SlideShare a Scribd company logo
Optunaを使った
Human-in-the-loop最適化の紹介
2023/04/27 W&B 東京ミートアップ #3
Hideaki Imamura / Masashi Shibata
2
自己紹介
MASASHI SHIBATA
Preferred Networks, Inc. Engineer
GitHub: @c-bata
Twitter: @c_bata_
Optuna 開発者 / Optuna Dashboard 作者
HIDEAKI IMAMURA
Preferred Networks, Inc. Researcher
GitHub: @HideakiImamura
Twitter: @mamurai1208
Optuna 開発者
3
● Optunaとは?
● Optunaの応用事例
● Human-in-the-loop最適化
アジェンダ
4
Optunaとは?
5
ブラックボックス最適化問題を解くフレームワーク
ハイパラ最適化を表す絵
機械学習の
ハイパーパラメータ最適化
自律移動ロボット
クッキーレシピ最適化
タクシーの経路推薦
2018
Preferred Networks における内製ツールとして開発が始まる
Google AI Open Images challenge において利用され2位を達成
β 版がGitHubで公開されオープンソース化する
2019
KDD, ODSC, SciPy (YouTube) などの会議/イベントで発表される
2020
v1.0 - stableな初めてのメジャーリリース
v2.0 - 多くの新機能を含んだ2番目のメジャーリリース
2021
v2.10 - 多くの新機能やパフォーマンスの改善がなされる
1日あたり20,000+ ダウンロード
…
2022
v3.0 - APIの見直しや様々な新機能を含んだ3番目のメジャーリリース
1日あたり60,000+ ダウンロード
2023
v3.1 - 現在の最新リリース
7
Optunaの書籍が発売されました!
初学者にとって最適な一冊です
● 丁寧なチュートリアル
● 様々な便利機能の紹介
● 様々な応用事例の紹介
● アルゴリズムの詳細
好評発売中です!
8
Optunaの応用事例
9
Optuna目的関数の評価値が定量的に計算できる。
Optunaがこれまで主に扱ってきた問題
目的関数
x
y
ハイパーパラメーター 評価値
auc,
val_loss,
etc
10
自律移動ロボット向け機械学習モデル探索
セマンティックセグメンテーション
● エンコーダとデコーダからなるモデル
目的
● 認識精度は高い方が良い
● 一方で、ロボット上で動作するためには推論速度は速い方が良い
11
多目的最適化
精度と速度のトレードオフ
● 認識精度を最大化しつつ
推論時間を最小化する
● 認識精度が高い複雑なモデルは
推論時間が大きい
● 逆に、推論時間が小さい単純な
モデルは認識精度が低い
→ 両者のトレードオフを考慮した
多目的最適化の必要性
精度
速度
● 赤点: トレードオフをとる最適な点
● 青点: 最適でない点
Better
Better
12
最適化の実現方法
通常の最適化 多目的最適化
13
Human-in-the-loop最適化
14
Optuna目的関数の評価値が定量的に計算できる。
Optunaがこれまで主に扱ってきた問題
目的関数
x
y
ハイパーパラメーター 評価値
auc,
val_loss,
etc
15
音声合成
● Text-to-Speech等で生成された音声は人間にも自然に聞こえる?
画像生成
● よく見ると指の数が多すぎてたりしないか?
自然言語生成
● 言語生成モデルが提案してくれたTwitter宣伝投稿用の文章は
バズりそうな感じに(訴求力のあるものに)なってる?
Optunaで扱うのが難しい最適化タスク
人間による確認(主観評価)が大事なタスクは難しい
16
Human-in-the-loop最適化
チュートリアル
17
お題:かわいいOptunaくんの生成 (Stable Diffusion)
Hey! Please make me cuter 🙏
Optunaくん
Sure. Let’s try using Stable Diffusion!
Me
18
お題:かわいいOptunaくんの生成 (Stable Diffusion)
入力画像 Stable
Diffusion
プロンプト
a mascot character
with two eyes and a
mouth, smiling,
charming, painting
huggingface.co/stabilityai/
stable-diffusion-2-1
?
ナンカチガウ...
出力画像
19
お題:かわいいOptunaくんの生成 (Stable Diffusion)
入力画像 Stable
Diffusion
プロンプト
a mascot character
with two eyes and a
mouth, smiling,
charming, painting
huggingface.co/stabilityai/
stable-diffusion-2-1
ナンカチガウ...
出力画像
20
お題:かわいいOptunaくんの生成 (Stable Diffusion)
Hmm… 😫 Let me optimize a
prompt with Optuna.
Optunaくん
But wait… How am I supposed
to score how cute I am? 🤔
It’s time to use Human-in-
the-loop Optimization!
Me
21
Human-in-the-loop最適化の流れ
Optuna Dashboard
main.py
Storage
👍
Sample New Params (Prompts)
Generate Images
Choose 👍or 👎
22
Optuna Dashboard
Storage
Human-in-the-loop最適化の流れ
main.py
👍
Wow! He looks so cute 😍
Sample New Params (Prompts)
Generate Images
Choose 👍or 👎
1. Optunaが入力となるプロンプトを提案し、それ
をもとに画像を生成
23
👍
Human-in-the-loop最適化の流れ
Optuna Dashboard
main.py
Sample New Params (Prompts)
Generate Images
Choose 👍or 👎
2. 生成画像をアップロード
Storage
24
Human-in-the-loop最適化の流れ
Optuna Dashboard
main.py
Optuna Storage
Artifact Store
👍
Wow! He looks so cute 😍
Sample New Params (Prompts)
Generate Images
Choose 👍or 👎
3. 人間が生成画像を確認し評価値を入力
25
Optuna Dashboard
Human-in-the-loop最適化の流れ
Optuna Dashboard
main.py
Sample New Params (Prompts)
Generate Images
Choose 👍or 👎
👍
Storage
4. 評価値を受け取り新たなプロンプトを提案。
この一連の ”ループ” を繰り返す。
26
Optuna Dashboardの画面操作
He looks cute 😍
It’s not my taste…
27
新 Optunaくん
チュートリアルのお題:画像生成(img2img)
旧 Optunaくん
Cool! The left one is exactly
I wanted 🥰
Me
These were found!
28
みんなもやってみよう
29
ソースコード解説
main.py
ソースコードURL👇
gist.github.com/c-bata/0eed0dfb416a6994fa30fb23bb38d3ad
これから解説するコードの役割
Database & File Storage
Optuna Storage
sqlite:///db.sqlite3
Artifact Store
FileSystemBackend
Optuna Dashboard
1. Studyの作成とパラメータのサンプル
2. Objective Form Widgets登録
3. 新しいTrialの生成
4. パラメーターのサンプル
5. Stable Diffusionモデル実行
6. 画像アップロード
7. ノート(Markdownメモ)の保存
Optuna Dashboardの起動
$ optuna-dashboard …
30
ChoiceWidget
ラジオボタンによる選択入力
様々な評価値入力フォーム
ChoiceWidget(
choices=["Good 👍", "Bad 👎"],
values=[-1, 1],
)
SliderWidget(
min=0, max=5, step=1,
description="Higher is brighter.",
)
SliderWidget
スライダーで範囲の中から選択
ObjectiveUserAttrRef
定量評価値(auc等)と主観評価値(人間)
を組み合わせた多目的最適化に使用
widgets=[
ChoiceWidget(...), # 指標1
ObjectiveUserAttrRef(key="auc"), # 指標2
]
31
概要
● より自由度の高い画面をユー
ザーに提供可能
● Web UI / Python APIどちらか
らも更新可能
Python API
● save_note(Trial, “# Hellon”)
● get_note(Trial)
Markdownノート機能の活用
32
様々なファイル形式 (Artifact) の表示
<iframe>タグを使った
HTML埋め込み
音声
画像
拡張子から推測できるMIMEタイプをもとに自動表示
(今後様々なファイル形式のサポートを検討中
)
その他のファイル形式もノート欄に
HTMLタグを記述可能
33
GCS対応などご要望がございましたら、IssueやPRをお願いいたします!
FileSystemBackend
ローカルのファイルシステム(特定ディレクト
リ内)にArtifactを保存
Boto3Backend
AWS S3等にArtifactを保存
その他(カスタムバックエンド)
右図の3つのメソッドを実装すれば、
その他のストレージにも対応可能!
Artifact バックエンドの切り替え
from typing import Protocol
class ArtifactBackend(Protocol):
def open(self, artifact_id):
...
def write(self, artifact_id,
content_body):
...
def remove(self, artifact_id):
...
34
まとめ
35
本発表で話したこと
● Optuna本発売中です!
● 多目的最適化の紹介
● Human-in-the-loop最適化の紹介
最後におねがい
● 今日紹介した新しい機能を駆使し
てより多くの問題にOptunaを適
用しシェアしてください!
まとめ
@hiron_rgkr 様の事例
Making the real world computable

More Related Content

What's hot

Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
Shota Imai
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情
Yuta Kikuchi
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方
joisino
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII
 
モデル高速化百選
モデル高速化百選モデル高速化百選
モデル高速化百選
Yusuke Uchida
 
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
Satoshi Hara
 
最適化超入門
最適化超入門最適化超入門
最適化超入門
Takami Sato
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
Takao Yamanaka
 
深層学習の数理
深層学習の数理深層学習の数理
深層学習の数理
Taiji Suzuki
 
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
Deep Learning JP
 
[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection
Deep Learning JP
 
方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用
Ryo Iwaki
 
【DL輪読会】GPT-4Technical Report
【DL輪読会】GPT-4Technical Report【DL輪読会】GPT-4Technical Report
【DL輪読会】GPT-4Technical Report
Deep Learning JP
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
cvpaper. challenge
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】The Forward-Forward Algorithm: Some Preliminary
【DL輪読会】The Forward-Forward Algorithm: Some Preliminary【DL輪読会】The Forward-Forward Algorithm: Some Preliminary
【DL輪読会】The Forward-Forward Algorithm: Some Preliminary
Deep Learning JP
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
Arithmer Inc.
 

What's hot (20)

Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
 
モデル高速化百選
モデル高速化百選モデル高速化百選
モデル高速化百選
 
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
最適化超入門
最適化超入門最適化超入門
最適化超入門
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
 
深層学習の数理
深層学習の数理深層学習の数理
深層学習の数理
 
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
 
[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection
 
方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用
 
【DL輪読会】GPT-4Technical Report
【DL輪読会】GPT-4Technical Report【DL輪読会】GPT-4Technical Report
【DL輪読会】GPT-4Technical Report
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
 
【DL輪読会】The Forward-Forward Algorithm: Some Preliminary
【DL輪読会】The Forward-Forward Algorithm: Some Preliminary【DL輪読会】The Forward-Forward Algorithm: Some Preliminary
【DL輪読会】The Forward-Forward Algorithm: Some Preliminary
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
 

Similar to Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3

20180727 Deep Learningの未来と
Chainerの貢献
20180727 Deep Learningの未来と
Chainerの貢献20180727 Deep Learningの未来と
Chainerの貢献
20180727 Deep Learningの未来と
Chainerの貢献
Keisuke Umezawa
 
東大大学院 電子情報学特論講義資料「ハイパーパラメタ最適化ライブラリOptunaの開発」柳瀬利彦
東大大学院 電子情報学特論講義資料「ハイパーパラメタ最適化ライブラリOptunaの開発」柳瀬利彦東大大学院 電子情報学特論講義資料「ハイパーパラメタ最適化ライブラリOptunaの開発」柳瀬利彦
東大大学院 電子情報学特論講義資料「ハイパーパラメタ最適化ライブラリOptunaの開発」柳瀬利彦
Preferred Networks
 
コピー自動生成プロダクトでDataflowを導入した話
コピー自動生成プロダクトでDataflowを導入した話コピー自動生成プロダクトでDataflowを導入した話
コピー自動生成プロダクトでDataflowを導入した話
ShunyoKawamoto
 
(Pythonで作って学ぶ) Youtube の動画リストを作るアプリの開発 
第4回
(Pythonで作って学ぶ) Youtube の動画リストを作るアプリの開発 
第4回(Pythonで作って学ぶ) Youtube の動画リストを作るアプリの開発 
第4回
(Pythonで作って学ぶ) Youtube の動画リストを作るアプリの開発 
第4回
Project Samurai
 
物体検出フレームワークMMDetectionで快適な開発
物体検出フレームワークMMDetectionで快適な開発物体検出フレームワークMMDetectionで快適な開発
物体検出フレームワークMMDetectionで快適な開発
Tatsuya Suzuki
 
ITフォーラム2024 AITCセッション(2)
ITフォーラム2024 AITCセッション(2)ITフォーラム2024 AITCセッション(2)
ITフォーラム2024 AITCセッション(2)
aitc_jp
 
不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)
不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)
不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)
Preferred Networks
 
ウェビナー:Nejumiリーダーボードを使った自社LLMモデルの独自評価.pdf
ウェビナー:Nejumiリーダーボードを使った自社LLMモデルの独自評価.pdfウェビナー:Nejumiリーダーボードを使った自社LLMモデルの独自評価.pdf
ウェビナー:Nejumiリーダーボードを使った自社LLMモデルの独自評価.pdf
Yuya Yamamoto
 
勉強会 Cvml python基礎
勉強会 Cvml python基礎勉強会 Cvml python基礎
勉強会 Cvml python基礎
真哉 杉野
 
アプリのプロダクトマネージャーからみるScrum開発
アプリのプロダクトマネージャーからみるScrum開発アプリのプロダクトマネージャーからみるScrum開発
アプリのプロダクトマネージャーからみるScrum開発
Yahoo!デベロッパーネットワーク
 
Optuna on Kubeflow Pipeline 分散ハイパラチューニング
Optuna on Kubeflow Pipeline 分散ハイパラチューニングOptuna on Kubeflow Pipeline 分散ハイパラチューニング
Optuna on Kubeflow Pipeline 分散ハイパラチューニング
Takashi Suzuki
 
Scrumワークショップ
ScrumワークショップScrumワークショップ
Scrumワークショップ
You&I
 
Auto ai workshop
Auto ai workshopAuto ai workshop
Auto ai workshop
Yasushi Osonoi
 
Amazon_Rekognitionの使用例_オートバイの画像判別.pdf
Amazon_Rekognitionの使用例_オートバイの画像判別.pdfAmazon_Rekognitionの使用例_オートバイの画像判別.pdf
Amazon_Rekognitionの使用例_オートバイの画像判別.pdf
ssuserdd6c91
 
2016 sep13 gdlc01 pfn
2016 sep13 gdlc01 pfn2016 sep13 gdlc01 pfn
2016 sep13 gdlc01 pfn
Tomokazu Kanazawa
 
20161222 selenium adventcalender
20161222 selenium adventcalender20161222 selenium adventcalender
20161222 selenium adventcalender
Naoya Kojima
 
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
Preferred Networks
 
AWSとGPUインスタンスのご紹介
AWSとGPUインスタンスのご紹介AWSとGPUインスタンスのご紹介
AWSとGPUインスタンスのご紹介
Yasuhiro Matsuo
 
Redmine Applied for Large Scale
Redmine Applied  for Large ScaleRedmine Applied  for Large Scale
Redmine Applied for Large Scale
Rakuten Group, Inc.
 
チームラボハンガー開発経緯トークセミナー
チームラボハンガー開発経緯トークセミナー チームラボハンガー開発経緯トークセミナー
チームラボハンガー開発経緯トークセミナー
Minami Kumamoto
 

Similar to Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3 (20)

20180727 Deep Learningの未来と
Chainerの貢献
20180727 Deep Learningの未来と
Chainerの貢献20180727 Deep Learningの未来と
Chainerの貢献
20180727 Deep Learningの未来と
Chainerの貢献
 
東大大学院 電子情報学特論講義資料「ハイパーパラメタ最適化ライブラリOptunaの開発」柳瀬利彦
東大大学院 電子情報学特論講義資料「ハイパーパラメタ最適化ライブラリOptunaの開発」柳瀬利彦東大大学院 電子情報学特論講義資料「ハイパーパラメタ最適化ライブラリOptunaの開発」柳瀬利彦
東大大学院 電子情報学特論講義資料「ハイパーパラメタ最適化ライブラリOptunaの開発」柳瀬利彦
 
コピー自動生成プロダクトでDataflowを導入した話
コピー自動生成プロダクトでDataflowを導入した話コピー自動生成プロダクトでDataflowを導入した話
コピー自動生成プロダクトでDataflowを導入した話
 
(Pythonで作って学ぶ) Youtube の動画リストを作るアプリの開発 
第4回
(Pythonで作って学ぶ) Youtube の動画リストを作るアプリの開発 
第4回(Pythonで作って学ぶ) Youtube の動画リストを作るアプリの開発 
第4回
(Pythonで作って学ぶ) Youtube の動画リストを作るアプリの開発 
第4回
 
物体検出フレームワークMMDetectionで快適な開発
物体検出フレームワークMMDetectionで快適な開発物体検出フレームワークMMDetectionで快適な開発
物体検出フレームワークMMDetectionで快適な開発
 
ITフォーラム2024 AITCセッション(2)
ITフォーラム2024 AITCセッション(2)ITフォーラム2024 AITCセッション(2)
ITフォーラム2024 AITCセッション(2)
 
不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)
不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)
不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)
 
ウェビナー:Nejumiリーダーボードを使った自社LLMモデルの独自評価.pdf
ウェビナー:Nejumiリーダーボードを使った自社LLMモデルの独自評価.pdfウェビナー:Nejumiリーダーボードを使った自社LLMモデルの独自評価.pdf
ウェビナー:Nejumiリーダーボードを使った自社LLMモデルの独自評価.pdf
 
勉強会 Cvml python基礎
勉強会 Cvml python基礎勉強会 Cvml python基礎
勉強会 Cvml python基礎
 
アプリのプロダクトマネージャーからみるScrum開発
アプリのプロダクトマネージャーからみるScrum開発アプリのプロダクトマネージャーからみるScrum開発
アプリのプロダクトマネージャーからみるScrum開発
 
Optuna on Kubeflow Pipeline 分散ハイパラチューニング
Optuna on Kubeflow Pipeline 分散ハイパラチューニングOptuna on Kubeflow Pipeline 分散ハイパラチューニング
Optuna on Kubeflow Pipeline 分散ハイパラチューニング
 
Scrumワークショップ
ScrumワークショップScrumワークショップ
Scrumワークショップ
 
Auto ai workshop
Auto ai workshopAuto ai workshop
Auto ai workshop
 
Amazon_Rekognitionの使用例_オートバイの画像判別.pdf
Amazon_Rekognitionの使用例_オートバイの画像判別.pdfAmazon_Rekognitionの使用例_オートバイの画像判別.pdf
Amazon_Rekognitionの使用例_オートバイの画像判別.pdf
 
2016 sep13 gdlc01 pfn
2016 sep13 gdlc01 pfn2016 sep13 gdlc01 pfn
2016 sep13 gdlc01 pfn
 
20161222 selenium adventcalender
20161222 selenium adventcalender20161222 selenium adventcalender
20161222 selenium adventcalender
 
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
 
AWSとGPUインスタンスのご紹介
AWSとGPUインスタンスのご紹介AWSとGPUインスタンスのご紹介
AWSとGPUインスタンスのご紹介
 
Redmine Applied for Large Scale
Redmine Applied  for Large ScaleRedmine Applied  for Large Scale
Redmine Applied for Large Scale
 
チームラボハンガー開発経緯トークセミナー
チームラボハンガー開発経緯トークセミナー チームラボハンガー開発経緯トークセミナー
チームラボハンガー開発経緯トークセミナー
 

More from Preferred Networks

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
Preferred Networks
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Preferred Networks
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
Preferred Networks
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Preferred Networks
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
Preferred Networks
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Preferred Networks
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
Preferred Networks
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
Preferred Networks
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Preferred Networks
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Preferred Networks
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
Preferred Networks
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
Preferred Networks
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
Preferred Networks
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
Preferred Networks
 
Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50
Preferred Networks
 
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
Preferred Networks
 
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
Preferred Networks
 

More from Preferred Networks (20)

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
 
Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50
 
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
 
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
 

Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3