20)

lec07_DFT.pdf
lec07_DFT.pdflec07_DFT.pdf
lec07_DFT.pdf
 
Dft
DftDft
Dft
 
Circular conv_7767038.ppt
Circular conv_7767038.pptCircular conv_7767038.ppt
Circular conv_7767038.ppt
 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSP
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representation
 
ch3-2
ch3-2ch3-2
ch3-2
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Radix-2 DIT FFT
Radix-2 DIT FFT Radix-2 DIT FFT
Radix-2 DIT FFT
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
 
Digital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdfDigital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdf
 
UNIT-2 DSP.ppt
UNIT-2 DSP.pptUNIT-2 DSP.ppt
UNIT-2 DSP.ppt
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
Module1_dsffffffffffffffffffffgggpa.pptx
Module1_dsffffffffffffffffffffgggpa.pptxModule1_dsffffffffffffffffffffgggpa.pptx
Module1_dsffffffffffffffffffffgggpa.pptx
 
An Optimized Transform for ECG Signal Compression
An Optimized Transform for ECG Signal CompressionAn Optimized Transform for ECG Signal Compression
An Optimized Transform for ECG Signal Compression
 
lecture_16.ppt
lecture_16.pptlecture_16.ppt
lecture_16.ppt
 
Image trnsformations
Image trnsformationsImage trnsformations
Image trnsformations
 
Unit ii
Unit iiUnit ii
Unit ii
 
Convolution and FFT
Convolution and FFTConvolution and FFT
Convolution and FFT
 
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier AnalysisDSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
 

More from Amr E. Mohamed

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Amr E. Mohamed
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
Amr E. Mohamed
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
Amr E. Mohamed
 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systems
Amr E. Mohamed
 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
Amr E. Mohamed
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
Amr E. Mohamed
 
SE2018_Lec 17_ Coding
SE2018_Lec 17_ CodingSE2018_Lec 17_ Coding
SE2018_Lec 17_ Coding
Amr E. Mohamed
 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-Tools
Amr E. Mohamed
 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)
Amr E. Mohamed
 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design Patterns
Amr E. Mohamed
 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - Introduction
Amr E. Mohamed
 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)
Amr E. Mohamed
 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software Testing
Amr E. Mohamed
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital Filters
Amr E. Mohamed
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
Amr E. Mohamed
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
Amr E. Mohamed
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
Amr E. Mohamed
 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software Design
Amr E. Mohamed
 
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingDSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
Amr E. Mohamed
 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course Outlines
Amr E. Mohamed
 

More from Amr E. Mohamed (20)

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systems
 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
 
SE2018_Lec 17_ Coding
SE2018_Lec 17_ CodingSE2018_Lec 17_ Coding
SE2018_Lec 17_ Coding
 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-Tools
 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)
 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design Patterns
 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - Introduction
 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)
 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software Testing
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital Filters
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software Design
 
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingDSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course Outlines
 

Recently uploaded

Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 

Recently uploaded (20)

Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 

DSP_FOEHU - Lec 08 - The Discrete Fourier Transform

  • 2. Introduction  The discrete-time Fourier transform (DTFT) provided the frequency- domain (ω) representation for absolutely summable sequences.  The z-transform provided a generalized frequency-domain (z) representation for arbitrary sequences.  These transforms have two features in common.  First, the transforms are defined for infinite-length sequences.  Second, and the most important, they are functions of continuous variables (ω or z).  In other words, the discrete-time Fourier transform and the z-transform are not numerically computable transforms.  The Discrete Fourier Transform (DFT) avoids the two problems mentioned and is a numerically computable transform that is suitable for computer implementation. 2
  • 4. Periodic Sequences  Let 𝑥(𝑛) is a periodic sequence with period N-Samples (the fundamental period of the sequence).  Notation: a sequence with period N is satisfying the condition  where r is any integer. 4    ),...1(),...,1(),0(),1(),...,1(),0(...,)(~  NxxxNxxxnx x(n) x(n) )(~)(~ rNnxnx 
  • 5. Periodic Sequences  From Fourier analysis we know that the periodic functions can be synthesized as a linear combination of complex exponentials whose frequencies are multiples (or harmonics) of the fundamental frequency (which in our case is 2π/N).  The discrete version of the Fourier Series can be written as  where { 𝑋(𝑘), 𝑘 = 0, ± 1, . . . , ∞} are called the discrete Fourier series coefficients.  Note That, for integer values of m, we have (it is called Twiddle Factor) 5    k kn N k N kn j k kn N j k WkX N ekX N eXnx )( ~1 )( ~1 )(~ 2 2   nmNk N N nmNk j N kn j kn N WeeW )( )( 22     
  • 6. Periodic Sequences  As a result, the summation in the Discrete Fourier Series (DFS) should contain only N terms:  The Harmonics are 6      1 0 )( ~1 )(~ N k kn NWkX N nx knNj k ene )/2( )(   ,2,1,0 k
  • 7. Inverse DFS  The DFS coefficients are given by  Proof 7        1 0 1 0 2 )(~)(~)( ~ N k kn N N k N kn j WnxenxkX  DFSInverse )( ~ )()( ~ )(~ 1 )( ~ )(~ )( ~1 )(~ 1 0 1 0 2 1 0 1 0 )( 21 0 2 1 0 21 0 21 0 2 kXkpPXenx e N PXenx eePX N enx N P N k N kn j N P N k N nkP jN k N kn j N k N kn jN P N Pn jN k N kn j                                           
  • 8. Synthesis and Analysis (DFS-Pairs) 8 Notation )/2( Nj N eW   Synthesis      1 0 )( ~1 )(~ N k kn NWkX N nx Analysis )( ~ )(~ kXnx  DFS Both have Period N     1 0 )(~)( ~ N k kn NWnxKX
  • 9. Example 9 k k n kn W W WkX 10 5 10 4 0 10 1 1 )( ~     0 1 2 3 4 5 6 7 8 9 n )10/sin( )2/sin()10/4( k k e kj    
  • 10. Example 10 k k n kn W W WkX 10 5 10 4 0 10 1 1 )( ~     0 1 2 3 4 5 6 7 8 9 n )10/sin( )2/sin()10/4( k k e kj    
  • 11. Example 11 k k n kn W W WkX 10 5 10 4 0 10 1 1 )( ~     0 1 2 3 4 5 6 7 8 9 n )10/sin( )2/sin()10/4( k k e kj    
  • 12. DFS vs. FT 12 )(~ nx 0 N nN 0 n )(nx      0 )()( n njj enxeX      1 0 )( N n nj enx      1 0 )/2( )(~)( ~ N n knNj enxkX Nk j eXkX /2 )()( ~   
  • 13. Example 13 0 1 2 3 4 5 6 7 8 9 n 0 1 2 3 4 5 6 7 8 9 n )(~ nx )(nx )2/sin( )2/5sin( 1 1 )( 2 54 0             j j j n njj e e e eeX )10/sin( )2/sin( )()( ~ )10/4( 10/2 k k eeXkX kj k j      
  • 14. Example 0 1 2 3 4 5 6 7 8 9 n 0 1 2 3 4 5 6 7 8 9 n )(~ nx )(nx )2/sin( )2/5sin( 1 1 )( 2 54 0             j j j n njj e e e eeX 14 )10/sin( )2/sin( )()( ~ )10/4( 10/2 k k eeXkX kj k j      
  • 15. 0 1 2 3 4 5 6 7 8 9 n 0 1 2 3 4 5 6 7 8 9 n )(~ nx )(nx Example 15 )2/sin( )2/5sin( 1 1 )( 2 54 0             j j j n njj e e e eeX )10/sin( )2/sin( )()( ~ )10/4( 10/2 k k eeXkX kj k j      
  • 16. Relation To The Z-transform  Let 𝑥(𝑛) be a finite-duration sequence of duration 𝑁 such that  Then we can compute its z-transform:  Now we construct a periodic sequence 𝑥 𝑛 by periodically repeating 𝑥(𝑛) with period 𝑁, that is,  The DFS of 𝑥 𝑛 is given by  16      Elsewhere NnNonzero nx ,0 )1(0, )(      1 0 )(z)( N n n znxX      Elsewhere Nnnx nx ,0 )1(0),(~ )(            1 0 2 )(k)( ~ N n n k N j enxX  k N j ez zXX 2 )(k)( ~  
  • 17. Relation To The Z-transform  which means that the DFS 𝑿(𝑘) represents 𝑁 evenly spaced samples of the z-transform 𝑋(𝑧) around the unit circle. 17 Re(z) Im(z) z0 z1 z2 z3 z4 z5 z6 z7 1 N = 8
  • 18.     ,)()( j ez j zHeH 10,][ )()( 21 0 /2       Nkenx eXkX N nk jN n Nk j k           N kj zk 2 exp Re(z) Im(z) z0 z1 z2 z3 z4 z5 z6 z7 1 N = 8 18 Relation To The DTFT
  • 20. Recall of DTFT  DTFT is not suitable for DSP applications because  In DSP, we are able to compute the spectrum only at specific discrete values of ω  Any signal in any DSP application can be measured only in a finite number of points.  A finite signal measures at N-points:  Where y(n) are the measurements taken at N-points 20          Nn Nnny n nx ,0 )1(0),( 00 )(
  • 21. Computation of DFT  Recall of DTFT  The DFT can be computed by:  Truncate the summation so that it ranges over finite limits x[n] is a finite-length sequence.  Discretize ω to ωk  evaluate DTFT at a finite number of discrete frequencies.  For an N-point sequence, only N values of frequency samples of X(ejw) at N distinct frequency points, are sufficient to determine x[n] and X(ejw) uniquely.  So, by sampling the spectrum X(ω) in frequency domain 21 DFTenxX N X N n N kn j      1 0 2 )(k)( 2 ),X(kk)(    10,  Nkk
  • 22. Computation of DFT  The inverse DFT is given by:  Proof 22 IDFTekX N x N k N kn j     1 0 2 )( 1 n)(                                   1 0 1 0 1 0 )( 2 1 0 21 0 2 )()()(n)( 1 )(n)( )( 1 n)( N m N m N n N nmk j N k N kn jN m N mk j nxnmmxx e N mxx eemx N x   
  • 24. Example  Find the discrete Fourier Transform of the following N-points discrete time signal  Solution:  On the board 24    )1(,...),1(),0()(  Nxxxnx
  • 25. Nth Root of Unity 252 1 2 1 10) 19) 2 1 2 1 8) 7) 2 1 2 1 6) 15) 2 1 2 1 4) 3) 2 1 2 1 2) 11) 9 8 2 9 8 8 8 2 8 8 7 8 2 7 8 6 8 2 6 8 5 8 2 5 8 4 8 2 4 8 3 8 2 3 8 2 8 2 2 8 1 8 2 1 8 0 8 2 0 8 jeW eW jeW jeW jeW eW jeW jeW jeW eW j j j j j j j j j j                               1* 2/ 2 )2/(        NN k N k N k N Nk N k N Nk N WW WW WW WW N j N eW 2  
  • 26. Relation To The Z-transform  Let 𝑥(𝑛) be a finite-duration sequence of duration 𝑁 such that  Then we can compute its z-transform:  Now we construct a periodic sequence 𝑥 𝑛 by periodically repeating 𝑥(𝑛) with period 𝑁, that is,  The DFS of 𝑥 𝑛 is given by  26      Elsewhere NnNonzero nx ,0 )1(0, )(      1 0 )(z)( N n n znxX      Elsewhere Nnnx nx ,0 )1(0),(~ )(            1 0 2 )(k)( ~ N n n k N j enxX  k N j ez zXX 2 )(k)( ~  
  • 27. Relation To The Z-transform  which means that the DFS 𝑿(𝑘) represents 𝑁 evenly spaced samples of the z-transform 𝑋(𝑧) around the unit circle. 27 Re(z) Im(z) z0 z1 z2 z3 z4 z5 z6 z7 1 N = 8
  • 28.     ,)()( j ez j zHeH 10,][ )()( 21 0 /2       Nkenx eXkX N nk jN n Nk j k           N kj zk 2 exp Re(z) Im(z) z0 z1 z2 z3 z4 z5 z6 z7 1 N = 8 28 Relation To The DTFT
  • 29. DFT - Matrix Formulation xWX Nx x x x WWW WWW WWW NX X X X NN N N N N N N NNN N NNN                                                       ]1[ ]2[ ]1[ ]0[ 1 1 1 1111 )1( )2( )1( )0( )1)(1()1(21 )1(242 121        29
  • 30. Computation Complexity  To calculate the DFT of N-Points discrete time signal, we need:  (N-1)2 Complex Multiplications  N(N-1) Complex Additions. 30
  • 31. IDFT - Matrix Formulation XW N x XWx NX X X X WWW WWW WWW N Nx x x x NN N N N N N N NNN N NNN * 1 )1)(1()1(2)1( )1(242 )1(21 1 ]1[ ]2[ ]1[ ]0[ 1 1 1 1111 1 )1( )2( )1( )0(                                                                31
  • 32. Matrix Formulation  Result: Inverse DFT is given by  which follows easily by checking WHW = WWH = NI, where I denotes the identity matrix. Hermitian transpose:  Also, “*” denotes complex conjugation. 32
  • 33. DFT Interpretation  DFT sample X(k) specifies the magnitude and phase angle of the kth spectral component of x[n].  The amount of power that x[n] contains at a normalized frequency, fk, can be determined from the power density spectrum defined as 33 )(spectrumPhase |)(|spectrumMagnitude kX kX   10, |)(| )( 2  Nk N kX kSN
  • 34. Periodicity of DFT Spectrum  The DFT spectrum is periodic with period N (which is expected, since the DTFT spectrum is periodic as well, but with period 2π). 34 )()(N)k( )(N)k( )(N)k( 2 2 1 0 2 1 0 )( 2 kXekXX eenxX enxX nj nj N n N nk j N n N nNk j                      
  • 35. Example  Example: DFT of a rectangular pulse:  the rectangular pulse is “interpreted” by the DFT as a spectral line at frequency ω = 0. DFT and DTFT of a rectangular pulse (N=5) 35
  • 36. Zero Padding  What happens with the DFT of this rectangular pulse if we increase N by zero padding:  where x(0) = · · · = x(M − 1) = 1. Hence, DFT is 36    0,...,0,0,0),1(,...),1(),0()(  Mxxxnx (N-M) Positions
  • 37. Zero Padding  DFT and DTFT of a Rectangular Pulse with Zero Padding (N = 10, M = 5) 37
  • 38. Zero Padding  Zero padding of analyzed sequence results in “approximating” its DTFT better,  Zero padding cannot improve the resolution of spectral components, because the resolution is “proportional” to 1/M rather than 1/N,  Zero padding is very important for fast DFT implementation (FFT). 38
  • 39. Frequency Interval/Resolution  Frequency Interval/Resolution: DFT’s frequency resolution  and covered frequency interval  Frequency resolution is determined only by the length of the observation interval, whereas the frequency interval is determined by the length of sampling interval. Thus  Increase sampling rate =) expand frequency interval,  Increase observation time =) improve frequency resolution.  Question: Does zero padding alter the frequency resolution?  Answer: No, because resolution is determined by the length of observation interval, and zero padding does not increase this length. 39
  • 40. Example (DFT Resolution)  Example (DFT Resolution): Two complex exponentials with two close frequencies F1 = 10 Hz and F2 = 12 Hz sampled with the sampling interval T = 0.02 seconds. Consider various data lengths N = 10, 15, 30, 100 with zero padding to 512 points.  DFT with N=10 and zero padding to 512 points. Not resolved: F2−F1 = 2 Hz < 1/(NT) = 5 Hz. 40
  • 41. Example (DFT Resolution)  DFT with N = 30 and zero padding to 512 points. Resolved: F2 − F1 = 2 Hz > 1/(NT)=1.7 Hz. 41
  • 42. Example (DFT Resolution)  DFT with N=100 and zero padding to 512 points. Resolved: F2−F1 = 2 Hz > 1/(NT) = 0.5 Hz. 42
  • 43. DSF VS DFT  DFS and DFT pairs are identical, except that  DFT is applied to finite sequence x(n),  DFS is applied to periodic sequence .  Conventional (continuous-time) FS vs. DFS  CFS represents a continuous periodic signal using an infinite number of complex exponentials, whereas  DFS represents a discrete periodic signal using a finite number of complex exponentials. 43 )(~ nx
  • 44. Linear & Circular Convolution 44
  • 45. Linear Convolution  By Discrete Time Fourier Transform (DTFT) 45          -k -k x(k)k)-h(ny(n) k)-x(nh(k)y(n) x(n)*h(n)y(n) )()()(  jjj eXeHeY   )()( j eYIDTFTny 
  • 46. Circular Convolution  Circular convolution of length N is  By DFT 46                           1 0k C 1 0k C NC kxk-nhny k-nxkhny nxnhny N N N N )()()( kXkHkY   )()( kYIDFTnyC 
  • 47. Convolution of two periodic sequences 47
  • 48. How to Compute Circular Convolutions  Method #1: 48
  • 49. How to Compute Circular Convolutions  Method #2:  Compute the linear convolution and then alias it: 49
  • 50. How to Compute Circular Convolutions  Method #3:  Compute 4-point DFTs, multiply, compute 4-point inverse DFT: 50
  • 51. Using Cyclic Convs and DFTs to Compute Linear Convs: 51
  • 52. 52