SlideShare a Scribd company logo
PFNのオンプレML基盤
の取り組み
Yuichiro Ueno (Cluster Services チーム)
発表者の紹介
● 上野 裕一郎 (Yuichiro Ueno)
○ 2021/04 新卒入社
■ Cluster Services チーム
○ 入社前
■ スパコンで深層学習をする研究
○ 趣味
■ ISUCONとか性能最適化
○ SNS
■ twitter.com/y1r96
2
目次
● オンプレクラスタの概要
○ PFNがオンプレクラスタを選ぶ理由
○ オンプレクラスタ・ストレージクラスタ
○ 基盤に求められる主な要件
● 使いやすい環境
● リソースの効率的かつフェアな利用
● 信頼性・運用省力化
● クラスタに関わる組織
3
オンプレクラスタの概要
4
PFNがオンプレクラスタを選ぶ理由
● Vision: 現実世界を計算可能にする
○ シミュレーションや深層学習は膨大な計算リソースを必要とする
○ 計算力は競争力の源であり,大量の計算機が必要
● 大規模な計算を(息をするように)したい
○ 16 GPUs, 32 GPUs and More*な分散学習を回したい
○ 1 GPUな学習を数百個パラメータを変えて回したい
○ Neural Architecture Searchをしたい
● 計算基盤全てをコントロールしたい
○ ノード内・ノード間通信,I/Oの全ての最適化が高速な学習には必要
● 上から下まで(ハードもソフトも人も)保有することの重要性
○ (調達・設計からアルゴリズムまで)様々な技術バックグラウンドを持つ
メンバーが集結することで新しいものを生み出していきたい
5
(*) [1711.04325] Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes
PFNのオンプレクラスタ
6
MN-1 MN-2a
MN-3
WAN
7
PFNのオンプレKubernetesクラスタ
Icon pack by Icons8 - https://icons8.com
データセンタごとにKubernetesクラスタを構成
128 nodes
(1024 GPUs)
MN-1
P100 PCIe x 8
10GbE x 2
InfiniBand FDR
(56 Gbps) x 2
MN-3a
48 nodes
(192 MN-Cores)
MN-Core x 4
100GbE x 2
MN-Core
DirectConnect
MN-2a
128 nodes
(1024 GPUs)
V100 SXM2 x 8
100GbE x 4
RoCEv2
with SR-IOV
WAN
MN-1 MN-J
世界1位!!
NVIDIA GPUなどの最新技術を採用した プライベート・スーパーコンピュータ MN-2 を自社構築し、7月に稼働
Preferred Networksの深層学習用スーパーコンピュータMN-3がスーパーコンピュータ省電力性能ランキングGreen500で世界1位を獲得
PFNのストレージクラスタ
8
トータル約 7.0 PB
(論理容量, 増加中)
File
System
Medium
MN-Js
NFS
HDD
NVMe
SSD
HDFS Apache Ozone
MN-1s
NFS
NVMe
SSD
SATA
SSD
HDFS
HDD
基盤に求められる主な要件
● 多様なリテラシのユーザが使いやすいこと
○ 「入社初日からクラスタで大規模に実験をして成果を出せる」
● リソースを効率的かつフェアに利用できること
○ 効率的:マルチテナント,スケジューリング,パフォーマンス
○ フェア:各ユーザが利用した量に基づくプリエンプションなど
● 信頼性・運用効率
○ 自動プロビジョニング,健全性の自動診断・保守省力化
9
使いやすい環境
「入社初日からクラスタで大規模に実験をして成果を出せる」
10
多様なリテラシのユーザが使いやすい環境
11
Interactive
Environment
kubectl
build-and-run
CLI tool Private PyPI
Repository
Workflow
Engine
Experiment
Management
Remote
Image Build …
GitHub
Enterprise
NFS HDFS
Object Storage
(Apache Ozone)
Private Image
Registry
エンジニア
研究者
Pull/Push
Through Cache
多様なリテラシのユーザが使いやすい環境
12
● とにかく手軽にWebだけで簡単にGPU, MN-Coreが使える(Jupyter , code-server )
● pre-builtなall-in-one(必要なライブラリ全部入り)なcontainer imageで起動
● Kubernetesをほとんど知らなくてもOK
● 大規模な実験にはあまり向かない
Interactive
Environment
● Manifestを直接書ける人用
○ 内製のArgo Workflow記述DSL(python)有り
kubectl
● 手元でコードを編集して、クラスタで実行したいひと向け
● Kubernetesの知識は少し必要だがマニフェストを書かなくていい
● 専用CLIでimage build → manifest applyまで実行可能(分散学習も対応)
$ pfkube run -p mpijob --gpu 8 -o worker 4 -- mpiexec train.py
● pushなしで手元で編集中のコードがクラスタで再現可能な形で実行可 (git-ghost連携)
● defaultはall-in-one イメージ, 自分でDockerfile書くことも可能
build-and-run
CLI tool
PFNにおける典型的なワークロード
13
(*) 分散深層学習を支える技術:AllReduceアルゴリズム - Preferred Networks Research & Development
(**) [2007.08082] Distributed Reinforcement Learning of Targeted Grasping with Active Vision for Mobile Manipulators
MPIジョブ
例: AllReduce*を伴う分散深層学習
タスク並列ジョブ
例: Parameter Search
ヘテロジニアスなジョブ
例: 環境とモデルが通信する強化学習**
環境 (シミュレータ)
学習器 (MLP)
Task
Queue
Icon pack by Icons8 - https://icons8.com
ワークフロー
例: Neural Architecture Search
インタラクティブ利用
リソースの効率的かつフェアな利用
「スケジューラで工夫しつつプリエンプションも使っていく」
14
リソースを効率的に利用できること
● マルチテナントによるプロジェクト間でのリソース共有
● 高度なスケジューリング(custom scheduler plugins)
○ 優先度
■ CPUジョブよりもGPUジョブを優先したスケジュール
○ Gang Scheduling (a.k.a Co-Scheduling)
■ Pod全てが同時にスケジュールされるか,全くされないか
■ Gang Podを”近く”に配置するUnique Zone制約もサポート
○ 様々なデバイスのサポート
■ GPU, NIC, MN-Core, Persistent Memory
● パフォーマンス
○ multi 100G NIC with RoCEv2 & SR-IOV
■ GPU間通信 for 分散学習 & ストレージ系の通信を混載する
○ 継続的な通信性能のリグレッションテスト
15
リソースをフェアに利用できること
● 優先度(PriorityClass)制御
○ high > low > low-cpu > lowest
○ high
■ lowでクラスタが混雑していてもプリエンプションして走る
■ 同時実行数はプロジェクト単位で制限されている
○ それ以外の優先度クラスは誰でも使い放題
■ オンプレクラスタが遊ぶのはもったいないのでガンガン使う
● 各ユーザが利用した量に基づくスケジューリング・プリエンプション
○ ノード時間積(利用リソース量 * 利用時間)を考慮する
■ よく使っているユーザはスケジューリングされづらい
■ よく使っているユーザはプリエンプションされやすい
16
信頼性・運用省力化
「自動化を進めて障害に立ち向かう」
17
サーバプロビジョニング・GitOpsなど
18
Cluster API MAAS Provider
(in-house)
provisioning nodes with ansible
Flux
Flux
GitHub
Enterprise
production
eval
sync manifests
apply
apply
マニフェストは
モノレポ管理
v1.23 準備中
(1 Minor Version遅れで運用)
監視/Alerting
19
GitHub
Enterprise
remote
write
監視
alertをissue化
(long-term storage)
(Prometheus)
pfnet-research/alertmanager-to-github
運用省力化
20
Node Problem
Detector
Server-Checker
(Custom Plugin)
status.conditions:
- type: DStateProcess
status: "True"
reason: DStateProcessIsDetected
message: python(34688) in ml-pod@user-ns is D-state
- type: GPUPendingPage
status: "True"
reason: GPUHasPendingPage
message: GPU 0 has pending page: SingleBitErrors=3, DoubleBitErrors=1
Reconcile
Conditions
pfnet-research/node-operation-controller
NodeRemeditation
Template
NodeOperation 生成
Icons made by Icon Monk from www.flaticon.com is licensed by CC 3.0 BY
復旧処理(Remediation)
が既知なConditionに
対して作成
復旧処理
復旧処理時の
Taint/Evict等も自動
21
クラスタに関わる組織
クラスタに関わる組織
MN-Cor
e
Cluster
Services
Cluster
Planning
MN-Core
企画&設計
ASIC設計
コンパイラ・ランタイム
計算基盤サービス化
計算基盤
22
Project A
利用・フィードバック
ファシリテーション
Project B
Project Z
…
利用・フィードバック
ファシリテーション
利用・フィードバック
ファシリテーション
連
携
連
携
連
携
ありがとうございました!
● オンプレクラスタの概要
● 使いやすい環境
○ 「入社初日からクラスタで大規模に実験をして成果を出せる」
● リソースの効率的かつフェアな利用
○ 「スケジューラで工夫しつつプリエンプションも使っていく」
● 信頼性・運用省力化
○ 「自動化を進めて障害に立ち向かう」
● クラスタに関わる組織
23
We're Hiring!
機械学習プラットフォームエンジニア (Infrastructure)
● こんな環境にワクワクする方を募集しています!
○ 日進月歩で進化している機械学習にフォーカスした計算技術を低レイヤーから高レイヤー
までトータルに吸収できる
○ 大規模機械学習クラスタの開発・運用が経験できる
○ Kubernetesを始めとするOSSコミュニティでも活躍できるチャンスがある
○ HPCとCloud Nativeの境界領域という今後ますます重要になる分野の経験ができる
○ 多様な要求・ユーザーリテラシをサポートするプラットフォーム設計・実装を経験できる
24
学生さん向け
夏季国内インターン
も開催予定です!
(4/1 公開予定)
We're Hiring!
● カジュアル面談希望の連絡お待ちしています(DMでもメンションでもお気軽に)
○ 大村: @everpeace
● 資料
○ PFNのML/DL基盤を支えるKubernetesにおける自動化 (DevOpsDays Tokyo 2021)
○ How to Schedule Machine Learning Workloads Nicely In Kubernetes (CNDT 2020)
○ Kubernetesによる機械学習基盤への挑戦 (JAPANCONTAINERDAYS V18.12)
○ Preferred Networksの機械学習クラスタを支える技術 (JulyTech Festa 2018 基調講演)
○ (採用ページにはこの他にも載せてあります )
25

More Related Content

What's hot

How to Schedule Machine Learning Workloads Nicely In Kubernetes #CNDT2020 / C...
How to Schedule Machine Learning Workloads Nicely In Kubernetes #CNDT2020 / C...How to Schedule Machine Learning Workloads Nicely In Kubernetes #CNDT2020 / C...
How to Schedule Machine Learning Workloads Nicely In Kubernetes #CNDT2020 / C...
Preferred Networks
 
Kubernetesによる機械学習基盤への挑戦
Kubernetesによる機械学習基盤への挑戦Kubernetesによる機械学習基盤への挑戦
Kubernetesによる機械学習基盤への挑戦
Preferred Networks
 
Slurmのジョブスケジューリングと実装
Slurmのジョブスケジューリングと実装Slurmのジョブスケジューリングと実装
Slurmのジョブスケジューリングと実装
Ryuichi Sakamoto
 
LakeTahoe
LakeTahoeLakeTahoe
CloudNativePGを動かしてみた! ~PostgreSQL on Kubernetes~(第34回PostgreSQLアンカンファレンス@オンライ...
CloudNativePGを動かしてみた! ~PostgreSQL on Kubernetes~(第34回PostgreSQLアンカンファレンス@オンライ...CloudNativePGを動かしてみた! ~PostgreSQL on Kubernetes~(第34回PostgreSQLアンカンファレンス@オンライ...
CloudNativePGを動かしてみた! ~PostgreSQL on Kubernetes~(第34回PostgreSQLアンカンファレンス@オンライ...
NTT DATA Technology & Innovation
 
DockerコンテナでGitを使う
DockerコンテナでGitを使うDockerコンテナでGitを使う
DockerコンテナでGitを使う
Kazuhiro Suga
 
Apache Airflow 概要(Airflowの基礎を学ぶハンズオンワークショップ 発表資料)
Apache Airflow 概要(Airflowの基礎を学ぶハンズオンワークショップ 発表資料)Apache Airflow 概要(Airflowの基礎を学ぶハンズオンワークショップ 発表資料)
Apache Airflow 概要(Airflowの基礎を学ぶハンズオンワークショップ 発表資料)
NTT DATA Technology & Innovation
 
オンプレML基盤on Kubernetes 〜Yahoo! JAPAN AIPF〜
オンプレML基盤on Kubernetes 〜Yahoo! JAPAN AIPF〜オンプレML基盤on Kubernetes 〜Yahoo! JAPAN AIPF〜
オンプレML基盤on Kubernetes 〜Yahoo! JAPAN AIPF〜
Yahoo!デベロッパーネットワーク
 
Singularityで分散深層学習
Singularityで分散深層学習Singularityで分散深層学習
Singularityで分散深層学習
Hitoshi Sato
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
Preferred Networks
 
BuildKitの概要と最近の機能
BuildKitの概要と最近の機能BuildKitの概要と最近の機能
BuildKitの概要と最近の機能
Kohei Tokunaga
 
pgvectorを使ってChatGPTとPostgreSQLを連携してみよう!(PostgreSQL Conference Japan 2023 発表資料)
pgvectorを使ってChatGPTとPostgreSQLを連携してみよう!(PostgreSQL Conference Japan 2023 発表資料)pgvectorを使ってChatGPTとPostgreSQLを連携してみよう!(PostgreSQL Conference Japan 2023 発表資料)
pgvectorを使ってChatGPTとPostgreSQLを連携してみよう!(PostgreSQL Conference Japan 2023 発表資料)
NTT DATA Technology & Innovation
 
Dockerからcontainerdへの移行
Dockerからcontainerdへの移行Dockerからcontainerdへの移行
Dockerからcontainerdへの移行
Kohei Tokunaga
 
分散トレーシング技術について(Open tracingやjaeger)
分散トレーシング技術について(Open tracingやjaeger)分散トレーシング技術について(Open tracingやjaeger)
分散トレーシング技術について(Open tracingやjaeger)
NTT Communications Technology Development
 
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
NTT DATA Technology & Innovation
 
Prometheus入門から運用まで徹底解説
Prometheus入門から運用まで徹底解説Prometheus入門から運用まで徹底解説
Prometheus入門から運用まで徹底解説
貴仁 大和屋
 
コンテナの作り方「Dockerは裏方で何をしているのか?」
コンテナの作り方「Dockerは裏方で何をしているのか?」コンテナの作り方「Dockerは裏方で何をしているのか?」
コンテナの作り方「Dockerは裏方で何をしているのか?」
Masahito Zembutsu
 
超実践 Cloud Spanner 設計講座
超実践 Cloud Spanner 設計講座超実践 Cloud Spanner 設計講座
超実践 Cloud Spanner 設計講座
Samir Hammoudi
 
分散システムについて語らせてくれ
分散システムについて語らせてくれ分散システムについて語らせてくれ
分散システムについて語らせてくれ
Kumazaki Hiroki
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
Preferred Networks
 

What's hot (20)

How to Schedule Machine Learning Workloads Nicely In Kubernetes #CNDT2020 / C...
How to Schedule Machine Learning Workloads Nicely In Kubernetes #CNDT2020 / C...How to Schedule Machine Learning Workloads Nicely In Kubernetes #CNDT2020 / C...
How to Schedule Machine Learning Workloads Nicely In Kubernetes #CNDT2020 / C...
 
Kubernetesによる機械学習基盤への挑戦
Kubernetesによる機械学習基盤への挑戦Kubernetesによる機械学習基盤への挑戦
Kubernetesによる機械学習基盤への挑戦
 
Slurmのジョブスケジューリングと実装
Slurmのジョブスケジューリングと実装Slurmのジョブスケジューリングと実装
Slurmのジョブスケジューリングと実装
 
LakeTahoe
LakeTahoeLakeTahoe
LakeTahoe
 
CloudNativePGを動かしてみた! ~PostgreSQL on Kubernetes~(第34回PostgreSQLアンカンファレンス@オンライ...
CloudNativePGを動かしてみた! ~PostgreSQL on Kubernetes~(第34回PostgreSQLアンカンファレンス@オンライ...CloudNativePGを動かしてみた! ~PostgreSQL on Kubernetes~(第34回PostgreSQLアンカンファレンス@オンライ...
CloudNativePGを動かしてみた! ~PostgreSQL on Kubernetes~(第34回PostgreSQLアンカンファレンス@オンライ...
 
DockerコンテナでGitを使う
DockerコンテナでGitを使うDockerコンテナでGitを使う
DockerコンテナでGitを使う
 
Apache Airflow 概要(Airflowの基礎を学ぶハンズオンワークショップ 発表資料)
Apache Airflow 概要(Airflowの基礎を学ぶハンズオンワークショップ 発表資料)Apache Airflow 概要(Airflowの基礎を学ぶハンズオンワークショップ 発表資料)
Apache Airflow 概要(Airflowの基礎を学ぶハンズオンワークショップ 発表資料)
 
オンプレML基盤on Kubernetes 〜Yahoo! JAPAN AIPF〜
オンプレML基盤on Kubernetes 〜Yahoo! JAPAN AIPF〜オンプレML基盤on Kubernetes 〜Yahoo! JAPAN AIPF〜
オンプレML基盤on Kubernetes 〜Yahoo! JAPAN AIPF〜
 
Singularityで分散深層学習
Singularityで分散深層学習Singularityで分散深層学習
Singularityで分散深層学習
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
 
BuildKitの概要と最近の機能
BuildKitの概要と最近の機能BuildKitの概要と最近の機能
BuildKitの概要と最近の機能
 
pgvectorを使ってChatGPTとPostgreSQLを連携してみよう!(PostgreSQL Conference Japan 2023 発表資料)
pgvectorを使ってChatGPTとPostgreSQLを連携してみよう!(PostgreSQL Conference Japan 2023 発表資料)pgvectorを使ってChatGPTとPostgreSQLを連携してみよう!(PostgreSQL Conference Japan 2023 発表資料)
pgvectorを使ってChatGPTとPostgreSQLを連携してみよう!(PostgreSQL Conference Japan 2023 発表資料)
 
Dockerからcontainerdへの移行
Dockerからcontainerdへの移行Dockerからcontainerdへの移行
Dockerからcontainerdへの移行
 
分散トレーシング技術について(Open tracingやjaeger)
分散トレーシング技術について(Open tracingやjaeger)分散トレーシング技術について(Open tracingやjaeger)
分散トレーシング技術について(Open tracingやjaeger)
 
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
 
Prometheus入門から運用まで徹底解説
Prometheus入門から運用まで徹底解説Prometheus入門から運用まで徹底解説
Prometheus入門から運用まで徹底解説
 
コンテナの作り方「Dockerは裏方で何をしているのか?」
コンテナの作り方「Dockerは裏方で何をしているのか?」コンテナの作り方「Dockerは裏方で何をしているのか?」
コンテナの作り方「Dockerは裏方で何をしているのか?」
 
超実践 Cloud Spanner 設計講座
超実践 Cloud Spanner 設計講座超実践 Cloud Spanner 設計講座
超実践 Cloud Spanner 設計講座
 
分散システムについて語らせてくれ
分散システムについて語らせてくれ分散システムについて語らせてくれ
分散システムについて語らせてくれ
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
 

Similar to PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜

ディープラーニング最近の発展とビジネス応用への課題
ディープラーニング最近の発展とビジネス応用への課題ディープラーニング最近の発展とビジネス応用への課題
ディープラーニング最近の発展とビジネス応用への課題
Kenta Oono
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Preferred Networks
 
大規模並列実験を支えるクラウドサービスと基盤技術
大規模並列実験を支えるクラウドサービスと基盤技術大規模並列実験を支えるクラウドサービスと基盤技術
大規模並列実験を支えるクラウドサービスと基盤技術
RyuichiKanoh
 
Chainerで学ぶdeep learning
Chainerで学ぶdeep learningChainerで学ぶdeep learning
Chainerで学ぶdeep learning
Retrieva inc.
 
Development and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafDevelopment and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and maf
Kenta Oono
 
効率的学習 / Efficient Training(メタサーベイ)
効率的学習 / Efficient Training(メタサーベイ)効率的学習 / Efficient Training(メタサーベイ)
効率的学習 / Efficient Training(メタサーベイ)
cvpaper. challenge
 
JAWS DAYS 2022
JAWS DAYS 2022JAWS DAYS 2022
JAWS DAYS 2022
陽平 山口
 
ML基盤メタサーベイ cvpaper.challenge #meta-study-group勉強会(2019/03/15)
ML基盤メタサーベイ cvpaper.challenge #meta-study-group勉強会(2019/03/15)ML基盤メタサーベイ cvpaper.challenge #meta-study-group勉強会(2019/03/15)
ML基盤メタサーベイ cvpaper.challenge #meta-study-group勉強会(2019/03/15)
ota_in_ otaku
 
2005 icse-five years of product line engineering in a small company
2005 icse-five years of product line engineering in a small company2005 icse-five years of product line engineering in a small company
2005 icse-five years of product line engineering in a small companyn-yuki
 
Unity ML-Agents 入門
Unity ML-Agents 入門Unity ML-Agents 入門
Unity ML-Agents 入門
You&I
 
Immutable Infrastructureを利用したソフトウェア工学教育のためのサーバ運用手法の検討
Immutable Infrastructureを利用したソフトウェア工学教育のためのサーバ運用手法の検討Immutable Infrastructureを利用したソフトウェア工学教育のためのサーバ運用手法の検討
Immutable Infrastructureを利用したソフトウェア工学教育のためのサーバ運用手法の検討
Hiroshi Igaki
 
20180723 PFNの研究基盤 / PFN research system infrastructure
20180723 PFNの研究基盤 / PFN research system infrastructure20180723 PFNの研究基盤 / PFN research system infrastructure
20180723 PFNの研究基盤 / PFN research system infrastructure
Preferred Networks
 
LT.22 機械学習におけるPDCAを回せる環境構築の話
LT.22 機械学習におけるPDCAを回せる環境構築の話 LT.22 機械学習におけるPDCAを回せる環境構築の話
LT.22 機械学習におけるPDCAを回せる環境構築の話
GIG inc.
 
Deep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組みDeep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組み
Kenta Oono
 
Azure Purview Linage for Dataflow/Spark
Azure Purview Linage for Dataflow/SparkAzure Purview Linage for Dataflow/Spark
Azure Purview Linage for Dataflow/Spark
Ryoma Nagata
 
Python / BlueprintによるUnreal Engineの自動化 / GTMF2019
Python / BlueprintによるUnreal Engineの自動化 / GTMF2019Python / BlueprintによるUnreal Engineの自動化 / GTMF2019
Python / BlueprintによるUnreal Engineの自動化 / GTMF2019
Game Tools & Middleware Forum
 
[GTMF2019] Python / BlueprintによるUnreal Engineの自動化
[GTMF2019] Python / BlueprintによるUnreal Engineの自動化[GTMF2019] Python / BlueprintによるUnreal Engineの自動化
[GTMF2019] Python / BlueprintによるUnreal Engineの自動化
エピック・ゲームズ・ジャパン Epic Games Japan
 
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
Shohei Hido
 
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
Deep Learning JP
 
東北大学AIE - 機械学習中級編とAzure紹介
東北大学AIE - 機械学習中級編とAzure紹介東北大学AIE - 機械学習中級編とAzure紹介
東北大学AIE - 機械学習中級編とAzure紹介
Daiyu Hatakeyama
 

Similar to PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 (20)

ディープラーニング最近の発展とビジネス応用への課題
ディープラーニング最近の発展とビジネス応用への課題ディープラーニング最近の発展とビジネス応用への課題
ディープラーニング最近の発展とビジネス応用への課題
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
 
大規模並列実験を支えるクラウドサービスと基盤技術
大規模並列実験を支えるクラウドサービスと基盤技術大規模並列実験を支えるクラウドサービスと基盤技術
大規模並列実験を支えるクラウドサービスと基盤技術
 
Chainerで学ぶdeep learning
Chainerで学ぶdeep learningChainerで学ぶdeep learning
Chainerで学ぶdeep learning
 
Development and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafDevelopment and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and maf
 
効率的学習 / Efficient Training(メタサーベイ)
効率的学習 / Efficient Training(メタサーベイ)効率的学習 / Efficient Training(メタサーベイ)
効率的学習 / Efficient Training(メタサーベイ)
 
JAWS DAYS 2022
JAWS DAYS 2022JAWS DAYS 2022
JAWS DAYS 2022
 
ML基盤メタサーベイ cvpaper.challenge #meta-study-group勉強会(2019/03/15)
ML基盤メタサーベイ cvpaper.challenge #meta-study-group勉強会(2019/03/15)ML基盤メタサーベイ cvpaper.challenge #meta-study-group勉強会(2019/03/15)
ML基盤メタサーベイ cvpaper.challenge #meta-study-group勉強会(2019/03/15)
 
2005 icse-five years of product line engineering in a small company
2005 icse-five years of product line engineering in a small company2005 icse-five years of product line engineering in a small company
2005 icse-five years of product line engineering in a small company
 
Unity ML-Agents 入門
Unity ML-Agents 入門Unity ML-Agents 入門
Unity ML-Agents 入門
 
Immutable Infrastructureを利用したソフトウェア工学教育のためのサーバ運用手法の検討
Immutable Infrastructureを利用したソフトウェア工学教育のためのサーバ運用手法の検討Immutable Infrastructureを利用したソフトウェア工学教育のためのサーバ運用手法の検討
Immutable Infrastructureを利用したソフトウェア工学教育のためのサーバ運用手法の検討
 
20180723 PFNの研究基盤 / PFN research system infrastructure
20180723 PFNの研究基盤 / PFN research system infrastructure20180723 PFNの研究基盤 / PFN research system infrastructure
20180723 PFNの研究基盤 / PFN research system infrastructure
 
LT.22 機械学習におけるPDCAを回せる環境構築の話
LT.22 機械学習におけるPDCAを回せる環境構築の話 LT.22 機械学習におけるPDCAを回せる環境構築の話
LT.22 機械学習におけるPDCAを回せる環境構築の話
 
Deep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組みDeep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組み
 
Azure Purview Linage for Dataflow/Spark
Azure Purview Linage for Dataflow/SparkAzure Purview Linage for Dataflow/Spark
Azure Purview Linage for Dataflow/Spark
 
Python / BlueprintによるUnreal Engineの自動化 / GTMF2019
Python / BlueprintによるUnreal Engineの自動化 / GTMF2019Python / BlueprintによるUnreal Engineの自動化 / GTMF2019
Python / BlueprintによるUnreal Engineの自動化 / GTMF2019
 
[GTMF2019] Python / BlueprintによるUnreal Engineの自動化
[GTMF2019] Python / BlueprintによるUnreal Engineの自動化[GTMF2019] Python / BlueprintによるUnreal Engineの自動化
[GTMF2019] Python / BlueprintによるUnreal Engineの自動化
 
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
 
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
 
東北大学AIE - 機械学習中級編とAzure紹介
東北大学AIE - 機械学習中級編とAzure紹介東北大学AIE - 機械学習中級編とAzure紹介
東北大学AIE - 機械学習中級編とAzure紹介
 

More from Preferred Networks

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
Preferred Networks
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Preferred Networks
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Preferred Networks
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
Preferred Networks
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Preferred Networks
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
Preferred Networks
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
Preferred Networks
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
Preferred Networks
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Preferred Networks
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Preferred Networks
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
Preferred Networks
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Preferred Networks
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
Preferred Networks
 
Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50
Preferred Networks
 
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
Preferred Networks
 
Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太
Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太
Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太
Preferred Networks
 
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
Preferred Networks
 

More from Preferred Networks (20)

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
 
Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50
 
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
 
Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太
Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太
Playgram開発秘話_2022年1月プログラミングシンポジウム招待講演_西澤勇輝、岡本雄太
 
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
東北大学 先端技術の基礎と実践_深層学習による画像認識とデータの話_菊池悠太
 

PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜