SlideShare a Scribd company logo
Deep Learningのための
専用プロセッサ「MN-Core」
の開発と活用
Hiroya Kaneko
2022/10/19 融合情報学特別講義Ⅲ
ここからは
Deep Learningのための
計算機インフラについて
話します
自己紹介 - 金子 紘也 (Hiroya Kaneko)
● 2017/4- 株式会社Preferred Networks, Engineering Manager
— Deep Learningの高速化のための計算機基盤
— MN-Coreの開発/検証, MN-Core向けソフトウェアスタックの開発/実活用
● バックグラウンド
● HPC向けインタコネクトの研究@筑波大学(2011-2013)
● 通信キャリア向けネットワーク仮想化(SDN/NFV) @電機メーカ研究所(2013-2017)
● ハードウェア屋さんではない
目次
● PFNにとっての計算能力の位置付け
● 代表的なDeep Learningの高速化手法
● なぜ今プロセッサ開発なのか?
● MN-Coreの概要
● 開発チームの働き方
● 最近の成果
○ Green500における成果
○ DL Workloadにおける成果
○ Simulation WorkloadにおけるFeasibility Study
豊富な計算資源と高度な技術を基盤に複数の事業を創出
PFNを支える技術と事業内容
Computer Vision(コンピュータビジョン) Data Analytics(データ解析)
Navigation(ナビゲーション)
Visual Inspection(外観検査)
Pose(ポーズ推定)
Scene(シーン解析)
Image Segmentation
Anomaly Detection(異常検知)
Optimization(最適化)
Time series data(時系列データ)
Infrastructure (インフラ技術)
Machine Learning and Deep Learning(機械学習と深層学習)
Manufacturing Transportation Bio & Healthcare
Personal Robot Visual Inspection Entertainment
PFN
Technology
Business
Object Detection(物体検出)
ディープラーニング(深層学習)とは
● 層が深く、幅も広いニューラルネットワーク
を利用した機械学習手法の一手法
● 画像認識、音声認識、強化学習、自然言語処理
などで劇的な精度向上を果たし、その多くが既に実用化されている
2014年の一般画像認識コンテストで優勝した
22層からなるのGoogLeNetの例 [Google 2014]
The graph was excerptedfrom https://leonardoaraujosantos.gitbooks.io/artificial-
inteligence/content/object_localization_and_detection.html
深層学習の要求計算量の増大
最先端の研究においてモデルサイズは増加
する傾向
● 画像→動画/立体、画像の高精細化
● 言語処理モデルの大規模化
● Foundation Model
NAS (Neural Architecture Search)
● アーキテクチャ探索の自動化
● 人ではなく、計算能力がボトルネック
→ 計算力の強化 = 競争力の強化
-> PFNが計算能力に対して投資する理由
The graph was excerptedfrom Shaden Smith et al. (2022)
Using DeepSpeed and Megatron to Train Megatron-TuringNLG 530B, A Large-Scale Generative Language Model
● PFNにとっての計算能力の位置付け
● 代表的なDeep Learningの高速化手法
● なぜ今プロセッサ開発なのか?
● MN-Coreの概要
● 開発チームの働き方
● 最近の成果
○ Green500における成果
○ DL Workloadにおける成果
○ Simulation WorkloadにおけるFeasibility Study
目次
Deep Learning の高速化
● Scale-out (分散深層学習)
– たくさんのプロセッサをつなげて高速化
● Keywords: データ並列、モデル並列 , 計算と通信
のオーバラップ
● Scale-up (専用アクセラレータ)
– はやいプロセッサを使って高速化
● Keywords: Inference/Training専用アクセラレー
タ
同期型データ並列による学習の高速化
● 同期型データ並列によって、2年弱で100倍以上高速化した
— 元々の論文では8枚のGPUで数週間要していたものは、2.2minに高速化
— バッチサイズを増やせる問題については、GPU台数に対してほぼリニアに性能向上が達
成できる程度にノウハウがたまっている
● 常に適用できる万能な手法ではない
— バッチサイズを増やしても精度や学習の安定性に問題が出ないモデルのにのみ適用可能
Company Processor Date Training time
PFN TITAN X *128 17/1 4h
Facebook P100 *256 17/6 1h
PFN P100 *1024 17/11 15min
SONY V100 *2176 18/11 3.7min
Google TPUv3 *1024 18/11 2.2min
Deep Learning の高速化
● Scale-out (分散深層学習)
– たくさんのプロセッサをつなげて高速化
● Keywords: データ並列、モデル並列 , 計算と通信
のオーバラップ
● Scale-up (専用アクセラレータ)
– はやいプロセッサを使って高速化
● Keywords: Inference/Training専用アクセラレー
タ
The image was excerptedfrom https://github.com/basicmi/AI-Chip
目次
● PFNにとっての計算能力の位置付け
● 代表的なDeep Learningの高速化手法
● なぜ今プロセッサ開発なのか?
● MN-Coreの概要
● 開発チームの働き方
● 最近の成果
○ Green500における成果
○ DL Workloadにおける成果
○ Simulation WorkloadにおけるFeasibility Study
なぜ今DL専用アクセラレータ開発なのか?
● 「大きな計算能力が必要」という需要の観点以外にも、ハードウェア開発を
加速させる背景がある
— Deep Learningの応用範囲が拡大していること
— 分散学習では高速化が難しいワークロードが一部存在すること
— Deep Learningにおいて必要とされる演算精度がこれまでの科学技術計算と異なること
— 演算手順が計算グラフによって宣言的に定義されること
演算精度について(Training)
● Trainingでは混合精度 (fp16乗算+fp32加算)の活用が進む
— NVIDIA Volta: Tensor Core (4x4の混合積和演算, fp16 matmul, fp32 accumulate)
— Google TPU: BFLOAT16 (brain float)
◆ fp16よりもdynamic rangeが広い
◆ 勾配のunderflow対策
● 最新のH100(Hopper)ではfp8 formatも登場
● Deep learningに最適な数値表現とはなにか?という問題には答えは出ていない
— fp16でもCNN, RNN, GANなどのTrainingがある程度可能であるという報告(arxiv:1905.12322)
— fp8についても研究がいくつか出てきつつある(arxiv:2001.05674)
— 使う観点ではcuDNNなどが対応を始めているが、正しく利用するためにはノウハウが必要
The figure was excerpted from https://cloud.google.com/tpu/docs/bfloat16
演算精度について(Inference)
● Inferenceでは、よりAggressiveな最適化が可能
— Int8, Int4, binary
● 学習済みモデルをターゲットアーキテクチャに対して最適化する
— モデルの量子化 (Quantization)
◆ モデルのN-bit整数化
— モデルの剪定 (Pruning)
◆ 構築済みモデルのSparse化 (主にSpMV Acceleratorとの組み合わせ)
— 小さいモデルへの蒸留 (distillation)
◆ 小さなモデルに教師モデルの分布を学習させる
● Emerging deviceを利用したものも様々提案がある(が、現時点ではまだ
MNISTなどのToy Problemが解ける程度という印象)
なぜ今DL専用アクセラレータ開発なのか?
● 「大きな計算能力が必要」という需要の観点以外にも、ハードウェア開発を
加速させる背景がある
— Deep Learningの応用範囲が拡大していること
— 分散学習では高速化が難しいワークロードが一部存在すること
— Deep Learningにおいて必要とされる演算精度がこれまでの科学技術計算と異なること
— 演算手順が計算グラフによって宣言的に定義されること
計算グラフと中間表現
● Deep learning
のモデルは計算
グラフとして表
現できる
● 手続き的な表現
でなく宣言的な
表現 (グラフ
IR)が手に入る
!
— 中間表現の標準
化も進む
(ONNX)
手続き的な表現 宣言的な表現
計算グラフが手に入るうれしさ
- アーキテクチャ観点から
手続き的な計算
● メモリへのアクセスパターンが不明
であるため、HWによる高度なキャ
ッシュ機構が必要
● 演算順序が実行時に決定されるため
、分岐予測/投機実行が必要
● 並列性をプログラマが陽に制御する
ため、コンパイラによる並列性の抽
出/活用が困難
計算グラフにより定義される計算
● メモリのアクセスパターンがプログ
ラム全域で実行前に明確であるため
、キャッシュ機構無し(scratch pad
only)で最適なメモリ配置戦略をオ
フラインで決定可能
● 演算順序が実行前に確定することが
多いため分岐予測の重要性低
● 依存関係が明確なため並列性の抽出
が容易
-> 高度なオフラインスケジューラ(コンパイラ)を前提としたシンプ
ルかつ並列度の高いプロセッサアーキテクチャを現実的に利用可能
深層学習コンパイラ
● グラフIRを入力に、ターゲット依存の最適化を行うコンパイラ
The figure was excerptedfrom Tianqi Chen et al. TVM: An AutomatedEnd-to-End Optimizing Compiler for Deep Learning
https://arxiv.org/abs/1802.04799
● オペレータ単位でプロセッサ専用
の高効率カーネルを定義可能
● 演算のfusionやスケジューリング
、メモリ配置の最適化
● 演算のスケジューリング/メモリ配
置の最適化
● 再計算
— 計算量を増加させることで、メモリ使用
量を削減する
なぜ今PFNがDL専用アクセラレータ開発なのか?
● 「大きな計算能力が必要」という需要の観点以外にも、ハードウェア開発を
加速させる背景がある
— Deep Learningの応用範囲が拡大していること
— 分散学習では高速化が難しいワークロードが一部存在すること
-> 実際に社内にワークロードが存在し、幅広いタスクの高速化が図れる
— Deep Learning において必要とされる演算精度がこれまでの科学技術計算と異なること
-> モデルの改善も含めた専用アクセラレータの活用の研究開発が可能
— 演算手順が計算グラフによって宣言的に定義されること
-> シンプルなHW + それを活かす高度なコンパイラという構成によるアーキテクチャレ
ベルの性能向上の余地がある
ソフトウェアに強い企業だからこそハードウェアを作っている
目次
● PFNにとっての計算能力の位置付け
● 代表的なDeep Learningの高速化手法
● なぜ今プロセッサ開発なのか?
● MN-Coreの概要
● 開発チームの働き方
● 最近の成果
○ Green500における成果
○ DL Workloadにおける成果
○ Simulation WorkloadにおけるFeasibility Study
MN-Coreの概要
超大規模なSIMD型プロセッサ
Single Instruction, Multiple Data
(単一命令・複数データ)
● 各階層のメモリは陽にプログラムが制御(scratchpad)
● 各階層間では分配、結合、放送、縮約といった複数の転
送モードをサポート
プログラマが陽にすべての演算器の挙動を制御可
能(fully-deterministic architecture)
● 計算グラフの情報などから最適なスケジューリングを時
間空間方向に対して明示的に指示可能
HWとしては以下利点がある
● 1. 制御構造なしの大規模SIMD採用により
回路オーバーヘッド最小化/性能予測の容易
化を実現
● 2. 演算器ローカルな大サイズSRAMにより
実行効率を向上
消費電力 (W、設計値) 500 (4die, 1package合計)
ピーク性能 (TFLOPS、設計値) 32.8 (DP) / 131 (SP) / 524 (HP)
電力性能 (TFLOPS / W、設計値) 0.066 (DP) / 0.26 (SP) / 1.0 (HP)
MN-Coreのプログラミング (超概略版)
計算
ユニット
入力
データ
出力
データ
計算
ユニット
計算
ユニット
計算
ユニット
命令
- 計算ユニットが休むことのないように
データを流す
- 可能な限りデータの移動を減らすよう
な演算スケジュールを組む
ソフトウェア:ONNX-to-MN-Core Compilerのアーキテクチャ
25
layer 1
layer 2
layer 3
PFVM
PyTorch
Code
Graph / Node / Value
MN-Core
(Assembler)
ONNX
ONNX+
training
Generic
Conv
Tensor
Generic
Move
Vector
Layers
Low-level
Computational Graph
MN-Core
Instructions
グラフの単純化
大域的スケジューリング
計算グラフから徐々に
MN-Core向けコードを生成
スケジューリングおよび
メモリ配置の決定
← ONNX計算グラフ可視化例
(Squeezenetの一部)
レイヤの分離による実装の抽象化・最適化の共通化
MN-Coreを搭載したクラスタ(MN-3)
● 1rack辺り 4MN-Core Server
● 1MN-Core Server辺り4MN-Core Board
○ サーバ間はRoCEv2で接続
● 1MN-Core Board辺り1MN-Core Chip
○ MN-Core Board間はMNCore
DirectConnectで相互接続
MN-Coreのためのソフトウェアスタック
● MN-Coreを動作させる
ための様々なruntime
software
● 計算グラフから最適な
MN-Core向けプログラ
ムを自動生成するための
コンパイラ
● ユーザコードの改変を最
小限に抑えるためのユー
ザ向けI/F
● クラスタの一部として動
作させるためのk8sや
Middlewareとの統合
目次
● PFNにとっての計算能力の位置付け
● 代表的なDeep Learningの高速化手法
● なぜ今プロセッサ開発なのか?
● MN-Coreの概要
● 開発チームの働き方
● 最近の成果
○ Green500における成果
○ DL Workloadにおける成果
○ Simulation WorkloadにおけるFeasibility Study
MN-Core開発チーム
● ハードウェア/ソフトウェアエンジニアの垣根なくフレキシブルに働いている
— そもそも肩書として区別が会社全体として存在していない
● HDLをソフトウェアエンジニアが読みつつ・・・などはよくある
開発メンバー(一部)
● 神戸大学 牧野淳一郎教授と共同
でアーキテクチャ検討を実施
MN-Coreの開発
ハードウェア開発
● アーキテクチャ検討
● 詳細仕様検討
● 論理設計
● 物理設計
● 検証
ソフトウェア開発
● 機能/精度検証用ソフトウェア実装
● 記述性確認用アプリケーションの作成
● ランタイム/コンパイラの先行開発
システムとしての実装
● ボード/サーバの設計
● 工事スケジュール
● システムの初期検証
● 様々な仕事があるが、ハードウェア/ソフトウェアエンジニアで明確な区切りが
あるわけではない
— 時期によってそれぞれ自身の得意分野を活かしながら業務が移り変わっている
◆ ex. 既存のプロセッサ上で高速なカーネルを書くのが得意な人は、チップができるまでは自
分が使うチップの仕様検討をしていたりする
(一例): 私が実作業していたところ
● コンパイラの開発
● GREEN500 Benchmark開発
● モデル検討/社内での実利用
● 社内k8sとの統合
● Monitoring
プロセッサ tapeoutまで
プロセッサES入手後
● 問題解析
● 次期チップの検討
MN-Coreチームの開発スタイル
● HW/SWも一つのリポジトリで開発を行っ
ている(monorepo)
● 社内の開発リポジトリのActivity:
8700PRs(+1700PR), 44KCommits(+9Kcommit)ぐ
らい(昨年比)
● CIを大切にする文化がある
— PRの影響範囲ごとに自動的にRTL Simが流れたり
、実機を用いたコンパイラのtest-runが走る
— Weeklyで検証の状況やコンパイラの性能などに
関する自動CIが回る
— かなり大規模なコードベースで、大人数で作業を
しているためかなり大事
● 各ドメインのチームと密に連携し具体的な
アプリケーションの高速化を実施
目次
● PFNにとっての計算能力の位置付け
● 代表的なDeep Learningの高速化手法
● なぜ今プロセッサ開発なのか?
● MN-Coreの概要
● 開発チームの働き方
● 最近の成果
○ Green500における成果
○ DL Workloadにおける成果
○ Simulation WorkloadにおけるFeasibility Study
● TOP500は、世界中にあるスパコンのプログラム実行時の最高性能による順位リストである
○ 連立一次方程式をLU分解を用いて解くWorkload
● TOP500.orgに申告されたシステム性能をNo.1からNo.500までリストにしたもの
● 1993年に始まり、以後毎年6月と11月に更新される
● Green500は、TOP500に申告されたシステム性能をNo.1からNo.500までリストにしたもの
の性能を、消費電力で除算して、電力あたり性能を求めリストにしたもの
TOP500とGreen500
PFN Confidential
Improvements MN-Core Environment with Green500 Challenge
34
Our Journey of Green500 Challenge
● 2022/Juneから2021/Novまで世界最高クラスの電力
性能を達成
● 定期的なチャレンジ実施によって、MN-Coreの最適
化に関する知見を多く貯めることができた
2020/June 2020/Nov. 2021/June 2021/Nov 2022/June
Rank 1 2 1 1 5
Energy Eff. 21.11GF/W 26.04GF/W 29.70GF/W 39.38GF/W 40.90GF/W
Exec. Eff.(*) 41.33% 52.68% 58.08% 64.35% 65.09%
MI250X
(AMD)
実際の性能改善においては、リアルタイムの測定/通知システムが非常に大きな役割を果た
した(ソフトウェアの改善具合の効果を即時/自動的に確認できる仕組み)
36
• システム全体(アクセラレータ/ホスト/インタコネクト)が安定かつ高性能に、一定の期間動
き続ける必要があり、システム自体のBringupとして非常に有効だった
• HPLは基本的な計算カーネルが行列積、かつ低レイテンシな通信が性能を出すために必須で
ある。これは分散深層学習のWorkloadが要求する条件でもあり、今回得られた最適化のため
の知見が実際にDeep Learning向けコンパイラのコード生成にも応用できた
– 通常はコンパイラ開発をしているメンバが期間前の3week程度の稼働のみでChallenge
している状況
• システム全体を正確(level3)に計測する試みを通じてクラスタの系全体の挙動や、MN-Coreへ
のへの理解が深まった
• やり切ればきちんと世界一が獲れるシステムが作れるという経験
Top/Green500 Challengeで得られたもの
目次
● PFNにとっての計算能力の位置付け
● 代表的なDeep Learningの高速化手法
● なぜ今プロセッサ開発なのか?
● MN-Coreの概要
● 開発チームの働き方
● 最近の成果
○ Green500における成果
○ DL Workloadにおける成果
○ Simulation WorkloadにおけるFeasibility Study
● PFNには様々なDeep Learning Workloadが存在している
● 何か特定のWorkloadだけが早いのではなく、モデルの変更やデータセットの変
更に対して堅牢かつ平均的に高速に動作する事をターゲットにコンパイラを開発
○ ベンチマーク的な性能だけでなく、実応用における試行錯誤に利用できることが重要
● すでに社内ではk8s経由でMN-Coreを全社員が利用できる状況にある
○ MN-Coreチームのサポートなしに実際にR&DにMN-Coreを使える状況までソフトウェアスタックや
インフラの整備が進みつつある
○ 実案件への応用も実際に進んでいる
MN-Coreを用いたDeep Learning Workload
MN-Coreの高速性
● CNNベースのVision系ワーク
ロード(det/semseg)において
約6倍程度の高速化
● 社内の複数の実ワークロード
においてもGPUに対してE2E
での高速化を実現
MN-Coreを用いたDeep Learning Workload
MN-Coreの汎用性
● MobileNetV2ベースのNASにお
いて平均的に4倍程度の高速化
● Inference時にbackpropを含む
Graph Convlutional
Network(GCN)において3倍程度
の高速化
see: https://tech.preferred.jp/ja/blog/mncore-compiler-1/
以下の測定結果は2021/06時点のもの
継続的な高速化
● 複数のモデルに対して継続的に性
能をトラッキング
● 継続的に性能向上のためのアルゴ
リズム導入を実施
目次
● PFNにとっての計算能力の位置付け
● 代表的なDeep Learningの高速化手法
● なぜ今プロセッサ開発なのか?
● MN-Coreの概要
● 開発チームの働き方
● 最近の成果
○ Green500における成果
○ DL Workloadにおける成果
○ Simulation WorkloadにおけるFeasibility Study
● MN-Coreの優れた特性をDL以外の計算に活用するためにJAXの活用を模索
○ JAXであれば計算グラフが取得できる && JIT前提のコードが多いため良い特性を持つコードが多い
Simulation WorkloadにおけるFeasibility Study
● JAX=「高性能な自動微分付きNumpy」
○ Differentiable: Autograd
○ High-performance: XLA
○ GPUだけでなくTPUなどのbackend実装
● 様々なシミュレーション実装
○ JAX-CFD: “Computational Fluid Dynamics
in JAX”
○ JAX-MD: “Differentiable, Hardware
Accelerated, Molecular Dynamics”
● DL Framework on JAX
○ Haiku: “JAX-based neural network library”
○ Flax: “A neural network library and
ecosystem for JAX designed for flexibility”
JIT compilation
for high performance
● MN-Coreの優れた特性をDL以外の計算に活用するためにJAXの活用を模索
○ JAXであれば計算グラフが取得できる && JIT前提のコードが多いため良い特性を持つコードが多い
Simulation WorkloadにおけるFeasibility Study
● JAX=「高性能な自動微分付きNumpy」
○ Differentiable: Autograd
○ High-performance: XLA
○ GPUだけでなくTPUなどのbackend実装
● 様々なシミュレーション実装
○ JAX-CFD: “Computational Fluid Dynamics
in JAX”
○ JAX-MD: “Differentiable, Hardware
Accelerated, Molecular Dynamics”
● DL Framework on JAX
○ Haiku: “JAX-based neural network library”
○ Flax: “A neural network library and
ecosystem for JAX designed for flexibility”
JIT compilation
for high performance
😊 Use mnjit() to utilize MN-Core
● JAX to MN-Coreの実装
○ JAXをGPU同様にTensorflow HLOにlowering
○ HLO to ONNX(for MN-Core)をPFN独自で実装
し、DL向けコンパイラスタックと同様のバッ
クエンドで命令生成
Simulation WorkloadにおけるFeasibility Study
Harmonic Minimization
(512 particles in total)
2D Channel Flow
● バタフライ演算を活用した高速フーリエ変換(FFT)をMN-Core向けのMN-
Core上に実装し、cuFFTに対して高い性能を実現
Simulation WorkloadにおけるFeasibility Study
2D拡散方程式の時間発展の様子 n=FFT長さ, b=MAB辺りbatchsize
45
• 計算機インフラはDeep Learningをコアとする研究開発の競争力の源泉の一つ
– Deep Learningが多量の計算能力を必要とするだけでなく、Deep Learningというワークロード自
体の特性を生かした新しいアーキテクチャが様々開発されている
• PFNでは計算機インフラの研究開発に多くの投資を行っている
– 複数のコンピュータを並べてScale-out
– 高速なアクセラレータ(MN-Core)を開発し単一ノードの性能をScale-up
• PFN独自設計のDeep Learning向けアクセラレータ「MN-Core」が電力性能比の世界ランキ
ングで複数回一位を獲得し、Deep Learning向け/汎用ワークロード向けの利活用も実際に進
んでいる
計算機を1から作るのは楽しい
さいごに
Q&A

More Related Content

What's hot

Transformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてTransformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法について
Sho Takase
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化
Yusuke Uchida
 
0から理解するニューラルネットアーキテクチャサーチ(NAS)
0から理解するニューラルネットアーキテクチャサーチ(NAS)0から理解するニューラルネットアーキテクチャサーチ(NAS)
0から理解するニューラルネットアーキテクチャサーチ(NAS)
MasanoriSuganuma
 
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
ManaMurakami1
 
モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化
Yusuke Uchida
 
TVM の紹介
TVM の紹介TVM の紹介
TVM の紹介
Masahiro Masuda
 
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
Preferred Networks
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
cvpaper. challenge
 
Attentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門までAttentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門まで
AGIRobots
 
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
Preferred Networks
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Preferred Networks
 
Slurmのジョブスケジューリングと実装
Slurmのジョブスケジューリングと実装Slurmのジョブスケジューリングと実装
Slurmのジョブスケジューリングと実装
Ryuichi Sakamoto
 
【メタサーベイ】Vision and Language のトップ研究室/研究者
【メタサーベイ】Vision and Language のトップ研究室/研究者【メタサーベイ】Vision and Language のトップ研究室/研究者
【メタサーベイ】Vision and Language のトップ研究室/研究者
cvpaper. challenge
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
Preferred Networks
 
深層強化学習と実装例
深層強化学習と実装例深層強化学習と実装例
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
NTT DATA Technology & Innovation
 
cvpaper.challenge 研究効率化 Tips
cvpaper.challenge 研究効率化 Tipscvpaper.challenge 研究効率化 Tips
cvpaper.challenge 研究効率化 Tips
cvpaper. challenge
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
Deep Learning JP
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
Preferred Networks
 

What's hot (20)

Transformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてTransformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法について
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化
 
0から理解するニューラルネットアーキテクチャサーチ(NAS)
0から理解するニューラルネットアーキテクチャサーチ(NAS)0から理解するニューラルネットアーキテクチャサーチ(NAS)
0から理解するニューラルネットアーキテクチャサーチ(NAS)
 
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
 
モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化
 
TVM の紹介
TVM の紹介TVM の紹介
TVM の紹介
 
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
 
Attentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門までAttentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門まで
 
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
 
Slurmのジョブスケジューリングと実装
Slurmのジョブスケジューリングと実装Slurmのジョブスケジューリングと実装
Slurmのジョブスケジューリングと実装
 
【メタサーベイ】Vision and Language のトップ研究室/研究者
【メタサーベイ】Vision and Language のトップ研究室/研究者【メタサーベイ】Vision and Language のトップ研究室/研究者
【メタサーベイ】Vision and Language のトップ研究室/研究者
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
 
深層強化学習と実装例
深層強化学習と実装例深層強化学習と実装例
深層強化学習と実装例
 
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
 
cvpaper.challenge 研究効率化 Tips
cvpaper.challenge 研究効率化 Tipscvpaper.challenge 研究効率化 Tips
cvpaper.challenge 研究効率化 Tips
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
 

Similar to Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)

20180729 Preferred Networksの機械学習クラスタを支える技術
20180729 Preferred Networksの機械学習クラスタを支える技術20180729 Preferred Networksの機械学習クラスタを支える技術
20180729 Preferred Networksの機械学習クラスタを支える技術
Preferred Networks
 
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hareDAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
Preferred Networks
 
Cloud operator days tokyo 2020講演資料_少人数チームでの機械学習製品の効率的な開発と運用
Cloud operator days tokyo 2020講演資料_少人数チームでの機械学習製品の効率的な開発と運用Cloud operator days tokyo 2020講演資料_少人数チームでの機械学習製品の効率的な開発と運用
Cloud operator days tokyo 2020講演資料_少人数チームでの機械学習製品の効率的な開発と運用
Preferred Networks
 
Deep Learning on Rescale - Oct/11/2016 at Rescale night
Deep Learning on Rescale - Oct/11/2016 at Rescale nightDeep Learning on Rescale - Oct/11/2016 at Rescale night
Deep Learning on Rescale - Oct/11/2016 at Rescale night
Rescale Japan株式会社
 
第14回 KAIM M5StickV(K210)をDNNアクセラレータとして使おうとした試み
第14回 KAIM M5StickV(K210)をDNNアクセラレータとして使おうとした試み第14回 KAIM M5StickV(K210)をDNNアクセラレータとして使おうとした試み
第14回 KAIM M5StickV(K210)をDNNアクセラレータとして使おうとした試み
tomitomi3 tomitomi3
 
Mercari JPのモノリスサービスをKubernetesに移行した話 PHP Conference 2022 9/24
Mercari JPのモノリスサービスをKubernetesに移行した話 PHP Conference 2022 9/24Mercari JPのモノリスサービスをKubernetesに移行した話 PHP Conference 2022 9/24
Mercari JPのモノリスサービスをKubernetesに移行した話 PHP Conference 2022 9/24
Shin Ohno
 
Integral Technology 第2回ユーザカンファレンス 〜すべてをクラウドで解析するための方法〜
Integral Technology 第2回ユーザカンファレンス  〜すべてをクラウドで解析するための方法〜Integral Technology 第2回ユーザカンファレンス  〜すべてをクラウドで解析するための方法〜
Integral Technology 第2回ユーザカンファレンス 〜すべてをクラウドで解析するための方法〜
Rescale Japan株式会社
 
モバイル(エッジ)向け ニューラルネットワーク推論エンジンの紹介
モバイル(エッジ)向け ニューラルネットワーク推論エンジンの紹介モバイル(エッジ)向け ニューラルネットワーク推論エンジンの紹介
モバイル(エッジ)向け ニューラルネットワーク推論エンジンの紹介
kcnguo
 
モバイル向けニューラルネットワーク推論エンジンの紹介
モバイル向けニューラルネットワーク推論エンジンの紹介モバイル向けニューラルネットワーク推論エンジンの紹介
モバイル向けニューラルネットワーク推論エンジンの紹介
卓然 郭
 
ディープラーニング最近の発展とビジネス応用への課題
ディープラーニング最近の発展とビジネス応用への課題ディープラーニング最近の発展とビジネス応用への課題
ディープラーニング最近の発展とビジネス応用への課題
Kenta Oono
 
【16-E-4】残業ゼロで開発スピードが10倍に!もう元の開発体制には戻れないデンソー流のアジャイル開発
【16-E-4】残業ゼロで開発スピードが10倍に!もう元の開発体制には戻れないデンソー流のアジャイル開発【16-E-4】残業ゼロで開発スピードが10倍に!もう元の開発体制には戻れないデンソー流のアジャイル開発
【16-E-4】残業ゼロで開発スピードが10倍に!もう元の開発体制には戻れないデンソー流のアジャイル開発
Developers Summit
 
20180723 PFNの研究基盤 / PFN research system infrastructure
20180723 PFNの研究基盤 / PFN research system infrastructure20180723 PFNの研究基盤 / PFN research system infrastructure
20180723 PFNの研究基盤 / PFN research system infrastructure
Preferred Networks
 
2014 03-15 業務アプリinsider ソフトウェア方面の先進テクノロジー
2014 03-15 業務アプリinsider ソフトウェア方面の先進テクノロジー2014 03-15 業務アプリinsider ソフトウェア方面の先進テクノロジー
2014 03-15 業務アプリinsider ソフトウェア方面の先進テクノロジー
Hub DotnetDeveloper
 
Data platformdesign
Data platformdesignData platformdesign
Data platformdesign
Ryoma Nagata
 
Cld017 nh シリーズリリース
Cld017 nh シリーズリリースCld017 nh シリーズリリース
Cld017 nh シリーズリリース
Tech Summit 2016
 
Cld017 nh シリーズリリース
Cld017 nh シリーズリリースCld017 nh シリーズリリース
Cld017 nh シリーズリリース
Tech Summit 2016
 
Presto As A Service - Treasure DataでのPresto運用事例
Presto As A Service - Treasure DataでのPresto運用事例Presto As A Service - Treasure DataでのPresto運用事例
Presto As A Service - Treasure DataでのPresto運用事例
Taro L. Saito
 
Machine Learning Operations (MLOps): Overview, Definition, and Architecture
Machine Learning Operations (MLOps): Overview, Definition, and ArchitectureMachine Learning Operations (MLOps): Overview, Definition, and Architecture
Machine Learning Operations (MLOps): Overview, Definition, and Architecture
Takuya Minagawa
 
[db analytics showcase Sapporo 2017] A15: Pythonでの分散処理再入門 by 株式会社HPCソリューションズ ...
[db analytics showcase Sapporo 2017] A15: Pythonでの分散処理再入門 by 株式会社HPCソリューションズ ...[db analytics showcase Sapporo 2017] A15: Pythonでの分散処理再入門 by 株式会社HPCソリューションズ ...
[db analytics showcase Sapporo 2017] A15: Pythonでの分散処理再入門 by 株式会社HPCソリューションズ ...
Insight Technology, Inc.
 
高性能データ処理プラットフォーム (Talk on July Tech Festa 2015)
高性能データ処理プラットフォーム (Talk on July Tech Festa 2015)高性能データ処理プラットフォーム (Talk on July Tech Festa 2015)
高性能データ処理プラットフォーム (Talk on July Tech Festa 2015)
Yu Liu
 

Similar to Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」) (20)

20180729 Preferred Networksの機械学習クラスタを支える技術
20180729 Preferred Networksの機械学習クラスタを支える技術20180729 Preferred Networksの機械学習クラスタを支える技術
20180729 Preferred Networksの機械学習クラスタを支える技術
 
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hareDAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
 
Cloud operator days tokyo 2020講演資料_少人数チームでの機械学習製品の効率的な開発と運用
Cloud operator days tokyo 2020講演資料_少人数チームでの機械学習製品の効率的な開発と運用Cloud operator days tokyo 2020講演資料_少人数チームでの機械学習製品の効率的な開発と運用
Cloud operator days tokyo 2020講演資料_少人数チームでの機械学習製品の効率的な開発と運用
 
Deep Learning on Rescale - Oct/11/2016 at Rescale night
Deep Learning on Rescale - Oct/11/2016 at Rescale nightDeep Learning on Rescale - Oct/11/2016 at Rescale night
Deep Learning on Rescale - Oct/11/2016 at Rescale night
 
第14回 KAIM M5StickV(K210)をDNNアクセラレータとして使おうとした試み
第14回 KAIM M5StickV(K210)をDNNアクセラレータとして使おうとした試み第14回 KAIM M5StickV(K210)をDNNアクセラレータとして使おうとした試み
第14回 KAIM M5StickV(K210)をDNNアクセラレータとして使おうとした試み
 
Mercari JPのモノリスサービスをKubernetesに移行した話 PHP Conference 2022 9/24
Mercari JPのモノリスサービスをKubernetesに移行した話 PHP Conference 2022 9/24Mercari JPのモノリスサービスをKubernetesに移行した話 PHP Conference 2022 9/24
Mercari JPのモノリスサービスをKubernetesに移行した話 PHP Conference 2022 9/24
 
Integral Technology 第2回ユーザカンファレンス 〜すべてをクラウドで解析するための方法〜
Integral Technology 第2回ユーザカンファレンス  〜すべてをクラウドで解析するための方法〜Integral Technology 第2回ユーザカンファレンス  〜すべてをクラウドで解析するための方法〜
Integral Technology 第2回ユーザカンファレンス 〜すべてをクラウドで解析するための方法〜
 
モバイル(エッジ)向け ニューラルネットワーク推論エンジンの紹介
モバイル(エッジ)向け ニューラルネットワーク推論エンジンの紹介モバイル(エッジ)向け ニューラルネットワーク推論エンジンの紹介
モバイル(エッジ)向け ニューラルネットワーク推論エンジンの紹介
 
モバイル向けニューラルネットワーク推論エンジンの紹介
モバイル向けニューラルネットワーク推論エンジンの紹介モバイル向けニューラルネットワーク推論エンジンの紹介
モバイル向けニューラルネットワーク推論エンジンの紹介
 
ディープラーニング最近の発展とビジネス応用への課題
ディープラーニング最近の発展とビジネス応用への課題ディープラーニング最近の発展とビジネス応用への課題
ディープラーニング最近の発展とビジネス応用への課題
 
【16-E-4】残業ゼロで開発スピードが10倍に!もう元の開発体制には戻れないデンソー流のアジャイル開発
【16-E-4】残業ゼロで開発スピードが10倍に!もう元の開発体制には戻れないデンソー流のアジャイル開発【16-E-4】残業ゼロで開発スピードが10倍に!もう元の開発体制には戻れないデンソー流のアジャイル開発
【16-E-4】残業ゼロで開発スピードが10倍に!もう元の開発体制には戻れないデンソー流のアジャイル開発
 
20180723 PFNの研究基盤 / PFN research system infrastructure
20180723 PFNの研究基盤 / PFN research system infrastructure20180723 PFNの研究基盤 / PFN research system infrastructure
20180723 PFNの研究基盤 / PFN research system infrastructure
 
2014 03-15 業務アプリinsider ソフトウェア方面の先進テクノロジー
2014 03-15 業務アプリinsider ソフトウェア方面の先進テクノロジー2014 03-15 業務アプリinsider ソフトウェア方面の先進テクノロジー
2014 03-15 業務アプリinsider ソフトウェア方面の先進テクノロジー
 
Data platformdesign
Data platformdesignData platformdesign
Data platformdesign
 
Cld017 nh シリーズリリース
Cld017 nh シリーズリリースCld017 nh シリーズリリース
Cld017 nh シリーズリリース
 
Cld017 nh シリーズリリース
Cld017 nh シリーズリリースCld017 nh シリーズリリース
Cld017 nh シリーズリリース
 
Presto As A Service - Treasure DataでのPresto運用事例
Presto As A Service - Treasure DataでのPresto運用事例Presto As A Service - Treasure DataでのPresto運用事例
Presto As A Service - Treasure DataでのPresto運用事例
 
Machine Learning Operations (MLOps): Overview, Definition, and Architecture
Machine Learning Operations (MLOps): Overview, Definition, and ArchitectureMachine Learning Operations (MLOps): Overview, Definition, and Architecture
Machine Learning Operations (MLOps): Overview, Definition, and Architecture
 
[db analytics showcase Sapporo 2017] A15: Pythonでの分散処理再入門 by 株式会社HPCソリューションズ ...
[db analytics showcase Sapporo 2017] A15: Pythonでの分散処理再入門 by 株式会社HPCソリューションズ ...[db analytics showcase Sapporo 2017] A15: Pythonでの分散処理再入門 by 株式会社HPCソリューションズ ...
[db analytics showcase Sapporo 2017] A15: Pythonでの分散処理再入門 by 株式会社HPCソリューションズ ...
 
高性能データ処理プラットフォーム (Talk on July Tech Festa 2015)
高性能データ処理プラットフォーム (Talk on July Tech Festa 2015)高性能データ処理プラットフォーム (Talk on July Tech Festa 2015)
高性能データ処理プラットフォーム (Talk on July Tech Festa 2015)
 

More from Preferred Networks

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
Preferred Networks
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Preferred Networks
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Preferred Networks
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
Preferred Networks
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Preferred Networks
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Preferred Networks
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
Preferred Networks
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
Preferred Networks
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
Preferred Networks
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
Preferred Networks
 
Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50
Preferred Networks
 
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
Preferred Networks
 
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
Preferred Networks
 
Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太
Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太
Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太
Preferred Networks
 
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
Preferred Networks
 
MN-3, MN-Core and HPL - SC21 Green500 BOF
MN-3, MN-Core and HPL - SC21 Green500 BOFMN-3, MN-Core and HPL - SC21 Green500 BOF
MN-3, MN-Core and HPL - SC21 Green500 BOF
Preferred Networks
 

More from Preferred Networks (20)

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
 
Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50
 
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
 
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
 
Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太
Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太
Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太
 
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
 
MN-3, MN-Core and HPL - SC21 Green500 BOF
MN-3, MN-Core and HPL - SC21 Green500 BOFMN-3, MN-Core and HPL - SC21 Green500 BOF
MN-3, MN-Core and HPL - SC21 Green500 BOF
 

Recently uploaded

"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
たけおか しょうぞう
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
Sony - Neural Network Libraries
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo Lab
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo Lab
 
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
TsuyoshiSaito7
 
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
Takuya Minagawa
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
Natsutani Minoru
 
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツールMOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
TsuyoshiSaito7
 
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
Hironori Washizaki
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo Lab
 
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
shogotaguchi
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
Toru Tamaki
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
Takayuki Nakayama
 
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
iPride Co., Ltd.
 

Recently uploaded (14)

"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
 
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
 
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
 
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツールMOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
 
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
 
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
 
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
 

Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)