SlideShare a Scribd company logo
Kohei Shinohara
@ Preferred Networks Summer Internship 2021
Charge Transfer Modeling
in Neural Network Potential
Neural network potential for materials simulation 2
Density functional theory (DFT)
● Materials simulation routinely rely on DFT
calculation
● Accurate in most cases, but slow
Neural Network Potential (NNP)
● Train NN with DFT dataset and predict
energy, forces, …
● Similar accuracy with DFT and still fast!
adapted from MPNN
Challenging systems with charge transfer 3
Long-range interaction
● Usual NNP only predicts short-range energy
● Long-range interaction is crucial in some systems
○ ionic crystals, catalysts, and nanoclusters
Charge transfer
● Long-range interaction comes from the Coulomb
interaction between charges of atoms
● We need to model charges (charge transfer) and
correct the long-range interaction for accurate
prediction
local-environment change may cause
non-local charge transfer
(adapted from 4G-BPNN)
Objective of this work 4
● Verify various techniques for modeling charge transfer
● Study effective ways to incorporate charge transfer in NNP
● This work should contribute to extending the application systems of NNP
4G-BPNN SpookyNet
GNN Charge+Eele Qeq
2G-BPNN ✖
3G-BPNN ✖ ✅
4G-BPNN ✖ ✅ ✅
SpookyNet ✅ ✅ ✖
Ours ✅ ✖/✅ ✖/
✅
Baseline architecture: NequIP [1] 5
GNN
● update features on atoms (node) by neighbor atoms
Short range
● predict short-term atomic energy and sum all
Forces via automatic differentiation
position
atomic species
trained model
adapted from [1]
[1] S. Batzner et al., arxiv:2101.03164
Electrostatic correction 6
Additional inputs and outputs
● Original NequIP does not output charges
● Qtot: (input) total charge of a system
● Qi: (output) atomic charge
Coulomb term
● Model charge density with gaussian distributions
● Electrostatic energy is a quadratic form of {Qi}
{Zi}
{Qi}
{Ei}
{ri}
Qtot
Embedding
Conv. Layers
Output Block
Sum Pooling
Linear
Coulomb
Linear
Eshort
Etot
Eele
Compare with
Hirshfeld charges
Charge Equilibration (Qeq) [1] 7
● Add self-interaction term to Eele
● Predict the chemically motivated 𝜒i and Ji by NN [2]
● Determine charges by minimizing EQeq
○ Quadratic programming with equality
constraint
○ Equivalent to solve linear equations, O(N3)
○ torch.linalg.solve, no need to implement
gradient
● Reuse predicted charges as node features [3]
[1] A. K. Rappe and W. A. Goddard III, J. Phys. Chem. 95, 8 (1991).
[2] S. A. Ghasemi et al., Phys. Rev. B 92, 045131 (2015).
[3] Tsz Wai Ko et al., Nat. Commun. 12, 398 (2021).
{Zi}
{𝜒i}, {Ji}
{Ei}
{ri}
Qtot
Embedding
Conv. Layers
Output Block
Sum Pooling
Linear
Coulomb
Linear
Eshort
Etot
EQeq
Compare with
Hirshfeld charges
Qeq
{Qi}
Electrostatic energy for periodic system 8
Ewald summation [1,2]
● The sum in Eele for periodic systems is conditional convergent
● Standard technique to calculate Eele for periodic systems
● Eele is a quadratic form → Qeq works as well as nonperiodic
Periodic boundary condition
(adapted from Wikimedia Commons)
[1] P. P. Ewald, Ann. Phys. 64, 253 (1921). [2] P. T. Kiss et al., J. Chem. Theory Comput. 10, 12 (2014).
Lecture note on Ewald summation: link
Neighbor search
Naive: O(N2), Neighbor list: O(N)
Fourier transform
Naive: O(N2), FFT: O(N log N)
Datasets [1] 9
[1] Tsz Wai Ko et al., Nat. Commun. 12, 398 (2021).
Carbon chain
(C10H2/C10H3
+)
NaCl
(Na8Cl8
+/Na9Cl8
+)
Ag cluster
(Ag3
+/Ag3
-)
Au2-MgO
(undoped/doped)
nonperiodic nonperiodic nonperiodic periodic
Trajectory from MD and
relaxation
10019 structures
Blue atom (Na) is randomly
displaced
5000 structures
Trajectory from MD and
relaxation
11013 structures
Au2 cluster on MgO (001)
Half of dataset are Al-doped
(blue atom)
5000 structures
adapted from [1]
Effects of Eele and Qeq on forces RMSE 10
● GNNs give better accuracy than MLPs (dotted lines)
● Qeq improve accuracies compared to naive charge prediction
● But, baseline GNN is often superior to these models (except Ag cluster)
○ GNN can learn Eele effect in these datasets?
Effects of Qeq on charges RMSE 11
● Qeq improves charges prediction except Ag cluster dataset
● Worse accuracies than MLP (green dotted)
○ Need more params. for predicting 𝜒i and Ji ?
Evaluation time 12
● Au2-MgO, 110 atoms in unit cell, V100 x1
● Current implementation calculates Ewald sum and Qeq serially
○ Batched lu_solve will speed up Qeq
Order #params. Eval time ↓
(ms/structure)
Performance ↑
(Katoms-step/sec)
Baseline O(N) 48024 27.8 4.61
w/ Eele (Ewald) O(N2) 48104 49.8 3.20
w/ Qeq O(N3) 48104 66.7 2.34
Conclusion 13
Inspect techniques for charge transfer on GNN
● Qeq improves charges prediction in most cases
● Qeq improve accuracies compared to naive charge prediction
● but, baseline GNN is often superior to these models…
○ Effective cutoff radii of GNN can see charge transfer in the present datasets
Implementation aspects
● pytorch implementation of Qeq
○ no need to care about derivatives of linear equations!
● pytorch implementation of Ewald summation
○ electrostatic interaction for periodic system

More Related Content

What's hot

素材産業のDxに貢献する 『Matlantis』のご紹介_nano tech2022_2022/1/28
素材産業のDxに貢献する 『Matlantis』のご紹介_nano tech2022_2022/1/28素材産業のDxに貢献する 『Matlantis』のご紹介_nano tech2022_2022/1/28
素材産業のDxに貢献する 『Matlantis』のご紹介_nano tech2022_2022/1/28
Matlantis
 
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
NVIDIA Japan
 
機械学習によるハイスループット 第一原理計算の代替の可能性_日本化学会_20230323
機械学習によるハイスループット 第一原理計算の代替の可能性_日本化学会_20230323機械学習によるハイスループット 第一原理計算の代替の可能性_日本化学会_20230323
機械学習によるハイスループット 第一原理計算の代替の可能性_日本化学会_20230323
Matlantis
 
第10回 配信講義 計算科学技術特論A(2021)
第10回 配信講義 計算科学技術特論A(2021)第10回 配信講義 計算科学技術特論A(2021)
第10回 配信講義 計算科学技術特論A(2021)
RCCSRENKEI
 
ベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learning
ベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learningベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learning
ベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learning
ssuserca2822
 
論文紹介資料「Quantum Deep Field : Data-Driven Wave Function ...」
論文紹介資料「Quantum Deep Field : Data-Driven Wave Function ...」論文紹介資料「Quantum Deep Field : Data-Driven Wave Function ...」
論文紹介資料「Quantum Deep Field : Data-Driven Wave Function ...」
DaikiKoge
 
【DL輪読会】GradMax: Growing Neural Networks using Gradient Information
【DL輪読会】GradMax: Growing Neural Networks using Gradient Information【DL輪読会】GradMax: Growing Neural Networks using Gradient Information
【DL輪読会】GradMax: Growing Neural Networks using Gradient Information
Deep Learning JP
 
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナーPFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
Matlantis
 
第一原理計算と密度汎関数理論
第一原理計算と密度汎関数理論第一原理計算と密度汎関数理論
第一原理計算と密度汎関数理論
dc1394
 
Graph Attention Network
Graph Attention NetworkGraph Attention Network
Graph Attention Network
Takahiro Kubo
 
ENEOSにおける低炭素技術への挑戦~汎用原子レベルシミュレータMatlantis™の共同開発者とユーザーの視点から~
ENEOSにおける低炭素技術への挑戦~汎用原子レベルシミュレータMatlantis™の共同開発者とユーザーの視点から~ENEOSにおける低炭素技術への挑戦~汎用原子レベルシミュレータMatlantis™の共同開発者とユーザーの視点から~
ENEOSにおける低炭素技術への挑戦~汎用原子レベルシミュレータMatlantis™の共同開発者とユーザーの視点から~
Matlantis
 
NVIDIA Modulus: Physics ML 開発のためのフレームワーク
NVIDIA Modulus: Physics ML 開発のためのフレームワークNVIDIA Modulus: Physics ML 開発のためのフレームワーク
NVIDIA Modulus: Physics ML 開発のためのフレームワーク
NVIDIA Japan
 
合成経路探索 -論文まとめ- (PFN中郷孝祐)
合成経路探索 -論文まとめ-  (PFN中郷孝祐)合成経路探索 -論文まとめ-  (PFN中郷孝祐)
合成経路探索 -論文まとめ- (PFN中郷孝祐)
Preferred Networks
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
tmtm otm
 
汎用なNeural Network Potential「Matlantis」を使った新素材探索_浅野_JACI先端化学・材料技術部会 高選択性反応分科会主...
汎用なNeural Network Potential「Matlantis」を使った新素材探索_浅野_JACI先端化学・材料技術部会 高選択性反応分科会主...汎用なNeural Network Potential「Matlantis」を使った新素材探索_浅野_JACI先端化学・材料技術部会 高選択性反応分科会主...
汎用なNeural Network Potential「Matlantis」を使った新素材探索_浅野_JACI先端化学・材料技術部会 高選択性反応分科会主...
Matlantis
 
[DL輪読会]A Hierarchical Latent Vector Model for Learning Long-Term Structure in...
[DL輪読会]A Hierarchical Latent Vector Model for Learning Long-Term Structure in...[DL輪読会]A Hierarchical Latent Vector Model for Learning Long-Term Structure in...
[DL輪読会]A Hierarchical Latent Vector Model for Learning Long-Term Structure in...
Deep Learning JP
 
【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?
Masanao Ochi
 
[DL輪読会]Attentive neural processes
[DL輪読会]Attentive neural processes[DL輪読会]Attentive neural processes
[DL輪読会]Attentive neural processes
Deep Learning JP
 
[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation
Deep Learning JP
 
[DL輪読会]Relational inductive biases, deep learning, and graph networks
[DL輪読会]Relational inductive biases, deep learning, and graph networks[DL輪読会]Relational inductive biases, deep learning, and graph networks
[DL輪読会]Relational inductive biases, deep learning, and graph networks
Deep Learning JP
 

What's hot (20)

素材産業のDxに貢献する 『Matlantis』のご紹介_nano tech2022_2022/1/28
素材産業のDxに貢献する 『Matlantis』のご紹介_nano tech2022_2022/1/28素材産業のDxに貢献する 『Matlantis』のご紹介_nano tech2022_2022/1/28
素材産業のDxに貢献する 『Matlantis』のご紹介_nano tech2022_2022/1/28
 
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
 
機械学習によるハイスループット 第一原理計算の代替の可能性_日本化学会_20230323
機械学習によるハイスループット 第一原理計算の代替の可能性_日本化学会_20230323機械学習によるハイスループット 第一原理計算の代替の可能性_日本化学会_20230323
機械学習によるハイスループット 第一原理計算の代替の可能性_日本化学会_20230323
 
第10回 配信講義 計算科学技術特論A(2021)
第10回 配信講義 計算科学技術特論A(2021)第10回 配信講義 計算科学技術特論A(2021)
第10回 配信講義 計算科学技術特論A(2021)
 
ベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learning
ベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learningベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learning
ベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learning
 
論文紹介資料「Quantum Deep Field : Data-Driven Wave Function ...」
論文紹介資料「Quantum Deep Field : Data-Driven Wave Function ...」論文紹介資料「Quantum Deep Field : Data-Driven Wave Function ...」
論文紹介資料「Quantum Deep Field : Data-Driven Wave Function ...」
 
【DL輪読会】GradMax: Growing Neural Networks using Gradient Information
【DL輪読会】GradMax: Growing Neural Networks using Gradient Information【DL輪読会】GradMax: Growing Neural Networks using Gradient Information
【DL輪読会】GradMax: Growing Neural Networks using Gradient Information
 
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナーPFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
 
第一原理計算と密度汎関数理論
第一原理計算と密度汎関数理論第一原理計算と密度汎関数理論
第一原理計算と密度汎関数理論
 
Graph Attention Network
Graph Attention NetworkGraph Attention Network
Graph Attention Network
 
ENEOSにおける低炭素技術への挑戦~汎用原子レベルシミュレータMatlantis™の共同開発者とユーザーの視点から~
ENEOSにおける低炭素技術への挑戦~汎用原子レベルシミュレータMatlantis™の共同開発者とユーザーの視点から~ENEOSにおける低炭素技術への挑戦~汎用原子レベルシミュレータMatlantis™の共同開発者とユーザーの視点から~
ENEOSにおける低炭素技術への挑戦~汎用原子レベルシミュレータMatlantis™の共同開発者とユーザーの視点から~
 
NVIDIA Modulus: Physics ML 開発のためのフレームワーク
NVIDIA Modulus: Physics ML 開発のためのフレームワークNVIDIA Modulus: Physics ML 開発のためのフレームワーク
NVIDIA Modulus: Physics ML 開発のためのフレームワーク
 
合成経路探索 -論文まとめ- (PFN中郷孝祐)
合成経路探索 -論文まとめ-  (PFN中郷孝祐)合成経路探索 -論文まとめ-  (PFN中郷孝祐)
合成経路探索 -論文まとめ- (PFN中郷孝祐)
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
 
汎用なNeural Network Potential「Matlantis」を使った新素材探索_浅野_JACI先端化学・材料技術部会 高選択性反応分科会主...
汎用なNeural Network Potential「Matlantis」を使った新素材探索_浅野_JACI先端化学・材料技術部会 高選択性反応分科会主...汎用なNeural Network Potential「Matlantis」を使った新素材探索_浅野_JACI先端化学・材料技術部会 高選択性反応分科会主...
汎用なNeural Network Potential「Matlantis」を使った新素材探索_浅野_JACI先端化学・材料技術部会 高選択性反応分科会主...
 
[DL輪読会]A Hierarchical Latent Vector Model for Learning Long-Term Structure in...
[DL輪読会]A Hierarchical Latent Vector Model for Learning Long-Term Structure in...[DL輪読会]A Hierarchical Latent Vector Model for Learning Long-Term Structure in...
[DL輪読会]A Hierarchical Latent Vector Model for Learning Long-Term Structure in...
 
【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?
 
[DL輪読会]Attentive neural processes
[DL輪読会]Attentive neural processes[DL輪読会]Attentive neural processes
[DL輪読会]Attentive neural processes
 
[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation
 
[DL輪読会]Relational inductive biases, deep learning, and graph networks
[DL輪読会]Relational inductive biases, deep learning, and graph networks[DL輪読会]Relational inductive biases, deep learning, and graph networks
[DL輪読会]Relational inductive biases, deep learning, and graph networks
 

Similar to PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neural Network Potential

Lecture: Interatomic Potentials Enabled by Machine Learning
Lecture: Interatomic Potentials Enabled by Machine LearningLecture: Interatomic Potentials Enabled by Machine Learning
Lecture: Interatomic Potentials Enabled by Machine Learning
DanielSchwalbeKoda
 
BNL_Research_Poster
BNL_Research_PosterBNL_Research_Poster
BNL_Research_Poster
Brandon McKinzie
 
QTPIE and water (Part 1)
QTPIE and water (Part 1)QTPIE and water (Part 1)
QTPIE and water (Part 1)
Jiahao Chen
 
Atmosphere Clouds Model Algorithm for Solving Optimal Reactive Power Dispatch...
Atmosphere Clouds Model Algorithm for Solving Optimal Reactive Power Dispatch...Atmosphere Clouds Model Algorithm for Solving Optimal Reactive Power Dispatch...
Atmosphere Clouds Model Algorithm for Solving Optimal Reactive Power Dispatch...
ijeei-iaes
 
defect_supercell_finite_size_schemes_10-09-18
defect_supercell_finite_size_schemes_10-09-18defect_supercell_finite_size_schemes_10-09-18
defect_supercell_finite_size_schemes_10-09-18
Suzanne Wallace
 
Modeling the transport of charge carriers in the active devices diode submicr...
Modeling the transport of charge carriers in the active devices diode submicr...Modeling the transport of charge carriers in the active devices diode submicr...
Modeling the transport of charge carriers in the active devices diode submicr...
IJERA Editor
 
7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt
GustavoGuilln4
 
paper
paperpaper
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
Alexander Decker
 
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
Alexander Decker
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
Mimar Sinan Saraç
 
Computational methods and vibrational properties applied to materials modeling
Computational methods and vibrational properties applied to materials modelingComputational methods and vibrational properties applied to materials modeling
Computational methods and vibrational properties applied to materials modeling
cippo1987Ita
 
Performance prediction of PV & PV/T systems using Artificial Neural Networks ...
Performance prediction of PV & PV/T systems using Artificial Neural Networks ...Performance prediction of PV & PV/T systems using Artificial Neural Networks ...
Performance prediction of PV & PV/T systems using Artificial Neural Networks ...
Ali Al-Waeli
 
Annals 2011-3-71
Annals 2011-3-71Annals 2011-3-71
Annals 2011-3-71
lenin
 
Local Optimal Polarization of Piezoelectric Material
Local Optimal Polarization of Piezoelectric MaterialLocal Optimal Polarization of Piezoelectric Material
Local Optimal Polarization of Piezoelectric Material
Fabian Wein
 
Laser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton ScatteringLaser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton Scattering
Todd Hodges
 
Quantum Computation for Predicting Electron and Phonon Properties of Solids
Quantum Computation for Predicting Electron and Phonon Properties of SolidsQuantum Computation for Predicting Electron and Phonon Properties of Solids
Quantum Computation for Predicting Electron and Phonon Properties of Solids
KAMAL CHOUDHARY
 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
cseij
 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip lines
cseij
 
stability of power flow analysis of different resources both on and off grid
stability of power flow analysis of different resources both on and off gridstability of power flow analysis of different resources both on and off grid
stability of power flow analysis of different resources both on and off grid
rehman1oo
 

Similar to PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neural Network Potential (20)

Lecture: Interatomic Potentials Enabled by Machine Learning
Lecture: Interatomic Potentials Enabled by Machine LearningLecture: Interatomic Potentials Enabled by Machine Learning
Lecture: Interatomic Potentials Enabled by Machine Learning
 
BNL_Research_Poster
BNL_Research_PosterBNL_Research_Poster
BNL_Research_Poster
 
QTPIE and water (Part 1)
QTPIE and water (Part 1)QTPIE and water (Part 1)
QTPIE and water (Part 1)
 
Atmosphere Clouds Model Algorithm for Solving Optimal Reactive Power Dispatch...
Atmosphere Clouds Model Algorithm for Solving Optimal Reactive Power Dispatch...Atmosphere Clouds Model Algorithm for Solving Optimal Reactive Power Dispatch...
Atmosphere Clouds Model Algorithm for Solving Optimal Reactive Power Dispatch...
 
defect_supercell_finite_size_schemes_10-09-18
defect_supercell_finite_size_schemes_10-09-18defect_supercell_finite_size_schemes_10-09-18
defect_supercell_finite_size_schemes_10-09-18
 
Modeling the transport of charge carriers in the active devices diode submicr...
Modeling the transport of charge carriers in the active devices diode submicr...Modeling the transport of charge carriers in the active devices diode submicr...
Modeling the transport of charge carriers in the active devices diode submicr...
 
7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt
 
paper
paperpaper
paper
 
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
 
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 
Computational methods and vibrational properties applied to materials modeling
Computational methods and vibrational properties applied to materials modelingComputational methods and vibrational properties applied to materials modeling
Computational methods and vibrational properties applied to materials modeling
 
Performance prediction of PV & PV/T systems using Artificial Neural Networks ...
Performance prediction of PV & PV/T systems using Artificial Neural Networks ...Performance prediction of PV & PV/T systems using Artificial Neural Networks ...
Performance prediction of PV & PV/T systems using Artificial Neural Networks ...
 
Annals 2011-3-71
Annals 2011-3-71Annals 2011-3-71
Annals 2011-3-71
 
Local Optimal Polarization of Piezoelectric Material
Local Optimal Polarization of Piezoelectric MaterialLocal Optimal Polarization of Piezoelectric Material
Local Optimal Polarization of Piezoelectric Material
 
Laser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton ScatteringLaser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton Scattering
 
Quantum Computation for Predicting Electron and Phonon Properties of Solids
Quantum Computation for Predicting Electron and Phonon Properties of SolidsQuantum Computation for Predicting Electron and Phonon Properties of Solids
Quantum Computation for Predicting Electron and Phonon Properties of Solids
 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip lines
 
stability of power flow analysis of different resources both on and off grid
stability of power flow analysis of different resources both on and off gridstability of power flow analysis of different resources both on and off grid
stability of power flow analysis of different resources both on and off grid
 

More from Preferred Networks

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
Preferred Networks
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Preferred Networks
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Preferred Networks
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
Preferred Networks
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Preferred Networks
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
Preferred Networks
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Preferred Networks
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
Preferred Networks
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
Preferred Networks
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Preferred Networks
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
Preferred Networks
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
Preferred Networks
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
Preferred Networks
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
Preferred Networks
 
Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50
Preferred Networks
 

More from Preferred Networks (20)

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
 
Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50
 

Recently uploaded

Empowering Businesses with Intelligent Software Solutions - Grawlix
Empowering Businesses with Intelligent Software Solutions - GrawlixEmpowering Businesses with Intelligent Software Solutions - Grawlix
Empowering Businesses with Intelligent Software Solutions - Grawlix
Aarisha Shaikh
 
Russian Girls Call Mumbai 🎈🔥9930687706 🔥💋🎈 Provide Best And Top Girl Service ...
Russian Girls Call Mumbai 🎈🔥9930687706 🔥💋🎈 Provide Best And Top Girl Service ...Russian Girls Call Mumbai 🎈🔥9930687706 🔥💋🎈 Provide Best And Top Girl Service ...
Russian Girls Call Mumbai 🎈🔥9930687706 🔥💋🎈 Provide Best And Top Girl Service ...
shanihomely
 
High Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 ...
High Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 ...High Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 ...
High Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 ...
singhlata50dh
 
VVIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 i...
VVIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 i...VVIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 i...
VVIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 i...
jealousviolet
 
Old Tools, New Tricks: Unleashing the Power of Time-Tested Testing Tools
Old Tools, New Tricks: Unleashing the Power of Time-Tested Testing ToolsOld Tools, New Tricks: Unleashing the Power of Time-Tested Testing Tools
Old Tools, New Tricks: Unleashing the Power of Time-Tested Testing Tools
Benjamin Bischoff
 
Verified Girls Call Mumbai 👀 9820252231 👀 Cash Payment With Room DeliveryDeli...
Verified Girls Call Mumbai 👀 9820252231 👀 Cash Payment With Room DeliveryDeli...Verified Girls Call Mumbai 👀 9820252231 👀 Cash Payment With Room DeliveryDeli...
Verified Girls Call Mumbai 👀 9820252231 👀 Cash Payment With Room DeliveryDeli...
87tomato
 
Private Girls Call Navi Mumbai 🛵🚡9820252231 💃 Choose Best And Top Girl Servic...
Private Girls Call Navi Mumbai 🛵🚡9820252231 💃 Choose Best And Top Girl Servic...Private Girls Call Navi Mumbai 🛵🚡9820252231 💃 Choose Best And Top Girl Servic...
Private Girls Call Navi Mumbai 🛵🚡9820252231 💃 Choose Best And Top Girl Servic...
902basic
 
How To Fill Timesheet in TaskSprint: Quick Guide 2024
How To Fill Timesheet in TaskSprint: Quick Guide 2024How To Fill Timesheet in TaskSprint: Quick Guide 2024
How To Fill Timesheet in TaskSprint: Quick Guide 2024
TaskSprint | Employee Efficiency Software
 
Girls Call Jogeshwari 9967584737 Provide Best And Top Girl Service And No1 in...
Girls Call Jogeshwari 9967584737 Provide Best And Top Girl Service And No1 in...Girls Call Jogeshwari 9967584737 Provide Best And Top Girl Service And No1 in...
Girls Call Jogeshwari 9967584737 Provide Best And Top Girl Service And No1 in...
simran hot girls
 
PathSpotter: Exploring Tested Paths to Discover Missing Tests (FSE 2024)
PathSpotter: Exploring Tested Paths to Discover Missing Tests (FSE 2024)PathSpotter: Exploring Tested Paths to Discover Missing Tests (FSE 2024)
PathSpotter: Exploring Tested Paths to Discover Missing Tests (FSE 2024)
andrehoraa
 
Tour and travel website management in odoo,
Tour and travel website management in odoo,Tour and travel website management in odoo,
Tour and travel website management in odoo,
Axis Technolabs
 
Amadeus Travel API, Amadeus Booking API, Amadeus GDS
Amadeus Travel API, Amadeus Booking API, Amadeus GDSAmadeus Travel API, Amadeus Booking API, Amadeus GDS
Amadeus Travel API, Amadeus Booking API, Amadeus GDS
aadhiyaeliza
 
Fantastic Design Patterns and Where to use them No Notes.pdf
Fantastic Design Patterns and Where to use them No Notes.pdfFantastic Design Patterns and Where to use them No Notes.pdf
Fantastic Design Patterns and Where to use them No Notes.pdf
6m9p7qnjj8
 
07. Ruby String Slides - Ruby Core Teaching
07. Ruby String Slides - Ruby Core Teaching07. Ruby String Slides - Ruby Core Teaching
07. Ruby String Slides - Ruby Core Teaching
quanhoangd129
 
08. Ruby Enumerable - Ruby Core Teaching
08. Ruby Enumerable - Ruby Core Teaching08. Ruby Enumerable - Ruby Core Teaching
08. Ruby Enumerable - Ruby Core Teaching
quanhoangd129
 
ERP Software Solutions Provider in Coimbatore
ERP Software Solutions Provider in CoimbatoreERP Software Solutions Provider in Coimbatore
ERP Software Solutions Provider in Coimbatore
Nextskill Technologies
 
01. Ruby Introduction - Ruby Core Teaching
01. Ruby Introduction - Ruby Core Teaching01. Ruby Introduction - Ruby Core Teaching
01. Ruby Introduction - Ruby Core Teaching
quanhoangd129
 
Maximizing Efficiency and Profitability: Optimizing Data Systems, Enhancing C...
Maximizing Efficiency and Profitability: Optimizing Data Systems, Enhancing C...Maximizing Efficiency and Profitability: Optimizing Data Systems, Enhancing C...
Maximizing Efficiency and Profitability: Optimizing Data Systems, Enhancing C...
OnePlan Solutions
 
Authentication Review-June -2024 AP & TS.pptx
Authentication Review-June -2024 AP & TS.pptxAuthentication Review-June -2024 AP & TS.pptx
Authentication Review-June -2024 AP & TS.pptx
DEMONDUOS
 
Applitools Autonomous 2.0 Sneak Peek.pdf
Applitools Autonomous 2.0 Sneak Peek.pdfApplitools Autonomous 2.0 Sneak Peek.pdf
Applitools Autonomous 2.0 Sneak Peek.pdf
Applitools
 

Recently uploaded (20)

Empowering Businesses with Intelligent Software Solutions - Grawlix
Empowering Businesses with Intelligent Software Solutions - GrawlixEmpowering Businesses with Intelligent Software Solutions - Grawlix
Empowering Businesses with Intelligent Software Solutions - Grawlix
 
Russian Girls Call Mumbai 🎈🔥9930687706 🔥💋🎈 Provide Best And Top Girl Service ...
Russian Girls Call Mumbai 🎈🔥9930687706 🔥💋🎈 Provide Best And Top Girl Service ...Russian Girls Call Mumbai 🎈🔥9930687706 🔥💋🎈 Provide Best And Top Girl Service ...
Russian Girls Call Mumbai 🎈🔥9930687706 🔥💋🎈 Provide Best And Top Girl Service ...
 
High Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 ...
High Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 ...High Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 ...
High Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 ...
 
VVIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 i...
VVIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 i...VVIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 i...
VVIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 i...
 
Old Tools, New Tricks: Unleashing the Power of Time-Tested Testing Tools
Old Tools, New Tricks: Unleashing the Power of Time-Tested Testing ToolsOld Tools, New Tricks: Unleashing the Power of Time-Tested Testing Tools
Old Tools, New Tricks: Unleashing the Power of Time-Tested Testing Tools
 
Verified Girls Call Mumbai 👀 9820252231 👀 Cash Payment With Room DeliveryDeli...
Verified Girls Call Mumbai 👀 9820252231 👀 Cash Payment With Room DeliveryDeli...Verified Girls Call Mumbai 👀 9820252231 👀 Cash Payment With Room DeliveryDeli...
Verified Girls Call Mumbai 👀 9820252231 👀 Cash Payment With Room DeliveryDeli...
 
Private Girls Call Navi Mumbai 🛵🚡9820252231 💃 Choose Best And Top Girl Servic...
Private Girls Call Navi Mumbai 🛵🚡9820252231 💃 Choose Best And Top Girl Servic...Private Girls Call Navi Mumbai 🛵🚡9820252231 💃 Choose Best And Top Girl Servic...
Private Girls Call Navi Mumbai 🛵🚡9820252231 💃 Choose Best And Top Girl Servic...
 
How To Fill Timesheet in TaskSprint: Quick Guide 2024
How To Fill Timesheet in TaskSprint: Quick Guide 2024How To Fill Timesheet in TaskSprint: Quick Guide 2024
How To Fill Timesheet in TaskSprint: Quick Guide 2024
 
Girls Call Jogeshwari 9967584737 Provide Best And Top Girl Service And No1 in...
Girls Call Jogeshwari 9967584737 Provide Best And Top Girl Service And No1 in...Girls Call Jogeshwari 9967584737 Provide Best And Top Girl Service And No1 in...
Girls Call Jogeshwari 9967584737 Provide Best And Top Girl Service And No1 in...
 
PathSpotter: Exploring Tested Paths to Discover Missing Tests (FSE 2024)
PathSpotter: Exploring Tested Paths to Discover Missing Tests (FSE 2024)PathSpotter: Exploring Tested Paths to Discover Missing Tests (FSE 2024)
PathSpotter: Exploring Tested Paths to Discover Missing Tests (FSE 2024)
 
Tour and travel website management in odoo,
Tour and travel website management in odoo,Tour and travel website management in odoo,
Tour and travel website management in odoo,
 
Amadeus Travel API, Amadeus Booking API, Amadeus GDS
Amadeus Travel API, Amadeus Booking API, Amadeus GDSAmadeus Travel API, Amadeus Booking API, Amadeus GDS
Amadeus Travel API, Amadeus Booking API, Amadeus GDS
 
Fantastic Design Patterns and Where to use them No Notes.pdf
Fantastic Design Patterns and Where to use them No Notes.pdfFantastic Design Patterns and Where to use them No Notes.pdf
Fantastic Design Patterns and Where to use them No Notes.pdf
 
07. Ruby String Slides - Ruby Core Teaching
07. Ruby String Slides - Ruby Core Teaching07. Ruby String Slides - Ruby Core Teaching
07. Ruby String Slides - Ruby Core Teaching
 
08. Ruby Enumerable - Ruby Core Teaching
08. Ruby Enumerable - Ruby Core Teaching08. Ruby Enumerable - Ruby Core Teaching
08. Ruby Enumerable - Ruby Core Teaching
 
ERP Software Solutions Provider in Coimbatore
ERP Software Solutions Provider in CoimbatoreERP Software Solutions Provider in Coimbatore
ERP Software Solutions Provider in Coimbatore
 
01. Ruby Introduction - Ruby Core Teaching
01. Ruby Introduction - Ruby Core Teaching01. Ruby Introduction - Ruby Core Teaching
01. Ruby Introduction - Ruby Core Teaching
 
Maximizing Efficiency and Profitability: Optimizing Data Systems, Enhancing C...
Maximizing Efficiency and Profitability: Optimizing Data Systems, Enhancing C...Maximizing Efficiency and Profitability: Optimizing Data Systems, Enhancing C...
Maximizing Efficiency and Profitability: Optimizing Data Systems, Enhancing C...
 
Authentication Review-June -2024 AP & TS.pptx
Authentication Review-June -2024 AP & TS.pptxAuthentication Review-June -2024 AP & TS.pptx
Authentication Review-June -2024 AP & TS.pptx
 
Applitools Autonomous 2.0 Sneak Peek.pdf
Applitools Autonomous 2.0 Sneak Peek.pdfApplitools Autonomous 2.0 Sneak Peek.pdf
Applitools Autonomous 2.0 Sneak Peek.pdf
 

PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neural Network Potential

  • 1. Kohei Shinohara @ Preferred Networks Summer Internship 2021 Charge Transfer Modeling in Neural Network Potential
  • 2. Neural network potential for materials simulation 2 Density functional theory (DFT) ● Materials simulation routinely rely on DFT calculation ● Accurate in most cases, but slow Neural Network Potential (NNP) ● Train NN with DFT dataset and predict energy, forces, … ● Similar accuracy with DFT and still fast! adapted from MPNN
  • 3. Challenging systems with charge transfer 3 Long-range interaction ● Usual NNP only predicts short-range energy ● Long-range interaction is crucial in some systems ○ ionic crystals, catalysts, and nanoclusters Charge transfer ● Long-range interaction comes from the Coulomb interaction between charges of atoms ● We need to model charges (charge transfer) and correct the long-range interaction for accurate prediction local-environment change may cause non-local charge transfer (adapted from 4G-BPNN)
  • 4. Objective of this work 4 ● Verify various techniques for modeling charge transfer ● Study effective ways to incorporate charge transfer in NNP ● This work should contribute to extending the application systems of NNP 4G-BPNN SpookyNet GNN Charge+Eele Qeq 2G-BPNN ✖ 3G-BPNN ✖ ✅ 4G-BPNN ✖ ✅ ✅ SpookyNet ✅ ✅ ✖ Ours ✅ ✖/✅ ✖/ ✅
  • 5. Baseline architecture: NequIP [1] 5 GNN ● update features on atoms (node) by neighbor atoms Short range ● predict short-term atomic energy and sum all Forces via automatic differentiation position atomic species trained model adapted from [1] [1] S. Batzner et al., arxiv:2101.03164
  • 6. Electrostatic correction 6 Additional inputs and outputs ● Original NequIP does not output charges ● Qtot: (input) total charge of a system ● Qi: (output) atomic charge Coulomb term ● Model charge density with gaussian distributions ● Electrostatic energy is a quadratic form of {Qi} {Zi} {Qi} {Ei} {ri} Qtot Embedding Conv. Layers Output Block Sum Pooling Linear Coulomb Linear Eshort Etot Eele Compare with Hirshfeld charges
  • 7. Charge Equilibration (Qeq) [1] 7 ● Add self-interaction term to Eele ● Predict the chemically motivated 𝜒i and Ji by NN [2] ● Determine charges by minimizing EQeq ○ Quadratic programming with equality constraint ○ Equivalent to solve linear equations, O(N3) ○ torch.linalg.solve, no need to implement gradient ● Reuse predicted charges as node features [3] [1] A. K. Rappe and W. A. Goddard III, J. Phys. Chem. 95, 8 (1991). [2] S. A. Ghasemi et al., Phys. Rev. B 92, 045131 (2015). [3] Tsz Wai Ko et al., Nat. Commun. 12, 398 (2021). {Zi} {𝜒i}, {Ji} {Ei} {ri} Qtot Embedding Conv. Layers Output Block Sum Pooling Linear Coulomb Linear Eshort Etot EQeq Compare with Hirshfeld charges Qeq {Qi}
  • 8. Electrostatic energy for periodic system 8 Ewald summation [1,2] ● The sum in Eele for periodic systems is conditional convergent ● Standard technique to calculate Eele for periodic systems ● Eele is a quadratic form → Qeq works as well as nonperiodic Periodic boundary condition (adapted from Wikimedia Commons) [1] P. P. Ewald, Ann. Phys. 64, 253 (1921). [2] P. T. Kiss et al., J. Chem. Theory Comput. 10, 12 (2014). Lecture note on Ewald summation: link Neighbor search Naive: O(N2), Neighbor list: O(N) Fourier transform Naive: O(N2), FFT: O(N log N)
  • 9. Datasets [1] 9 [1] Tsz Wai Ko et al., Nat. Commun. 12, 398 (2021). Carbon chain (C10H2/C10H3 +) NaCl (Na8Cl8 +/Na9Cl8 +) Ag cluster (Ag3 +/Ag3 -) Au2-MgO (undoped/doped) nonperiodic nonperiodic nonperiodic periodic Trajectory from MD and relaxation 10019 structures Blue atom (Na) is randomly displaced 5000 structures Trajectory from MD and relaxation 11013 structures Au2 cluster on MgO (001) Half of dataset are Al-doped (blue atom) 5000 structures adapted from [1]
  • 10. Effects of Eele and Qeq on forces RMSE 10 ● GNNs give better accuracy than MLPs (dotted lines) ● Qeq improve accuracies compared to naive charge prediction ● But, baseline GNN is often superior to these models (except Ag cluster) ○ GNN can learn Eele effect in these datasets?
  • 11. Effects of Qeq on charges RMSE 11 ● Qeq improves charges prediction except Ag cluster dataset ● Worse accuracies than MLP (green dotted) ○ Need more params. for predicting 𝜒i and Ji ?
  • 12. Evaluation time 12 ● Au2-MgO, 110 atoms in unit cell, V100 x1 ● Current implementation calculates Ewald sum and Qeq serially ○ Batched lu_solve will speed up Qeq Order #params. Eval time ↓ (ms/structure) Performance ↑ (Katoms-step/sec) Baseline O(N) 48024 27.8 4.61 w/ Eele (Ewald) O(N2) 48104 49.8 3.20 w/ Qeq O(N3) 48104 66.7 2.34
  • 13. Conclusion 13 Inspect techniques for charge transfer on GNN ● Qeq improves charges prediction in most cases ● Qeq improve accuracies compared to naive charge prediction ● but, baseline GNN is often superior to these models… ○ Effective cutoff radii of GNN can see charge transfer in the present datasets Implementation aspects ● pytorch implementation of Qeq ○ no need to care about derivatives of linear equations! ● pytorch implementation of Ewald summation ○ electrostatic interaction for periodic system