Chapter 13
Problem Solutions

13.1        Computer Simulation

13.2        Computer Simulation

13.3
(a)                       (
             Ad = g m1 ro 2 ro 4 Ri 6      )
          I C1   20
g m1 =         =    ⇒ 0.769 mA / V
          VT 0.026
          VA 2 80
 ro 2 =        =   = 4 MΩ
          I C 2 20
          VA 4 80
 ro 4 =        =   = 4 MΩ
          I C 2 20
 Ri 6 = rπ 6 + (1 + β n ) ⎡ R1 rπ 7 ⎤
                          ⎣         ⎦
        (120)(0.026)
 rπ 7 =                    = 15.6 k Ω
               0.2
        V (on) 0.6
 I C 6 ≅ BE        =         = 0.030 mA
             R1        20
          (120)(0.026)
 rπ 6 =                = 104 k Ω
             0.030
Then
Ri 6 = 104 + (121) ⎡ 20 15.6 ⎤ ⇒ 1.16 M Ω
                   ⎣         ⎦
Then
             (
Ad = 769 4 4 1.16 ⇒ Ad = 565  )
Now
                                                    ⎛ R1          ⎞
Vo = − I c 7 ro 7 = −( β n I b 7 )ro 7 = − β n ro 7 ⎜             ⎟ Ic6
                                                    ⎝ R1 + rπ 7   ⎠
                       ⎛ R1 ⎞                          Vo1
= − β n (1 + β n )ro 7 ⎜           ⎟ I b 6 and I b 6 =
                       ⎝ R1 + rπ 7 ⎠                   Ri 6
Then
        V      − β n (1 + β n )ro 7 ⎛ R1 ⎞
Av 2 = o =                          ⎜             ⎟
       Vo1               Ri 6       ⎝ R1 + rπ 7 ⎠
          VA     80
ro 7 =         =    = 400 k Ω
          I C 7 0.2
So
          −(120)(121)(400) ⎛ 20 ⎞
Av 2 =                     ⎜           ⎟ ⇒ Av 2 = −2813
               1160        ⎝ 20 + 15.6 ⎠
Overall gain = Ad ⋅ Av 2 = (565)(−2813) ⇒ A = −1.59 ×106
                                          (80)(0.026)
(b)          Rid = 2rπ 1 and rπ 1 =                   = 104 k Ω
                                             0.020
Rid = 208 k Ω
                          1
(c)          f PD =             and CM = (10)(1 + 2813) = 28,140 pF
                      2π Req CM
 Req = ro 2 ro 4 Ri 6 = 4 4 1.16 = 0.734 M Ω
                         1
 f PD =                                     = 7.71 Hz
          2π (0.734 × 10 )(28,140 × 10−12 )
                                  6
Gain-Bandwidth Product = (7.71)(1.59 × 106 ) ⇒ 12.3 MHz

13.4
a.        Q3 acts as the protection device.
b.        Same as part (a).

13.5
If we assume VBE (on) = 0.7 V, then Vin = 0.7 + 0.7 + 50 + 5
So breakdown voltage ≈ 56.4 V.

13.6
                    15 − 0.6 − 0.6 − (−15)
(a)       I REF =                          = 0.50 ⇒ R5 = 57.6 k Ω
                              R5
                 ⎛I ⎞
I C10 R4 = VT ln ⎜ REF ⎟
                 ⎝ I C10 ⎠
       0.026 ⎛ 0.50 ⎞
R4 =          ln ⎜         ⎟ ⇒ R4 = 2.44 k Ω
       0.030 ⎝ 0.030 ⎠
                   5 − 0.6 − 0.6 − (−5)
(b)       I REF =                       ⇒ I REF = 0.153 mA
                           57.6
                          ⎛ 0.153 ⎞
I C10 (2.44) = (0.026) ln ⎜        ⎟
                          ⎝ I C10 ⎠
By trial and error, I C10 ≅ 21.1 μ A

13.7
(a)       I REF ≅ 0.50 mA
            ⎛I ⎞                   ⎛ 0.50 × 10−3 ⎞
VBE = VT ln ⎜ REF ⎟ = (0.026) ln ⎜        −14    ⎟ ⇒ VBE11 = 0.641V = VEB12
            ⎝ IS ⎠                 ⎝ 10          ⎠
Then
      15 − 0.641 − 0.641 − (−15)
R5 =                                ⇒ R5 = 57.4 k Ω
                  0.50
      0.026 ⎛ 0.50 ⎞
R4 =         ln ⎜       ⎟ ⇒ R4 = 2.44 k Ω
      0.030 ⎝ 0.030 ⎠
                  ⎛ 0.030 × 10−3 ⎞
VBE10 = 0.026 ln ⎜        −14    ⎟ ⇒ VBE10 = 0.567 V
                  ⎝ 10           ⎠
(b)       From Problem 13.6, I REF ≅ 0.15 mA
                         ⎛ 0.15 × 10−3 ⎞
VBE11 = VEB12 = 0.026 ln ⎜      −14    ⎟ = 0.609 V
                         ⎝ 10          ⎠
              5 − 0.609 − 0.609 − (−5)
Then I REF =                             ⇒ I REF = 0.153 mA
                        57.4
Then I C10 ≅ 21.1 μ A from Problem 13.6

13.8
                   5 − 0.6 − 0.6 − (−5)
a.        I REF =                       ⇒ I REF = 0.22 mA
                            40
                 ⎛I ⎞
I C10 R4 = VT ln ⎜ REF ⎟
                 ⎝ I C10 ⎠
                       ⎛ 0.22 ⎞
I C10 (5) = (0.026) ln ⎜       ⎟
                       ⎝ I C10 ⎠
By trial and error;
I C10 ≅ 14.2 μ A
          I C10
IC 6 ≅          ⇒ I C 6 = 7.10 μ A
            2
I C17   = 0.75 I REF ⇒ I C17 = 0.165 mA
I C13 A = 0.25I REF ⇒ I C13 A = 0.055 mA
(b)        Using Example 13.4
 rπ 17 = 31.5 kΩ
     ′
  RE = 50 [31.5 + (201)(0.1)] = 50 51.6 = 25.4 kΩ
           β nVT
 rπ 16 =           and
           I C16
         0.165 (0.165)(0.1) + 0.6
I C16 =         +                   = 0.0132 mA
           200            50
 rπ 16 = 394 kΩ
Then
 Ri 2 = 394 + (201)(25.4) ⇒ 5.5 MΩ
  rπ 6 = 732 kΩ
         0.00710
gm6 =              = 0.273 mA / V
           0.026
            50
  r06 =          = 7.04 MΩ
         0.0071
Then
Ract1 = 7.04[1 + (0.273)(1 732)] = 8.96 MΩ
            50
   r04 =          = 7.04 MΩ
          0.0071
Then
          ⎛ 7.1 ⎞
 Ad = − ⎜         ⎟ (7.04 8.96 5.5)
          ⎝ 0.026 ⎠
or
 Ad = −627 Gain of differential amp stage
Using Example 13.5, and neglecting the input resistance to the output stage:
         V       50
Ract 2 = A =          = 303 kΩ
        I C13 B 0.165
            −(200)(201)(50)(303) (303)
  Av 2 =
         (5500)[50 + 31.5 + (201)(0.1)]
or
 Av 2 = −545 Gain of second stage

13.9
I C10 = 19 μ A
From Equation (13.6)
            ⎡ β 2 + 2β P + 2 ⎤      ⎡ (10) 2 + 2(10) + 2 ⎤
I C10 = 2 I ⎢ P              ⎥ = 2I ⎢                    ⎥
            ⎣ β P + 3β P + 2 ⎦      ⎣ (10) + 3(10) + 2 ⎦
                2                          2


             ⎡122 ⎤
        = 2I ⎢    ⎥
             ⎣132 ⎦
So
            ⎛ 132 ⎞
2 I = (19) ⎜      ⎟ = 20.56 μ A
            ⎝ 122 ⎠
I C 2 = I = 10.28 μ A
2I             20.56
IC 9 =               =           ⇒ I C 9 = 17.13 μ A
        ⎛    2 ⎞         ⎛    2⎞
        ⎜1 +    ⎟        ⎜ 1+ ⎟
        ⎝    βP ⎠        ⎝ 10 ⎠
        I     17.13
I B9   = C9 =       ⇒ I B 9 = 1.713 μ A
         βP     10
             I        10.28
IB4 =               =       ⇒ I B 4 = 0.9345 μ A
         (1 + β P )    11
         ⎛ β       ⎞           ⎛ 10 ⎞
IC 4 = I ⎜ P       ⎟ = (10.28) ⎜ ⎟ ⇒ I C 4 = 9.345 μ A
         ⎝1+ βP    ⎠           ⎝ 11 ⎠

13.10
VB 5 − V − = VBE (on) + I C 5 (1)
             = 0.6 + (0.0095)(1) = 0.6095
        0.6095
IC 7 =            ⇒ I C 7 = 12.2 μ A
            50
I C 8 = I C 9 = 19 μ A
I REF = 0.72 mA
I E13 = I REF = 0.72 mA
I C14 = 138 μ A
Power = (V + − V − ) [ I C 7 + I C 8 + I C 9 + I REF + I E13 + I C14 ]
= 30[0.0122 + 0.019 + 0.019 + 0.72 + 0.72 + 0.138]
⇒ Power = 48.8 mW
Current supplied by V + and V − = I C 7 + I C 8 + I C 9 + I REF + I E13 + I C14
                                        = 1.63 mA

13.11
(a)         vcm (min) = −15 + 0.6 + 0.6 + 0.6 + 0.6 = −12.6 V
vcm (max) = +15 − .6 = 14.4 V
So − 12.6 ≤ vcm ≤ 14.4 V
(b)         vcm (min) = −5 + 4(0.6) = −2.6 V
vcm (max) = 5 − 0.6 = 4.4 V
So − 2.6 ≤ vcm ≤ 4.4 V

13.12
If v0 = V − = −15 V , the base voltage of Q14 is pulled low, and Q18 and Q19 are effectively cut off. As
a first approximation
           0.6
 I C14 =           = 22.2 mA
         0.027
         22.2
 I B14 =         = 0.111 mA
         200
Then
 I C15 = I C13 A − I B14 = 0.18 − 0.111 = 0.069 mA
Now
                  ⎛I ⎞
VBE15 = VT ln ⎜ C15 ⎟
                  ⎝ 15 ⎠
                        ⎛ 0.069 × 10−3 ⎞
        = (0.026) ln ⎜          −14    ⎟
                        ⎝ 10           ⎠
         = 0.589 V
As a second approximation
         0.589
I C14 =        ⇒ I C14 = 21.8 mA
         0.027
         21.8
 I B14 =      = 0.109 mA
         200
and
I C15 = 0.18 − 0.109 ⇒ I C15 = 0.071 mA

13.13
a.         Neglecting base currents:
I D = I BIAS
Then
                      ⎛I ⎞
VBB = 2VD = 2VT ln ⎜ D ⎟
                      ⎝ IS ⎠
                              ⎛ 0.25 × 10−3 ⎞
                = 2(0.026) ln ⎜         −14 ⎟
                              ⎝ 2 × 10      ⎠
or
VBB = 1.2089 V
                      ⎛V / 2⎞
I CN = I CP = I S exp ⎜ BB ⎟
                      ⎝ VT ⎠
                     ⎛ 1.2089 ⎞
     = 5 × 10−14 exp ⎜          ⎟
                     ⎝ 2(0.026) ⎠
So
I CN = I CP = 0.625 mA
b.         For vI = 5 V, v0 ≅ 5 V
     5
iL ≅    = 1.25 mA
     4
As a first approximation
I CN ≈ iL = 1.25 mA
                  ⎛ 1.25 × 10−3 ⎞
VBEN = (0.026) ln ⎜         −14 ⎟
                                  = 0.6225 V
                  ⎝ 5 × 10      ⎠
Neglecting base currents,
VBB = 1.2089 V
Then VEBP = 1.2089 − 0.6225 = 0.5864 V
                     ⎛ 0.5864 ⎞
I CP = 5 × 10−14 exp ⎜        ⎟ ⇒ I CP = 0.312 mA
                     ⎝ 0.026 ⎠
As a second approximation,
I CN = iL + I CP = 1.25 + 0.31 ⇒ I CN ≅ 1.56 mA

13.14
                VBB        1.157
R1 + R2 =                =       = 64.28 kΩ
             (0.1) I BIAS 0.018
            ⎛I     ⎞              ⎛ (0.9) I BIAS ⎞
VBE = VT ln ⎜ C    ⎟ = (0.026) ln ⎜              ⎟
            ⎝ IS   ⎠              ⎝     IS       ⎠
                    ⎛ 0.162 × 10−3 ⎞
       = (0.026) ln ⎜      −14     ⎟
                    ⎝ 10           ⎠
VBE = 0.6112 V
      ⎛ R2 ⎞
VBE = ⎜         ⎟ VBB
      ⎝ R1 + R2 ⎠
          ⎛ R ⎞
0.6112 = ⎜ 2 ⎟ (1.157)
          ⎝ 64.28 ⎠
So
R2 = 33.96 kΩ
Then
R1 = 30.32 kΩ

13.15
(a)                        (
            Ad = − g m ro 4 ro 6 Ri 2    )
From example 13.4
          9.5
gm =            = 365 μ A / V , ro 4 = 5.26 M Ω
        0.026
Now
ro 6 = ro 4 = 5.26 M Ω
Assuming R8 = 0, we find
                           ′
Ri 2 = rπ 16 + (1 + β n ) RE
      = 329 + (201) ( 50 9.63) ⇒ 1.95 M Ω
Then
                  (                  )
Ad = −(365) 5.26 5.26 1.95 ⇒ Ad = −409
(b)         From Equation (13.20),

Av 2 =
                               (
         − β n (1 + β n ) R9 Ract 2 Ri 3 R017    )
              {
          Ri 2 R9 + ⎡ rπ 17 + (1 + β n ) Rg ⎤
                    ⎣                       ⎦}
For Rg = 0, Ri 2 = 1.95 M Ω
Using the results of Example 13.5

Av 2 =
                               (
         −200(201)(50) 92.6 4050 92.6                )⇒A    = −792
                      (1950){50 + 9.63}
                                                       v2




13.16
Let I C10 = 40 μ A, then I C1 = I C 2 = 20 μ A. Using Example 13.5,
Ri 2 = 4.07 MΩ
       (200)(0.026)
rπ 6 =               = 260 kΩ
           0.020
        0.020
gm6 =          = 0.769 mA/V
        0.026
        50
r06 =       ⇒ 2.5 MΩ
      0.02
Then
Ract1 = 2.5[1 + (0.769)(1 260)] = 4.42 MΩ
        50
r06 =       ⇒ 2.5 MΩ
      0.02
Then
⎛ I CQ ⎞
Ad = − ⎜      ⎟ (r04 Ract1 Ri 2 )
       ⎝ VT ⎠
       ⎛ 20 ⎞
   = −⎜          ⎟ (2.5 4.42 4.07)
       ⎝ 0.026 ⎠
So
Ad = −882

13.17
From Problem 13.8
I1 = I 2 = 7.10 μ A, I C17 = 0.165 mA, I C13 A = 0.055 mA
                  I E17 R8 + VBE17        0.165 (0.165)(0.1) + 0.6
I C16 ≈ I B17 +                       =        +
                         R9                200         50
                                      = 0.000825 + 0.01233
I C16 = 0.0132 mA
      (200)(0.026)
rπ 17 =                 = 31.5 K
         0.165
 RE = R9 [ rπ 17 + (1 + β ) R8 ] = 50 [31.5 + (201)(0.1)]
  1


     = 50 51.6 = 25.4 K
          (200)(0.026)
rπ 16 =                = 394 K
             0.0132
Then
Ri 2 = rπ 16 + (1 + β ) RE = 394 + (201)(25.4) ⇒ 5.50 MΩ
                           1


Now
         (200)(0.026)
  rπ 6 =                     = 732 K
              0.0071
         0.0071
 gm6 =             = 0.273 mA/V
          0.026
            50
  ro 6 =           ⇒ 7.04 MΩ
         0.0071
Ract1 = ro 6 [1 + g m 6 ( R rπ 6 )]
       = 7.04[1 + (0.273)(1 732)] = 8.96 MΩ
            50
  ro 4 =           ⇒ 7.04 MΩ
         0.0071
Then
Ad = − g m1 (ro 4 Ract1 Ri 2 )
      ⎛ 7.10 ⎞
   = −⎜       ⎟ (7.04 8.96 5.5)
      ⎝ 0.026 ⎠
Ad = −627
             50                      50
Now Ract 2 =       ⇒ 303 K Ro17 =         = 303 K
            0.165                   0.165
From Eq. (13.20), assuming Ri 3 → ∞
              β (1 + β ) R9 ( Ract 2 R017 )
Av 2 ≅ −
           Ri 2 { R9 + [rπ 17 + (1 + β ) R8 ]}
           −(200)(201)(50)(303 303)                  −3.045 × 108
    =                                            =
       (5500)[50 + 31.5 + (201)(0.1)]                5.588 × 105
Av 2 = −545
Overall gain Av = (−627)(−545) = 341, 715
13.18
Using results from 13.17
                         ⎛ 100 ⎞
Ri 2 = 5.50 MΩ, Ract1 ⎜           ⎟ [1 + (0.273)(1 732)] ⇒ 17.93 MΩ
                         ⎝ 0.0071 ⎠
          100
ro 4 =          ⇒ 14.08 MΩ
        0.0071
          ⎛ 7.10 ⎞
 Ad = − ⎜         ⎟ (14.08 17.93 5.50)
          ⎝ 0.026 ⎠
 Ad = −885
Now
           100                        100
Ract 2 =         = 606 K Ro17 =             = 606 K
          0.165                      0.165
           −(200)(201)(50)(606 606)          −6.09 × 108
 Av 2 =                                    =
         (5500)[50 + 31.5 + (201)(0.1)] 5.588 × 105
 Av 2 = −1090
Overall gain
 Av = (−885)(−1090) = 964, 650

13.19
Now
         rπ 14 + R01
Re14 =               and R0 = R6 + Re14
           1+ βP
Assume series resistance of Q18 and Q19 is small. Then
R01 = r013 A Re 22
                 rπ 22 + R017 r013 B
where Re 22 =
                      1+ βP
and R017 = r017 [1 + g m17 ( R8 rπ 17 )]
Using results from Example 13.6,
rπ 17 = 9.63 kΩ         rπ 22 = 7.22 kΩ
g m17 = 20.8 mA/V r017 = 92.6 kΩ
Then
R017 = 92.6[1 + (20.8)(0.1 9.63)] = 283 kΩ
          50
r013 B =       = 92.6 kΩ
         0.54
Then
         7.22 + 283 92.6
Re 22 =                     = 1.51 kΩ
                51
R01 = r013 A Re 22 = 278 1.51 = 1.50 kΩ
        (50)(0.026)
rπ 14 =               = 0.65 kΩ
              2
Then
         0.65 + 1.50
Re14 =               = 0.0422 kΩ
             51
or
Re14 = 42.2 Ω
Then
R0 = 42.2 + 27 ⇒ R0 = 69.2 Ω

13.20
⎡                  ⎛ r       ⎞⎤
 Rid = 2 ⎢ rπ 1 + (1 + β n ) ⎜ π 3     ⎟⎥
          ⎣                  ⎝ 1+ βP   ⎠⎦
 β n = 200, β P = 10
(a)
 I C1 = 9.5 μ A
       (200)(0.026)
rπ 1 =              = 547 K
           0.0095
       (10)(0.026)
rπ 3 =             = 27.4 K
         0.0095
Then
         ⎡      (201)(27.4) ⎤
Rid = 2 ⎢547 +              ⎥
         ⎣          11      ⎦
Rid ⇒ 2.095 MΩ
(b)
 I C1 = 7.10 μ A
        (200)(0.026)
 rπ 1 =              = 732 K
            0.0071
        (10)(0.026)
 rπ 3 =             = 36.6 K
           0.0071
          ⎡      (201)(36.6) ⎤
 Rid = 2 ⎢ 732 +             ⎥
          ⎣          11      ⎦
 Rid ⇒ 2.80 MΩ

13.21
We can write
                     A0
A( f ) =
        ⎛          f ⎞⎛          f ⎞
        ⎜1 + j        ⎟⎜ 1 + j ⎟
        ⎝        f PD ⎠⎝         f1 ⎠
                 181, 260
      =
        ⎛          f ⎞⎛           f ⎞
        ⎜1 + j         ⎟ ⎜1 + j ⎟
        ⎝       10.7 ⎠ ⎝          f1 ⎠
Phase:
             ⎛ f ⎞           −1 ⎛ f ⎞
φ = − tan −1 ⎜       ⎟ − tan ⎜ ⎟
             ⎝ 10.7 ⎠           ⎝ f1 ⎠
For a Phase margin = 70°, φ = −110°
So
                 ⎛ f ⎞         −1 ⎛ f ⎞
−110° = − tan −1 ⎜      ⎟ − tan ⎜ ⎟
                 ⎝ 10.7 ⎠         ⎝ f1 ⎠
Assuming f          10.7, we have
       ⎛ f ⎞        f
tan −1 ⎜ ⎟ = 20° ⇒ = 0.364
       ⎝ f1 ⎠       f1
At this frequency, A( f ) = 1, so
181, 260
1=
                    2
          ⎛ f ⎞
       1+ ⎜      ⎟ ⋅ 1 + (0.364)
                                 2

          ⎝ 10.7 ⎠
        170,327
  =
                    2
           ⎛ f ⎞
       1+ ⎜       ⎟
           ⎝ 10.7 ⎠
      f
or        = 170,327 ⇒ f = 1.82 MHz
    10.7
Then, second pole at
         f
 f1 =         ⇒ f1 = 5 MHz
      0.364

13.22
a.        Original g m1 and g m 2
               ⎛W ⎞⎛ μ C ⎞
K p1 = K p 2 = ⎜ ⎟⎜ P ox ⎟ = (12.5)(10)
               ⎝ L ⎠⎝ 2 ⎠
                           = 125 μ A / V 2
So
                      ⎛ IQ ⎞
g m1 = g m 2 = 2 K p1 ⎜ ⎟      = 2 (0.125)(10)
                      ⎝ 2⎠
                               = 0.09975 mA/V
   ⎛W ⎞
If ⎜ ⎟ is increased to 50, then
   ⎝L⎠
 K p1 = K p 2 = (50)(10) = 500 μ A / V 2
So
g m1 = g m 2 = 2 (0.5)(0.0199) = 0.1995 mA/V
b.        Gain of first stage
 Ad = g m1 (r02 r04 ) = (0.1995)(5025 5025)
or
 Ad = 501
Voltage gain of second stage remains the same, or
 Av 2 = 251
Then Av = Ad ⋅ Av 2 = (501)(251)
or
 Ad = 125, 751

13.24
a.          K p = (10)(20) = 200 μ A / V 2 = 0.2 mA / V 2
                  10 − VSG − (−10)
I REF = I SET   =
                          200
                = k P (VSG − 1.5) 2
20 − VSG = (0.2)(200)(VSG − 3VSG + 2.25)
                        2


40VSG − 119VSG + 70 = 0
    2


        119 ± (119) 2 − 4(40)(70)
VSG =                             ⇒ VSG = 2.17 V
                 2(40)
Then
20 − 2.17
I REF =          ⇒ I REF = 89.2 μ A
           200
M 5 , M 6 , M 8 matched transistors so that
I Q = I D 7 = I REF = 89.2 μ A
b.      Small-signal voltage gain of input stage:
 Ad = 2 K p1 I Q ⋅ ( ro 2 ro 4 )
          1           1
r02 =          =               = 1.12 MΩ
        λP I D        ⎛ 89.2 ⎞
               (0.02) ⎜      ⎟
                      ⎝ 2 ⎠
        1            1
r04 =        =                 = 2.24 MΩ
      λn I D          ⎛ 89.2 ⎞
               (0.01) ⎜      ⎟
                      ⎝ 2 ⎠
Then
Ad = 2(200)(89.2) ⋅ (1.12 2.24)
or
 Ad = 141
Small-signal voltage gain of second stage:
Av 2 = g m 7 (r07 r08 )
K n 7 = (20)(20) = 400 μ A / V 2
So
g m 7 = 2 K n 7 I D 7 = 2 (0.4)(0.0892) = 0.378 mA/V
         1               1
r08 =           =                 = 561 kΩ
       λP I D 7 (0.02)(0.0892)
           1                  1
r07 =              =                  = 1121 kΩ
        λn I D 7       (0.01)(0.0892)
So
Av 2 = (0.378)(1121 561) ⇒ Av 2 = 141
Then overall voltage gain
Av = Ad ⋅ Av 2 = (141)(141) ⇒ Av = 19,881

13.25
Small-signal voltage gain of input stage:
 Ad = 2 K p1 I Q ⋅ ( ro 2 ro 4 )
K p1 = (10)(10) = 100 μ A / V 2
          1            1
r02 =           =                = 1000 kΩ
         ⎛ IQ ⎞         ⎛ 0.2 ⎞
      λP ⎜ ⎟ (0.01) ⎜         ⎟
         ⎝ 2⎠           ⎝ 2 ⎠
          1             1
r04 =           =                 = 2000 kΩ
         ⎛ IQ ⎞           ⎛ 0.2 ⎞
      λn ⎜ ⎟      (0.005) ⎜     ⎟
         ⎝ 2⎠             ⎝ 2 ⎠
Then
Ad = 2(0.1)(0.2) ⋅ (1000 2000)
or
 Ad = 133
Small-signal voltage gain of second stage:
Av 2 = g m 7 ( r07 r08 )
K n 7 = (20)(20) = 400 μ A / V 2
So
g m 7 = 2 K n 7 I D 7 = 2 (0.4)(0.2) = 0.566 mA/V
         1             1
r08 =          =              = 500 kΩ
       λP I D 7 (0.01)(0.2)
           1                1
r07 =              =                = 1000 kΩ
        λn I D 7       (0.005)(0.2)
So
Av 2 = (0.566)(1000 500) ⇒ Av 2 = 189
Then overall voltage gain is
Av = Ad ⋅ Av 2 = (133)(189) ⇒ Av = 25,137

13.26
             1
 f PD =
          2π Req Ci
where Req = r04 r02 and Ci = C1 (1 + Av 2 )
We can find that
Av 2 = 251 and r04 = r02 = 5.025 MΩ
Now
Req = 5.025 5.025 = 2.51 MΩ
and
Ci = 12(1 + 251) = 3024 pF
So
                      1
 f PD =
        2π (2.51× 106 )(3024 × 10−12 )
or
 f PD = 21.0 Hz

13.27
             1
 f PD =
          2π Req Ci
where Req = r04 r02
From Problem 13.22,
r02 = 1.12 MΩ, r04 = 2.24 MΩ and Av 2 = 141
So
                1
8=
     2π (1.12 2.24) × 106 × Ci
or
Ci = 2.66 × 10−8 = C1 (1 + Av 2 ) = C1 (142)
or
C1 = 188 pF

13.28
R0 = r07 r08
We can find that
r07 = r08 = 2.52 MΩ
Then
R0 = 2.52 2.52
or
R0 = 1.26 MΩ
13.29
a.




V0 = ( g m1Vgs1 )(r01 r02 )
VI = Vgs1 + V0
Then V0 = g m1 (r01 r02 )(VI − V0 )
or
         g m1 (r01 r02 )
Av =
       1 + g m1 (r01 r02 )
                                VX VX
b.          I X + g m1Vgs1 =       +    and Vgs1 = −VX
                                r02 r01
                                     1
                             R0 =        r r
                                    g m1 01 02

13.30
                    ⎛ 80 ⎞
            I Q 2 = ⎜ ⎟ (20) [1.1737 − 0.7 ]
                                            2
(a)
                    ⎝ 2⎠
            I Q 2 = 180 μ A
                    ⎛ 80 ⎞
            I D 6 = ⎜ ⎟ (25) (VGS 6 − 0.7 ) = 25 ⇒ VGS 6 = 0.8581 V
                                           2
(b)
                    ⎝ 2⎠
                    ⎛ 40 ⎞
            I D 7 = ⎜ ⎟ (50) (VSG 7 − 0.7 ) = 25 ⇒ VSG 7 = 0.8581 V
                                           2

                    ⎝  2 ⎠
Set
VSG 8 P = VGS 8 N = 0.8581 V
      ⎛ 40 ⎞ ⎛ W ⎞               ⎛W ⎞
180 = ⎜ ⎟ ⎜ ⎟ (0.8581 − 0.7) 2 ⇒ ⎜ ⎟ = 360
      ⎝ 2 ⎠ ⎝ L ⎠8 P             ⎝ L ⎠8 P
      ⎛ 80 ⎞ ⎛ W ⎞               ⎛W ⎞
180 = ⎜ ⎟ ⎜ ⎟ (0.8581 − 0.7) 2 ⇒ ⎜ ⎟ = 180
      ⎝ 2 ⎠ ⎝ L ⎠8 N             ⎝ L ⎠8 N

13.31
⎛ 80 ⎞
VGS11 ⇒      200 = ⎜ ⎟ (20) (VGS 11 − 0.7 )
                                            2

                     ⎝ 2⎠
            VGS 11 = 1.20 V
Let M 12 = 2 transistors in series. Than
       5 − 1.20
VGS12 =         = 1.90 V
           2
       ⎛ 80 ⎞⎛ W ⎞            ⎛W ⎞      ⎛W ⎞
 200 = ⎜ ⎟⎜ ⎟ (1.90 − 0.7 ) ⇒ ⎜ ⎟ = ⎜ ⎟ = 3.47
                           2

       ⎝  2 ⎠⎝ L ⎠12          ⎝ L ⎠12 A ⎝ L ⎠12 B

13.32
(a)
                     ⎛ 80 ⎞
 I Q 2 = 250μ A = ⎜ ⎟ (5) (VGS 8 − 0.7 )
                                         2

                     ⎝ 2⎠
      ⇒ VGS 8 = 1.818 V
                          1.818
      ⇒ VGS 6 = VSG 7 =         = 0.909 V
                            2
                 ⎛ 80 ⎞
 I D 6 = I D 7 = ⎜ ⎟ (25)(0.909 − 0.7) 2 = 43.7 μ A
                 ⎝ 2⎠
(b)
            ⎛ 80 ⎞   ⎛ 250 ⎞
g m1 = 2 ⎜ ⎟ (15) ⎜        ⎟ ⇒ 0.5477 mA/V
            ⎝ 2⎠     ⎝ 2 ⎠
               1
ro 2 =                 = 800 K
       ( 0.01)( 0.125)
               1
r04 =                      = 533.3K
      ( 0.015)( 0.125)
Ad 1 = g m1 ( ro 2 ro 4 ) = ( 0.5477 ) ( 800   533.3)
Ad 1 = 175
Second stage:
A2 = − g m 5 (ro 5 ro 9 )
           ⎛ 40 ⎞
g m 5 = 2 ⎜ ⎟ (80)(250) ⇒ 1.265 mA/V
           ⎝ 2 ⎠
               1
 r05 =                 = 266.7 K
        (0.015)(0.25)
              1
 r09 =               = 400 K
        (0.01)(0.25)
 A2 = −(1.265)(266.7 400)
 A2 = −202
Assume the gain of the output stage ≈ 1, then
Av = Ad 1 ⋅ A2 = (175)(−202)
Av = −35,350

13.33
(a)            Ad = g m1 ( Ro 6 Ro8 )
g m1 = 2 K n I DQ = 2 (0.5)(0.025) ⇒ 224 μ A / V
g m1 = g m8
g m 6 = 2 (0.5)(0.025) ⇒ 224 μ A / V
                               1         1
ro1 = ro 6 = ro8 = ro10 =          =            = 2.67 M Ω
                             λ I DQ (0.015)(25)
           1           1
ro 4 =          =                ⇒ 1.33 M Ω
         λ I D 4 ( 0.015 )( 50 )
Now
Ro8 = g m8 (ro8 ro10 ) = (224)(2.67)(2.67) = 1597 M Ω
Ro 6 = g m 6 (ro 6 )(ro 4 ro1 ) = (224)(2.67)(2.67 1.33) ⇒ Ro 6 = 531 M Ω
Then
Ad = (224)(531 1597) ⇒ Ad = 89, 264
(b)            Ro = Ro 6 Ro8 = 531 1597 ⇒ Ro = 398 M Ω
                           1                  1
(c)            f PD =           =                              ⇒ f PD = 80 Hz
                        2π Ro CL 2π ( 398 × 106 )( 5 × 10−12 )
GBW = (89, 264)(80) ⇒ GBW = 7.14 MHz

13.34
(a)
                          1         1
ro1 = ro8 = ro10 =             =           = 2 MΩ
                        λ p I D (0.02)(25)
           1               1
ro 6 =            =               = 2.67 M Ω
         λn I D       (0.015)(25)
           1           1
ro 4 =           =            = 1.33 M Ω
         λn I D 4 (0.015)(50)
         ⎛ 35 ⎞ ⎛ W ⎞        ⎛W ⎞
g m1 = 2 ⎜ ⎟ ⎜ ⎟ (25) = 41.8 ⎜ ⎟ = g m8
         ⎝ 2 ⎠ ⎝ L ⎠1        ⎝ L ⎠1
          ⎛ 80 ⎞⎛ W ⎞        ⎛W ⎞
g m 6 = 2 ⎜ ⎟⎜ ⎟ (25) = 63.2 ⎜ ⎟
          ⎝ 2 ⎠⎝ L ⎠6        ⎝ L ⎠6
Ro = Ro 6 Ro8 = [ g m 6 (ro 6 )(ro 4 ro1 )] [ g m8 (ro8 ro10 )]
⎛W ⎞                   ⎛W ⎞
Define X 1 = ⎜ ⎟ and X 6 = ⎜ ⎟
                 ⎝ L ⎠1                 ⎝ L ⎠6
Then
Ro = ⎣ 63.2 X 6 ( 2.67 ) (1.33 2 ) ⎦ ⎡ 41.8 X 1 ( 2 )( 2 ) ⎤
     ⎡                             ⎤ ⎣                     ⎦
                                  22,539 X 1 X 6
   = 134.8 X 6 167.2 X 1 =
                              134.8 X 6 + 167.2 X 1
                                 ⎛ 22,539 X 1 X 6        ⎞
Ad = g m1 Ro       = (41.8 X 1 ) ⎜                       ⎟
                                 ⎝ 134.8 X 6 + 167.2 X 1 ⎠
                   = 10, 000
              ⎛W ⎞      1 ⎛W ⎞
Now X 6 = ⎜ ⎟ =            ⎜ ⎟ = 0.674 X 1
              ⎝ L ⎠6   2.2 ⎝ L ⎠1
We then find
       ⎛W ⎞          ⎛W ⎞
X 12 = ⎜ ⎟ = 4.06 = ⎜ ⎟
       ⎝ L ⎠1        ⎝ L ⎠p
and
⎛W ⎞
⎜ ⎟ = 1.85
⎝ L ⎠n

13.35
Let V + = 5V , V − = −5V
P = IT (10) = 3 ⇒ IT = 0.3 mA ⇒ I REF = 0.1 mA = 100 μ A
                        1
ro1 = ro8 = ro10 =            = 1 MΩ
                   (0.02)(50)
             1
ro 6 =               = 1.33 MΩ
       (0.015)(50)
             1
ro 4 =                = 0.667 M Ω
       (0.015)(100)
         ⎛ 35 ⎞ ⎛ W ⎞
g m1 = 2 ⎜ ⎟ ⎜ ⎟ (50) = 59.2 X 1 = g m8
         ⎝ 2 ⎠ ⎝ L ⎠1
               ⎛W ⎞
where X 1 = ⎜ ⎟
               ⎝ L ⎠1
Assume all width-to-length ratios are the same.
          ⎛ 80 ⎞ ⎛ W ⎞
g m 6 = 2 ⎜ ⎟ ⎜ ⎟ (50) = 89.4 X 1
          ⎝ 2 ⎠⎝ L ⎠
Now
Ro = Ro 6 Ro8 = ⎡ g m 6 ( ro 6 ) ( ro 4 ro1 ) ⎤ ⎡ g m8 ( ro8 ro10 ) ⎤
                  ⎣                           ⎦ ⎣                   ⎦
     = ⎡89.4 X 1 (1.33) ( 0.667 1) ⎤ ⎡59.2 X 1 (1)(1) ⎤
       ⎣                              ⎦ ⎣                  ⎦
                                  ( 47.6 X 1 )( 59.2 X 1 )
     = [ 47.6 X 1 ] [59.2 X 1 ] =
                                    47.6 X 1 + 59.2 X 1
So Ro = 26.4 X 1
Now
Ad = g m1 Ro = ( 59.2 X 1 )( 26.4 X 1 ) = 25, 000
                   W
So that X 12 =       = 16 for all transistors
                   L

13.36
(a)       Ad = Bg m1 (ro 6 ro8 )
                           1         1
          ro 6 = ro8 =         =            = 0.741 M Ω
                         λ I DQ (0.015)(90)
                  ⎛ k ′ ⎞⎛ W ⎞
         g m1 = 2 ⎜ n ⎟ ⎜ ⎟ I D1 = 2 (500)(30) = 245 μ A / V
                  ⎝ 2 ⎠⎝ L ⎠
          Ad = (3)(245)(0.741 0.741) ⇒ Ad = 272

(b)      Ro = ro 6 ro8 = 0.741 0.741 ⇒ Ro = 371 k Ω
                      1              1
(c)      f PD =           =                           ⇒ f PD = 85.8 kHz
                   2π Ro C 2π (371× 103 )(5 × 10−12 )
GBW = (272)(85.8 × 103 ) ⇒ GBW = 23.3 MHz

13.37
                        1
(a)       ro 6 =                  = 0.5 M Ω
                (0.02)(2.5)(40)
                         1
          ro8 =                    = 0.667 M Ω
                (0.015)(2.5)(40)
          Ad = Bg m1 ( ro 6 ro8 )
         400 = (2.5) g m1 ( 0.5 0.667 ) ⇒ g m1 = 560 μ A / V

                        ⎛ 80 ⎞ ⎛ W ⎞       ⎛W ⎞
         g m1 = 560 = 2 ⎜ ⎟ ⎜ ⎟ (40) ⇒ ⎜ ⎟ = 49
                        ⎝ 2 ⎠⎝ L ⎠         ⎝L⎠
Assume all (W/L) ratios are the same except for
              ⎛W ⎞ ⎛W ⎞
M 5 and M 6 . ⎜ ⎟ = ⎜ ⎟ = 122.5
              ⎝ L ⎠5 ⎝ L ⎠ 6
(b)      Assume the bias voltages are
V + = 5V , V − = −5V .




          ⎛W ⎞      ⎛W ⎞
Assume ⎜ ⎟ = ⎜ ⎟ = 49
          ⎝ L ⎠ A ⎝ L ⎠B
      ⎛ 80 ⎞
I Q = ⎜ ⎟ (49)(VGSA − 0.5) 2 = 80 ⇒ VGSA = 0.702 V
      ⎝ 2⎠
Then
             ⎛ 80 ⎞ ⎛ W ⎞
I REF = 80 = ⎜ ⎟ ⎜ ⎟ (VGSC − 0.5) 2
             ⎝ 2 ⎠ ⎝ L ⎠C
For four transistors
10 − 0.702
VGSC =            = 2.325 V
             4
     ⎛ 80 ⎞ ⎛ W ⎞              ⎛W ⎞
80 = ⎜ ⎟ ⎜ ⎟ (2.325 − 0.5) 2 ⇒ ⎜ ⎟ = 0.60
     ⎝ 2 ⎠ ⎝ L ⎠C              ⎝ L ⎠C
                             1
(c)           f 3− dB =             Ro = 0.5 0.667 = 0.286 M Ω
                          2π Ro C
                1
 f 3− dB =                       = 185 kHz
     2π (286 × 103 )(3 × 10−12 )
GBW = (400)(185 × 103 ) ⇒ 74 MHz

13.38
(a)       From previous results, we can write
 Ro10 = g m10 (ro10 ro 6 )
 Ro12 = g m12 (ro12 ro8 )
 Ad = Bg m1 ( Ro10 Ro12 )
Now
                     1                    1
ro10 = ro 6 =                    =                 = 0.5 M Ω
                λP B ( I Q / 2 )   (0.02)(2.5)(40)
                      1                   1
ro12 = ro8 =                     =                  = 0.667 M Ω
                λn B ( I Q / 2 )   (0.015)(2.5)(40)
Assume all transistors have the same width-to-length ratios except for M 5 and M 6 .
    ⎛W       ⎞
             ⎟= X
                  2
Let ⎜
    ⎝L       ⎠
Then
           ⎛ k′ ⎞⎛ W ⎞           ⎛ 35 ⎞
g m10 = 2 ⎜ ⎟ ⎜ ⎟ ( I DQ10 ) = 2 ⎜ ⎟ X 2 (2.5)(40)
              p

           ⎝ 2 ⎠ ⎝ L ⎠10         ⎝ 2⎠
      = 83.67 X
           ⎛ k′ ⎞⎛ W ⎞             ⎛ 80 ⎞
g m12 = 2 ⎜ n ⎟ ⎜ ⎟ ( I DQ12 ) = 2 ⎜ ⎟ X 2 (2.5)(40)
           ⎝ 2 ⎠ ⎝ L ⎠12           ⎝ 2⎠
      = 126.5 X
          ⎛ 80 ⎞
 g m1 = 2 ⎜ ⎟ X 2 (40) = 80 X
          ⎝ 2⎠
Then
Ro10 = (83.67 X )(0.5)(0.5) = 20.9 X M Ω
Ro12 = (126.5 X )(0.667)(0.667) = 56.3 X M Ω
We want
20, 000 = (2.5)(80 X )[20.9 X 56.3 X ]
                     ⎡ (20.9 X )(56.3 X ) ⎤
             = 200 X ⎢                    ⎥ = 3048 X
                                                     2

                     ⎣ 20.9 X + 56.3 X ⎦
Then
             ⎛W ⎞
X 2 = 6.56 = ⎜ ⎟
             ⎝L⎠
Then
⎛W ⎞ ⎛W ⎞
⎜ ⎟ = ⎜ ⎟ = (2.5)(6.56) = 16.4
⎝ L ⎠ 6 ⎝ L ⎠5
(b)          Assume bias voltages are V + = 5V , V − = −5V
⎛W ⎞      ⎛W ⎞
Assume ⎜ ⎟ = ⎜ ⎟ = 6.56
          ⎝ L ⎠ A ⎝ L ⎠B
           ⎛ 80 ⎞
I Q = 80 = ⎜ ⎟ (6.56)(VGSA − 0.5) 2 ⇒ VGSA = 1.052 V
           ⎝ 2⎠
Need 5 transistors in series
        10 − 1.052
VGSC =               = 1.79 V
             5
Then
             ⎛ 80 ⎞ ⎛ W ⎞               ⎛W ⎞
I REF = 80 = ⎜ ⎟ ⎜ ⎟ (1.79 − 0.5) 2 ⇒ ⎜ ⎟ = 1.20
             ⎝ 2 ⎠ ⎝ L ⎠C               ⎝ L ⎠C
                              1
(c)            f 3− dB =           where Ro = Ro10 Ro12
                           2π Ro C
Now
Ro10 = 20.9 6.56 = 53.5 M Ω
Ro12 = 56.3 6.56 = 144 M Ω
Then
Ro = 53.5 144 = 39 M Ω
                1
 f 3− dB =                      = 1.36 kHz
     2π (39 × 106 )(3 × 10−12 )
GBW = (20, 000)(1.36 x103 ) ⇒ GBW = 27.2 MHz

13.39
 Ad = g m ( M 2 ) ⋅ ⎡ ro 2 ( M 2 ) ro 2 (Q2 ) ⎤
                    ⎣                         ⎦
                   ⎛ 40 ⎞
g m ( M 2 ) = 2 ⎜ ⎟ (25)(100) = 447 μ A / V
                   ⎝ 2 ⎠
                 1         1
ro 2 ( M 2 ) =        =           = 500 k Ω
               λ I DQ (0.02)(0.1)
               VA 120
ro 2 (Q2 ) =       =    = 1200 k Ω
               I CQ 0.1
Then
Ad = 447(0.5 1.2) ⇒ Ad = 158

13.40
Ad = g m ( M 2 ) ⋅ ⎡ ro 2 ( M 2 ) ro 2 (Q2 ) ⎤
                   ⎣                         ⎦
                   ⎛ 80 ⎞
g m ( M 2 ) = 2 ⎜ ⎟ (25)(100) = 632 μ A / V
                   ⎝ 2⎠
                 1         1
ro 2 ( M 2 ) =        =            = 667 k Ω
               λ I DQ (0.015)(0.1)
                  VA    80
ro 2 (Q2 ) =          =    = 800 k Ω
                  I CQ 0.1
Ad = (632) ( 0.667 0.80 ) ⇒ Ad = 230

13.41
(a)            I REF = 200 μ A            K n = K p = 0.5 mA / V 2
                                          λn = λ p = 0.015 V −1
               Ad = g m1 ( Ro 6 Ro8 )
where
Ro8 = g m8 (ro8 ro10 )
Ro 6 = g m 6 (ro 6 ) ( ro 4 ro1 )
Now
g m8 = 2 K P I D 8 = 2 (0.5)(0.1) = 0.447 mA/V
         1            1
 ro8 =         =              = 667 k Ω
       λP I D 8 (0.015)(0.1)
             1
 ro10 =             = 667 k Ω
           λP I D 8
           IC 6    0.1
gm6 =           =       = 3.846 mA/V
           VT     0.026
           VA     80
  ro 6 =        =    = 800 k Ω
           I C 6 0.1
             1           1
  ro 4 =           =             = 333 k Ω
           λn I D 4 (0.015)(0.2)
              1                1
  ro1 =               =                = 667 k Ω
           λ p I D1       (0.015)(0.1)
 g m1 = 2 K P I D1 = 2 (0.5)(0.1) = 0.447 mA/V
So
Ro8 = (0.447)(667)(667) ⇒ 198.9 M Ω
Ro 6 = (3.846)(800)(333 667) ⇒ 683.4 M Ω
Then
Ad = 447(198.9 683.4) ⇒ Ad = 68,865

13.42
Assume biased at V + = 10V , V − = −10V .
  P = 3I REF (20) = 10 ⇒ I REF = 167 μ A
 Ad = g m1 ( Ro 6 Ro8 ) = 25, 000
 kn = 80 μ A / V 2 , k ′ = 35 μ A / V 2
  ′                    p

 λn = 0.015V −1 , λ p = 0.02 V −1
       ⎛W ⎞      ⎛W ⎞
Assume ⎜ ⎟ = 2.2 ⎜ ⎟
       ⎝ L ⎠p    ⎝ L ⎠n
Ro8 = g m8 ( ro8 ro10 )
Ro 6 = g m 6 (ro 6 )(ro 4 ro1 )
             1                1
 ro8 =               =                = 0.60 M Ω
          λP I D 8       (0.02)(83.3)
             1
ro10 =               = 0.60 M Ω
          λP I D 8
          ⎛ k′ ⎞⎛ W ⎞      ⎛ 35 ⎞
g m8 = 2 ⎜ ⎟ ⎜ ⎟ I D 8 = 2 ⎜ ⎟ (2.2) X 2 (83.3)
             p

          ⎝ 2 ⎠ ⎝ L ⎠8     ⎝ 2⎠
     = 113.3 X
               ⎛W ⎞
where X 2 = ⎜ ⎟
               ⎝ L ⎠n
        VA      80
 ro 6 =      =      = 0.960 M Ω
        I C 6 83.3
             1                1
 ro 4 =              =                = 0.40 M Ω
          λn I D 4       (0.015)(167)
             1          1
 ro1 =            =             = 0.60 M Ω
          λ p I D1 (0.02)(83.3)
          IC 6   83.3
gm6 =          =       = 3204 μ A / V
          VT     0.026
             ′
          ⎛ kp ⎞⎛ W ⎞         ⎛ 35 ⎞
g m1 = 2 ⎜ ⎟ ⎜ ⎟ I D1 = 2 ⎜ ⎟ (2.2) X 2 (83.3)
          ⎝ 2 ⎠ ⎝ L ⎠1        ⎝ 2⎠
     = 113.3 X
Now
Ro 6 = (3204)(0.960) ⎡0.40 0.60 ⎤ = 738 M Ω
                      ⎣         ⎦
Ro8 = (113.3 X )(0.60)(0.60) = 40.8 X M Ω
Then
Ad = 25, 000 = (113.3 X ) ⎡ 738 40.8 X ⎤
                           ⎣           ⎦
                             ⎡ 30,110 X ⎤
                = (113.3 X ) ⎢              ⎥
                             ⎣ 738 + 40.8 X ⎦
which yields X = 2.48
or
              ⎛W ⎞
 X 2 = 6.16 = ⎜ ⎟
              ⎝ L ⎠n
and
⎛W ⎞
⎜ ⎟ + (2.2)(6.16) = 12.3
⎝ L ⎠P

13.43
For vcm (max), assume VCB (Q5 ) = 0. Then
VS = 15 − 0.6 − 0.6 = 13.8 V
                0.236
I D 9 = I D10 =       = 0.118 mA
                  2
Using parameters given in Example 13.11
           I            0.118
VSG = D 9 − VTP =             + 1.4 = 2.17 V
           KP            0.20
Then
vcm (max) = 13.8 − 2.17 ⇒ vcm (max) = 11.6 V
For
vcm (min) , assume
VSD ( M 9 ) = VSD ( sat ) = VSG + VTP = 2.17 − 1.4 = 0.77 V
Now
VD10 = I D10 (0.5) + 0.6 + I D10 (0.5) − 15
      = 0.118 + 0.6 − 15 ⇒ VD10 = −14.28 V
Then
vcm (min) = −14.28 + VSD (sat) − VSG
            = −14.28 + 0.77 − 2.17 = −15.68 V
Then, common-mode voltage range
−15.68 ≤ vcm ≤ 11.6
Or, assuming the input is limited to ±15 V, then
−15 ≤ vcm ≤ 11.6 V

13.44
For I1 = I 2 = 300 μ A,
VSG = VBE + (0.3)(8) = 0.6 + 2.4 = 3.0 V
Then
I 2 = K P (VSG + VTP ) 2
0.3 = K P (3 − 1.4)2 ⇒ K P = 0.117 mA / V 2

13.45
For VCB = 0 for both Q6 and Q7 , then
VS = 0.6 + 0.6 + VSG + (−VS )
So 2VS = 1.2 + VSG
Now
                      I1
0.6 + I 2 R1 = VSG =     + VTP and I1 = I 2
                     KP
Also I1 = I 2 = K P (VSG + VTP ) 2 so
0.6 + (0.25)(8)(VSG − 1.4) 2 = VSG
0.6 + 2(VSG − 2.8VSG + 1.96) = VSG
          2


2VSG − 6.6VSG + 4.52 = 0
   2


      6.6 ± (6.6) 2 − 4(2)(4.52)
VSG =                            = 2.33 V
                 2(2)
Then     2VS = 1.2 + 2.33 = 3.53 and
VS = 1.765 V

13.46
I C 5 = I C 4 = 300 μ A
Using the parameters from Examples 13.12 and 13.13, we have
                βV      (200)(0.026)
Ri 2 = rπ 13 = n T =                 = 17.3 kΩ
                 I C13      0.3
Ad = 2 K n I Q 5 ⋅ ( Ri 2 ) = 2(0.6)(0.3) ⋅ (17.3)
or
 Ad = 10.38
Now
I C13    0.3
g m13 =            =       = 11.5 mA/V
             VT      0.026
          VA     50
r013 =         =    = 167 kΩ
          I C13 0.3
Then
| Av 2 | = g m13 ⋅ r013 = (11.5)(167)
or
 Av 2 = 1917
Overall gain:
 Av = (10.38)(1917) = 19,895
13.47         Assuming the resistances looking into Q4 and into the output stage are very large, we have
                     β R013
| Av 2 | =
             rπ 13 + (1 + β ) RE13
where R013 = r013 ⎡1 + g m13 ( RE13 rπ 13 ) ⎤
                  ⎣                         ⎦
                              50
I C13 = 300 μ A, r013 =           = 167 kΩ
                              0.3
            0.3
g m13 =          = 11.5 mA / V
           0.026
          (200)(0.026)
rπ 13   =              = 17.3 kΩ
               0.3
So
R013 = (167) ⎡1 + (11.5) (1 17.3) ⎤ ⇒ 1.98 MΩ
             ⎣                    ⎦
Then
              (200)(1980)
| Av 2 | =                   = 1814
             17.3 + (201)(1)
Now
Ci = C1 (1 + Av 2 ) = 12 [1 + 1814]
        ⇒ Ci = 21, 780 pF
           1
 f PD =
        2π Req Ci
Req = Ri 2 r012 r010
Neglecting R3 ,
             1         1
r010 =           =             = 333 kΩ
          λ I D10 (0.02)(0.15)
Neglecting R5 ,
         50
r012 =         = 333 kΩ
       0.15
Ri 2 = rπ 13 + (1 + β ) RE13         = 17.3 + (201)(1)
                                     = 218 kΩ
Then
                             1
 f PD =
          2π ⎡ 218 333 333⎤ × 103 × ( 21, 780 ) × 10−12
             ⎣            ⎦
or
 f PD = 77.4 Hz
Unity-Gain Bandwidth
Gain of first stage:
Ad = 2 K n I Qs ⋅ ( R12 ro12 ro10 )
       = 2(0.6)(0.3) ⋅ (218 333 333)
       = (0.6)(218 333 333)
or        Ad = 56.6
Overall gain:
 Av = (56.6)(1814) = 102, 672
Then unity-gain bandwidth = (77.4)(102, 672)
⇒ 7.95 MHz

13.48
Since VGS = 0 in J 6 , I REF = I DSS
⇒ I DSS = 0.8 mA

13.49
a.           Ri 2 = rπ 5 + (1 + β ) [ rπ 6 + (1 + β ) RE ]
        (100)(0.026)
rπ 6 =               = 13 kΩ
            0.2
         I    200 μ A
IC 5   ≅ C6 =          = 2 μA
          β     100
So
         (100)(0.026)
rπ 5 =                = 1300 kΩ
            0.002
Then
Ri 2 = 1300 + (101) [13 + (101)(0.3) ]
or
Ri 2 = 5.67 MΩ
b.           Av = g m 2 ( r02 r04 Ri 2 )
          2                       2
gm2 =       ⋅ I D ⋅ I DSS     =     ⋅ (0.1)(0.2)
         VP                       3
                              = 0.0943 mA / V
          1         1
r02 =         =            = 500 kΩ
         λ I D (0.02)(0.1)
         VA 5.0
r04 =         =    = 500 kΩ
         I C 4 0.1
Then
 Av = (0.0943)[500 || 500 || 5670]
or
 Av = 22.6

13.50
a.          Need VSD (QE ) ≥ VSD ( sat ) = VP For minimum bias ±3 V
Set VP = 3 V and VZK = 3 V
            VZK − VD1
I REF 2 =
               R3
             3 − 0.6
so that R3 =         ⇒ R3 = 24 kΩ
               0.1
Set bias in QE = I REF 2 + I Z 2 = 0.1 + 0.1 = 0.2 mA
Therefore,
I DSS = 0.2 mA
b.          Neglecting base currents
                           12 − 0.6
 I 01 = I REF 1 = 0.5 mA =
                              R4
so that
 R4 = 22.8 kΩ

13.51
a.         We have
           2                       2
gm2   =        ⋅ I D ⋅ I DSS   =     ⋅ (0.5)(1)
        | VP |                     4
                               = 0.354 mA/V
          1              1
 r02 =          =               = 100 kΩ
         λ ID       (0.02)(0.5)
         VA 100
 r04 =      =    = 200 kΩ
         I D 0.5
         0.5
gm4 =          = 19.23 mA/V
        0.026
        (200)(0.026)
 rπ 4 =                    = 10.4 kΩ
             0.5
So
R04 = r04 ⎡1 + g m 4 ( rπ 4 R2 ) ⎤
          ⎣                      ⎦
      = 200 ⎡1 + (19.23) (10.4 0.5 ) ⎤
            ⎣                        ⎦
      = 2035 kΩ
 Ad = g m 2 ( r02 R04 RL )
For RL → ∞
    Ad = 0.354 (100 || 2035 ) = 33.7
           With these parameter values, gain can never reach 500.
b.         Similarly for this part, gain can never reach 700.

Ch13s

  • 1.
    Chapter 13 Problem Solutions 13.1 Computer Simulation 13.2 Computer Simulation 13.3 (a) ( Ad = g m1 ro 2 ro 4 Ri 6 ) I C1 20 g m1 = = ⇒ 0.769 mA / V VT 0.026 VA 2 80 ro 2 = = = 4 MΩ I C 2 20 VA 4 80 ro 4 = = = 4 MΩ I C 2 20 Ri 6 = rπ 6 + (1 + β n ) ⎡ R1 rπ 7 ⎤ ⎣ ⎦ (120)(0.026) rπ 7 = = 15.6 k Ω 0.2 V (on) 0.6 I C 6 ≅ BE = = 0.030 mA R1 20 (120)(0.026) rπ 6 = = 104 k Ω 0.030 Then Ri 6 = 104 + (121) ⎡ 20 15.6 ⎤ ⇒ 1.16 M Ω ⎣ ⎦ Then ( Ad = 769 4 4 1.16 ⇒ Ad = 565 ) Now ⎛ R1 ⎞ Vo = − I c 7 ro 7 = −( β n I b 7 )ro 7 = − β n ro 7 ⎜ ⎟ Ic6 ⎝ R1 + rπ 7 ⎠ ⎛ R1 ⎞ Vo1 = − β n (1 + β n )ro 7 ⎜ ⎟ I b 6 and I b 6 = ⎝ R1 + rπ 7 ⎠ Ri 6 Then V − β n (1 + β n )ro 7 ⎛ R1 ⎞ Av 2 = o = ⎜ ⎟ Vo1 Ri 6 ⎝ R1 + rπ 7 ⎠ VA 80 ro 7 = = = 400 k Ω I C 7 0.2 So −(120)(121)(400) ⎛ 20 ⎞ Av 2 = ⎜ ⎟ ⇒ Av 2 = −2813 1160 ⎝ 20 + 15.6 ⎠ Overall gain = Ad ⋅ Av 2 = (565)(−2813) ⇒ A = −1.59 ×106 (80)(0.026) (b) Rid = 2rπ 1 and rπ 1 = = 104 k Ω 0.020 Rid = 208 k Ω 1 (c) f PD = and CM = (10)(1 + 2813) = 28,140 pF 2π Req CM Req = ro 2 ro 4 Ri 6 = 4 4 1.16 = 0.734 M Ω 1 f PD = = 7.71 Hz 2π (0.734 × 10 )(28,140 × 10−12 ) 6
  • 2.
    Gain-Bandwidth Product =(7.71)(1.59 × 106 ) ⇒ 12.3 MHz 13.4 a. Q3 acts as the protection device. b. Same as part (a). 13.5 If we assume VBE (on) = 0.7 V, then Vin = 0.7 + 0.7 + 50 + 5 So breakdown voltage ≈ 56.4 V. 13.6 15 − 0.6 − 0.6 − (−15) (a) I REF = = 0.50 ⇒ R5 = 57.6 k Ω R5 ⎛I ⎞ I C10 R4 = VT ln ⎜ REF ⎟ ⎝ I C10 ⎠ 0.026 ⎛ 0.50 ⎞ R4 = ln ⎜ ⎟ ⇒ R4 = 2.44 k Ω 0.030 ⎝ 0.030 ⎠ 5 − 0.6 − 0.6 − (−5) (b) I REF = ⇒ I REF = 0.153 mA 57.6 ⎛ 0.153 ⎞ I C10 (2.44) = (0.026) ln ⎜ ⎟ ⎝ I C10 ⎠ By trial and error, I C10 ≅ 21.1 μ A 13.7 (a) I REF ≅ 0.50 mA ⎛I ⎞ ⎛ 0.50 × 10−3 ⎞ VBE = VT ln ⎜ REF ⎟ = (0.026) ln ⎜ −14 ⎟ ⇒ VBE11 = 0.641V = VEB12 ⎝ IS ⎠ ⎝ 10 ⎠ Then 15 − 0.641 − 0.641 − (−15) R5 = ⇒ R5 = 57.4 k Ω 0.50 0.026 ⎛ 0.50 ⎞ R4 = ln ⎜ ⎟ ⇒ R4 = 2.44 k Ω 0.030 ⎝ 0.030 ⎠ ⎛ 0.030 × 10−3 ⎞ VBE10 = 0.026 ln ⎜ −14 ⎟ ⇒ VBE10 = 0.567 V ⎝ 10 ⎠ (b) From Problem 13.6, I REF ≅ 0.15 mA ⎛ 0.15 × 10−3 ⎞ VBE11 = VEB12 = 0.026 ln ⎜ −14 ⎟ = 0.609 V ⎝ 10 ⎠ 5 − 0.609 − 0.609 − (−5) Then I REF = ⇒ I REF = 0.153 mA 57.4 Then I C10 ≅ 21.1 μ A from Problem 13.6 13.8 5 − 0.6 − 0.6 − (−5) a. I REF = ⇒ I REF = 0.22 mA 40 ⎛I ⎞ I C10 R4 = VT ln ⎜ REF ⎟ ⎝ I C10 ⎠ ⎛ 0.22 ⎞ I C10 (5) = (0.026) ln ⎜ ⎟ ⎝ I C10 ⎠
  • 3.
    By trial anderror; I C10 ≅ 14.2 μ A I C10 IC 6 ≅ ⇒ I C 6 = 7.10 μ A 2 I C17 = 0.75 I REF ⇒ I C17 = 0.165 mA I C13 A = 0.25I REF ⇒ I C13 A = 0.055 mA (b) Using Example 13.4 rπ 17 = 31.5 kΩ ′ RE = 50 [31.5 + (201)(0.1)] = 50 51.6 = 25.4 kΩ β nVT rπ 16 = and I C16 0.165 (0.165)(0.1) + 0.6 I C16 = + = 0.0132 mA 200 50 rπ 16 = 394 kΩ Then Ri 2 = 394 + (201)(25.4) ⇒ 5.5 MΩ rπ 6 = 732 kΩ 0.00710 gm6 = = 0.273 mA / V 0.026 50 r06 = = 7.04 MΩ 0.0071 Then Ract1 = 7.04[1 + (0.273)(1 732)] = 8.96 MΩ 50 r04 = = 7.04 MΩ 0.0071 Then ⎛ 7.1 ⎞ Ad = − ⎜ ⎟ (7.04 8.96 5.5) ⎝ 0.026 ⎠ or Ad = −627 Gain of differential amp stage Using Example 13.5, and neglecting the input resistance to the output stage: V 50 Ract 2 = A = = 303 kΩ I C13 B 0.165 −(200)(201)(50)(303) (303) Av 2 = (5500)[50 + 31.5 + (201)(0.1)] or Av 2 = −545 Gain of second stage 13.9 I C10 = 19 μ A From Equation (13.6) ⎡ β 2 + 2β P + 2 ⎤ ⎡ (10) 2 + 2(10) + 2 ⎤ I C10 = 2 I ⎢ P ⎥ = 2I ⎢ ⎥ ⎣ β P + 3β P + 2 ⎦ ⎣ (10) + 3(10) + 2 ⎦ 2 2 ⎡122 ⎤ = 2I ⎢ ⎥ ⎣132 ⎦ So ⎛ 132 ⎞ 2 I = (19) ⎜ ⎟ = 20.56 μ A ⎝ 122 ⎠ I C 2 = I = 10.28 μ A
  • 4.
    2I 20.56 IC 9 = = ⇒ I C 9 = 17.13 μ A ⎛ 2 ⎞ ⎛ 2⎞ ⎜1 + ⎟ ⎜ 1+ ⎟ ⎝ βP ⎠ ⎝ 10 ⎠ I 17.13 I B9 = C9 = ⇒ I B 9 = 1.713 μ A βP 10 I 10.28 IB4 = = ⇒ I B 4 = 0.9345 μ A (1 + β P ) 11 ⎛ β ⎞ ⎛ 10 ⎞ IC 4 = I ⎜ P ⎟ = (10.28) ⎜ ⎟ ⇒ I C 4 = 9.345 μ A ⎝1+ βP ⎠ ⎝ 11 ⎠ 13.10 VB 5 − V − = VBE (on) + I C 5 (1) = 0.6 + (0.0095)(1) = 0.6095 0.6095 IC 7 = ⇒ I C 7 = 12.2 μ A 50 I C 8 = I C 9 = 19 μ A I REF = 0.72 mA I E13 = I REF = 0.72 mA I C14 = 138 μ A Power = (V + − V − ) [ I C 7 + I C 8 + I C 9 + I REF + I E13 + I C14 ] = 30[0.0122 + 0.019 + 0.019 + 0.72 + 0.72 + 0.138] ⇒ Power = 48.8 mW Current supplied by V + and V − = I C 7 + I C 8 + I C 9 + I REF + I E13 + I C14 = 1.63 mA 13.11 (a) vcm (min) = −15 + 0.6 + 0.6 + 0.6 + 0.6 = −12.6 V vcm (max) = +15 − .6 = 14.4 V So − 12.6 ≤ vcm ≤ 14.4 V (b) vcm (min) = −5 + 4(0.6) = −2.6 V vcm (max) = 5 − 0.6 = 4.4 V So − 2.6 ≤ vcm ≤ 4.4 V 13.12 If v0 = V − = −15 V , the base voltage of Q14 is pulled low, and Q18 and Q19 are effectively cut off. As a first approximation 0.6 I C14 = = 22.2 mA 0.027 22.2 I B14 = = 0.111 mA 200 Then I C15 = I C13 A − I B14 = 0.18 − 0.111 = 0.069 mA Now ⎛I ⎞ VBE15 = VT ln ⎜ C15 ⎟ ⎝ 15 ⎠ ⎛ 0.069 × 10−3 ⎞ = (0.026) ln ⎜ −14 ⎟ ⎝ 10 ⎠ = 0.589 V
  • 5.
    As a secondapproximation 0.589 I C14 = ⇒ I C14 = 21.8 mA 0.027 21.8 I B14 = = 0.109 mA 200 and I C15 = 0.18 − 0.109 ⇒ I C15 = 0.071 mA 13.13 a. Neglecting base currents: I D = I BIAS Then ⎛I ⎞ VBB = 2VD = 2VT ln ⎜ D ⎟ ⎝ IS ⎠ ⎛ 0.25 × 10−3 ⎞ = 2(0.026) ln ⎜ −14 ⎟ ⎝ 2 × 10 ⎠ or VBB = 1.2089 V ⎛V / 2⎞ I CN = I CP = I S exp ⎜ BB ⎟ ⎝ VT ⎠ ⎛ 1.2089 ⎞ = 5 × 10−14 exp ⎜ ⎟ ⎝ 2(0.026) ⎠ So I CN = I CP = 0.625 mA b. For vI = 5 V, v0 ≅ 5 V 5 iL ≅ = 1.25 mA 4 As a first approximation I CN ≈ iL = 1.25 mA ⎛ 1.25 × 10−3 ⎞ VBEN = (0.026) ln ⎜ −14 ⎟ = 0.6225 V ⎝ 5 × 10 ⎠ Neglecting base currents, VBB = 1.2089 V Then VEBP = 1.2089 − 0.6225 = 0.5864 V ⎛ 0.5864 ⎞ I CP = 5 × 10−14 exp ⎜ ⎟ ⇒ I CP = 0.312 mA ⎝ 0.026 ⎠ As a second approximation, I CN = iL + I CP = 1.25 + 0.31 ⇒ I CN ≅ 1.56 mA 13.14 VBB 1.157 R1 + R2 = = = 64.28 kΩ (0.1) I BIAS 0.018 ⎛I ⎞ ⎛ (0.9) I BIAS ⎞ VBE = VT ln ⎜ C ⎟ = (0.026) ln ⎜ ⎟ ⎝ IS ⎠ ⎝ IS ⎠ ⎛ 0.162 × 10−3 ⎞ = (0.026) ln ⎜ −14 ⎟ ⎝ 10 ⎠
  • 6.
    VBE = 0.6112V ⎛ R2 ⎞ VBE = ⎜ ⎟ VBB ⎝ R1 + R2 ⎠ ⎛ R ⎞ 0.6112 = ⎜ 2 ⎟ (1.157) ⎝ 64.28 ⎠ So R2 = 33.96 kΩ Then R1 = 30.32 kΩ 13.15 (a) ( Ad = − g m ro 4 ro 6 Ri 2 ) From example 13.4 9.5 gm = = 365 μ A / V , ro 4 = 5.26 M Ω 0.026 Now ro 6 = ro 4 = 5.26 M Ω Assuming R8 = 0, we find ′ Ri 2 = rπ 16 + (1 + β n ) RE = 329 + (201) ( 50 9.63) ⇒ 1.95 M Ω Then ( ) Ad = −(365) 5.26 5.26 1.95 ⇒ Ad = −409 (b) From Equation (13.20), Av 2 = ( − β n (1 + β n ) R9 Ract 2 Ri 3 R017 ) { Ri 2 R9 + ⎡ rπ 17 + (1 + β n ) Rg ⎤ ⎣ ⎦} For Rg = 0, Ri 2 = 1.95 M Ω Using the results of Example 13.5 Av 2 = ( −200(201)(50) 92.6 4050 92.6 )⇒A = −792 (1950){50 + 9.63} v2 13.16 Let I C10 = 40 μ A, then I C1 = I C 2 = 20 μ A. Using Example 13.5, Ri 2 = 4.07 MΩ (200)(0.026) rπ 6 = = 260 kΩ 0.020 0.020 gm6 = = 0.769 mA/V 0.026 50 r06 = ⇒ 2.5 MΩ 0.02 Then Ract1 = 2.5[1 + (0.769)(1 260)] = 4.42 MΩ 50 r06 = ⇒ 2.5 MΩ 0.02 Then
  • 7.
    ⎛ I CQ⎞ Ad = − ⎜ ⎟ (r04 Ract1 Ri 2 ) ⎝ VT ⎠ ⎛ 20 ⎞ = −⎜ ⎟ (2.5 4.42 4.07) ⎝ 0.026 ⎠ So Ad = −882 13.17 From Problem 13.8 I1 = I 2 = 7.10 μ A, I C17 = 0.165 mA, I C13 A = 0.055 mA I E17 R8 + VBE17 0.165 (0.165)(0.1) + 0.6 I C16 ≈ I B17 + = + R9 200 50 = 0.000825 + 0.01233 I C16 = 0.0132 mA (200)(0.026) rπ 17 = = 31.5 K 0.165 RE = R9 [ rπ 17 + (1 + β ) R8 ] = 50 [31.5 + (201)(0.1)] 1 = 50 51.6 = 25.4 K (200)(0.026) rπ 16 = = 394 K 0.0132 Then Ri 2 = rπ 16 + (1 + β ) RE = 394 + (201)(25.4) ⇒ 5.50 MΩ 1 Now (200)(0.026) rπ 6 = = 732 K 0.0071 0.0071 gm6 = = 0.273 mA/V 0.026 50 ro 6 = ⇒ 7.04 MΩ 0.0071 Ract1 = ro 6 [1 + g m 6 ( R rπ 6 )] = 7.04[1 + (0.273)(1 732)] = 8.96 MΩ 50 ro 4 = ⇒ 7.04 MΩ 0.0071 Then Ad = − g m1 (ro 4 Ract1 Ri 2 ) ⎛ 7.10 ⎞ = −⎜ ⎟ (7.04 8.96 5.5) ⎝ 0.026 ⎠ Ad = −627 50 50 Now Ract 2 = ⇒ 303 K Ro17 = = 303 K 0.165 0.165 From Eq. (13.20), assuming Ri 3 → ∞ β (1 + β ) R9 ( Ract 2 R017 ) Av 2 ≅ − Ri 2 { R9 + [rπ 17 + (1 + β ) R8 ]} −(200)(201)(50)(303 303) −3.045 × 108 = = (5500)[50 + 31.5 + (201)(0.1)] 5.588 × 105 Av 2 = −545 Overall gain Av = (−627)(−545) = 341, 715
  • 8.
    13.18 Using results from13.17 ⎛ 100 ⎞ Ri 2 = 5.50 MΩ, Ract1 ⎜ ⎟ [1 + (0.273)(1 732)] ⇒ 17.93 MΩ ⎝ 0.0071 ⎠ 100 ro 4 = ⇒ 14.08 MΩ 0.0071 ⎛ 7.10 ⎞ Ad = − ⎜ ⎟ (14.08 17.93 5.50) ⎝ 0.026 ⎠ Ad = −885 Now 100 100 Ract 2 = = 606 K Ro17 = = 606 K 0.165 0.165 −(200)(201)(50)(606 606) −6.09 × 108 Av 2 = = (5500)[50 + 31.5 + (201)(0.1)] 5.588 × 105 Av 2 = −1090 Overall gain Av = (−885)(−1090) = 964, 650 13.19 Now rπ 14 + R01 Re14 = and R0 = R6 + Re14 1+ βP Assume series resistance of Q18 and Q19 is small. Then R01 = r013 A Re 22 rπ 22 + R017 r013 B where Re 22 = 1+ βP and R017 = r017 [1 + g m17 ( R8 rπ 17 )] Using results from Example 13.6, rπ 17 = 9.63 kΩ rπ 22 = 7.22 kΩ g m17 = 20.8 mA/V r017 = 92.6 kΩ Then R017 = 92.6[1 + (20.8)(0.1 9.63)] = 283 kΩ 50 r013 B = = 92.6 kΩ 0.54 Then 7.22 + 283 92.6 Re 22 = = 1.51 kΩ 51 R01 = r013 A Re 22 = 278 1.51 = 1.50 kΩ (50)(0.026) rπ 14 = = 0.65 kΩ 2 Then 0.65 + 1.50 Re14 = = 0.0422 kΩ 51 or Re14 = 42.2 Ω Then R0 = 42.2 + 27 ⇒ R0 = 69.2 Ω 13.20
  • 9.
    ⎛ r ⎞⎤ Rid = 2 ⎢ rπ 1 + (1 + β n ) ⎜ π 3 ⎟⎥ ⎣ ⎝ 1+ βP ⎠⎦ β n = 200, β P = 10 (a) I C1 = 9.5 μ A (200)(0.026) rπ 1 = = 547 K 0.0095 (10)(0.026) rπ 3 = = 27.4 K 0.0095 Then ⎡ (201)(27.4) ⎤ Rid = 2 ⎢547 + ⎥ ⎣ 11 ⎦ Rid ⇒ 2.095 MΩ (b) I C1 = 7.10 μ A (200)(0.026) rπ 1 = = 732 K 0.0071 (10)(0.026) rπ 3 = = 36.6 K 0.0071 ⎡ (201)(36.6) ⎤ Rid = 2 ⎢ 732 + ⎥ ⎣ 11 ⎦ Rid ⇒ 2.80 MΩ 13.21 We can write A0 A( f ) = ⎛ f ⎞⎛ f ⎞ ⎜1 + j ⎟⎜ 1 + j ⎟ ⎝ f PD ⎠⎝ f1 ⎠ 181, 260 = ⎛ f ⎞⎛ f ⎞ ⎜1 + j ⎟ ⎜1 + j ⎟ ⎝ 10.7 ⎠ ⎝ f1 ⎠ Phase: ⎛ f ⎞ −1 ⎛ f ⎞ φ = − tan −1 ⎜ ⎟ − tan ⎜ ⎟ ⎝ 10.7 ⎠ ⎝ f1 ⎠ For a Phase margin = 70°, φ = −110° So ⎛ f ⎞ −1 ⎛ f ⎞ −110° = − tan −1 ⎜ ⎟ − tan ⎜ ⎟ ⎝ 10.7 ⎠ ⎝ f1 ⎠ Assuming f 10.7, we have ⎛ f ⎞ f tan −1 ⎜ ⎟ = 20° ⇒ = 0.364 ⎝ f1 ⎠ f1 At this frequency, A( f ) = 1, so
  • 10.
    181, 260 1= 2 ⎛ f ⎞ 1+ ⎜ ⎟ ⋅ 1 + (0.364) 2 ⎝ 10.7 ⎠ 170,327 = 2 ⎛ f ⎞ 1+ ⎜ ⎟ ⎝ 10.7 ⎠ f or = 170,327 ⇒ f = 1.82 MHz 10.7 Then, second pole at f f1 = ⇒ f1 = 5 MHz 0.364 13.22 a. Original g m1 and g m 2 ⎛W ⎞⎛ μ C ⎞ K p1 = K p 2 = ⎜ ⎟⎜ P ox ⎟ = (12.5)(10) ⎝ L ⎠⎝ 2 ⎠ = 125 μ A / V 2 So ⎛ IQ ⎞ g m1 = g m 2 = 2 K p1 ⎜ ⎟ = 2 (0.125)(10) ⎝ 2⎠ = 0.09975 mA/V ⎛W ⎞ If ⎜ ⎟ is increased to 50, then ⎝L⎠ K p1 = K p 2 = (50)(10) = 500 μ A / V 2 So g m1 = g m 2 = 2 (0.5)(0.0199) = 0.1995 mA/V b. Gain of first stage Ad = g m1 (r02 r04 ) = (0.1995)(5025 5025) or Ad = 501 Voltage gain of second stage remains the same, or Av 2 = 251 Then Av = Ad ⋅ Av 2 = (501)(251) or Ad = 125, 751 13.24 a. K p = (10)(20) = 200 μ A / V 2 = 0.2 mA / V 2 10 − VSG − (−10) I REF = I SET = 200 = k P (VSG − 1.5) 2 20 − VSG = (0.2)(200)(VSG − 3VSG + 2.25) 2 40VSG − 119VSG + 70 = 0 2 119 ± (119) 2 − 4(40)(70) VSG = ⇒ VSG = 2.17 V 2(40) Then
  • 11.
    20 − 2.17 IREF = ⇒ I REF = 89.2 μ A 200 M 5 , M 6 , M 8 matched transistors so that I Q = I D 7 = I REF = 89.2 μ A b. Small-signal voltage gain of input stage: Ad = 2 K p1 I Q ⋅ ( ro 2 ro 4 ) 1 1 r02 = = = 1.12 MΩ λP I D ⎛ 89.2 ⎞ (0.02) ⎜ ⎟ ⎝ 2 ⎠ 1 1 r04 = = = 2.24 MΩ λn I D ⎛ 89.2 ⎞ (0.01) ⎜ ⎟ ⎝ 2 ⎠ Then Ad = 2(200)(89.2) ⋅ (1.12 2.24) or Ad = 141 Small-signal voltage gain of second stage: Av 2 = g m 7 (r07 r08 ) K n 7 = (20)(20) = 400 μ A / V 2 So g m 7 = 2 K n 7 I D 7 = 2 (0.4)(0.0892) = 0.378 mA/V 1 1 r08 = = = 561 kΩ λP I D 7 (0.02)(0.0892) 1 1 r07 = = = 1121 kΩ λn I D 7 (0.01)(0.0892) So Av 2 = (0.378)(1121 561) ⇒ Av 2 = 141 Then overall voltage gain Av = Ad ⋅ Av 2 = (141)(141) ⇒ Av = 19,881 13.25 Small-signal voltage gain of input stage: Ad = 2 K p1 I Q ⋅ ( ro 2 ro 4 ) K p1 = (10)(10) = 100 μ A / V 2 1 1 r02 = = = 1000 kΩ ⎛ IQ ⎞ ⎛ 0.2 ⎞ λP ⎜ ⎟ (0.01) ⎜ ⎟ ⎝ 2⎠ ⎝ 2 ⎠ 1 1 r04 = = = 2000 kΩ ⎛ IQ ⎞ ⎛ 0.2 ⎞ λn ⎜ ⎟ (0.005) ⎜ ⎟ ⎝ 2⎠ ⎝ 2 ⎠ Then Ad = 2(0.1)(0.2) ⋅ (1000 2000) or Ad = 133 Small-signal voltage gain of second stage: Av 2 = g m 7 ( r07 r08 ) K n 7 = (20)(20) = 400 μ A / V 2 So
  • 12.
    g m 7= 2 K n 7 I D 7 = 2 (0.4)(0.2) = 0.566 mA/V 1 1 r08 = = = 500 kΩ λP I D 7 (0.01)(0.2) 1 1 r07 = = = 1000 kΩ λn I D 7 (0.005)(0.2) So Av 2 = (0.566)(1000 500) ⇒ Av 2 = 189 Then overall voltage gain is Av = Ad ⋅ Av 2 = (133)(189) ⇒ Av = 25,137 13.26 1 f PD = 2π Req Ci where Req = r04 r02 and Ci = C1 (1 + Av 2 ) We can find that Av 2 = 251 and r04 = r02 = 5.025 MΩ Now Req = 5.025 5.025 = 2.51 MΩ and Ci = 12(1 + 251) = 3024 pF So 1 f PD = 2π (2.51× 106 )(3024 × 10−12 ) or f PD = 21.0 Hz 13.27 1 f PD = 2π Req Ci where Req = r04 r02 From Problem 13.22, r02 = 1.12 MΩ, r04 = 2.24 MΩ and Av 2 = 141 So 1 8= 2π (1.12 2.24) × 106 × Ci or Ci = 2.66 × 10−8 = C1 (1 + Av 2 ) = C1 (142) or C1 = 188 pF 13.28 R0 = r07 r08 We can find that r07 = r08 = 2.52 MΩ Then R0 = 2.52 2.52 or R0 = 1.26 MΩ
  • 13.
    13.29 a. V0 = (g m1Vgs1 )(r01 r02 ) VI = Vgs1 + V0 Then V0 = g m1 (r01 r02 )(VI − V0 ) or g m1 (r01 r02 ) Av = 1 + g m1 (r01 r02 ) VX VX b. I X + g m1Vgs1 = + and Vgs1 = −VX r02 r01 1 R0 = r r g m1 01 02 13.30 ⎛ 80 ⎞ I Q 2 = ⎜ ⎟ (20) [1.1737 − 0.7 ] 2 (a) ⎝ 2⎠ I Q 2 = 180 μ A ⎛ 80 ⎞ I D 6 = ⎜ ⎟ (25) (VGS 6 − 0.7 ) = 25 ⇒ VGS 6 = 0.8581 V 2 (b) ⎝ 2⎠ ⎛ 40 ⎞ I D 7 = ⎜ ⎟ (50) (VSG 7 − 0.7 ) = 25 ⇒ VSG 7 = 0.8581 V 2 ⎝ 2 ⎠ Set VSG 8 P = VGS 8 N = 0.8581 V ⎛ 40 ⎞ ⎛ W ⎞ ⎛W ⎞ 180 = ⎜ ⎟ ⎜ ⎟ (0.8581 − 0.7) 2 ⇒ ⎜ ⎟ = 360 ⎝ 2 ⎠ ⎝ L ⎠8 P ⎝ L ⎠8 P ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ 180 = ⎜ ⎟ ⎜ ⎟ (0.8581 − 0.7) 2 ⇒ ⎜ ⎟ = 180 ⎝ 2 ⎠ ⎝ L ⎠8 N ⎝ L ⎠8 N 13.31
  • 14.
    ⎛ 80 ⎞ VGS11⇒ 200 = ⎜ ⎟ (20) (VGS 11 − 0.7 ) 2 ⎝ 2⎠ VGS 11 = 1.20 V Let M 12 = 2 transistors in series. Than 5 − 1.20 VGS12 = = 1.90 V 2 ⎛ 80 ⎞⎛ W ⎞ ⎛W ⎞ ⎛W ⎞ 200 = ⎜ ⎟⎜ ⎟ (1.90 − 0.7 ) ⇒ ⎜ ⎟ = ⎜ ⎟ = 3.47 2 ⎝ 2 ⎠⎝ L ⎠12 ⎝ L ⎠12 A ⎝ L ⎠12 B 13.32 (a) ⎛ 80 ⎞ I Q 2 = 250μ A = ⎜ ⎟ (5) (VGS 8 − 0.7 ) 2 ⎝ 2⎠ ⇒ VGS 8 = 1.818 V 1.818 ⇒ VGS 6 = VSG 7 = = 0.909 V 2 ⎛ 80 ⎞ I D 6 = I D 7 = ⎜ ⎟ (25)(0.909 − 0.7) 2 = 43.7 μ A ⎝ 2⎠ (b) ⎛ 80 ⎞ ⎛ 250 ⎞ g m1 = 2 ⎜ ⎟ (15) ⎜ ⎟ ⇒ 0.5477 mA/V ⎝ 2⎠ ⎝ 2 ⎠ 1 ro 2 = = 800 K ( 0.01)( 0.125) 1 r04 = = 533.3K ( 0.015)( 0.125) Ad 1 = g m1 ( ro 2 ro 4 ) = ( 0.5477 ) ( 800 533.3) Ad 1 = 175 Second stage:
  • 15.
    A2 = −g m 5 (ro 5 ro 9 ) ⎛ 40 ⎞ g m 5 = 2 ⎜ ⎟ (80)(250) ⇒ 1.265 mA/V ⎝ 2 ⎠ 1 r05 = = 266.7 K (0.015)(0.25) 1 r09 = = 400 K (0.01)(0.25) A2 = −(1.265)(266.7 400) A2 = −202 Assume the gain of the output stage ≈ 1, then Av = Ad 1 ⋅ A2 = (175)(−202) Av = −35,350 13.33 (a) Ad = g m1 ( Ro 6 Ro8 ) g m1 = 2 K n I DQ = 2 (0.5)(0.025) ⇒ 224 μ A / V g m1 = g m8 g m 6 = 2 (0.5)(0.025) ⇒ 224 μ A / V 1 1 ro1 = ro 6 = ro8 = ro10 = = = 2.67 M Ω λ I DQ (0.015)(25) 1 1 ro 4 = = ⇒ 1.33 M Ω λ I D 4 ( 0.015 )( 50 ) Now Ro8 = g m8 (ro8 ro10 ) = (224)(2.67)(2.67) = 1597 M Ω Ro 6 = g m 6 (ro 6 )(ro 4 ro1 ) = (224)(2.67)(2.67 1.33) ⇒ Ro 6 = 531 M Ω Then Ad = (224)(531 1597) ⇒ Ad = 89, 264 (b) Ro = Ro 6 Ro8 = 531 1597 ⇒ Ro = 398 M Ω 1 1 (c) f PD = = ⇒ f PD = 80 Hz 2π Ro CL 2π ( 398 × 106 )( 5 × 10−12 ) GBW = (89, 264)(80) ⇒ GBW = 7.14 MHz 13.34 (a) 1 1 ro1 = ro8 = ro10 = = = 2 MΩ λ p I D (0.02)(25) 1 1 ro 6 = = = 2.67 M Ω λn I D (0.015)(25) 1 1 ro 4 = = = 1.33 M Ω λn I D 4 (0.015)(50) ⎛ 35 ⎞ ⎛ W ⎞ ⎛W ⎞ g m1 = 2 ⎜ ⎟ ⎜ ⎟ (25) = 41.8 ⎜ ⎟ = g m8 ⎝ 2 ⎠ ⎝ L ⎠1 ⎝ L ⎠1 ⎛ 80 ⎞⎛ W ⎞ ⎛W ⎞ g m 6 = 2 ⎜ ⎟⎜ ⎟ (25) = 63.2 ⎜ ⎟ ⎝ 2 ⎠⎝ L ⎠6 ⎝ L ⎠6 Ro = Ro 6 Ro8 = [ g m 6 (ro 6 )(ro 4 ro1 )] [ g m8 (ro8 ro10 )]
  • 16.
    ⎛W ⎞ ⎛W ⎞ Define X 1 = ⎜ ⎟ and X 6 = ⎜ ⎟ ⎝ L ⎠1 ⎝ L ⎠6 Then Ro = ⎣ 63.2 X 6 ( 2.67 ) (1.33 2 ) ⎦ ⎡ 41.8 X 1 ( 2 )( 2 ) ⎤ ⎡ ⎤ ⎣ ⎦ 22,539 X 1 X 6 = 134.8 X 6 167.2 X 1 = 134.8 X 6 + 167.2 X 1 ⎛ 22,539 X 1 X 6 ⎞ Ad = g m1 Ro = (41.8 X 1 ) ⎜ ⎟ ⎝ 134.8 X 6 + 167.2 X 1 ⎠ = 10, 000 ⎛W ⎞ 1 ⎛W ⎞ Now X 6 = ⎜ ⎟ = ⎜ ⎟ = 0.674 X 1 ⎝ L ⎠6 2.2 ⎝ L ⎠1 We then find ⎛W ⎞ ⎛W ⎞ X 12 = ⎜ ⎟ = 4.06 = ⎜ ⎟ ⎝ L ⎠1 ⎝ L ⎠p and ⎛W ⎞ ⎜ ⎟ = 1.85 ⎝ L ⎠n 13.35 Let V + = 5V , V − = −5V P = IT (10) = 3 ⇒ IT = 0.3 mA ⇒ I REF = 0.1 mA = 100 μ A 1 ro1 = ro8 = ro10 = = 1 MΩ (0.02)(50) 1 ro 6 = = 1.33 MΩ (0.015)(50) 1 ro 4 = = 0.667 M Ω (0.015)(100) ⎛ 35 ⎞ ⎛ W ⎞ g m1 = 2 ⎜ ⎟ ⎜ ⎟ (50) = 59.2 X 1 = g m8 ⎝ 2 ⎠ ⎝ L ⎠1 ⎛W ⎞ where X 1 = ⎜ ⎟ ⎝ L ⎠1 Assume all width-to-length ratios are the same. ⎛ 80 ⎞ ⎛ W ⎞ g m 6 = 2 ⎜ ⎟ ⎜ ⎟ (50) = 89.4 X 1 ⎝ 2 ⎠⎝ L ⎠ Now Ro = Ro 6 Ro8 = ⎡ g m 6 ( ro 6 ) ( ro 4 ro1 ) ⎤ ⎡ g m8 ( ro8 ro10 ) ⎤ ⎣ ⎦ ⎣ ⎦ = ⎡89.4 X 1 (1.33) ( 0.667 1) ⎤ ⎡59.2 X 1 (1)(1) ⎤ ⎣ ⎦ ⎣ ⎦ ( 47.6 X 1 )( 59.2 X 1 ) = [ 47.6 X 1 ] [59.2 X 1 ] = 47.6 X 1 + 59.2 X 1 So Ro = 26.4 X 1 Now Ad = g m1 Ro = ( 59.2 X 1 )( 26.4 X 1 ) = 25, 000 W So that X 12 = = 16 for all transistors L 13.36
  • 17.
    (a) Ad = Bg m1 (ro 6 ro8 ) 1 1 ro 6 = ro8 = = = 0.741 M Ω λ I DQ (0.015)(90) ⎛ k ′ ⎞⎛ W ⎞ g m1 = 2 ⎜ n ⎟ ⎜ ⎟ I D1 = 2 (500)(30) = 245 μ A / V ⎝ 2 ⎠⎝ L ⎠ Ad = (3)(245)(0.741 0.741) ⇒ Ad = 272 (b) Ro = ro 6 ro8 = 0.741 0.741 ⇒ Ro = 371 k Ω 1 1 (c) f PD = = ⇒ f PD = 85.8 kHz 2π Ro C 2π (371× 103 )(5 × 10−12 ) GBW = (272)(85.8 × 103 ) ⇒ GBW = 23.3 MHz 13.37 1 (a) ro 6 = = 0.5 M Ω (0.02)(2.5)(40) 1 ro8 = = 0.667 M Ω (0.015)(2.5)(40) Ad = Bg m1 ( ro 6 ro8 ) 400 = (2.5) g m1 ( 0.5 0.667 ) ⇒ g m1 = 560 μ A / V ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ g m1 = 560 = 2 ⎜ ⎟ ⎜ ⎟ (40) ⇒ ⎜ ⎟ = 49 ⎝ 2 ⎠⎝ L ⎠ ⎝L⎠ Assume all (W/L) ratios are the same except for ⎛W ⎞ ⎛W ⎞ M 5 and M 6 . ⎜ ⎟ = ⎜ ⎟ = 122.5 ⎝ L ⎠5 ⎝ L ⎠ 6 (b) Assume the bias voltages are V + = 5V , V − = −5V . ⎛W ⎞ ⎛W ⎞ Assume ⎜ ⎟ = ⎜ ⎟ = 49 ⎝ L ⎠ A ⎝ L ⎠B ⎛ 80 ⎞ I Q = ⎜ ⎟ (49)(VGSA − 0.5) 2 = 80 ⇒ VGSA = 0.702 V ⎝ 2⎠ Then ⎛ 80 ⎞ ⎛ W ⎞ I REF = 80 = ⎜ ⎟ ⎜ ⎟ (VGSC − 0.5) 2 ⎝ 2 ⎠ ⎝ L ⎠C For four transistors
  • 18.
    10 − 0.702 VGSC= = 2.325 V 4 ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ 80 = ⎜ ⎟ ⎜ ⎟ (2.325 − 0.5) 2 ⇒ ⎜ ⎟ = 0.60 ⎝ 2 ⎠ ⎝ L ⎠C ⎝ L ⎠C 1 (c) f 3− dB = Ro = 0.5 0.667 = 0.286 M Ω 2π Ro C 1 f 3− dB = = 185 kHz 2π (286 × 103 )(3 × 10−12 ) GBW = (400)(185 × 103 ) ⇒ 74 MHz 13.38 (a) From previous results, we can write Ro10 = g m10 (ro10 ro 6 ) Ro12 = g m12 (ro12 ro8 ) Ad = Bg m1 ( Ro10 Ro12 ) Now 1 1 ro10 = ro 6 = = = 0.5 M Ω λP B ( I Q / 2 ) (0.02)(2.5)(40) 1 1 ro12 = ro8 = = = 0.667 M Ω λn B ( I Q / 2 ) (0.015)(2.5)(40) Assume all transistors have the same width-to-length ratios except for M 5 and M 6 . ⎛W ⎞ ⎟= X 2 Let ⎜ ⎝L ⎠ Then ⎛ k′ ⎞⎛ W ⎞ ⎛ 35 ⎞ g m10 = 2 ⎜ ⎟ ⎜ ⎟ ( I DQ10 ) = 2 ⎜ ⎟ X 2 (2.5)(40) p ⎝ 2 ⎠ ⎝ L ⎠10 ⎝ 2⎠ = 83.67 X ⎛ k′ ⎞⎛ W ⎞ ⎛ 80 ⎞ g m12 = 2 ⎜ n ⎟ ⎜ ⎟ ( I DQ12 ) = 2 ⎜ ⎟ X 2 (2.5)(40) ⎝ 2 ⎠ ⎝ L ⎠12 ⎝ 2⎠ = 126.5 X ⎛ 80 ⎞ g m1 = 2 ⎜ ⎟ X 2 (40) = 80 X ⎝ 2⎠ Then Ro10 = (83.67 X )(0.5)(0.5) = 20.9 X M Ω Ro12 = (126.5 X )(0.667)(0.667) = 56.3 X M Ω We want 20, 000 = (2.5)(80 X )[20.9 X 56.3 X ] ⎡ (20.9 X )(56.3 X ) ⎤ = 200 X ⎢ ⎥ = 3048 X 2 ⎣ 20.9 X + 56.3 X ⎦ Then ⎛W ⎞ X 2 = 6.56 = ⎜ ⎟ ⎝L⎠ Then ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ = ⎜ ⎟ = (2.5)(6.56) = 16.4 ⎝ L ⎠ 6 ⎝ L ⎠5 (b) Assume bias voltages are V + = 5V , V − = −5V
  • 19.
    ⎛W ⎞ ⎛W ⎞ Assume ⎜ ⎟ = ⎜ ⎟ = 6.56 ⎝ L ⎠ A ⎝ L ⎠B ⎛ 80 ⎞ I Q = 80 = ⎜ ⎟ (6.56)(VGSA − 0.5) 2 ⇒ VGSA = 1.052 V ⎝ 2⎠ Need 5 transistors in series 10 − 1.052 VGSC = = 1.79 V 5 Then ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ I REF = 80 = ⎜ ⎟ ⎜ ⎟ (1.79 − 0.5) 2 ⇒ ⎜ ⎟ = 1.20 ⎝ 2 ⎠ ⎝ L ⎠C ⎝ L ⎠C 1 (c) f 3− dB = where Ro = Ro10 Ro12 2π Ro C Now Ro10 = 20.9 6.56 = 53.5 M Ω Ro12 = 56.3 6.56 = 144 M Ω Then Ro = 53.5 144 = 39 M Ω 1 f 3− dB = = 1.36 kHz 2π (39 × 106 )(3 × 10−12 ) GBW = (20, 000)(1.36 x103 ) ⇒ GBW = 27.2 MHz 13.39 Ad = g m ( M 2 ) ⋅ ⎡ ro 2 ( M 2 ) ro 2 (Q2 ) ⎤ ⎣ ⎦ ⎛ 40 ⎞ g m ( M 2 ) = 2 ⎜ ⎟ (25)(100) = 447 μ A / V ⎝ 2 ⎠ 1 1 ro 2 ( M 2 ) = = = 500 k Ω λ I DQ (0.02)(0.1) VA 120 ro 2 (Q2 ) = = = 1200 k Ω I CQ 0.1 Then Ad = 447(0.5 1.2) ⇒ Ad = 158 13.40
  • 20.
    Ad = gm ( M 2 ) ⋅ ⎡ ro 2 ( M 2 ) ro 2 (Q2 ) ⎤ ⎣ ⎦ ⎛ 80 ⎞ g m ( M 2 ) = 2 ⎜ ⎟ (25)(100) = 632 μ A / V ⎝ 2⎠ 1 1 ro 2 ( M 2 ) = = = 667 k Ω λ I DQ (0.015)(0.1) VA 80 ro 2 (Q2 ) = = = 800 k Ω I CQ 0.1 Ad = (632) ( 0.667 0.80 ) ⇒ Ad = 230 13.41 (a) I REF = 200 μ A K n = K p = 0.5 mA / V 2 λn = λ p = 0.015 V −1 Ad = g m1 ( Ro 6 Ro8 ) where Ro8 = g m8 (ro8 ro10 ) Ro 6 = g m 6 (ro 6 ) ( ro 4 ro1 ) Now g m8 = 2 K P I D 8 = 2 (0.5)(0.1) = 0.447 mA/V 1 1 ro8 = = = 667 k Ω λP I D 8 (0.015)(0.1) 1 ro10 = = 667 k Ω λP I D 8 IC 6 0.1 gm6 = = = 3.846 mA/V VT 0.026 VA 80 ro 6 = = = 800 k Ω I C 6 0.1 1 1 ro 4 = = = 333 k Ω λn I D 4 (0.015)(0.2) 1 1 ro1 = = = 667 k Ω λ p I D1 (0.015)(0.1) g m1 = 2 K P I D1 = 2 (0.5)(0.1) = 0.447 mA/V So Ro8 = (0.447)(667)(667) ⇒ 198.9 M Ω Ro 6 = (3.846)(800)(333 667) ⇒ 683.4 M Ω Then Ad = 447(198.9 683.4) ⇒ Ad = 68,865 13.42 Assume biased at V + = 10V , V − = −10V . P = 3I REF (20) = 10 ⇒ I REF = 167 μ A Ad = g m1 ( Ro 6 Ro8 ) = 25, 000 kn = 80 μ A / V 2 , k ′ = 35 μ A / V 2 ′ p λn = 0.015V −1 , λ p = 0.02 V −1 ⎛W ⎞ ⎛W ⎞ Assume ⎜ ⎟ = 2.2 ⎜ ⎟ ⎝ L ⎠p ⎝ L ⎠n
  • 21.
    Ro8 = gm8 ( ro8 ro10 ) Ro 6 = g m 6 (ro 6 )(ro 4 ro1 ) 1 1 ro8 = = = 0.60 M Ω λP I D 8 (0.02)(83.3) 1 ro10 = = 0.60 M Ω λP I D 8 ⎛ k′ ⎞⎛ W ⎞ ⎛ 35 ⎞ g m8 = 2 ⎜ ⎟ ⎜ ⎟ I D 8 = 2 ⎜ ⎟ (2.2) X 2 (83.3) p ⎝ 2 ⎠ ⎝ L ⎠8 ⎝ 2⎠ = 113.3 X ⎛W ⎞ where X 2 = ⎜ ⎟ ⎝ L ⎠n VA 80 ro 6 = = = 0.960 M Ω I C 6 83.3 1 1 ro 4 = = = 0.40 M Ω λn I D 4 (0.015)(167) 1 1 ro1 = = = 0.60 M Ω λ p I D1 (0.02)(83.3) IC 6 83.3 gm6 = = = 3204 μ A / V VT 0.026 ′ ⎛ kp ⎞⎛ W ⎞ ⎛ 35 ⎞ g m1 = 2 ⎜ ⎟ ⎜ ⎟ I D1 = 2 ⎜ ⎟ (2.2) X 2 (83.3) ⎝ 2 ⎠ ⎝ L ⎠1 ⎝ 2⎠ = 113.3 X Now Ro 6 = (3204)(0.960) ⎡0.40 0.60 ⎤ = 738 M Ω ⎣ ⎦ Ro8 = (113.3 X )(0.60)(0.60) = 40.8 X M Ω Then Ad = 25, 000 = (113.3 X ) ⎡ 738 40.8 X ⎤ ⎣ ⎦ ⎡ 30,110 X ⎤ = (113.3 X ) ⎢ ⎥ ⎣ 738 + 40.8 X ⎦ which yields X = 2.48 or ⎛W ⎞ X 2 = 6.16 = ⎜ ⎟ ⎝ L ⎠n and ⎛W ⎞ ⎜ ⎟ + (2.2)(6.16) = 12.3 ⎝ L ⎠P 13.43 For vcm (max), assume VCB (Q5 ) = 0. Then VS = 15 − 0.6 − 0.6 = 13.8 V 0.236 I D 9 = I D10 = = 0.118 mA 2 Using parameters given in Example 13.11 I 0.118 VSG = D 9 − VTP = + 1.4 = 2.17 V KP 0.20 Then vcm (max) = 13.8 − 2.17 ⇒ vcm (max) = 11.6 V
  • 22.
    For vcm (min) ,assume VSD ( M 9 ) = VSD ( sat ) = VSG + VTP = 2.17 − 1.4 = 0.77 V Now VD10 = I D10 (0.5) + 0.6 + I D10 (0.5) − 15 = 0.118 + 0.6 − 15 ⇒ VD10 = −14.28 V Then vcm (min) = −14.28 + VSD (sat) − VSG = −14.28 + 0.77 − 2.17 = −15.68 V Then, common-mode voltage range −15.68 ≤ vcm ≤ 11.6 Or, assuming the input is limited to ±15 V, then −15 ≤ vcm ≤ 11.6 V 13.44 For I1 = I 2 = 300 μ A, VSG = VBE + (0.3)(8) = 0.6 + 2.4 = 3.0 V Then I 2 = K P (VSG + VTP ) 2 0.3 = K P (3 − 1.4)2 ⇒ K P = 0.117 mA / V 2 13.45 For VCB = 0 for both Q6 and Q7 , then VS = 0.6 + 0.6 + VSG + (−VS ) So 2VS = 1.2 + VSG Now I1 0.6 + I 2 R1 = VSG = + VTP and I1 = I 2 KP Also I1 = I 2 = K P (VSG + VTP ) 2 so 0.6 + (0.25)(8)(VSG − 1.4) 2 = VSG 0.6 + 2(VSG − 2.8VSG + 1.96) = VSG 2 2VSG − 6.6VSG + 4.52 = 0 2 6.6 ± (6.6) 2 − 4(2)(4.52) VSG = = 2.33 V 2(2) Then 2VS = 1.2 + 2.33 = 3.53 and VS = 1.765 V 13.46 I C 5 = I C 4 = 300 μ A Using the parameters from Examples 13.12 and 13.13, we have βV (200)(0.026) Ri 2 = rπ 13 = n T = = 17.3 kΩ I C13 0.3 Ad = 2 K n I Q 5 ⋅ ( Ri 2 ) = 2(0.6)(0.3) ⋅ (17.3) or Ad = 10.38 Now
  • 23.
    I C13 0.3 g m13 = = = 11.5 mA/V VT 0.026 VA 50 r013 = = = 167 kΩ I C13 0.3 Then | Av 2 | = g m13 ⋅ r013 = (11.5)(167) or Av 2 = 1917 Overall gain: Av = (10.38)(1917) = 19,895 13.47 Assuming the resistances looking into Q4 and into the output stage are very large, we have β R013 | Av 2 | = rπ 13 + (1 + β ) RE13 where R013 = r013 ⎡1 + g m13 ( RE13 rπ 13 ) ⎤ ⎣ ⎦ 50 I C13 = 300 μ A, r013 = = 167 kΩ 0.3 0.3 g m13 = = 11.5 mA / V 0.026 (200)(0.026) rπ 13 = = 17.3 kΩ 0.3 So R013 = (167) ⎡1 + (11.5) (1 17.3) ⎤ ⇒ 1.98 MΩ ⎣ ⎦ Then (200)(1980) | Av 2 | = = 1814 17.3 + (201)(1) Now Ci = C1 (1 + Av 2 ) = 12 [1 + 1814] ⇒ Ci = 21, 780 pF 1 f PD = 2π Req Ci Req = Ri 2 r012 r010 Neglecting R3 , 1 1 r010 = = = 333 kΩ λ I D10 (0.02)(0.15) Neglecting R5 , 50 r012 = = 333 kΩ 0.15 Ri 2 = rπ 13 + (1 + β ) RE13 = 17.3 + (201)(1) = 218 kΩ Then 1 f PD = 2π ⎡ 218 333 333⎤ × 103 × ( 21, 780 ) × 10−12 ⎣ ⎦ or f PD = 77.4 Hz Unity-Gain Bandwidth Gain of first stage:
  • 24.
    Ad = 2K n I Qs ⋅ ( R12 ro12 ro10 ) = 2(0.6)(0.3) ⋅ (218 333 333) = (0.6)(218 333 333) or Ad = 56.6 Overall gain: Av = (56.6)(1814) = 102, 672 Then unity-gain bandwidth = (77.4)(102, 672) ⇒ 7.95 MHz 13.48 Since VGS = 0 in J 6 , I REF = I DSS ⇒ I DSS = 0.8 mA 13.49 a. Ri 2 = rπ 5 + (1 + β ) [ rπ 6 + (1 + β ) RE ] (100)(0.026) rπ 6 = = 13 kΩ 0.2 I 200 μ A IC 5 ≅ C6 = = 2 μA β 100 So (100)(0.026) rπ 5 = = 1300 kΩ 0.002 Then Ri 2 = 1300 + (101) [13 + (101)(0.3) ] or Ri 2 = 5.67 MΩ b. Av = g m 2 ( r02 r04 Ri 2 ) 2 2 gm2 = ⋅ I D ⋅ I DSS = ⋅ (0.1)(0.2) VP 3 = 0.0943 mA / V 1 1 r02 = = = 500 kΩ λ I D (0.02)(0.1) VA 5.0 r04 = = = 500 kΩ I C 4 0.1 Then Av = (0.0943)[500 || 500 || 5670] or Av = 22.6 13.50 a. Need VSD (QE ) ≥ VSD ( sat ) = VP For minimum bias ±3 V Set VP = 3 V and VZK = 3 V VZK − VD1 I REF 2 = R3 3 − 0.6 so that R3 = ⇒ R3 = 24 kΩ 0.1 Set bias in QE = I REF 2 + I Z 2 = 0.1 + 0.1 = 0.2 mA Therefore,
  • 25.
    I DSS =0.2 mA b. Neglecting base currents 12 − 0.6 I 01 = I REF 1 = 0.5 mA = R4 so that R4 = 22.8 kΩ 13.51 a. We have 2 2 gm2 = ⋅ I D ⋅ I DSS = ⋅ (0.5)(1) | VP | 4 = 0.354 mA/V 1 1 r02 = = = 100 kΩ λ ID (0.02)(0.5) VA 100 r04 = = = 200 kΩ I D 0.5 0.5 gm4 = = 19.23 mA/V 0.026 (200)(0.026) rπ 4 = = 10.4 kΩ 0.5 So R04 = r04 ⎡1 + g m 4 ( rπ 4 R2 ) ⎤ ⎣ ⎦ = 200 ⎡1 + (19.23) (10.4 0.5 ) ⎤ ⎣ ⎦ = 2035 kΩ Ad = g m 2 ( r02 R04 RL ) For RL → ∞ Ad = 0.354 (100 || 2035 ) = 33.7 With these parameter values, gain can never reach 500. b. Similarly for this part, gain can never reach 700.