SlideShare a Scribd company logo
1 of 19
Download to read offline
Chapter 1
Problem Solutions

1.1
                βˆ’ E / 2 kT
 ni = BT 3 / 2 e g
(a)       Silicon
                                              ⎑          βˆ’1.1           ⎀
             ni = ( 5.23 Γ— 1015 ) ( 250 )
                                            3/ 2
(i)                                       exp ⎒                         βŽ₯
                                              ⎒ 2 ( 86 Γ— 10βˆ’6 ) ( 250 ) βŽ₯
                                              ⎣                         ⎦
                 = 2.067 Γ— 1019 exp [ βˆ’25.58]
             ni = 1.61Γ— 108 cm βˆ’3
                                              ⎑          βˆ’1.1           ⎀
             ni = ( 5.23 Γ— 1015 ) ( 350 )
                                            3/ 2
(ii)                                     exp ⎒                          βŽ₯
                                              ⎒ 2 ( 86 Γ— 10βˆ’6 ) ( 350 ) βŽ₯
                                              ⎣                         ⎦
                = 3.425 Γ— 1019 exp [ βˆ’18.27 ]
             ni = 3.97 Γ—1011 cm βˆ’3

(b)          GaAs
                                                       ⎑          βˆ’1.4         ⎀
             ni = ( 2.10 Γ— 1014 ) ( 250 )
                                            3/ 2
(i)                                                exp ⎒                       βŽ₯
                                                       ⎒ 2 ( 86 Γ— 10 ) ( 250 ) βŽ₯
                                                       ⎣
                                                                    βˆ’6
                                                                               ⎦
                 = ( 8.301Γ— 1017 ) exp [ βˆ’32.56]
             ni = 6.02 Γ— 103 cm βˆ’3


                                                       ⎑          βˆ’1.4           ⎀
             ni = ( 2.10 Γ— 1014 ) ( 350 )
                                            3/ 2
(ii)                                               exp ⎒                         βŽ₯
                                                       ⎒ 2 ( 86 Γ— 10βˆ’6 ) ( 350 ) βŽ₯
                                                       ⎣                         ⎦
                 = (1.375 Γ— 1018 ) exp [ βˆ’23.26]
             ni = 1.09 Γ— 108 cm βˆ’3

1.2
                             βŽ› βˆ’ Eg ⎞
a.        ni = BT 3 / 2 exp ⎜       ⎟
                             ⎝ 2kT ⎠
                               βŽ›      βˆ’1.1         ⎞
1012 = 5.23 Γ— 1015 T 3 / 2 exp ⎜                   ⎟
                               ⎝ 2(86 Γ— 10βˆ’6 )(T ) ⎠
                         βŽ› 6.40 Γ— 103 ⎞
1.91Γ— 10βˆ’4 = T 3 / 2 exp ⎜ βˆ’          ⎟
                         ⎝     T      ⎠
By trial and error, T β‰ˆ 368 K
b.        ni = 109 cm βˆ’3
                              βŽ›        βˆ’1.1          ⎞
109 = 5.23 Γ— 1015 T 3 / 2 exp ⎜                      ⎟
                              ⎜ 2 ( 86 Γ— 10βˆ’6 ) (T ) ⎟
                              ⎝                      ⎠
                         βŽ› 6.40 Γ— 103 ⎞
1.91Γ— 10βˆ’7 = T 3 / 2 exp ⎜ βˆ’          ⎟
                         ⎝     T      ⎠
By trial and error, T β‰ˆ 268Β° K

1.3
Silicon
⎑          βˆ’1.1        ⎀
              ni = ( 5.23 Γ— 1015 ) (100 )
                                              3/ 2
(a)                                                   exp ⎒                      βŽ₯
                                                          ⎒ 2 ( 86 Γ— 10 ) (100 ) βŽ₯
                                                          ⎣
                                                                       βˆ’6
                                                                                 ⎦
                 = ( 5.23 Γ— 1018 ) exp [ βˆ’63.95]
              ni = 8.79 Γ—10βˆ’10 cm βˆ’3


                                                          ⎑          βˆ’1.1           ⎀
              ni = ( 5.23 Γ— 1015 ) ( 300 )
                                               3/ 2
(b)                                                   exp ⎒                         βŽ₯
                                                          ⎒ 2 ( 86 Γ— 10βˆ’6 ) ( 300 ) βŽ₯
                                                          ⎣                         ⎦
                 = ( 2.718 Γ— 1019 ) exp [ βˆ’21.32]
              ni = 1.5 Γ— 1010 cm βˆ’3


                                                          ⎑          βˆ’1.1         ⎀
              ni = ( 5.23 Γ— 1015 ) ( 500 )
                                               3/ 2
(c)                                                   exp ⎒                       βŽ₯
                                                          ⎒ 2 ( 86 Γ— 10 ) ( 500 ) βŽ₯
                                                          ⎣
                                                                       βˆ’6
                                                                                  ⎦
                 = ( 5.847 Γ— 1019 ) exp [ βˆ’12.79]
              ni = 1.63 Γ— 1014 cm βˆ’3

Germanium.
                                                          ⎑         βˆ’0.66          ⎀
              ni = (1.66 Γ— 1015 ) (100 )                                           βŽ₯ = (1.66 Γ— 1018 ) exp [ βˆ’38.37 ]
                                              3/ 2
(a)                                                   exp ⎒
                                                          ⎒ 2 ( 86 Γ— 10βˆ’6 ) (100 ) βŽ₯
                                                          ⎣                        ⎦
              ni = 35.9 cm βˆ’3
                                                          ⎑         βˆ’0.66           ⎀
              ni = (1.66 Γ— 1015 ) ( 300 )                                           βŽ₯ = ( 8.626 Γ— 1018 ) exp [ βˆ’12.79]
                                              3/ 2
(b)                                                   exp ⎒
                                                          ⎒ 2 ( 86 Γ— 10βˆ’6 ) ( 300 ) βŽ₯
                                                          ⎣                         ⎦
              ni = 2.40 Γ— 1013 cm βˆ’3
                                                          ⎑         βˆ’0.66           ⎀
              ni = (1.66 Γ— 1015 ) ( 500 )                                           βŽ₯ = (1.856 Γ— 1019 ) exp [ βˆ’7.674]
                                              3/ 2
(c)                                                   exp ⎒
                                                          ⎒ 2 ( 86 Γ— 10βˆ’6 ) ( 500 ) βŽ₯
                                                          ⎣                         ⎦
              ni = 8.62 Γ—1015 cm βˆ’3

1.4
a.            N d = 5 Γ— 1015 cm βˆ’3 β‡’ n βˆ’ type
n0 = N d = 5 Γ— 1015 cm βˆ’3

    n 2 (1.5 Γ— 10 )
                          10 2

p0 = i =            β‡’ p0 = 4.5 Γ— 10 4 cm βˆ’3
    n0     5 Γ— 1015
b.            N d = 5 Γ— 1015 cm βˆ’3 β‡’ n βˆ’ type
no = N d = 5 Γ— 1015 cm βˆ’3
                                             βŽ›        βˆ’1.4      ⎞
ni = ( 2.10 Γ— 1014 ) ( 300 )
                                  3/ 2
                                         exp ⎜          βˆ’6      ⎟
                                             ⎝ 2(86 Γ— 10 )(300) ⎠
      = ( 2.10 Γ— 1014 ) ( 300 )          (1.65 Γ—10 )
                                  3/ 2                 βˆ’12


      = 1.80 Γ— 106 cm βˆ’3

     ni2 (1.8 Γ— 10 )
                  6         2

p0 =    =            β‡’ p0 = 6.48 Γ— 10 βˆ’4 cm βˆ’3
     n0    5 Γ— 1015




1.5
(a)          n-type
(b)           no = N d = 5 Γ— 1016 cm βˆ’3

                  n 2 (1.5 Γ— 10 )
                               10                  2

              po = i =            = 4.5 Γ— 103 cm βˆ’3
                  no     5 Γ— 1016
(c)          no = N d = 5 Γ— 1016 cm βˆ’3
From Problem 1.1(a)(ii) ni = 3.97 Γ— 1011 cm βˆ’3

po    =
        ( 3.97 Γ— 10 )  11 2

                              = 3.15 Γ— 106 cm βˆ’3
             5 Γ— 1016

1.6
a.            N a = 1016 cm βˆ’3 β‡’ p βˆ’ type
p0 = N a = 1016 cm βˆ’3

     n 2 (1.5 Γ— 10 )
                              10 2

n0 = i =                β‡’ n0 = 2.25 Γ— 10 4 cm βˆ’3
      p0       1016
b.       Germanium
N a = 1016 cm βˆ’3 β‡’ p βˆ’ type
p0 = N a = 1016 cm βˆ’3
                                                βŽ›         βˆ’0.66           ⎞
ni = (1.66 Γ— 1015 ) ( 300 )
                                     3/ 2
                                            exp ⎜                         ⎟
                                                ⎜ 2 ( 86 Γ— 10βˆ’6 ) ( 300 ) ⎟
                                                ⎝                         ⎠
      = (1.66 Γ— 1015 ) ( 300 )              ( 2.79 Γ— 10 )
                                     3/ 2               βˆ’6


      = 2.4 Γ— 1013 cm βˆ’3

    n 2 ( 2.4 Γ— 10 )
                  13             2

n0 = i =             β‡’ n0 = 5.76 Γ— 1010 cm βˆ’3
     p0      1016

1.7
(a)          p-type
(b)           po = N a = 2 Γ— 1017 cm βˆ’3

                   ni2 (1.5 Γ— 10 )
                                10                 2

              no =    =            = 1.125 Γ— 103 cm βˆ’3
                   po     2 Γ— 1017
(c)           po = 2 Γ— 1017 cm βˆ’3
From Problem 1.1(a)(i) ni = 1.61 Γ— 108 cm βˆ’3

no    =
        (1.61Γ—10 )   8 2

                           = 0.130 cm βˆ’3
            2 Γ— 1017



1.8
(a)           no = 5 Γ— 1015 cm βˆ’3

                   ni2 (1.5 Γ— 10 )
                                10                 2

              po =    =            β‡’ po = 4.5 Γ— 104 cm βˆ’3
                   no     5 Γ— 1015
(b)          no        po β‡’ n-type
(c)          no β‰… N d = 5 Γ— 1015 cm βˆ’3

1.9
a.        Add Donors
 N d = 7 Γ— 1015 cm βˆ’3
b.           Want po = 106 cm βˆ’3 = ni2 / N d
So ni2 = (106 )( 7 Γ— 1015 ) = 7 Γ— 10 21
                      βŽ› βˆ’ Eg ⎞
         = B 2T 3 exp ⎜      ⎟
                      ⎝ kT ⎠
                                   βŽ›       βˆ’1.1       ⎞
7 Γ— 1021 = ( 5.23 Γ— 1015 ) T 3 exp ⎜
                          2
                                                      ⎟
                                   ⎜ ( 86 Γ— 10 ) (T ) ⎟
                                              βˆ’6
                                   ⎝                  ⎠
By trial and error, T β‰ˆ 324Β° K

1.10
I = J β‹… A = Οƒ EA
I = ( 2.2 )(15 ) (10βˆ’4 ) β‡’ I = 3.3 mA

1.11
               J 85
J =ΟƒE β‡’Οƒ =       =
              E 12
Οƒ = 7.08 (ohm βˆ’ cm) βˆ’1

1.12
          1              1                   1
gβ‰ˆ              β‡’ Na =       =
       eΞΌ p N a        eΞΌ p g (1.6 Γ— 10 βˆ’19 ) ( 480 )( 0.80 )
N a = 1.63 Γ— 10 16 cm βˆ’3

1.13
  Οƒ = eΞΌ n N d
         Οƒ               ( 0.5)
Nd =           =
        eΞΌ n       (1.6 Γ—10 ) (1350 )
                          βˆ’19


N d = 2.31Γ— 1015 cm βˆ’3

1.14
(a) For n-type, Οƒ β‰… eΞΌ n N d = (1.6 Γ— 10 βˆ’19 ) ( 8500 ) N d
For 1015 ≀ N d ≀ 1019 cm βˆ’3 β‡’ 1.36 ≀ Οƒ ≀ 1.36 Γ— 104 ( Ξ© βˆ’ cm )
                                                                 βˆ’1



(b) J = Οƒ E = Οƒ ( 0.1) β‡’ 0.136 ≀ J ≀ 1.36 Γ— 103 A / cm2

1.15
               dn       Ξ”n
J n = eDn         = eDn
               dx       Ξ”x
                             ⎑10 15 βˆ’10 2 ⎀
    = (1.6 Γ— 10 βˆ’19 ) (180 ) ⎒         βˆ’4 βŽ₯
                             ⎣ 0.5 Γ— 10 ⎦
J n = 576 A/cm 2

1.16
dp
J p = βˆ’eD p
               dx
                       βŽ› βˆ’1 ⎞  βŽ› βˆ’x ⎞
      = βˆ’eD p (10 15 ) ⎜ ⎟ exp ⎜ ⎟
                       ⎜ Lp ⎟  ⎜ Lp ⎟
                       ⎝ ⎠     ⎝ ⎠

Jp =
        (1.6 Γ—10 ) (15) (10 ) exp βŽ› βˆ’ x ⎞
                    βˆ’19          15

                                           ⎜ ⎟
                                           ⎜L ⎟
                 10 Γ— 10 βˆ’4                ⎝ p⎠
              βˆ’ x / Lp
J p = 2.4 e
(a)        x=0            J p = 2.4 A/cm2
(b)         x = 10 ΞΌ m                J p = 2.4 eβˆ’1 = 0.883 A/cm 2
(c)         x = 30 ΞΌ m                J p = 2.4 eβˆ’3 = 0.119 A/cm 2

1.17
a.          N a = 1017 cm βˆ’3 β‡’ po = 1017 cm βˆ’3

     ni2 (1.8 Γ— 10 )
                  6         2

no =    =            β‡’ no = 3.24 Γ— 10βˆ’5 cm βˆ’3
     po      1017
b.          n = no + Ξ΄ n = 3.24 Γ— 10 βˆ’5 + 1015 β‡’ n = 1015 cm βˆ’3
            p = po + Ξ΄ p = 1017 + 1015 β‡’ p = 1.01Γ— 1017 cm βˆ’3

1.18
                       βŽ›N N ⎞
(a)        Vbi = VT ln ⎜ a 2 d ⎟
                       ⎝ ni ⎠
                                ⎑ (10 16 )(10 16 ) ⎀
                 = ( 0.026 ) ln ⎒                  βŽ₯ = 0.697 V
                                ⎒ (1.5 Γ— 10 10 )2 βŽ₯
                                ⎣                  ⎦
                              ⎑ (10 18 )(10 16 ) ⎀
(b)        Vbi = ( 0.026 ) ln ⎒                  βŽ₯ = 0.817 V
                              ⎒ (1.5 Γ— 10 10 )2 βŽ₯
                              ⎣                  ⎦
                              ⎑ (10 18 )(10 18 ) ⎀
(c)        Vbi = ( 0.026 ) ln ⎒                  βŽ₯ = 0.937 V
                              ⎒ (1.5 Γ— 10 10 )2 βŽ₯
                              ⎣                  ⎦

1.19
            βŽ›N N ⎞
Vbi = VT ln ⎜ a 2 d ⎟
            ⎝ ni ⎠
                              ⎑ (1016 )(1016 ) ⎀
a.         Vbi = ( 0.026 ) ln ⎒                βŽ₯ β‡’ Vbi = 1.17 V
                              ⎒ (1.8 Γ— 10 ) βŽ₯
                                         6 2
                              ⎣                ⎦
                              ⎑ (1018 )(1016 ) ⎀
b.         Vbi = ( 0.026 ) ln ⎒                βŽ₯ β‡’ Vbi = 1.29 V
                              ⎒ (1.8 Γ— 10 ) βŽ₯
                                         6 2
                              ⎣                ⎦
                              ⎑ (1018 )(1018 ) ⎀
c.         Vbi = ( 0.026 ) ln ⎒                βŽ₯ β‡’ Vbi = 1.41 V
                              ⎒ (1.8 Γ— 10 ) βŽ₯
                                         6 2
                              ⎣                ⎦

1.20
            βŽ› Na Nd ⎞            ⎑ N a (1016 ) ⎀
Vbi = VT ln ⎜ 2 ⎟ = ( 0.026 ) ln ⎒               βŽ₯
                                 ⎒ (1.5 Γ— 10 ) βŽ₯
                                            10 2
            ⎝ ni ⎠               ⎣               ⎦
For N a = 1015 cm βˆ’3 , Vbi = 0.637 V
For N a = 1018 cm βˆ’3 , Vbi = 0.817 V
Vbi (V)


 0.817




 0.637


       1015                    1016              1017               1018 Na(cmΟͺ3)


1.21
             βŽ› T ⎞
kT = (0.026) ⎜     ⎟
             ⎝ 300 ⎠
T       kT           (T)3/2
200     0.01733      2828.4
250     0.02167      3952.8
300     0.026        5196.2
350     0.03033      6547.9
400     0.03467      8000.0
450     0.0390       9545.9
500     0.04333      11,180.3

                                 βŽ›        βˆ’1.4        ⎞
ni = ( 2.1Γ— 1014 )(T 3 / 2 ) exp ⎜                    ⎟
                                 ⎜ 2 ( 86 Γ— 10 ) (T ) ⎟
                                              βˆ’6
                                 ⎝                    ⎠
            βŽ›N N ⎞
Vbi = VT ln ⎜ a 2 d ⎟
            ⎝ ni ⎠

T             ni                        Vbi
200           1.256                     1.405
250           6.02 Γ— 103                1.389
300           1.80 Γ— 106                1.370
350           1.09 Γ— 108                1.349
400           2.44 Γ— 109                1.327
450           2.80 Γ— 1010               1.302
500           2.00 Γ— 1011               1.277

Vbi (V)


   1.45

   1.35

   1.25



       200       250   300        350    400    450     500 T(ЊC)


1.22
                       βˆ’1/ 2
           βŽ› V ⎞
C j = C jo ⎜ 1 + R ⎟
           ⎝ Vbi ⎠
⎑ (1.5 Γ— 10 16 )( 4 Γ— 10 15 ) ⎀
Vbi = ( 0.026 ) ln ⎒                             βŽ₯ = 0.684 V
                   ⎒
                   ⎣      (1.5 Γ—10 10 ) 2 βŽ₯      ⎦
                                                   βˆ’1/ 2
                          βŽ›     1 ⎞
(a)         C j = ( 0.4 ) ⎜ 1 +   ⎟                        = 0.255 pF
                          ⎝ 0.684 ⎠
                                                   βˆ’1/ 2
                          βŽ›     3 ⎞
(b)         C j = ( 0.4 ) ⎜ 1 +   ⎟                        = 0.172 pF
                          ⎝ 0.684 ⎠
                                                   βˆ’1/ 2
                          βŽ›       5 ⎞
(c)         C j = ( 0.4 ) ⎜ 1 +       ⎟                    = 0.139 pF
                          ⎝     0.684 ⎠

1.23
                                          βˆ’1 / 2
                       βŽ› V ⎞
(a)         C j = C jo ⎜1 + R ⎟
                       ⎝ Vbi ⎠
                                                           βˆ’1 / 2
                           βŽ›     5 ⎞
For VR = 5 V, C j = (0.02) ⎜ 1 +   ⎟                                = 0.00743 pF
                           ⎝ 0. 8 ⎠
                                                              βˆ’1 / 2
                                    βŽ› 1. 5 ⎞
For VR = 1.5 V, C j = (0.02) ⎜1 +             ⎟      = 0.0118 pF
                                    ⎝ 0. 8 ⎠
              0.00743 + 0.0118
C j (avg ) =                          = 0.00962 pF
                        2
vC ( t ) = vC ( final ) + ( vC ( initial ) βˆ’ vC ( final ) ) e βˆ’ t / Ο„
where
Ο„ = RC = RC j (avg ) = (47 Γ— 103 )(0.00962 Γ— 10βˆ’12 )
or
Ο„ = 4.52 Γ—10βˆ’10 s
Then vC ( t ) = 1.5 = 0 + ( 5 βˆ’ 0 ) e βˆ’ ti / Ο„
  5     + r /Ο„         βŽ› 5 ⎞
     = e 1 β‡’ t1 = Ο„ ln ⎜ ⎟
1.5                    ⎝ 1.5 ⎠
               βˆ’10
t1 = 5.44 Γ— 10 s
(b)        For VR = 0 V, Cj = Cjo = 0.02 pF
                                         βˆ’1/ 2
                               βŽ› 3.5 ⎞
For VR = 3.5 V, C j = ( 0.02 ) ⎜ 1 +   ⎟       = 0.00863 pF
                               ⎝ 0.8 ⎠
             0.02 + 0.00863
C j (avg ) =                 = 0.0143 pF
                    2
Ο„ = RC j ( avg ) = 6.72 Γ—10βˆ’10 s
vC ( t ) = vC ( final ) + ( vC ( initial ) βˆ’ vC ( final ) ) e βˆ’ t / Ο„

                                   (
3.5 = 5 + (0 βˆ’ 5)e βˆ’ t2 /Ο„ = 5 1 βˆ’ e βˆ’ t2 /Ο„          )
                            βˆ’10
so that t2 = 8.09 Γ— 10            s

1.24
                   ⎑ (1018 )(1015 ) ⎀
Vbi = ( 0.026 ) ln ⎒                βŽ₯ = 0.757 V
                   ⎒ (1.5 Γ— 1010 )2 βŽ₯
                   ⎣                ⎦
a.         VR = 1 V
                                  βˆ’1/ 2
             βŽ›     1 ⎞
C j = (0.25) ⎜ 1 +   ⎟                     = 0.164 pF
             ⎝ 0.757 ⎠
1                                            1
 f0 =               =
        2Ο€ LC                2Ο€     ( 2.2 Γ—10 )( 0.164 Γ—10 )
                                                     βˆ’3            βˆ’12


 f 0 = 8.38 MHz
b.       VR = 10 V
                           βˆ’1/ 2
             βŽ›     10 ⎞
C j = (0.25) ⎜ 1 +       ⎟       = 0.0663 pF
             ⎝ 0.757 ⎠
                       1
f0 =
      2Ο€ ( 2.2 Γ— 10 )( 0.0663 Γ— 10βˆ’12 )
                    βˆ’3


 f 0 = 13.2 MHz

1.25
                     ⎑     βŽ›V               ⎞ ⎀                 βŽ› VD     ⎞
a.           I = I S ⎒ exp ⎜ D              ⎟ βˆ’ 1βŽ₯ βˆ’ 0.90 = exp ⎜        ⎟ βˆ’1
                     ⎣     ⎝ VT             ⎠ ⎦                 ⎝ VT     ⎠
    βŽ›V ⎞
exp ⎜ D ⎟ = 1 βˆ’ 0.90 = 0.10
    ⎝ VT ⎠
VD = VT ln ( 0.10 ) β‡’ VD = βˆ’0.0599 V
b.
             ⎑     βŽ› VF            ⎞ ⎀        βŽ› 0.2 ⎞
             ⎒ exp ⎜               ⎟ βˆ’ 1βŽ₯ exp ⎜       ⎟ βˆ’1
                   ⎝ VT            ⎠ ⎦
        = S β‹…βŽ£                                ⎝ 0.026 ⎠
 IF      I
                                         =
 IR      IS ⎑      βŽ› VR            ⎞ ⎀        βŽ› βˆ’0.2 ⎞
             ⎒exp ⎜                ⎟ βˆ’ 1βŽ₯ exp ⎜ 0.026 ⎟ βˆ’ 1
                                              ⎝       ⎠
             ⎣     ⎝ VT            ⎠ ⎦
            2190
        =
             βˆ’1
 IF
    = 2190
 IR

1.26
a.
                 βŽ› 0.5 ⎞
I β‰… (10βˆ’11 ) exp ⎜       ⎟ β‡’ I = 2.25 mA
                 ⎝ 0.026 ⎠
                 βŽ› 0.6 ⎞
I = (10βˆ’11 ) exp ⎜       ⎟ β‡’ I = 0.105 A
                 ⎝ 0.026 ⎠
                 βŽ› 0.7 ⎞
I = (10βˆ’11 ) exp ⎜       ⎟ β‡’ I = 4.93 A
                 ⎝ 0.026 ⎠
b.
                 βŽ› 0.5 ⎞
I β‰… (10βˆ’13 ) exp ⎜       ⎟ β‡’ I = 22.5 ΞΌ A
                 ⎝ 0.026 ⎠
                 βŽ› 0.6 ⎞
I = (10βˆ’13 ) exp ⎜       ⎟ β‡’ I = 1.05 mA
                 ⎝ 0.026 ⎠
                 βŽ› 0.7 ⎞
I = (10βˆ’13 ) exp ⎜       ⎟ β‡’ I = 49.3 mA
                 ⎝ 0.026 ⎠

1.27
(a)                      (
             I = I S eVD / VT βˆ’ 1            )
150 Γ— 10    βˆ’6
                 = 10   βˆ’11
                              (e  VD / VT
                                                 )
                                            βˆ’ 1 β‰… 10βˆ’11 eVD / VT
βŽ› 150 Γ— 10βˆ’6       ⎞              βŽ› 150 Γ— 10βˆ’6 ⎞
Then VD = VT ln ⎜      βˆ’11         ⎟ = (0.026) ln ⎜      βˆ’11   ⎟
                ⎝ 10               ⎠              ⎝ 10         ⎠
Or VD = 0.430 V
(b)
           βŽ› 150 Γ— 10βˆ’6 ⎞
VD = VT ln ⎜      βˆ’13   ⎟
           ⎝ 10         ⎠
Or VD = 0.549 V

1.28
                            βŽ› 0.7 ⎞
(a)        10βˆ’3 = I S exp ⎜           ⎟
                            ⎝ 0.026 ⎠
 I S = 2.03 Γ— 10 βˆ’15 A
(b)
VD                     I D ( A ) ( n = 1)             I D ( A )( n = 2 )
0.1                     9.50 Γ—10 βˆ’14                  1.39 Γ—10 βˆ’14
0.2                     4.45 Γ—10 βˆ’12                  9.50 Γ—10 βˆ’14
0.3                     2.08 Γ—10 βˆ’10                  6.50 Γ—10 βˆ’13
0.4                     9.75 Γ—10 βˆ’9                   4.45 Γ—10 βˆ’12
0.5                     4.56 Γ—10 βˆ’7                   3.04 Γ—10 βˆ’11
0.6                     2.14 Γ—10 βˆ’5                   2.08 Γ—10 βˆ’10
0.7                     10 βˆ’3                         1.42 Γ—10 βˆ’9

1.29
(a)
 I S = 10 βˆ’12 A
VD(v)                  ID(A)                          log10ID
0.10                    4.68 Γ—10βˆ’11                    βˆ’10.3
0.20                    2.19 Γ—10βˆ’9                     βˆ’8.66
0.30                   1.03 Γ—10βˆ’7                      βˆ’6.99
0.40                    4.80 Γ—10βˆ’6                     βˆ’5.32
0.50                    2.25 Γ—10βˆ’4                     βˆ’3.65
0.60                   1.05 Γ—10βˆ’2                      βˆ’1.98
0.70                    4.93 Γ—10βˆ’1                     βˆ’0.307
(b)
 I S = 10 βˆ’14 A
VD(v)                  ID(A)                          log10ID
0.10                    4.68 Γ—10βˆ’13                    βˆ’12.3
0.20                    2.19 Γ—10βˆ’11                    βˆ’10.66
0.30                   1.03 Γ—10βˆ’9                      βˆ’8.99
0.40                    4.80 Γ—10βˆ’8                     βˆ’7.32
0.50                    2.25 Γ—10βˆ’6                     βˆ’5.65
0.60                   1.05 Γ—10βˆ’4                      βˆ’3.98
0.70                    4.93 Γ—10βˆ’3                     βˆ’2.31

1.30
a.
  ID2             βŽ› V βˆ’ VD1 ⎞
       = 10 = exp ⎜ D 2     ⎟
  I D1            ⎝ VT      ⎠
Ξ”VD = VT ln (10) β‡’ Ξ”VD = 59.9 mV β‰ˆ 60 mV
b.        Ξ”VD = VT ln (100 ) β‡’ Ξ”VD = 119.7 mV β‰ˆ 120 mV

1.31
                     βŽ›I     ⎞                βŽ› 150 Γ— 10βˆ’6 ⎞
(a) (i)   VD = Vt ln ⎜ D    ⎟ = ( 0.026 ) ln ⎜      βˆ’15   ⎟
                     ⎝ IS   ⎠                ⎝ 10         ⎠
          VD = 0.669 V
                          βŽ› 25 Γ— 10βˆ’6 ⎞
(ii)      VD = ( 0.026)ln ⎜      βˆ’15  ⎟
                          ⎝ 10        ⎠
          VD = 0.622 V
                            βŽ› 0.2 ⎞
(b) (i)   I D = (10βˆ’15 )exp ⎜                    βˆ’12
                                    ⎟ = 2.19 Γ— 10 A
                            ⎝ 0.026 ⎠
(ii)      ID = 0
(iii)     I D = βˆ’10 βˆ’15 A
(iv)      I D = βˆ’10 βˆ’15 A

1.32
           βŽ›I     ⎞              βŽ› 2 Γ— 10βˆ’3 ⎞
VD = Vt ln ⎜ D    ⎟ = (0.026) ln ⎜       βˆ’14 ⎟
                                               = 0.6347 V
           ⎝ IS   ⎠              ⎝ 5 Γ— 10 ⎠
                βŽ› 2 Γ— 10βˆ’3 ⎞
VD = (0.026) ln ⎜       βˆ’12 ⎟
                              = 0.5150 V
                ⎝ 5 Γ— 10 ⎠
0.5150 ≀ VD ≀ 0.6347 V

1.33
                        βŽ›V ⎞
(a)      I D = I S exp ⎜ D ⎟
                        ⎝ Vt ⎠
                    βŽ› 1.10 ⎞
12 Γ—10βˆ’3 = I S exp ⎜                            βˆ’21
                             ⎟ β‡’ I S = 5.07 Γ— 10 A
                    ⎝ 0.026 ⎠
                                     βŽ› 1.0 ⎞
          I D = ( 5.07 Γ— 10βˆ’21 ) exp ⎜       ⎟
(b)                                  ⎝ 0.026 ⎠
          I D = 2.56 Γ— 10βˆ’4 A = 0.256 mA

1.34
                          βŽ› 1.0 ⎞
(a)       I D = 10βˆ’23 exp ⎜                     βˆ’7
                                  ⎟ = 5.05 Γ— 10 A
                          ⎝ 0.026 ⎠
                          βŽ› 1.1 ⎞
(b)       I D = 10βˆ’23 exp ⎜                     βˆ’5
                                  ⎟ = 2.37 Γ— 10 A
                          ⎝ 0.026 ⎠
                          βŽ› 1.2 ⎞
(c)       I D = 10βˆ’23 exp ⎜                    βˆ’3
                                  ⎟ = 1.11Γ— 10 A
                          ⎝ 0.026 ⎠

1.35
IS doubles for every 5C increase in temperature.
 I S = 10 βˆ’12 A at T = 300K
For I S = 0.5 Γ— 10 βˆ’12 A β‡’ T = 295 K
For I S = 50 Γ— 10 βˆ’12 A, (2) n = 50 β‡’ n = 5.64
Where n equals number of 5C increases.
Then Ξ”T = ( 5.64 )( 5 ) = 28.2 K
So 295 ≀ T ≀ 328.2 K
1.36
   I S (T )
            = 2Ξ”T / 5 , Ξ”T = 155Β° C
 I S (βˆ’55)
I S (100)
          = 2155 / 5 = 2.147 Γ— 109
I S (βˆ’55)
VT @100Β°C β‡’ 373Β°K β‡’ VT = 0.03220
VT @βˆ’ 55Β°C β‡’ 216Β°K β‡’ VT = 0.01865
                                    βŽ› 0.6 ⎞
                                exp ⎜        ⎟
I D (100)                           ⎝ 0.0322 ⎠
          = (2.147 Γ— 109 ) Γ—
I D (βˆ’55)                          βŽ› 0.6 ⎞
                               exp ⎜          ⎟
                                   ⎝ 0.01865 ⎠

           =
               ( 2.147 Γ—10 )(1.237 Γ—10 )
                          9              8



                      ( 9.374 Γ—10 ) 13


I D (100)
          = 2.83 Γ— 103
I D (βˆ’55)

1.37
3.5 = ID (105) + VD
                            βŽ› V ⎞                 βŽ› ID ⎞
(a)       I D = 5 Γ—10βˆ’9 exp ⎜ D ⎟ β‡’ VD = 0.026 ln ⎜       βˆ’9 ⎟
                            ⎝ 0.026 ⎠             ⎝ 5 Γ— 10 ⎠
Trial and error.
VD                        ID                  VD
0.50                      3 Γ—10  βˆ’5           0.226
0.40                      3.1Γ—10βˆ’5            0.227
0.250                     3.25 Γ—10  βˆ’5        0.228
0.229                     3.271Γ—10    βˆ’5      0.2284
0.2285                    3.2715 Γ—10    βˆ’5    0.2284

So VD β‰… 0.2285 V
      I D β‰… 3.272 Γ— 10βˆ’5 A

(b)        I D = I S = 5 Γ— 10βˆ’9 A
           VR = ( 5 Γ— 10βˆ’9 )(105 ) = 5 Γ— 10βˆ’4 V
           VD = 3.4995 V

1.38
                                                 βŽ› I ⎞
10 = I D ( 2 Γ— 10 4 ) + VD and VD = ( 0.026 ) ln ⎜ D12 ⎟
                                                     βˆ’
                                                 ⎝ 10 ⎠
Trial and error.
VD(v)                  ID(A)             VD(v)
0.50                    4.75 Γ—10βˆ’4       0.5194
0.517                   4.7415 Γ—10 βˆ’4    0.5194
0.5194                  4.740 Γ—10βˆ’4      0.5194

VD = 0.5194 V
I D = 0.4740 mA

1.39
I s = 5 Γ— 10 βˆ’13 A
                   R1 Ο­ 50 K


    Ο©                                                   Ο©
1.2 V                  R2 Ο­ 30 K                        VD
    Οͺ                                    ID             Οͺ




               RTH Ο­ R1 Ν‰Ν‰ R2 Ο­ 18.75 K


          Ο©                                   Ο©
        VTH                                   VD
          Οͺ                                   Οͺ
                                   ID


      βŽ› R2           ⎞         βŽ› 30 ⎞
VTH = ⎜              ⎟ (1.2) = ⎜ ⎟ (1.2) = 0.45 V
      ⎝ R1 + R2      ⎠         ⎝ 80 ⎠
                                 βŽ›I ⎞
0.45 = I D RTH + VD , VD = VT ln ⎜ D ⎟
                                 ⎝ IS ⎠
By trial and error:
I D = 2.56 ΞΌ A, VD = 0.402 V

1.40
          Ο© VDΟͺ Ο© VDΟͺ


Ο©                                                  Ο©
              I1
VI                                  1K             V0
Οͺ                          IR            I2        Οͺ


I S = 2 Γ— 10 βˆ’13 A
V0 = 0.60 V
              βŽ›V ⎞                      βŽ› 0.60 ⎞
I 2 = I S exp ⎜ 0 ⎟ = ( 2 Γ— 10βˆ’13 ) exp ⎜       ⎟
              ⎝ VT ⎠                    ⎝ 0.026 ⎠
    = 2.105 mA
      0.6
IR =        = 0.60 mA
      1K
 I1 = I 2 + I R = 2.705 mA
           βŽ›I       ⎞              βŽ› 2.705 Γ— 10βˆ’3 ⎞
VD = VT ln ⎜ 1      ⎟ = (0.026) ln ⎜         βˆ’13  ⎟
           ⎝ IS     ⎠              ⎝ 2 Γ— 10       ⎠
   = 0.6065
VI = 2VD + V0 β‡’ VI = 1.81 V

1.41
(a) Assume diode is conducting.
Then, VD = VΞ³ = 0.7 V
                   0. 7
So that I R 2 =         β‡’ 23.3 ΞΌ A
                   30
1.2 βˆ’ 0.7
I R1 =          β‡’ 50 ΞΌ A
        10
Then I D = I R1 βˆ’ I R 2 = 50 βˆ’ 23.3
Or I D = 26.7 ΞΌ A
(b) Let R1 = 50 k Ξ© Diode is cutoff.
       30
VD =         β‹… (1.2) = 0.45 V
     30 + 50
Since VD < VΞ³ , I D = 0

1.42
                 Ο©5 V




         3 k⍀                 2 k⍀

                   ID
VB Ο­VAΟͺVr                    VA



         2 k⍀                 2 k⍀




A&VA:
         5 βˆ’ VA       V
(1)             = ID + A
            2          2
A& VA βˆ’ Vr
            5 βˆ’ (VA βˆ’ Vr )            (VA βˆ’ Vr )
(2)                          + ID =
                 2                   2
    5 βˆ’ (VA βˆ’ Vr ) ⎑ 5 βˆ’ VA VA ⎀ VA βˆ’ Vr
So                 +⎒        βˆ’ βŽ₯=
          3          ⎣ 2        2⎦        2
Multiply by 6:
10 βˆ’ 2 (VA βˆ’ Vr ) + 15 βˆ’ 6VA = 3 (VA βˆ’ Vr )
 25 + 2Vr + 3Vr = 11VA
(a)       Vr = 0.6 V
11VA = 25 + 5 ( 0.6 ) = 28 β‡’ VA = 2.545 V
                 5 βˆ’ VA VA
From (1) I D =         βˆ’   = 2.5 βˆ’ VA β‡’ I D Neg. β‡’ I D = 0
                    2    2
Both (a), (b) I D = 0
                  2
VA = 2.5, VB =      β‹… 5 = 2 V β‡’ VD = 0.50 V
                  5

1.43
Minimum diode current for VPS (min)
I D (min) = 2 mA, VD = 0.7 V
         0.7        5 βˆ’ 0.7 4.3
I2 =         , I1 =        =
         R2           R1     R1
We have I1 = I 2 + I D
4.3 0.7
so (1)      =      +2
         R1   R2
Maximum diode current for VPS (max)
P = I DVD 10 = I D ( 0.7 ) β‡’ I D = 14.3 mA
 I1 = I 2 + I D
or
            9.3 0.7
(2)             =    + 14.3
             R1   R2
                 9.3 4.3
Using Eq. (1),      =    βˆ’ 2 + 14.3 β‡’        R1 = 0.41 kΩ
                 R1   R1
Then R2 = 82.5Ξ© 82.5Ξ©

1.44
(a)      Vo = 0.7 V
    5 βˆ’ 0.7
 I=         β‡’ I = 0.215 mA
      20
             10 βˆ’ 0.7
(b)       I=          β‡’ I = 0.2325 mA
             20 + 20
         Vo = I (20 K) βˆ’ 5 β‡’ Vo = βˆ’0.35 V
              10 βˆ’ 0.7
(c)        I=           β‡’ I = 0.372 mA
               5 + 20
         Vo = 0.7 + I (20) βˆ’ 8 β‡’ Vo = +0.14 V
(d)       I =0
         Vo = I (20) βˆ’ 5 β‡’ Vo = βˆ’5 V

1.45
                                                            βŽ›          ⎞
          5 = I ( 2 Γ— 109 ) + VD
                                                                 I
(a)                                       VD = ( 0.026 ) ln ⎜      βˆ’12 ⎟
                                                            ⎝ 2 Γ—10 ⎠
VD       β†’               ID        β†’             VD                Vo = VD = 0.482 V
0.6                       2.2 Γ—10βˆ’4              0.481
0.482                     2.259 Γ—10βˆ’4            0.482              I = 0.226 mA

                                                            βŽ›          ⎞
         10 = I ( 4 Γ— 10 4 ) + VD
                                                                 I
(b)                                       VD = ( 0.026 ) ln ⎜      βˆ’12 ⎟
                                                            ⎝ 2 Γ—10 ⎠
Vo       β†’               I            β†’          VD                 VD = 0.483 V
0.5                      2.375 Γ—10βˆ’4            0.4834           I = 0.238 mA
0.484                    2.379 Γ—10βˆ’4            0.4834            Vo = βˆ’0.24 V

                                                        βŽ›          ⎞
         10 = I ( 2.5 Γ— 10 4 ) + VD
                                                             I
(c)                                   VD = ( 0.026 ) ln ⎜          ⎟
                                                        ⎝ 2 Γ—10βˆ’12 ⎠
Vo       β†’               I       β†’           VD                VD = 0.496 V
0.480                    3.808 Γ—10 βˆ’4        0.496             I = 0.380 mA
0.496                    3.802 Γ—10 βˆ’4        0.496              Vo = βˆ’0.10 V

(d)       I = βˆ’ I S β‡’ I = 2 Γ— 10βˆ’12 A
                         Vo β‰… βˆ’5 V

1.46
(a)      Diode forward biased VD = 0.7 V
5 = (0.4)(4.7) + 0.7 + V β‡’ V = 2.42 V
(b)       P = I ⋅ VD = (0.4)(0.7) ⇒ P = 0.28 mω

1.47
                       0.65
(a)       I R 2 = I D1 =     = 0.65 mA = I D1
                         1
          ID2   = 2(0.65) = 1.30 mA
                  VI βˆ’ 2Vr βˆ’ V0 5 βˆ’ 3(0.65)
          ID2 =                =            = 1.30 β‡’ R1 = 2.35 K
                        R1           R1
                 0.65
(b)       IR2 =          = 0.65 mA
                    1
                 8 βˆ’ 3(0.65)
          ID2 =                  β‡’ I D 2 = 3.025 mA
                        2
          I D1 = I D 2 βˆ’ I R 2 = 3.025 βˆ’ 0.65
          I D1 = 2.375 mA

1.48
                  VT     (0.026)
a.        Ο„d =         =         = 0.026 kΞ© = 26Ξ©
                  I DQ      1
          id = 0.05 I DQ = 50 ΞΌ A peak-to-peak
          vd = idΟ„ d = (26)(50) ΞΌ A β‡’ vd = 1.30 mV peak-to-peak

                                         (0.026)
b.        For I DQ = 0.1 mA β‡’ Ο„ d =              = 260Ξ©
                                           0. 1
id = 0.05 I DQ = 5 ΞΌ A peak-to-peak
vd = idΟ„ d = (260)(5) ΞΌ V β‡’ vd = 1.30 mV peak-to-peak

1.49
                 RS



                             Ο©
␯S    ϩ                      ␯d
      Οͺ                      Οͺ



a.        diode resistance rd = VT /I
                       βŽ›          ⎞
     βŽ› rd ⎞            ⎜ VT /I    ⎟
vd = ⎜         ⎟ vS = ⎜ V         ⎟ vS
     ⎝ rd + RS ⎠       ⎜ T + RS
                       ⎜          ⎟
                                  ⎟
                       ⎝ I        ⎠
     βŽ› VT        ⎞
vd = ⎜           ⎟ vs = vo
     ⎝ VT + IRS ⎠

b.        RS = 260Ξ©
v0 βŽ› VT       ⎞         0.026         v
I = 1 mA,   =⎜          ⎟=                  β‡’ 0 = 0.0909
          vS ⎝ VT + IRS ⎠ 0.026 + (1)(0.26)     vS
             v          0.026           v
I = 0.1 mA, 0 =                        β‡’ 0 = 0.50
             vs 0.026 + ( 0.1)( 0.26 )  vS
                     v0        0.026          v
I = 0.01 mA.            =                    β‡’ 0 = 0.909
                     vS 0.026 + (0.01)(0.26)  vS

1.50
            βŽ›V      ⎞              βŽ› I ⎞
I β‰… I S exp ⎜ a     ⎟ , Va = VT ln ⎜ ⎟
            ⎝ VT    ⎠              ⎝ IS ⎠
                             βŽ› 100 Γ— 10βˆ’6 ⎞
pn junction, Va = (0.026) ln ⎜      βˆ’14   ⎟
                             ⎝ 10         ⎠
Va = 0.599 V
                                βŽ› 100 Γ— 10βˆ’6 ⎞
Schottky diode, Va = (0.026) ln ⎜      βˆ’9    ⎟
                                ⎝ 10         ⎠
Va = 0.299 V

1.51
         Schottky

                             pn junction
I




                      βŽ›V ⎞
Schottky: I β‰… I S exp ⎜ a ⎟
                      ⎝ VT ⎠
           βŽ› I ⎞             βŽ› 0.5 Γ— 10βˆ’3 ⎞
Va = VT ln ⎜ ⎟ = (0.026) ln ⎜         βˆ’7 ⎟
           ⎝ IS ⎠            ⎝ 5 Γ— 10 ⎠
                  = 0.1796 V
Then
Va of pn junction = 0.1796 + 0.30
                         = 0.4796
           I          0.5 Γ— 10βˆ’3
IS =               =
           βŽ›V ⎞         βŽ› 0.4796 ⎞
      exp ⎜ a ⎟ exp ⎜            ⎟
           ⎝ VT ⎠       ⎝ 0.026 ⎠
I S = 4.87 Γ— 10 βˆ’12 A

1.52

(a)
                         Ο© VD Οͺ


                    I1


0.5 mA
                    I2

I1 + I 2 = 0.5 Γ— 10 βˆ’3
βŽ›V      ⎞          βŽ› VD ⎞
5 Γ— 10βˆ’8 exp ⎜ D           βˆ’12
                     ⎟ + 10 exp ⎜ ⎟ = 0.5 Γ— 10
                                               βˆ’3

             ⎝ VT    ⎠          ⎝ VT ⎠
                  βŽ›V ⎞
5.0001Γ— 10 βˆ’8 exp ⎜ D ⎟ = 0.5 Γ— 10 βˆ’3
                  ⎝ VT ⎠
                βŽ› 0.5 Γ— 10βˆ’3 ⎞
VD = (0.026) ln ⎜           βˆ’8 ⎟
                                 β‡’ VD = 0.2395
                ⎝ 5.0001Γ— 10 ⎠
Schottky diode, I 2 = 0.49999 mA
pn junction, I1 = 0.00001 mA
(b)
          Ο© VD1 Οͺ            Ο© VD2 Οͺ


  I
      Ο©             0.90 V                Οͺ


               βŽ›V ⎞                  βŽ›V ⎞
I = 10 βˆ’12 exp ⎜ D1 ⎟ = 5 Γ— 10βˆ’8 exp ⎜ D 2 ⎟
               ⎝ VT ⎠                ⎝ VT ⎠
VD1 + VD 2 = 0.9
          βŽ›V ⎞                  βŽ› 0.9 βˆ’ VD1 ⎞
10βˆ’12 exp ⎜ D1 ⎟ = 5 Γ— 10βˆ’8 exp ⎜           ⎟
          ⎝ VT ⎠                ⎝ VT        ⎠
                                βŽ› 0.9 ⎞     βŽ› βˆ’VD1 ⎞
                 = 5 Γ—10βˆ’8 exp ⎜      ⎟ exp ⎜      ⎟
                                ⎝ VT ⎠      ⎝ VT ⎠
    βŽ› 2V ⎞ βŽ› 5 Γ— 10βˆ’8 ⎞     βŽ› 0.9 ⎞
exp ⎜ D1 ⎟ = ⎜    βˆ’12 ⎟
                        exp ⎜       ⎟
    ⎝ VT ⎠ ⎝ 10       ⎠     ⎝ 0.026 ⎠
             βŽ› 5 Γ— 10βˆ’8 ⎞
2VD1 = VT ln ⎜      βˆ’12 ⎟
                          + 0.9 = 1.1813
             ⎝ 10       ⎠
VD1 = 0.5907 pn junction
VD 2 = 0.3093 Schottky diode
              βŽ› 0.5907 ⎞
I = 10βˆ’12 exp ⎜        ⎟ β‡’ I = 7.35 mA
              ⎝ 0.026 ⎠

1.53
                         R Ο­ 0.5 K
                                                                 V0

         Ο©           I
                                              Ο©
VPS Ο­ 10 V                                    VZ            RL
         Οͺ                                    Οͺ
                                                       IL
                                     IZ



VZ = VZ 0 = 5.6 V at I Z = 0.1 mA
rZ = 10Ξ©
I Z rZ = ( 0.1)(10 ) = 1 mV
VZ0 = 5.599
a.       RL β†’ ∞ β‡’
       10 βˆ’ 5.599      4.401
IZ =              =             = 8.63 mA
         R + rZ     0.50 + 0.01
VZ = VZ 0 + I Z rZ = 5.599 + ( 0.00863)(10 )
VZ = V0 = 5.685 V
11 βˆ’ 5.599
b.        VPS = 11 V β‡’ I Z =             = 10.59 mA
                                 0.51
VZ = V0 = 5.599 + ( 0.01059 )(10 ) = 5.7049 V
                    9 βˆ’ 5.599
VPS = 9 V β‡’ I Z =             = 6.669 mA
                       0.51
VZ = V0 = 5.599 + ( 0.006669 )(10 ) = 5.66569 V
Ξ”V0 = 5.7049 βˆ’ 5.66569 β‡’ Ξ”V0 = 0.0392 V
c.      I = IZ + IL
     V0        V βˆ’ V0       V βˆ’ VZ 0
IL =    , I = PS      , IZ = 0
     RL            R           rZ
10 βˆ’ V0 V0 βˆ’ 5.599 V0
        =            +
 0.50       0.010      2
 10 5.599         ⎑ 1      1   1⎀
      +      = V0 ⎒      +    + βŽ₯
0.50 0.010        ⎣ 0.50 0.010 2 ⎦
20.0 + 559.9 = V0 (102.5)
V0 = 5.658 V

1.54
               9 βˆ’ 6.8
a.        IZ =         β‡’ I Z = 11 mA
                 0.2
          PZ = (11)( 6.8 ) β‡’ PZ = 74.8 mW
                12 βˆ’ 6.8
          IZ =            β‡’ I Z = 26 mA
                    0.2
b.
                    26 βˆ’ 11
             %=             Γ— 100 β‡’ 136%
                      11
PZ = ( 26 )( 6.8 ) = 176.8 mW
            176.8 βˆ’ 74.8
       %=                Γ— 100 β‡’ 136%
               74.8

1.55
I Z rZ = ( 0.1)( 20 ) = 2 mV
VZ 0 = 6.8 βˆ’ 0.002 = 6.798 V
a.        RL = ∞
     10 βˆ’ 6.798
IZ =             β‡’ I Z = 6.158 mA
     0.5 + 0.02
V0 = VZ = VZ 0 + I Z rZ = 6.798 + ( 0.006158)( 20 )
V0 = 6.921 V
b.        I = IZ + IL
10 βˆ’ V0 V0 βˆ’ 6.798 V0
        =             +
 0.50       0.020       1
 10 6.798          ⎑ 1      1    1⎀
     +        = V0 ⎒      +    +
0.30 0.020         ⎣ 0.50 0.020 1βŽ₯⎦
359.9 = V0 (53)
V0 = 6.791 V
Ξ”V0 = 6.791 βˆ’ 6.921
Ξ”V0 = βˆ’0.13 V

1.56
For VD = 0, I SC = 0.1 A
                      βŽ› 0.2           ⎞
For ID = 0 VD = VT ln ⎜        βˆ’14
                                   + 1⎟
                      ⎝ 5 Γ— 10        ⎠
VD = VDC = 0.754 V

More Related Content

What's hot

Sect1 2
Sect1 2Sect1 2
Sect1 2inKFUPM
Β 
Chapter002math
Chapter002mathChapter002math
Chapter002mathYuna Argadewi
Β 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1cideni
Β 
Clonal Selection: an Immunological Algorithm for Global Optimization over Con...
Clonal Selection: an Immunological Algorithm for Global Optimization over Con...Clonal Selection: an Immunological Algorithm for Global Optimization over Con...
Clonal Selection: an Immunological Algorithm for Global Optimization over Con...Mario Pavone
Β 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manualnodyligomi
Β 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsHareem Aslam
Β 
Docslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesDocslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesbarasActuarial
Β 
Solution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuitySolution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuityHareem Aslam
Β 
Dynamic equity price pdf
Dynamic equity price pdfDynamic equity price pdf
Dynamic equity price pdfDavid Keck
Β 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationHareem Aslam
Β 
1ΒΊbach. santillana la casa del saber ejercicios t2
1ΒΊbach. santillana la casa del saber ejercicios t21ΒΊbach. santillana la casa del saber ejercicios t2
1ΒΊbach. santillana la casa del saber ejercicios t2quififluna
Β 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)Eko Wijayanto
Β 
Sequential Selection of Correlated Ads by POMDPs
Sequential Selection of Correlated Ads by POMDPsSequential Selection of Correlated Ads by POMDPs
Sequential Selection of Correlated Ads by POMDPsShuai Yuan
Β 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Hareem Aslam
Β 
Econometric Analysis 8th Edition Greene Solutions Manual
Econometric Analysis 8th Edition Greene Solutions ManualEconometric Analysis 8th Edition Greene Solutions Manual
Econometric Analysis 8th Edition Greene Solutions ManualLewisSimmonss
Β 

What's hot (20)

Sect1 2
Sect1 2Sect1 2
Sect1 2
Β 
Derivadas
DerivadasDerivadas
Derivadas
Β 
Chapter002math
Chapter002mathChapter002math
Chapter002math
Β 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Β 
Clonal Selection: an Immunological Algorithm for Global Optimization over Con...
Clonal Selection: an Immunological Algorithm for Global Optimization over Con...Clonal Selection: an Immunological Algorithm for Global Optimization over Con...
Clonal Selection: an Immunological Algorithm for Global Optimization over Con...
Β 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Β 
3 chap
3 chap3 chap
3 chap
Β 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 Functions
Β 
Docslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesDocslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tables
Β 
Solution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuitySolution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and Continuity
Β 
Dynamic equity price pdf
Dynamic equity price pdfDynamic equity price pdf
Dynamic equity price pdf
Β 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
Β 
1ΒΊbach. santillana la casa del saber ejercicios t2
1ΒΊbach. santillana la casa del saber ejercicios t21ΒΊbach. santillana la casa del saber ejercicios t2
1ΒΊbach. santillana la casa del saber ejercicios t2
Β 
B010310813
B010310813B010310813
B010310813
Β 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)
Β 
Numerical Methods Solving Linear Equations
Numerical Methods Solving Linear EquationsNumerical Methods Solving Linear Equations
Numerical Methods Solving Linear Equations
Β 
Sequential Selection of Correlated Ads by POMDPs
Sequential Selection of Correlated Ads by POMDPsSequential Selection of Correlated Ads by POMDPs
Sequential Selection of Correlated Ads by POMDPs
Β 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Β 
Numerical methods generating polynomial
Numerical methods generating polynomialNumerical methods generating polynomial
Numerical methods generating polynomial
Β 
Econometric Analysis 8th Edition Greene Solutions Manual
Econometric Analysis 8th Edition Greene Solutions ManualEconometric Analysis 8th Edition Greene Solutions Manual
Econometric Analysis 8th Edition Greene Solutions Manual
Β 

Similar to Ch01s

CapΓ­tulo 34 (5th edition) con soluciones ondas electromagneticas serway
CapΓ­tulo 34 (5th edition) con soluciones ondas electromagneticas serwayCapΓ­tulo 34 (5th edition) con soluciones ondas electromagneticas serway
CapΓ­tulo 34 (5th edition) con soluciones ondas electromagneticas serway.. ..
Β 
1st 2practice
1st 2practice1st 2practice
1st 2practicecanalculus
Β 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Maamoun Hennache
Β 
trapezoidal rule.pptx
trapezoidal rule.pptxtrapezoidal rule.pptx
trapezoidal rule.pptxSatishKotwal
Β 
Random Number Generation
Random Number GenerationRandom Number Generation
Random Number GenerationKishoj Bajracharya
Β 
Y4 maths week beginning 13th july
Y4 maths week beginning 13th julyY4 maths week beginning 13th july
Y4 maths week beginning 13th julychrispenny85
Β 
626 pages
626 pages626 pages
626 pagesJFG407
Β 
ReοΌšγ‚²γƒΌγƒ η†θ«–ε…₯ι–€ 第14ε›ž - 仁 -
ReοΌšγ‚²γƒΌγƒ η†θ«–ε…₯ι–€ 第14ε›ž - 仁 -ReοΌšγ‚²γƒΌγƒ η†θ«–ε…₯ι–€ 第14ε›ž - 仁 -
ReοΌšγ‚²γƒΌγƒ η†θ«–ε…₯ι–€ 第14ε›ž - 仁 -ssusere0a682
Β 
Math06reviewsheet (3)
Math06reviewsheet (3)Math06reviewsheet (3)
Math06reviewsheet (3)Angel Baez
Β 
Numerical Computing
Numerical ComputingNumerical Computing
Numerical ComputingAusaf Sajjad
Β 
1 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam21 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam2Malika khalil
Β 
1. asas bodmas formula
1. asas bodmas formula1. asas bodmas formula
1. asas bodmas formulapde10d
Β 
Tugas blog-matematika
Tugas blog-matematikaTugas blog-matematika
Tugas blog-matematikaAri Bahri Lubis
Β 
JUEC 初中 (2013 Past Year)
JUEC 初中 (2013 Past Year)JUEC 初中 (2013 Past Year)
JUEC 初中 (2013 Past Year)tungwc
Β 
Calculus B Notes (Notre Dame)
Calculus B Notes (Notre Dame)Calculus B Notes (Notre Dame)
Calculus B Notes (Notre Dame)Laurel Ayuyao
Β 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areasetcenterrbru
Β 

Similar to Ch01s (20)

Ch01p
Ch01pCh01p
Ch01p
Β 
CapΓ­tulo 34 (5th edition) con soluciones ondas electromagneticas serway
CapΓ­tulo 34 (5th edition) con soluciones ondas electromagneticas serwayCapΓ­tulo 34 (5th edition) con soluciones ondas electromagneticas serway
CapΓ­tulo 34 (5th edition) con soluciones ondas electromagneticas serway
Β 
41 introductory ci
41 introductory ci41 introductory ci
41 introductory ci
Β 
1st 2practice
1st 2practice1st 2practice
1st 2practice
Β 
Multiplying and-dividing-by-10-100-and-1000
Multiplying and-dividing-by-10-100-and-1000Multiplying and-dividing-by-10-100-and-1000
Multiplying and-dividing-by-10-100-and-1000
Β 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Β 
trapezoidal rule.pptx
trapezoidal rule.pptxtrapezoidal rule.pptx
trapezoidal rule.pptx
Β 
Random Number Generation
Random Number GenerationRandom Number Generation
Random Number Generation
Β 
Y4 maths week beginning 13th july
Y4 maths week beginning 13th julyY4 maths week beginning 13th july
Y4 maths week beginning 13th july
Β 
626 pages
626 pages626 pages
626 pages
Β 
ReοΌšγ‚²γƒΌγƒ η†θ«–ε…₯ι–€ 第14ε›ž - 仁 -
ReοΌšγ‚²γƒΌγƒ η†θ«–ε…₯ι–€ 第14ε›ž - 仁 -ReοΌšγ‚²γƒΌγƒ η†θ«–ε…₯ι–€ 第14ε›ž - 仁 -
ReοΌšγ‚²γƒΌγƒ η†θ«–ε…₯ι–€ 第14ε›ž - 仁 -
Β 
Math06reviewsheet (3)
Math06reviewsheet (3)Math06reviewsheet (3)
Math06reviewsheet (3)
Β 
Numerical Computing
Numerical ComputingNumerical Computing
Numerical Computing
Β 
1 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam21 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam2
Β 
1. asas bodmas formula
1. asas bodmas formula1. asas bodmas formula
1. asas bodmas formula
Β 
Tugas blog-matematika
Tugas blog-matematikaTugas blog-matematika
Tugas blog-matematika
Β 
JUEC 初中 (2013 Past Year)
JUEC 初中 (2013 Past Year)JUEC 初中 (2013 Past Year)
JUEC 初中 (2013 Past Year)
Β 
Calculus B Notes (Notre Dame)
Calculus B Notes (Notre Dame)Calculus B Notes (Notre Dame)
Calculus B Notes (Notre Dame)
Β 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
Β 
9 chap
9 chap9 chap
9 chap
Β 

More from Bilal Sarwar (20)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
Β 
Ramey soft
Ramey soft Ramey soft
Ramey soft
Β 
Ramey soft
Ramey softRamey soft
Ramey soft
Β 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
Β 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
Β 
Ch16p
Ch16pCh16p
Ch16p
Β 
Ch15s
Ch15sCh15s
Ch15s
Β 
Ch15p
Ch15pCh15p
Ch15p
Β 
Ch14s
Ch14sCh14s
Ch14s
Β 
Ch14p
Ch14pCh14p
Ch14p
Β 
Ch13s
Ch13sCh13s
Ch13s
Β 
Ch13p
Ch13pCh13p
Ch13p
Β 
Ch12s
Ch12sCh12s
Ch12s
Β 
Ch12p
Ch12pCh12p
Ch12p
Β 
Ch11s
Ch11sCh11s
Ch11s
Β 
Ch11p
Ch11pCh11p
Ch11p
Β 
Ch10s
Ch10sCh10s
Ch10s
Β 
Ch10p
Ch10pCh10p
Ch10p
Β 
Ch09s
Ch09sCh09s
Ch09s
Β 
Ch09p
Ch09pCh09p
Ch09p
Β 

Recently uploaded

History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
Β 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
Β 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
Β 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
Β 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
Β 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
Β 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
Β 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
Β 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
Β 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
Β 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
Β 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
Β 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
Β 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
Β 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
Β 

Recently uploaded (20)

History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
Β 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
Β 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
Β 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
Β 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
Β 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
Β 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
Β 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
Β 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
Β 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
Β 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Β 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
Β 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
Β 
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Β 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
Β 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Β 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
Β 

Ch01s

  • 1. Chapter 1 Problem Solutions 1.1 βˆ’ E / 2 kT ni = BT 3 / 2 e g (a) Silicon ⎑ βˆ’1.1 ⎀ ni = ( 5.23 Γ— 1015 ) ( 250 ) 3/ 2 (i) exp ⎒ βŽ₯ ⎒ 2 ( 86 Γ— 10βˆ’6 ) ( 250 ) βŽ₯ ⎣ ⎦ = 2.067 Γ— 1019 exp [ βˆ’25.58] ni = 1.61Γ— 108 cm βˆ’3 ⎑ βˆ’1.1 ⎀ ni = ( 5.23 Γ— 1015 ) ( 350 ) 3/ 2 (ii) exp ⎒ βŽ₯ ⎒ 2 ( 86 Γ— 10βˆ’6 ) ( 350 ) βŽ₯ ⎣ ⎦ = 3.425 Γ— 1019 exp [ βˆ’18.27 ] ni = 3.97 Γ—1011 cm βˆ’3 (b) GaAs ⎑ βˆ’1.4 ⎀ ni = ( 2.10 Γ— 1014 ) ( 250 ) 3/ 2 (i) exp ⎒ βŽ₯ ⎒ 2 ( 86 Γ— 10 ) ( 250 ) βŽ₯ ⎣ βˆ’6 ⎦ = ( 8.301Γ— 1017 ) exp [ βˆ’32.56] ni = 6.02 Γ— 103 cm βˆ’3 ⎑ βˆ’1.4 ⎀ ni = ( 2.10 Γ— 1014 ) ( 350 ) 3/ 2 (ii) exp ⎒ βŽ₯ ⎒ 2 ( 86 Γ— 10βˆ’6 ) ( 350 ) βŽ₯ ⎣ ⎦ = (1.375 Γ— 1018 ) exp [ βˆ’23.26] ni = 1.09 Γ— 108 cm βˆ’3 1.2 βŽ› βˆ’ Eg ⎞ a. ni = BT 3 / 2 exp ⎜ ⎟ ⎝ 2kT ⎠ βŽ› βˆ’1.1 ⎞ 1012 = 5.23 Γ— 1015 T 3 / 2 exp ⎜ ⎟ ⎝ 2(86 Γ— 10βˆ’6 )(T ) ⎠ βŽ› 6.40 Γ— 103 ⎞ 1.91Γ— 10βˆ’4 = T 3 / 2 exp ⎜ βˆ’ ⎟ ⎝ T ⎠ By trial and error, T β‰ˆ 368 K b. ni = 109 cm βˆ’3 βŽ› βˆ’1.1 ⎞ 109 = 5.23 Γ— 1015 T 3 / 2 exp ⎜ ⎟ ⎜ 2 ( 86 Γ— 10βˆ’6 ) (T ) ⎟ ⎝ ⎠ βŽ› 6.40 Γ— 103 ⎞ 1.91Γ— 10βˆ’7 = T 3 / 2 exp ⎜ βˆ’ ⎟ ⎝ T ⎠ By trial and error, T β‰ˆ 268Β° K 1.3 Silicon
  • 2. ⎑ βˆ’1.1 ⎀ ni = ( 5.23 Γ— 1015 ) (100 ) 3/ 2 (a) exp ⎒ βŽ₯ ⎒ 2 ( 86 Γ— 10 ) (100 ) βŽ₯ ⎣ βˆ’6 ⎦ = ( 5.23 Γ— 1018 ) exp [ βˆ’63.95] ni = 8.79 Γ—10βˆ’10 cm βˆ’3 ⎑ βˆ’1.1 ⎀ ni = ( 5.23 Γ— 1015 ) ( 300 ) 3/ 2 (b) exp ⎒ βŽ₯ ⎒ 2 ( 86 Γ— 10βˆ’6 ) ( 300 ) βŽ₯ ⎣ ⎦ = ( 2.718 Γ— 1019 ) exp [ βˆ’21.32] ni = 1.5 Γ— 1010 cm βˆ’3 ⎑ βˆ’1.1 ⎀ ni = ( 5.23 Γ— 1015 ) ( 500 ) 3/ 2 (c) exp ⎒ βŽ₯ ⎒ 2 ( 86 Γ— 10 ) ( 500 ) βŽ₯ ⎣ βˆ’6 ⎦ = ( 5.847 Γ— 1019 ) exp [ βˆ’12.79] ni = 1.63 Γ— 1014 cm βˆ’3 Germanium. ⎑ βˆ’0.66 ⎀ ni = (1.66 Γ— 1015 ) (100 ) βŽ₯ = (1.66 Γ— 1018 ) exp [ βˆ’38.37 ] 3/ 2 (a) exp ⎒ ⎒ 2 ( 86 Γ— 10βˆ’6 ) (100 ) βŽ₯ ⎣ ⎦ ni = 35.9 cm βˆ’3 ⎑ βˆ’0.66 ⎀ ni = (1.66 Γ— 1015 ) ( 300 ) βŽ₯ = ( 8.626 Γ— 1018 ) exp [ βˆ’12.79] 3/ 2 (b) exp ⎒ ⎒ 2 ( 86 Γ— 10βˆ’6 ) ( 300 ) βŽ₯ ⎣ ⎦ ni = 2.40 Γ— 1013 cm βˆ’3 ⎑ βˆ’0.66 ⎀ ni = (1.66 Γ— 1015 ) ( 500 ) βŽ₯ = (1.856 Γ— 1019 ) exp [ βˆ’7.674] 3/ 2 (c) exp ⎒ ⎒ 2 ( 86 Γ— 10βˆ’6 ) ( 500 ) βŽ₯ ⎣ ⎦ ni = 8.62 Γ—1015 cm βˆ’3 1.4 a. N d = 5 Γ— 1015 cm βˆ’3 β‡’ n βˆ’ type n0 = N d = 5 Γ— 1015 cm βˆ’3 n 2 (1.5 Γ— 10 ) 10 2 p0 = i = β‡’ p0 = 4.5 Γ— 10 4 cm βˆ’3 n0 5 Γ— 1015 b. N d = 5 Γ— 1015 cm βˆ’3 β‡’ n βˆ’ type no = N d = 5 Γ— 1015 cm βˆ’3 βŽ› βˆ’1.4 ⎞ ni = ( 2.10 Γ— 1014 ) ( 300 ) 3/ 2 exp ⎜ βˆ’6 ⎟ ⎝ 2(86 Γ— 10 )(300) ⎠ = ( 2.10 Γ— 1014 ) ( 300 ) (1.65 Γ—10 ) 3/ 2 βˆ’12 = 1.80 Γ— 106 cm βˆ’3 ni2 (1.8 Γ— 10 ) 6 2 p0 = = β‡’ p0 = 6.48 Γ— 10 βˆ’4 cm βˆ’3 n0 5 Γ— 1015 1.5
  • 3. (a) n-type (b) no = N d = 5 Γ— 1016 cm βˆ’3 n 2 (1.5 Γ— 10 ) 10 2 po = i = = 4.5 Γ— 103 cm βˆ’3 no 5 Γ— 1016 (c) no = N d = 5 Γ— 1016 cm βˆ’3 From Problem 1.1(a)(ii) ni = 3.97 Γ— 1011 cm βˆ’3 po = ( 3.97 Γ— 10 ) 11 2 = 3.15 Γ— 106 cm βˆ’3 5 Γ— 1016 1.6 a. N a = 1016 cm βˆ’3 β‡’ p βˆ’ type p0 = N a = 1016 cm βˆ’3 n 2 (1.5 Γ— 10 ) 10 2 n0 = i = β‡’ n0 = 2.25 Γ— 10 4 cm βˆ’3 p0 1016 b. Germanium N a = 1016 cm βˆ’3 β‡’ p βˆ’ type p0 = N a = 1016 cm βˆ’3 βŽ› βˆ’0.66 ⎞ ni = (1.66 Γ— 1015 ) ( 300 ) 3/ 2 exp ⎜ ⎟ ⎜ 2 ( 86 Γ— 10βˆ’6 ) ( 300 ) ⎟ ⎝ ⎠ = (1.66 Γ— 1015 ) ( 300 ) ( 2.79 Γ— 10 ) 3/ 2 βˆ’6 = 2.4 Γ— 1013 cm βˆ’3 n 2 ( 2.4 Γ— 10 ) 13 2 n0 = i = β‡’ n0 = 5.76 Γ— 1010 cm βˆ’3 p0 1016 1.7 (a) p-type (b) po = N a = 2 Γ— 1017 cm βˆ’3 ni2 (1.5 Γ— 10 ) 10 2 no = = = 1.125 Γ— 103 cm βˆ’3 po 2 Γ— 1017 (c) po = 2 Γ— 1017 cm βˆ’3 From Problem 1.1(a)(i) ni = 1.61 Γ— 108 cm βˆ’3 no = (1.61Γ—10 ) 8 2 = 0.130 cm βˆ’3 2 Γ— 1017 1.8 (a) no = 5 Γ— 1015 cm βˆ’3 ni2 (1.5 Γ— 10 ) 10 2 po = = β‡’ po = 4.5 Γ— 104 cm βˆ’3 no 5 Γ— 1015 (b) no po β‡’ n-type (c) no β‰… N d = 5 Γ— 1015 cm βˆ’3 1.9 a. Add Donors N d = 7 Γ— 1015 cm βˆ’3
  • 4. b. Want po = 106 cm βˆ’3 = ni2 / N d So ni2 = (106 )( 7 Γ— 1015 ) = 7 Γ— 10 21 βŽ› βˆ’ Eg ⎞ = B 2T 3 exp ⎜ ⎟ ⎝ kT ⎠ βŽ› βˆ’1.1 ⎞ 7 Γ— 1021 = ( 5.23 Γ— 1015 ) T 3 exp ⎜ 2 ⎟ ⎜ ( 86 Γ— 10 ) (T ) ⎟ βˆ’6 ⎝ ⎠ By trial and error, T β‰ˆ 324Β° K 1.10 I = J β‹… A = Οƒ EA I = ( 2.2 )(15 ) (10βˆ’4 ) β‡’ I = 3.3 mA 1.11 J 85 J =ΟƒE β‡’Οƒ = = E 12 Οƒ = 7.08 (ohm βˆ’ cm) βˆ’1 1.12 1 1 1 gβ‰ˆ β‡’ Na = = eΞΌ p N a eΞΌ p g (1.6 Γ— 10 βˆ’19 ) ( 480 )( 0.80 ) N a = 1.63 Γ— 10 16 cm βˆ’3 1.13 Οƒ = eΞΌ n N d Οƒ ( 0.5) Nd = = eΞΌ n (1.6 Γ—10 ) (1350 ) βˆ’19 N d = 2.31Γ— 1015 cm βˆ’3 1.14 (a) For n-type, Οƒ β‰… eΞΌ n N d = (1.6 Γ— 10 βˆ’19 ) ( 8500 ) N d For 1015 ≀ N d ≀ 1019 cm βˆ’3 β‡’ 1.36 ≀ Οƒ ≀ 1.36 Γ— 104 ( Ξ© βˆ’ cm ) βˆ’1 (b) J = Οƒ E = Οƒ ( 0.1) β‡’ 0.136 ≀ J ≀ 1.36 Γ— 103 A / cm2 1.15 dn Ξ”n J n = eDn = eDn dx Ξ”x ⎑10 15 βˆ’10 2 ⎀ = (1.6 Γ— 10 βˆ’19 ) (180 ) ⎒ βˆ’4 βŽ₯ ⎣ 0.5 Γ— 10 ⎦ J n = 576 A/cm 2 1.16
  • 5. dp J p = βˆ’eD p dx βŽ› βˆ’1 ⎞ βŽ› βˆ’x ⎞ = βˆ’eD p (10 15 ) ⎜ ⎟ exp ⎜ ⎟ ⎜ Lp ⎟ ⎜ Lp ⎟ ⎝ ⎠ ⎝ ⎠ Jp = (1.6 Γ—10 ) (15) (10 ) exp βŽ› βˆ’ x ⎞ βˆ’19 15 ⎜ ⎟ ⎜L ⎟ 10 Γ— 10 βˆ’4 ⎝ p⎠ βˆ’ x / Lp J p = 2.4 e (a) x=0 J p = 2.4 A/cm2 (b) x = 10 ΞΌ m J p = 2.4 eβˆ’1 = 0.883 A/cm 2 (c) x = 30 ΞΌ m J p = 2.4 eβˆ’3 = 0.119 A/cm 2 1.17 a. N a = 1017 cm βˆ’3 β‡’ po = 1017 cm βˆ’3 ni2 (1.8 Γ— 10 ) 6 2 no = = β‡’ no = 3.24 Γ— 10βˆ’5 cm βˆ’3 po 1017 b. n = no + Ξ΄ n = 3.24 Γ— 10 βˆ’5 + 1015 β‡’ n = 1015 cm βˆ’3 p = po + Ξ΄ p = 1017 + 1015 β‡’ p = 1.01Γ— 1017 cm βˆ’3 1.18 βŽ›N N ⎞ (a) Vbi = VT ln ⎜ a 2 d ⎟ ⎝ ni ⎠ ⎑ (10 16 )(10 16 ) ⎀ = ( 0.026 ) ln ⎒ βŽ₯ = 0.697 V ⎒ (1.5 Γ— 10 10 )2 βŽ₯ ⎣ ⎦ ⎑ (10 18 )(10 16 ) ⎀ (b) Vbi = ( 0.026 ) ln ⎒ βŽ₯ = 0.817 V ⎒ (1.5 Γ— 10 10 )2 βŽ₯ ⎣ ⎦ ⎑ (10 18 )(10 18 ) ⎀ (c) Vbi = ( 0.026 ) ln ⎒ βŽ₯ = 0.937 V ⎒ (1.5 Γ— 10 10 )2 βŽ₯ ⎣ ⎦ 1.19 βŽ›N N ⎞ Vbi = VT ln ⎜ a 2 d ⎟ ⎝ ni ⎠ ⎑ (1016 )(1016 ) ⎀ a. Vbi = ( 0.026 ) ln ⎒ βŽ₯ β‡’ Vbi = 1.17 V ⎒ (1.8 Γ— 10 ) βŽ₯ 6 2 ⎣ ⎦ ⎑ (1018 )(1016 ) ⎀ b. Vbi = ( 0.026 ) ln ⎒ βŽ₯ β‡’ Vbi = 1.29 V ⎒ (1.8 Γ— 10 ) βŽ₯ 6 2 ⎣ ⎦ ⎑ (1018 )(1018 ) ⎀ c. Vbi = ( 0.026 ) ln ⎒ βŽ₯ β‡’ Vbi = 1.41 V ⎒ (1.8 Γ— 10 ) βŽ₯ 6 2 ⎣ ⎦ 1.20 βŽ› Na Nd ⎞ ⎑ N a (1016 ) ⎀ Vbi = VT ln ⎜ 2 ⎟ = ( 0.026 ) ln ⎒ βŽ₯ ⎒ (1.5 Γ— 10 ) βŽ₯ 10 2 ⎝ ni ⎠ ⎣ ⎦
  • 6. For N a = 1015 cm βˆ’3 , Vbi = 0.637 V For N a = 1018 cm βˆ’3 , Vbi = 0.817 V Vbi (V) 0.817 0.637 1015 1016 1017 1018 Na(cmΟͺ3) 1.21 βŽ› T ⎞ kT = (0.026) ⎜ ⎟ ⎝ 300 ⎠ T kT (T)3/2 200 0.01733 2828.4 250 0.02167 3952.8 300 0.026 5196.2 350 0.03033 6547.9 400 0.03467 8000.0 450 0.0390 9545.9 500 0.04333 11,180.3 βŽ› βˆ’1.4 ⎞ ni = ( 2.1Γ— 1014 )(T 3 / 2 ) exp ⎜ ⎟ ⎜ 2 ( 86 Γ— 10 ) (T ) ⎟ βˆ’6 ⎝ ⎠ βŽ›N N ⎞ Vbi = VT ln ⎜ a 2 d ⎟ ⎝ ni ⎠ T ni Vbi 200 1.256 1.405 250 6.02 Γ— 103 1.389 300 1.80 Γ— 106 1.370 350 1.09 Γ— 108 1.349 400 2.44 Γ— 109 1.327 450 2.80 Γ— 1010 1.302 500 2.00 Γ— 1011 1.277 Vbi (V) 1.45 1.35 1.25 200 250 300 350 400 450 500 T(ЊC) 1.22 βˆ’1/ 2 βŽ› V ⎞ C j = C jo ⎜ 1 + R ⎟ ⎝ Vbi ⎠
  • 7. ⎑ (1.5 Γ— 10 16 )( 4 Γ— 10 15 ) ⎀ Vbi = ( 0.026 ) ln ⎒ βŽ₯ = 0.684 V ⎒ ⎣ (1.5 Γ—10 10 ) 2 βŽ₯ ⎦ βˆ’1/ 2 βŽ› 1 ⎞ (a) C j = ( 0.4 ) ⎜ 1 + ⎟ = 0.255 pF ⎝ 0.684 ⎠ βˆ’1/ 2 βŽ› 3 ⎞ (b) C j = ( 0.4 ) ⎜ 1 + ⎟ = 0.172 pF ⎝ 0.684 ⎠ βˆ’1/ 2 βŽ› 5 ⎞ (c) C j = ( 0.4 ) ⎜ 1 + ⎟ = 0.139 pF ⎝ 0.684 ⎠ 1.23 βˆ’1 / 2 βŽ› V ⎞ (a) C j = C jo ⎜1 + R ⎟ ⎝ Vbi ⎠ βˆ’1 / 2 βŽ› 5 ⎞ For VR = 5 V, C j = (0.02) ⎜ 1 + ⎟ = 0.00743 pF ⎝ 0. 8 ⎠ βˆ’1 / 2 βŽ› 1. 5 ⎞ For VR = 1.5 V, C j = (0.02) ⎜1 + ⎟ = 0.0118 pF ⎝ 0. 8 ⎠ 0.00743 + 0.0118 C j (avg ) = = 0.00962 pF 2 vC ( t ) = vC ( final ) + ( vC ( initial ) βˆ’ vC ( final ) ) e βˆ’ t / Ο„ where Ο„ = RC = RC j (avg ) = (47 Γ— 103 )(0.00962 Γ— 10βˆ’12 ) or Ο„ = 4.52 Γ—10βˆ’10 s Then vC ( t ) = 1.5 = 0 + ( 5 βˆ’ 0 ) e βˆ’ ti / Ο„ 5 + r /Ο„ βŽ› 5 ⎞ = e 1 β‡’ t1 = Ο„ ln ⎜ ⎟ 1.5 ⎝ 1.5 ⎠ βˆ’10 t1 = 5.44 Γ— 10 s (b) For VR = 0 V, Cj = Cjo = 0.02 pF βˆ’1/ 2 βŽ› 3.5 ⎞ For VR = 3.5 V, C j = ( 0.02 ) ⎜ 1 + ⎟ = 0.00863 pF ⎝ 0.8 ⎠ 0.02 + 0.00863 C j (avg ) = = 0.0143 pF 2 Ο„ = RC j ( avg ) = 6.72 Γ—10βˆ’10 s vC ( t ) = vC ( final ) + ( vC ( initial ) βˆ’ vC ( final ) ) e βˆ’ t / Ο„ ( 3.5 = 5 + (0 βˆ’ 5)e βˆ’ t2 /Ο„ = 5 1 βˆ’ e βˆ’ t2 /Ο„ ) βˆ’10 so that t2 = 8.09 Γ— 10 s 1.24 ⎑ (1018 )(1015 ) ⎀ Vbi = ( 0.026 ) ln ⎒ βŽ₯ = 0.757 V ⎒ (1.5 Γ— 1010 )2 βŽ₯ ⎣ ⎦ a. VR = 1 V βˆ’1/ 2 βŽ› 1 ⎞ C j = (0.25) ⎜ 1 + ⎟ = 0.164 pF ⎝ 0.757 ⎠
  • 8. 1 1 f0 = = 2Ο€ LC 2Ο€ ( 2.2 Γ—10 )( 0.164 Γ—10 ) βˆ’3 βˆ’12 f 0 = 8.38 MHz b. VR = 10 V βˆ’1/ 2 βŽ› 10 ⎞ C j = (0.25) ⎜ 1 + ⎟ = 0.0663 pF ⎝ 0.757 ⎠ 1 f0 = 2Ο€ ( 2.2 Γ— 10 )( 0.0663 Γ— 10βˆ’12 ) βˆ’3 f 0 = 13.2 MHz 1.25 ⎑ βŽ›V ⎞ ⎀ βŽ› VD ⎞ a. I = I S ⎒ exp ⎜ D ⎟ βˆ’ 1βŽ₯ βˆ’ 0.90 = exp ⎜ ⎟ βˆ’1 ⎣ ⎝ VT ⎠ ⎦ ⎝ VT ⎠ βŽ›V ⎞ exp ⎜ D ⎟ = 1 βˆ’ 0.90 = 0.10 ⎝ VT ⎠ VD = VT ln ( 0.10 ) β‡’ VD = βˆ’0.0599 V b. ⎑ βŽ› VF ⎞ ⎀ βŽ› 0.2 ⎞ ⎒ exp ⎜ ⎟ βˆ’ 1βŽ₯ exp ⎜ ⎟ βˆ’1 ⎝ VT ⎠ ⎦ = S β‹…βŽ£ ⎝ 0.026 ⎠ IF I = IR IS ⎑ βŽ› VR ⎞ ⎀ βŽ› βˆ’0.2 ⎞ ⎒exp ⎜ ⎟ βˆ’ 1βŽ₯ exp ⎜ 0.026 ⎟ βˆ’ 1 ⎝ ⎠ ⎣ ⎝ VT ⎠ ⎦ 2190 = βˆ’1 IF = 2190 IR 1.26 a. βŽ› 0.5 ⎞ I β‰… (10βˆ’11 ) exp ⎜ ⎟ β‡’ I = 2.25 mA ⎝ 0.026 ⎠ βŽ› 0.6 ⎞ I = (10βˆ’11 ) exp ⎜ ⎟ β‡’ I = 0.105 A ⎝ 0.026 ⎠ βŽ› 0.7 ⎞ I = (10βˆ’11 ) exp ⎜ ⎟ β‡’ I = 4.93 A ⎝ 0.026 ⎠ b. βŽ› 0.5 ⎞ I β‰… (10βˆ’13 ) exp ⎜ ⎟ β‡’ I = 22.5 ΞΌ A ⎝ 0.026 ⎠ βŽ› 0.6 ⎞ I = (10βˆ’13 ) exp ⎜ ⎟ β‡’ I = 1.05 mA ⎝ 0.026 ⎠ βŽ› 0.7 ⎞ I = (10βˆ’13 ) exp ⎜ ⎟ β‡’ I = 49.3 mA ⎝ 0.026 ⎠ 1.27 (a) ( I = I S eVD / VT βˆ’ 1 ) 150 Γ— 10 βˆ’6 = 10 βˆ’11 (e VD / VT ) βˆ’ 1 β‰… 10βˆ’11 eVD / VT
  • 9. βŽ› 150 Γ— 10βˆ’6 ⎞ βŽ› 150 Γ— 10βˆ’6 ⎞ Then VD = VT ln ⎜ βˆ’11 ⎟ = (0.026) ln ⎜ βˆ’11 ⎟ ⎝ 10 ⎠ ⎝ 10 ⎠ Or VD = 0.430 V (b) βŽ› 150 Γ— 10βˆ’6 ⎞ VD = VT ln ⎜ βˆ’13 ⎟ ⎝ 10 ⎠ Or VD = 0.549 V 1.28 βŽ› 0.7 ⎞ (a) 10βˆ’3 = I S exp ⎜ ⎟ ⎝ 0.026 ⎠ I S = 2.03 Γ— 10 βˆ’15 A (b) VD I D ( A ) ( n = 1) I D ( A )( n = 2 ) 0.1 9.50 Γ—10 βˆ’14 1.39 Γ—10 βˆ’14 0.2 4.45 Γ—10 βˆ’12 9.50 Γ—10 βˆ’14 0.3 2.08 Γ—10 βˆ’10 6.50 Γ—10 βˆ’13 0.4 9.75 Γ—10 βˆ’9 4.45 Γ—10 βˆ’12 0.5 4.56 Γ—10 βˆ’7 3.04 Γ—10 βˆ’11 0.6 2.14 Γ—10 βˆ’5 2.08 Γ—10 βˆ’10 0.7 10 βˆ’3 1.42 Γ—10 βˆ’9 1.29 (a) I S = 10 βˆ’12 A VD(v) ID(A) log10ID 0.10 4.68 Γ—10βˆ’11 βˆ’10.3 0.20 2.19 Γ—10βˆ’9 βˆ’8.66 0.30 1.03 Γ—10βˆ’7 βˆ’6.99 0.40 4.80 Γ—10βˆ’6 βˆ’5.32 0.50 2.25 Γ—10βˆ’4 βˆ’3.65 0.60 1.05 Γ—10βˆ’2 βˆ’1.98 0.70 4.93 Γ—10βˆ’1 βˆ’0.307 (b) I S = 10 βˆ’14 A VD(v) ID(A) log10ID 0.10 4.68 Γ—10βˆ’13 βˆ’12.3 0.20 2.19 Γ—10βˆ’11 βˆ’10.66 0.30 1.03 Γ—10βˆ’9 βˆ’8.99 0.40 4.80 Γ—10βˆ’8 βˆ’7.32 0.50 2.25 Γ—10βˆ’6 βˆ’5.65 0.60 1.05 Γ—10βˆ’4 βˆ’3.98 0.70 4.93 Γ—10βˆ’3 βˆ’2.31 1.30 a. ID2 βŽ› V βˆ’ VD1 ⎞ = 10 = exp ⎜ D 2 ⎟ I D1 ⎝ VT ⎠ Ξ”VD = VT ln (10) β‡’ Ξ”VD = 59.9 mV β‰ˆ 60 mV
  • 10. b. Ξ”VD = VT ln (100 ) β‡’ Ξ”VD = 119.7 mV β‰ˆ 120 mV 1.31 βŽ›I ⎞ βŽ› 150 Γ— 10βˆ’6 ⎞ (a) (i) VD = Vt ln ⎜ D ⎟ = ( 0.026 ) ln ⎜ βˆ’15 ⎟ ⎝ IS ⎠ ⎝ 10 ⎠ VD = 0.669 V βŽ› 25 Γ— 10βˆ’6 ⎞ (ii) VD = ( 0.026)ln ⎜ βˆ’15 ⎟ ⎝ 10 ⎠ VD = 0.622 V βŽ› 0.2 ⎞ (b) (i) I D = (10βˆ’15 )exp ⎜ βˆ’12 ⎟ = 2.19 Γ— 10 A ⎝ 0.026 ⎠ (ii) ID = 0 (iii) I D = βˆ’10 βˆ’15 A (iv) I D = βˆ’10 βˆ’15 A 1.32 βŽ›I ⎞ βŽ› 2 Γ— 10βˆ’3 ⎞ VD = Vt ln ⎜ D ⎟ = (0.026) ln ⎜ βˆ’14 ⎟ = 0.6347 V ⎝ IS ⎠ ⎝ 5 Γ— 10 ⎠ βŽ› 2 Γ— 10βˆ’3 ⎞ VD = (0.026) ln ⎜ βˆ’12 ⎟ = 0.5150 V ⎝ 5 Γ— 10 ⎠ 0.5150 ≀ VD ≀ 0.6347 V 1.33 βŽ›V ⎞ (a) I D = I S exp ⎜ D ⎟ ⎝ Vt ⎠ βŽ› 1.10 ⎞ 12 Γ—10βˆ’3 = I S exp ⎜ βˆ’21 ⎟ β‡’ I S = 5.07 Γ— 10 A ⎝ 0.026 ⎠ βŽ› 1.0 ⎞ I D = ( 5.07 Γ— 10βˆ’21 ) exp ⎜ ⎟ (b) ⎝ 0.026 ⎠ I D = 2.56 Γ— 10βˆ’4 A = 0.256 mA 1.34 βŽ› 1.0 ⎞ (a) I D = 10βˆ’23 exp ⎜ βˆ’7 ⎟ = 5.05 Γ— 10 A ⎝ 0.026 ⎠ βŽ› 1.1 ⎞ (b) I D = 10βˆ’23 exp ⎜ βˆ’5 ⎟ = 2.37 Γ— 10 A ⎝ 0.026 ⎠ βŽ› 1.2 ⎞ (c) I D = 10βˆ’23 exp ⎜ βˆ’3 ⎟ = 1.11Γ— 10 A ⎝ 0.026 ⎠ 1.35 IS doubles for every 5C increase in temperature. I S = 10 βˆ’12 A at T = 300K For I S = 0.5 Γ— 10 βˆ’12 A β‡’ T = 295 K For I S = 50 Γ— 10 βˆ’12 A, (2) n = 50 β‡’ n = 5.64 Where n equals number of 5C increases. Then Ξ”T = ( 5.64 )( 5 ) = 28.2 K So 295 ≀ T ≀ 328.2 K
  • 11. 1.36 I S (T ) = 2Ξ”T / 5 , Ξ”T = 155Β° C I S (βˆ’55) I S (100) = 2155 / 5 = 2.147 Γ— 109 I S (βˆ’55) VT @100Β°C β‡’ 373Β°K β‡’ VT = 0.03220 VT @βˆ’ 55Β°C β‡’ 216Β°K β‡’ VT = 0.01865 βŽ› 0.6 ⎞ exp ⎜ ⎟ I D (100) ⎝ 0.0322 ⎠ = (2.147 Γ— 109 ) Γ— I D (βˆ’55) βŽ› 0.6 ⎞ exp ⎜ ⎟ ⎝ 0.01865 ⎠ = ( 2.147 Γ—10 )(1.237 Γ—10 ) 9 8 ( 9.374 Γ—10 ) 13 I D (100) = 2.83 Γ— 103 I D (βˆ’55) 1.37 3.5 = ID (105) + VD βŽ› V ⎞ βŽ› ID ⎞ (a) I D = 5 Γ—10βˆ’9 exp ⎜ D ⎟ β‡’ VD = 0.026 ln ⎜ βˆ’9 ⎟ ⎝ 0.026 ⎠ ⎝ 5 Γ— 10 ⎠ Trial and error. VD ID VD 0.50 3 Γ—10 βˆ’5 0.226 0.40 3.1Γ—10βˆ’5 0.227 0.250 3.25 Γ—10 βˆ’5 0.228 0.229 3.271Γ—10 βˆ’5 0.2284 0.2285 3.2715 Γ—10 βˆ’5 0.2284 So VD β‰… 0.2285 V I D β‰… 3.272 Γ— 10βˆ’5 A (b) I D = I S = 5 Γ— 10βˆ’9 A VR = ( 5 Γ— 10βˆ’9 )(105 ) = 5 Γ— 10βˆ’4 V VD = 3.4995 V 1.38 βŽ› I ⎞ 10 = I D ( 2 Γ— 10 4 ) + VD and VD = ( 0.026 ) ln ⎜ D12 ⎟ βˆ’ ⎝ 10 ⎠ Trial and error. VD(v) ID(A) VD(v) 0.50 4.75 Γ—10βˆ’4 0.5194 0.517 4.7415 Γ—10 βˆ’4 0.5194 0.5194 4.740 Γ—10βˆ’4 0.5194 VD = 0.5194 V I D = 0.4740 mA 1.39
  • 12. I s = 5 Γ— 10 βˆ’13 A R1 Ο­ 50 K Ο© Ο© 1.2 V R2 Ο­ 30 K VD Οͺ ID Οͺ RTH Ο­ R1 Ν‰Ν‰ R2 Ο­ 18.75 K Ο© Ο© VTH VD Οͺ Οͺ ID βŽ› R2 ⎞ βŽ› 30 ⎞ VTH = ⎜ ⎟ (1.2) = ⎜ ⎟ (1.2) = 0.45 V ⎝ R1 + R2 ⎠ ⎝ 80 ⎠ βŽ›I ⎞ 0.45 = I D RTH + VD , VD = VT ln ⎜ D ⎟ ⎝ IS ⎠ By trial and error: I D = 2.56 ΞΌ A, VD = 0.402 V 1.40 Ο© VDΟͺ Ο© VDΟͺ Ο© Ο© I1 VI 1K V0 Οͺ IR I2 Οͺ I S = 2 Γ— 10 βˆ’13 A V0 = 0.60 V βŽ›V ⎞ βŽ› 0.60 ⎞ I 2 = I S exp ⎜ 0 ⎟ = ( 2 Γ— 10βˆ’13 ) exp ⎜ ⎟ ⎝ VT ⎠ ⎝ 0.026 ⎠ = 2.105 mA 0.6 IR = = 0.60 mA 1K I1 = I 2 + I R = 2.705 mA βŽ›I ⎞ βŽ› 2.705 Γ— 10βˆ’3 ⎞ VD = VT ln ⎜ 1 ⎟ = (0.026) ln ⎜ βˆ’13 ⎟ ⎝ IS ⎠ ⎝ 2 Γ— 10 ⎠ = 0.6065 VI = 2VD + V0 β‡’ VI = 1.81 V 1.41 (a) Assume diode is conducting. Then, VD = VΞ³ = 0.7 V 0. 7 So that I R 2 = β‡’ 23.3 ΞΌ A 30
  • 13. 1.2 βˆ’ 0.7 I R1 = β‡’ 50 ΞΌ A 10 Then I D = I R1 βˆ’ I R 2 = 50 βˆ’ 23.3 Or I D = 26.7 ΞΌ A (b) Let R1 = 50 k Ξ© Diode is cutoff. 30 VD = β‹… (1.2) = 0.45 V 30 + 50 Since VD < VΞ³ , I D = 0 1.42 Ο©5 V 3 k⍀ 2 k⍀ ID VB Ο­VAΟͺVr VA 2 k⍀ 2 k⍀ A&VA: 5 βˆ’ VA V (1) = ID + A 2 2 A& VA βˆ’ Vr 5 βˆ’ (VA βˆ’ Vr ) (VA βˆ’ Vr ) (2) + ID = 2 2 5 βˆ’ (VA βˆ’ Vr ) ⎑ 5 βˆ’ VA VA ⎀ VA βˆ’ Vr So +⎒ βˆ’ βŽ₯= 3 ⎣ 2 2⎦ 2 Multiply by 6: 10 βˆ’ 2 (VA βˆ’ Vr ) + 15 βˆ’ 6VA = 3 (VA βˆ’ Vr ) 25 + 2Vr + 3Vr = 11VA (a) Vr = 0.6 V 11VA = 25 + 5 ( 0.6 ) = 28 β‡’ VA = 2.545 V 5 βˆ’ VA VA From (1) I D = βˆ’ = 2.5 βˆ’ VA β‡’ I D Neg. β‡’ I D = 0 2 2 Both (a), (b) I D = 0 2 VA = 2.5, VB = β‹… 5 = 2 V β‡’ VD = 0.50 V 5 1.43 Minimum diode current for VPS (min) I D (min) = 2 mA, VD = 0.7 V 0.7 5 βˆ’ 0.7 4.3 I2 = , I1 = = R2 R1 R1 We have I1 = I 2 + I D
  • 14. 4.3 0.7 so (1) = +2 R1 R2 Maximum diode current for VPS (max) P = I DVD 10 = I D ( 0.7 ) β‡’ I D = 14.3 mA I1 = I 2 + I D or 9.3 0.7 (2) = + 14.3 R1 R2 9.3 4.3 Using Eq. (1), = βˆ’ 2 + 14.3 β‡’ R1 = 0.41 kΩ R1 R1 Then R2 = 82.5Ξ© 82.5Ξ© 1.44 (a) Vo = 0.7 V 5 βˆ’ 0.7 I= β‡’ I = 0.215 mA 20 10 βˆ’ 0.7 (b) I= β‡’ I = 0.2325 mA 20 + 20 Vo = I (20 K) βˆ’ 5 β‡’ Vo = βˆ’0.35 V 10 βˆ’ 0.7 (c) I= β‡’ I = 0.372 mA 5 + 20 Vo = 0.7 + I (20) βˆ’ 8 β‡’ Vo = +0.14 V (d) I =0 Vo = I (20) βˆ’ 5 β‡’ Vo = βˆ’5 V 1.45 βŽ› ⎞ 5 = I ( 2 Γ— 109 ) + VD I (a) VD = ( 0.026 ) ln ⎜ βˆ’12 ⎟ ⎝ 2 Γ—10 ⎠ VD β†’ ID β†’ VD Vo = VD = 0.482 V 0.6 2.2 Γ—10βˆ’4 0.481 0.482 2.259 Γ—10βˆ’4 0.482 I = 0.226 mA βŽ› ⎞ 10 = I ( 4 Γ— 10 4 ) + VD I (b) VD = ( 0.026 ) ln ⎜ βˆ’12 ⎟ ⎝ 2 Γ—10 ⎠ Vo β†’ I β†’ VD VD = 0.483 V 0.5 2.375 Γ—10βˆ’4 0.4834 I = 0.238 mA 0.484 2.379 Γ—10βˆ’4 0.4834 Vo = βˆ’0.24 V βŽ› ⎞ 10 = I ( 2.5 Γ— 10 4 ) + VD I (c) VD = ( 0.026 ) ln ⎜ ⎟ ⎝ 2 Γ—10βˆ’12 ⎠ Vo β†’ I β†’ VD VD = 0.496 V 0.480 3.808 Γ—10 βˆ’4 0.496 I = 0.380 mA 0.496 3.802 Γ—10 βˆ’4 0.496 Vo = βˆ’0.10 V (d) I = βˆ’ I S β‡’ I = 2 Γ— 10βˆ’12 A Vo β‰… βˆ’5 V 1.46 (a) Diode forward biased VD = 0.7 V
  • 15. 5 = (0.4)(4.7) + 0.7 + V β‡’ V = 2.42 V (b) P = I β‹… VD = (0.4)(0.7) β‡’ P = 0.28 mΟ‰ 1.47 0.65 (a) I R 2 = I D1 = = 0.65 mA = I D1 1 ID2 = 2(0.65) = 1.30 mA VI βˆ’ 2Vr βˆ’ V0 5 βˆ’ 3(0.65) ID2 = = = 1.30 β‡’ R1 = 2.35 K R1 R1 0.65 (b) IR2 = = 0.65 mA 1 8 βˆ’ 3(0.65) ID2 = β‡’ I D 2 = 3.025 mA 2 I D1 = I D 2 βˆ’ I R 2 = 3.025 βˆ’ 0.65 I D1 = 2.375 mA 1.48 VT (0.026) a. Ο„d = = = 0.026 kΞ© = 26Ξ© I DQ 1 id = 0.05 I DQ = 50 ΞΌ A peak-to-peak vd = idΟ„ d = (26)(50) ΞΌ A β‡’ vd = 1.30 mV peak-to-peak (0.026) b. For I DQ = 0.1 mA β‡’ Ο„ d = = 260Ξ© 0. 1 id = 0.05 I DQ = 5 ΞΌ A peak-to-peak vd = idΟ„ d = (260)(5) ΞΌ V β‡’ vd = 1.30 mV peak-to-peak 1.49 RS Ο© ␯S Ο© ␯d Οͺ Οͺ a. diode resistance rd = VT /I βŽ› ⎞ βŽ› rd ⎞ ⎜ VT /I ⎟ vd = ⎜ ⎟ vS = ⎜ V ⎟ vS ⎝ rd + RS ⎠ ⎜ T + RS ⎜ ⎟ ⎟ ⎝ I ⎠ βŽ› VT ⎞ vd = ⎜ ⎟ vs = vo ⎝ VT + IRS ⎠ b. RS = 260Ξ©
  • 16. v0 βŽ› VT ⎞ 0.026 v I = 1 mA, =⎜ ⎟= β‡’ 0 = 0.0909 vS ⎝ VT + IRS ⎠ 0.026 + (1)(0.26) vS v 0.026 v I = 0.1 mA, 0 = β‡’ 0 = 0.50 vs 0.026 + ( 0.1)( 0.26 ) vS v0 0.026 v I = 0.01 mA. = β‡’ 0 = 0.909 vS 0.026 + (0.01)(0.26) vS 1.50 βŽ›V ⎞ βŽ› I ⎞ I β‰… I S exp ⎜ a ⎟ , Va = VT ln ⎜ ⎟ ⎝ VT ⎠ ⎝ IS ⎠ βŽ› 100 Γ— 10βˆ’6 ⎞ pn junction, Va = (0.026) ln ⎜ βˆ’14 ⎟ ⎝ 10 ⎠ Va = 0.599 V βŽ› 100 Γ— 10βˆ’6 ⎞ Schottky diode, Va = (0.026) ln ⎜ βˆ’9 ⎟ ⎝ 10 ⎠ Va = 0.299 V 1.51 Schottky pn junction I βŽ›V ⎞ Schottky: I β‰… I S exp ⎜ a ⎟ ⎝ VT ⎠ βŽ› I ⎞ βŽ› 0.5 Γ— 10βˆ’3 ⎞ Va = VT ln ⎜ ⎟ = (0.026) ln ⎜ βˆ’7 ⎟ ⎝ IS ⎠ ⎝ 5 Γ— 10 ⎠ = 0.1796 V Then Va of pn junction = 0.1796 + 0.30 = 0.4796 I 0.5 Γ— 10βˆ’3 IS = = βŽ›V ⎞ βŽ› 0.4796 ⎞ exp ⎜ a ⎟ exp ⎜ ⎟ ⎝ VT ⎠ ⎝ 0.026 ⎠ I S = 4.87 Γ— 10 βˆ’12 A 1.52 (a) Ο© VD Οͺ I1 0.5 mA I2 I1 + I 2 = 0.5 Γ— 10 βˆ’3
  • 17. βŽ›V ⎞ βŽ› VD ⎞ 5 Γ— 10βˆ’8 exp ⎜ D βˆ’12 ⎟ + 10 exp ⎜ ⎟ = 0.5 Γ— 10 βˆ’3 ⎝ VT ⎠ ⎝ VT ⎠ βŽ›V ⎞ 5.0001Γ— 10 βˆ’8 exp ⎜ D ⎟ = 0.5 Γ— 10 βˆ’3 ⎝ VT ⎠ βŽ› 0.5 Γ— 10βˆ’3 ⎞ VD = (0.026) ln ⎜ βˆ’8 ⎟ β‡’ VD = 0.2395 ⎝ 5.0001Γ— 10 ⎠ Schottky diode, I 2 = 0.49999 mA pn junction, I1 = 0.00001 mA (b) Ο© VD1 Οͺ Ο© VD2 Οͺ I Ο© 0.90 V Οͺ βŽ›V ⎞ βŽ›V ⎞ I = 10 βˆ’12 exp ⎜ D1 ⎟ = 5 Γ— 10βˆ’8 exp ⎜ D 2 ⎟ ⎝ VT ⎠ ⎝ VT ⎠ VD1 + VD 2 = 0.9 βŽ›V ⎞ βŽ› 0.9 βˆ’ VD1 ⎞ 10βˆ’12 exp ⎜ D1 ⎟ = 5 Γ— 10βˆ’8 exp ⎜ ⎟ ⎝ VT ⎠ ⎝ VT ⎠ βŽ› 0.9 ⎞ βŽ› βˆ’VD1 ⎞ = 5 Γ—10βˆ’8 exp ⎜ ⎟ exp ⎜ ⎟ ⎝ VT ⎠ ⎝ VT ⎠ βŽ› 2V ⎞ βŽ› 5 Γ— 10βˆ’8 ⎞ βŽ› 0.9 ⎞ exp ⎜ D1 ⎟ = ⎜ βˆ’12 ⎟ exp ⎜ ⎟ ⎝ VT ⎠ ⎝ 10 ⎠ ⎝ 0.026 ⎠ βŽ› 5 Γ— 10βˆ’8 ⎞ 2VD1 = VT ln ⎜ βˆ’12 ⎟ + 0.9 = 1.1813 ⎝ 10 ⎠ VD1 = 0.5907 pn junction VD 2 = 0.3093 Schottky diode βŽ› 0.5907 ⎞ I = 10βˆ’12 exp ⎜ ⎟ β‡’ I = 7.35 mA ⎝ 0.026 ⎠ 1.53 R Ο­ 0.5 K V0 Ο© I Ο© VPS Ο­ 10 V VZ RL Οͺ Οͺ IL IZ VZ = VZ 0 = 5.6 V at I Z = 0.1 mA rZ = 10Ξ© I Z rZ = ( 0.1)(10 ) = 1 mV VZ0 = 5.599 a. RL β†’ ∞ β‡’ 10 βˆ’ 5.599 4.401 IZ = = = 8.63 mA R + rZ 0.50 + 0.01 VZ = VZ 0 + I Z rZ = 5.599 + ( 0.00863)(10 ) VZ = V0 = 5.685 V
  • 18. 11 βˆ’ 5.599 b. VPS = 11 V β‡’ I Z = = 10.59 mA 0.51 VZ = V0 = 5.599 + ( 0.01059 )(10 ) = 5.7049 V 9 βˆ’ 5.599 VPS = 9 V β‡’ I Z = = 6.669 mA 0.51 VZ = V0 = 5.599 + ( 0.006669 )(10 ) = 5.66569 V Ξ”V0 = 5.7049 βˆ’ 5.66569 β‡’ Ξ”V0 = 0.0392 V c. I = IZ + IL V0 V βˆ’ V0 V βˆ’ VZ 0 IL = , I = PS , IZ = 0 RL R rZ 10 βˆ’ V0 V0 βˆ’ 5.599 V0 = + 0.50 0.010 2 10 5.599 ⎑ 1 1 1⎀ + = V0 ⎒ + + βŽ₯ 0.50 0.010 ⎣ 0.50 0.010 2 ⎦ 20.0 + 559.9 = V0 (102.5) V0 = 5.658 V 1.54 9 βˆ’ 6.8 a. IZ = β‡’ I Z = 11 mA 0.2 PZ = (11)( 6.8 ) β‡’ PZ = 74.8 mW 12 βˆ’ 6.8 IZ = β‡’ I Z = 26 mA 0.2 b. 26 βˆ’ 11 %= Γ— 100 β‡’ 136% 11 PZ = ( 26 )( 6.8 ) = 176.8 mW 176.8 βˆ’ 74.8 %= Γ— 100 β‡’ 136% 74.8 1.55 I Z rZ = ( 0.1)( 20 ) = 2 mV VZ 0 = 6.8 βˆ’ 0.002 = 6.798 V a. RL = ∞ 10 βˆ’ 6.798 IZ = β‡’ I Z = 6.158 mA 0.5 + 0.02 V0 = VZ = VZ 0 + I Z rZ = 6.798 + ( 0.006158)( 20 ) V0 = 6.921 V b. I = IZ + IL 10 βˆ’ V0 V0 βˆ’ 6.798 V0 = + 0.50 0.020 1 10 6.798 ⎑ 1 1 1⎀ + = V0 ⎒ + + 0.30 0.020 ⎣ 0.50 0.020 1βŽ₯⎦ 359.9 = V0 (53) V0 = 6.791 V Ξ”V0 = 6.791 βˆ’ 6.921 Ξ”V0 = βˆ’0.13 V 1.56
  • 19. For VD = 0, I SC = 0.1 A βŽ› 0.2 ⎞ For ID = 0 VD = VT ln ⎜ βˆ’14 + 1⎟ ⎝ 5 Γ— 10 ⎠ VD = VDC = 0.754 V