SlideShare a Scribd company logo
Problem 2.1
Find the current I and the power supplied by the source in the network shown.
I
6 V 20 kΩ
Suggested Solution
3
6
0.3 mA
20 10
I = =
×
3
(6)(0.3 10 ) 1.8 mWP VI −
= = × =
Problem 2.2
In the circuit shown, find the voltage across the current source and the power absorbed by the resistor.
3 mA 3 kΩ
+
VCS
_
Suggested Solution
( )( )3 3
3 10 3 10 9 VCSV −
= × × =
( )( )3
3 10 9 27 mWP VI −
= = × =
Problem 2.3
If the 10- resistor in the network shown absorbs 2.5 mW, find V .kΩ S
VS 10 kΩ
Suggested Solution
2
10 k
SV
P =
Ω
or ( )( )3 3
2.5 10 10 10 5 VS R −
= × = × × =V P
Problem 2.4
In the network shown, the power absorbed by xR is 5 mW. Find xR .
Rx
1
mA
2
Suggested Solution
( )
3
2 23
5 10
20 k
0.5 10
x
P
R
I
−
−
×
= = = Ω
×
Problem 2.5
In the network shown, the power absorbed by xR is 20 mW. Find xR .
2 mA Rx
Suggested Solution
( )
3
2 23
20 10
5 k
2 10
P
R
I
−
−
×
= = = Ω
×
Problem 2.6
A model for a standard two D-cell flashlight is shown. Find the power dissipated in the lamp.
1.5 V
1.5 V
1-Ω lamp
Suggested Solution
1.5 1.5 3 VlampV = + =
( )
22
3
9 W
1
lamp
lamp
lamp
V
P
R
= = =
Problem 2.7
An automobile uses two halogen headlights connected as shown. Determine the power supplied by the
battery if each headlight draws 3 A of current.
12 V
Suggested Solution
( )( )12 3 3 72 WSP VI= = + =
Problem 2.8
Many years ago a string of Christmas tree lights was manufactured in the form shown in (a). Today the
lights are manufactured as shown in (b). Is there a good reason for this change?
(a)
(b)
Suggested Solution
First of all, one must recognize the fact that a failed lamp becomes an open circuit. Then:
In (a), one faulty lamp would take out the whole string. There would be no way to identify the faulty lamp.
In (b), if one lamp fails, the others stay lit. It is easy to identify the faulty lamp.
Problem 2.9
Find 1I in the network shown.
I1
12 mA
4 mA
2 mA
Suggested Solution
I1
12 mA
4 mA
2 mA
I2
2 0.004 0.002 0.006 AI = + =
1 20.012 I I= +
1 6 mAI⇒ =
Problem 2.10
Find 1I and 2I in the circuit shown.
I3 = 5 mA
IS
I4 = 6 mA
I1
I6 = 3 mA I2
Suggested Solution
By KCL, 1 4 6 mAI I= =
Also, 6 2 4I I I+ =
or 20.003 0.006I+ =
2 3 mAI⇒ =
Problem 2.11
Find xI and yI in the network shown.
4 mA
12 mA 8 mA
Ix Iy
Suggested Solution
0.012 0.004 xI= +
8 mAxI⇒ =
0.004 0.008yI= +
4 mAyI⇒ = −
Problem 2.12
Find xI , yI and zI in the circuit shown.
Ix
Iy
Iz2 mA
12 mA
4 mA
Suggested Solution
Ix
Iy
Iz2 mA
12 mA
4 mA
0.012 0.004xI + =
8 mAxI⇒ = −
0.004 0.002 0.012yI + = +
10 mAyI⇒ =
0.004 0.002zI + =
2 mAzI⇒ = −
Problem 2.13
Find xI in the circuit shown.
1 mA
4 mA
2 Ix
Ix
Suggested Solution
1 mA
4 mA
2 Ix
Ix
0.001 0.004 2x xI I+ = +
3 mAxI⇒ = −
Problem 2.14
Find xI , yI and zI in the network shown.
12 mA
3 mA
2 mA
4 mA
Ix
Iy
Iz
Suggested Solution
12 mA
3 mA
2 mA
4 mA
Ix
Iy
Iz
0.003 0.012xI + =
9 mAxI⇒ =
0.012 0.002 0.004yI + + =
10 mAyI⇒ = −
0.004 0.002zI + =
2 mAzI⇒ = −
Problem 2.15
Find xI in the circuit shown.
2Ix
Ix
2 mA
6 mA
Suggested Solution
2Ix
Ix
2 mA
6 mA
2 0.002 0.006x xI I+ = +
4 mAxI⇒ =
Problem 2.16
Find xI in the network shown.
1 mA
4 Ix
Ix
6 mA
Suggested Solution
1 mA
4 Ix
Ix
6 mA
4 0.001 0.006x xI I+ = +
5
mA
3
xI⇒ =
Problem 2.17
Find xV in the circuit shown.
9 V
+ Vx -
2 Vx
Suggested Solution
KVL: 9 2xV V− + + = 0
3 VxV⇒ =
Problem 2.18
Find V in the circuit shown.bd
a
b
c
d
12 V
6 V
+
2 V
_
+ 4 V -
Suggested Solution
KVL: 12 4 0bdV− + + =
8 VbdV⇒ =
Problem 2.19
Find V in the network shown.ad
a
b
c
de
4 V 12 V
- 3 V + - 2 V +
+ 3 V -
Suggested Solution
KVL: 4 3adV− + − = 0
7 VadV⇒ =
Problem 2.20
Find V and V in the circuit shown.af ec
a b c d
efg
_
2 V
+
- 2 V +
+ 1 V -
12 V 3 V
+
3 V
_
- 1 V +
Suggested Solution
KVL: 2 2afV+ + = 0
4 VafV⇒ = −
KVL: 3 3 0ecV + + =
6 VecV⇒ = −
Problem 2.21
Find V in the circuit shown.ac
a
b
c
d
12 V
+ 4 V -
3 Vx
+
Vx = 2 V
_
Suggested Solution
KVL: 2 12 0acV + − =
10 VacV⇒ =
Problem 2.22
Find V and V in the circuit shown.ad ce
a b c
de
4 Vx 12 V
- 1 V +
- +
Vx = 2 V
+ 1 V -
Suggested Solution
KVL: 12 2 1 0adV − + + =
9 VadV⇒ =
KVL: 1 12 0ceV + − =
11 VceV⇒ =
Problem 2.23
Find V in the network shown.ab
a b
c
12 V
3 Ω
6 Ω
Suggested Solution
Using voltage division,
3
12 4 V
3 6
abV
 
= = 
+ 
Problem 2.24
Find V in the network shown.bd
12 V
3 kΩ 1 kΩ
4 V
a
b
c
d
Suggested Solution
12 V
3 kΩ 1 kΩ
4 V
a
b
c
d
I
12 4
2 mA
3000 1000
I
−
= =
+
KVL: 4 1000(0.002) 0bdV − − =
6 VbdV⇒ =
Problem 2.25
Find xV in the circuit shown.
24 V
6 V
2 kΩ
5 kΩ
2 kΩ
+
Vx
_
Suggested Solution
Using voltage division,
( )
5000
24 6 10 V
2000 5000 2000
xV
 
= − 
+ + 
=
Problem 2.26
Find xV in the circuit shown.
_
Vx
+
6 V
4 kΩ 6 kΩ
24 V
8 V
Suggested Solution
Using voltage division,
( )
4000
6 8 24 4 V
4000 6000
xV
 
= + − 
+ 
= −
Problem 2.27
Find xV in the network shown.
+
Vx
_
5 Ω
3 Vx
15 Ω
5 V
Suggested Solution
+
Vx
_
5 Ω
3 Vx
15 Ω
5 V
I
KVL: , where V I5 15 3 0x xI V V− + − + = 5x =
Therefore, ( )5 15 3 5 5 0I I I− + − + =
1 AI⇒ =
5 VxV∴ =
Problem 2.28
Find V in the network shown.1
+
V1
_
+ Vx -
5 V
20 kΩ 40 kΩ
2
xV
Suggested Solution
+
V1
_
+ Vx -
5 V
20 kΩ 40 kΩ
2
xV
I
KVL: 20000 40000 5 0
2
xV
I I− + + + = , where V I40000x =
Therefore,
40000
20000 40000 5 0
2
I
I I− + + + =
0.125 mAI⇒ = −
1 5 40000 5 5 5 0 VxV V I= + = + = − + =
Problem 2.29
Find the power absorbed by the resistor in the circuit shown.30-kΩ
30 kΩ
12 V
2 Vx
10 kΩ
+
Vx
_
Suggested Solution
30 kΩ
12 V
2 Vx
10 kΩ
+
Vx
_
I
KVL: where V I12 30000 2 0x xI V V− + + + = 10000x =
Therefore, ( )12 30000 2 10000 10000 0I I− + + + =I
200 AI µ⇒ =
( ) ( ) ( )
22 6
30k 30000) 200 10 30000 1.2 mWP I −
Ω = = × =
Problem 2.30
Find oI in the network shown.
12 mA 2 kΩ 6 kΩ 3 kΩ
Io
Suggested Solution
( )
1
2000 12 mA 6 mA
1 1 1
2000 6000 3000
oI
 
 
= = 
 + + 
 
Problem 2.31
Find oI in the circuit shown.
120 mA 4 kΩ 4 kΩ
8 kΩ
Io
Suggested Solution
Using current division,
( )
1
4000 0.120 90 mA
1 1
4000 8000 4000
oI
 
 
= = 
 +
 + 
Problem 2.32
Find oI in the network shown.
6 kΩ
12 mA
12 kΩ 12 kΩ
Io
Suggested Solution
Using current division,
( )
1
12000 0.012 3 mA
1 1 1
6000 12000 12000
oI
 
 
= − = − 
 + + 
 
Problem 2.33
Find V in the circuit shown.o
24 mA 8 kΩ
6 kΩ
6 kΩ
8 kΩ
+
Vo
_
Suggested Solution
Combining the 8- resistors in parallel yields the following circuit.kΩ
24 mA 4 kΩ
6 kΩ
6 kΩ
+
Vo
_
I
Using current division,
( )
1
6000 6000 0.024 6 mA
1 1
4000 6000 6000
I
 
 += = 
 + 
+ 
Then,
6000 36 VoV I= =
Problem 2.34
Find oI in the network shown.
12 mA
3 kΩ 6 kΩ
4 kΩ
2 kΩ
Io
Suggested Solution
Combining the 3- and resistors in parallel yields the following equivalent circuit.kΩ 6-kΩ
12 mA
2 kΩ
4 kΩ
2 kΩ
I1
( )
( )1
4000
0.012 6 mA
4000 2000 2000
I
 
= = 
+ +  
Then,
1
6000
4 mA
6000 3000
oI I
 
= = + 
Problem 2.35
Determine LI in the circuit shown.
Ix IL
2 kΩ
6 mA
4 kΩ
2
xI
Suggested Solution
Ix IL
2 kΩ
6 mA
4 kΩ
2
xI
+
V1
_
KCL: 0.006 0
2
x
x L
I
I I− + + = , where 1
2000
x
V
I = and 1
4000
L
V
I =
Therefore,
1 1
0.006 0
2000 4000 4000
V V V
− + + =1
1 6 VV⇒ =
Then,
6
1.5 mA
4000
LI = =
Problem 2.36
Determine LI in the circuit shown.
6 kΩ
6 mA
3 Ix
3 mA
2 kΩ 3 kΩ
Ix IL
Suggested Solution
6 kΩ
6 mA
3 Ix
3 mA
2 kΩ 3 kΩ
Ix IL
+
V1
_
KCL: 1
0.006 3 0.003 0
6000
x x
V
I I I− + + + + =L , where 1
2000
x
V
I = and 1
3000
L
V
I = .
Therefore,
1 1 1
0.006 3 0.003 0
6000 2000 2000 3000
V V V 
− + + + + = 
 
1V
1
6
1.2 V
5
V⇒ = =
and
1.2
0.4 mA
3000
LI = =
Problem 2.37
Find in the circuit shown.ABR
A
B
RAB
2 kΩ
2 kΩ
3 kΩ
6 kΩ
12 kΩ
Suggested Solution
The network can be redrawn as shown below.
A
B
RAB
2 kΩ
2 kΩ
3 kΩ 6 kΩ 12 kΩ
C B A
C B A
Then,
At A-A: 6000 12000 4 k= Ω
At B-B: 2000 4000 6 k+ = Ω
At C-C: 3000 6000 2 k= Ω
and
2000 2000 4 kABR = + = Ω
Problem 2.38
Find in the circuit shown.ABR
RAB
A
B
5 kΩ
2 kΩ 2 kΩ
2 kΩ2 kΩ2 kΩ
Suggested Solution
RAB
A
B
5 kΩ
2 kΩ 2 kΩ
2 kΩ2 kΩ2 kΩ
D C B A
D C B A
At A-A: 2000 2000 4 k+ = Ω
At B-B:
4
2000 4000 k
3
= Ω
At C-C:
4000 10
2000 k
3 3
+ = Ω
At D-D:
10000
2000 1250
3
= Ω
Then,
5000 1250 6250ABR = + = Ω
Problem 2.39
Find in the network shown.ABR
RAB
A
B
6 kΩ
3 kΩ 3 kΩ
8 kΩ
4 kΩ
5 kΩ 4 kΩ
Suggested Solution
The network can be redrawn as shown below.
RAB
A
B
6 kΩ 3 kΩ 3 kΩ 8 kΩ4 kΩ
5 kΩ 4 kΩ
C B A
C B A
At A-A: 4000 8000 12 k+ = Ω
At B-B: 3000 3000 4000 12000 1 k= Ω
At C-C: 5000 1000 6 k+ = Ω
Therefore,
6000 6000 3 kABR = = Ω
Problem 2.40
Find in the circuit shown.ABR
RAB
A
B
2 kΩ
4 kΩ
4 kΩ
3 kΩ
6 kΩ
12 kΩ
Suggested Solution
The circuit can be redrawn as shown below.
RAB
A
B
2 kΩ
4 kΩ
4 kΩ
6 kΩ
12 kΩ
3 kΩ
A
B
C
C
At A: 6000 3000 2 k= Ω
At B: 4000 2000 6 k+ = Ω
At C-C: 6000 12000 4 k= Ω
Then,
2000 4000 4000 10 kABR = + + = Ω
Problem 2.41
Find in the network shown.ABR
A
B
RAB 6 kΩ
6 kΩ
6 kΩ
2 kΩ
Suggested Solution
The 2- resistor is shorted. Therefore, the network reduces to:kΩ
A
B
RAB 6 kΩ 6 kΩ 6 kΩ
Then,
6000 6000 6000 2 kABR = = Ω
Problem 2.42
Find in the circuit shown.ABR
A
B
RAB
12 kΩ
6 kΩ2 kΩ
4 kΩ 12 kΩ
Suggested Solution
The circuit maybe redrawn as follows:
RAB
A
B
4 kΩ
2 kΩ
12 kΩ
12 kΩ
6 kΩ
A
B
At A: 12000 6000 4 k= Ω
At B: 2000 4000 6 k+ = Ω
Then,
4000 6000 12000 2 kABR = = Ω
Problem 2.43
Find in the circuit shown.ABR
2 kΩ 2 kΩ
2 kΩ 2 kΩ
2 kΩ2 kΩ
2 kΩ 2 kΩ
4 kΩ 4 kΩ
A
B
RAB
Suggested Solution
Combining each series pair of resistors, the circuit can be redrawn as follows:2-kΩ
⇒
4 kΩ 4 kΩ
4 kΩ4 kΩ
4 kΩ 4 kΩ
A
B
RAB
4 kΩ4 kΩ
2 kΩ 2 kΩ
A
B
RAB
or
hen,
6 kΩ 6 kΩ
A
B
RAB
T
R 6000 6000 3 kAB = = Ω
Problem 2.44
Find the range of resistance for the following resistors:
a) with a tolerance of 5%.1 kΩ
b) with a tolerance of 2%.470 Ω
c) with a tolerance of 10%.22 kΩ
Suggested Solution
a) Minimum value = ( )( )1 0.05 1 k 950− Ω = Ω
Ω
Ω
Ω
Ω
Ω
Maximum value = ( )( )1 0.05 1 k 1050+ Ω =
b) Minimum value = ( )( )1 0.02 470 460.6− Ω =
Maximum value = ( )( )1 0.02 470 479.4+ Ω =
c) Minimum value = ( )( )1 0.1 22 k 19.8 k− Ω =
Maximum value = ( )( )1 0.1 22 k 24.2 k+ Ω =
Problem 2.45
Given the network shown, find the possible range of values for the current and power dissipated by the
following resistors:
a) with a tolerance of 1%.390 Ω
b) with a tolerance of 2%.560 Ω
I
10 V R
Suggested Solution
Note that
10 V
I
R
= and
( )
2
10 V 100
P
R R
= = .
a) Minimum resistor value = ( )( )1 0.01 390 386.1− Ω = Ω
Maximum resistor value = ( )( )1 0.01 390 393.9+ Ω = Ω
Minimum current value =
10
25.39 mA
393.9
=
Maximum current value =
10
25.90 mA
386.1
=
Minimum power value =
100
253.9 mW
393.9
=
Maximum power value =
100
259 mW
386.1
=
b) Minimum resistor value = ( )( )1 0.02 560 548.8− Ω = Ω
Maximum resistor value = ( )( )1 0.02 560 571.2+ Ω = Ω
Minimum current value =
10
17.51 mA
571.2
=
Maximum current value =
10
18.22 mA
548.8
=
Minimum power value =
100
175.1 mW
571.2
=
Maximum power value =
100
182.2 mW
548.8
=
Problem 2.46
Given the circuit shown:
a) Find the required value of .R
b) Use Table 2.1 to select a standard 10% tolerance resistor for .R
c) Calculate the actual value of I .
d) Determine the percent error between the actual value of I and that shown in the circuit.
e) Determine the power rating for the resistor .R
I = 40 mA
510 Ω
100 mA
R
Suggested Solution
a) From KCL, the current in the 510-Ω resistor is 100 mA 40 mA 60 mA− = . From Ohm’s Law,
the voltage across the circuit is ( )( ) 30.6 V=510 60 mAΩ . Therefore, the required value of R is
( ) ( )30.6 V 40 mA 765= Ω .
b) From Table 2.1, the nearest 10% resistor value is 820 Ω .
c) To find the actual value of I, first find the actual voltage across the circuit, which is
( )( )100 mA 510 820 31.44 VΩ Ω = . Then,
31.44 V
38.35 mA
820
I = =
Ω
.
d) The percent error is
( )
( )
38.35 40
100 4.14 %
40
−
= − .
e) Since the power consumption in R is
( )
2
31.44 V
1.206 W
820
=
Ω
, a resistor should be used.2-W
Problem 2.47
The resistors and shown in the circuit are 11R 2R Ω with a tolerance of 5% and with a tolerance of
10%, respectively.
2 Ω
a) What is the nominal value of the equivalent resistance?
b) Determine the positive and negative tolerance for the equivalent resistance.
Req
R1
R2
Suggested Solution
a) The nominal value is 1 2 3eqR R R= + = Ω
b) The minimum and maximum values of are1R 0.95 Ω and 1.05 Ω , and the minimum and
maximum values of are 1.82R Ω and 2.2 Ω . Thus, the minimum and maximum values of
are and 1.0
eqR
0.95 1.8 2.75+ = Ω 5 2.2 3.25+ = Ω . The positive and negative tolerances are
Positive Tolerance =
( )
( )
3.25 3
100 8.33 %
3
−
=
Negative Tolerance =
( )
( )
2.75 3
100 8.33 %
3
−
= −
Problem 2.48
Find 1I and V in the circuit shown.o
6 V
1 kΩ
12 kΩ 3 kΩ
I1
+
Vo
_
Suggested Solution
From Ohm’s Law: 1
6 V
0.5 mA
12 k
I
−
= = −
Ω
By application of voltage division: ( )
3 k
6 V 4.5 V
3 k 1 k
oV
Ω 
= − = 
Ω + Ω 
−
Problem 2.49
Find 1I and V in the circuit shown.o
12 V
2 kΩ
6 kΩ
8 kΩ
4 kΩ
I1
+
Vo
_
Suggested Solution
Combining resistors ( )6 k 8 k +4 k 4 k Ω Ω Ω = Ω  reduces the network to the following:
12 V
2 kΩ
4 kΩ
+
V1
_
Using voltage division, then
( )1
4000
12 V 8 V
2000 4000
V
 
= = 
+ 
.
Looking back at the original circuit,
12 V
2 kΩ
6 kΩ
8 kΩ
4 kΩ
I1
+
Vo
_
+
8 V
_
Ohm’s Law: 1
8 V 4
mA
6 k 3
I = =
Ω
Voltage division: ( )
4000 8
8 V
8000 4000 3
oV
 
= = 
+ 
Problem 2.50
Find 1I in the circuit shown.
12 mA 10 kΩ
2 kΩ
2 kΩ 2 kΩ
2 kΩ
I1
Suggested Solution
The circuit can be simplified as follows:
12 mA 10 kΩ
2 kΩ
I2
( )
4
2 k 2 k +2 k k
3
Ω Ω Ω = Ω
Then, ( )2
10000
0.012 9 mA
4000
10000 2000
3
I
 
 
 = =
  + +    
and
( )
( )1
2000
9 mA 3 mA
2000 2000 2000
I
 
= = 
+ +  
Problem 2.51
Determine V in the network shown.o
14 kΩ
4 kΩ
9 kΩ
12 kΩ
2 kΩ
2 mA
+
Vo
_
Suggested Solution
The network can be redrawn as:
14 kΩ
4 kΩ
12 kΩ
2 kΩ
2 mA
+
Vo
_
9 kΩ
A
A
The equivalent resistance to the left of A-A is ( )14 k 4 k 9 k 12 k 4 kΩ + Ω Ω Ω = Ω .
4 kΩ
2 kΩ
2 mA
+
Vo
_
Then, V .( )( )2 k 4 k 2 mA 12 Vo = − Ω + Ω = −
Problem 2.52
Find V in the network shown.o
2 Ω 8 Ω
2 Ω
4 Ω 4 Ω
24 V
+
Vo
_
Suggested Solution
The network can be redrawn as:
Combining the four resistors on the right-hand side ( ) ( )4 2 8 4 4 Ω + Ω Ω + Ω = Ω  yields:
2 Ω
8 Ω
2 Ω
4 Ω
4 Ω
24 V
+
Vo
_
2 Ω
4 Ω
24 V
I1
and
( )1
24 V
4 A
2 4
I = =
Ω + Ω
.
Then, reconsidering the original circuit,
2 Ω 8 Ω
2 Ω
4 Ω 4 Ω
24 V
+
Vo
_
4 A
I2
( )
( ) ( )
( )2
4 2 4
4 A A
4 2 8 4 3
I
 +
= = 
+ + +  
and
( )
4 16
4 A A V
3 3
oV
 
= − = − 
 
Problem 2.53
Find oI in the circuit shown.
9 kΩ 4 kΩ
6 kΩ
6 kΩ
3 kΩ24 V
Io
Suggested Solution
The circuit can be redrawn as:
9 kΩ 4 kΩ
6 kΩ 6 kΩ 3 kΩ24 V
I2
Io
I1
B A
B A
At A-A: 6000 3000 2 k= Ω
At B-B: ( )6000 4000 2000 3 k+ = Ω
The circuit simplifies to:
9 kΩ
3 kΩ24 V
I1
Then,
( )1 2
24 6000
2 mA 1 mA
9000 3000 6000 4000 2000
I I
 
= = ⇒ = = 
+ + +  
1I
and 2
3000 1
mA
3000 6000 3
oI I
 
= = 
+ 
.
Problem 2.54
Find V in the circuit shown.o
2 kΩ
2 kΩ4 kΩ
12 kΩ 3 kΩ
6 mA +
Vo
_
Suggested Solution
2 kΩ
2 kΩ4 kΩ
12 kΩ 3 kΩ
6 mA +
Vo
_
A B
A B
At A-A: ( )2000 4000 12000 4 k+ = Ω
At B-B: ( )4000 2000 3000 2 k+ = Ω
Then, V .( )( )2 k 6 mA 12 Vo = Ω =
Problem 2.55
Find oI in the network shown.
1 kΩ 10 kΩ 2 kΩ
6 kΩ
3 kΩ
4 kΩ
4 kΩ
6 kΩ
12 V
Io
Suggested Solution
Redrawing the network:
1 kΩ 10 kΩ 2 kΩ
6 kΩ3 kΩ4 kΩ4 kΩ 6 kΩ12 V
Io
D C B A
I1
D C B A
At A-A: 3000 6000 2 k= Ω
At B-B: ( )4000 2000 2000 2 k+ = Ω
At C-C: ( )6000 10000 2000 4 k+ = Ω
At D-D: 4000 4000 2 k= Ω
1
12
4 mA
1000 2000
I = =
+
Using current division, 1
4000
2 mA
4000 4000
oI I
 
= = + 
Problem 2.56
Find V in the network shown.o
6 kΩ
9 kΩ 8 kΩ
4 kΩ4 kΩ
12 mA
+
Vo
_
Suggested Solution
6 kΩ
9 kΩ 8 kΩ
4 kΩ4 kΩ
12 mA
+
Vo
_
I1 I2
A
A
At A-A: ( )4000 8000 4000 3 k+ = Ω
Using current division,
( )1
6000
0.012 4 mA
6000 9000 3000
I
 
= = 
+ +  
Again using current division,
( )2 1
4000
1 mA
4000 8000 4000
I I
 
= = 
+ +  
Then, V .24000 4 Vo I= =
Problem 2.57
Find oI in the circuit shown.
6 kΩ
6 kΩ
2 kΩ 4 kΩ
12 V
Io
3 kΩ
Suggested Solution
The circuit can be redrawn as:
⇒12 V
At A-A: ( )2000 2000 4000 2 k+ = Ω
6 kΩ
6 kΩ
2 kΩ 4 kΩ
Io
3 kΩ
6 kΩ
2 kΩ
2 kΩ 4 kΩ
12 V
Io
I1
A
A
1
12
1.5 mA
6000 2000
I = =
+
Using current division,
( )
( ) 1
2000 2000
0.75 mA
2000 2000 4000
oI I
 +
= = 
+ +  
Problem 2.58
If V in the network shown, find V .4 Vo = S
VS
8 kΩ
4 kΩ
+
Vo = 4 V
_
Suggested Solution
VS
8 kΩ
4 kΩ
+
Vo = 4 V
_
I
4
1 mA
4000 4000
oV
I = = =
Then, V I .8000 8 4 12 VS oV= + = + =
Problem 2.59
If the power absorbed by the resistor in the network shown is 36 mW, find4-kΩ oI .
9 kΩ
12 kΩ 4 kΩ
Io
Suggested Solution
9 kΩ
12 kΩ 4 kΩ
Io
+
V1
_
2
1
4 k 136 mW 12 V
4 k
V
P VΩ = = ⇒ =
Ω
12 V
1 mA
12 k
oI = =
Ω
Problem 2.60
If the power absorbed by the resistor in the circuit shown is 36 mW, find V .4-kΩ S
VS
9 kΩ
12 kΩ 4 kΩ
Suggested Solution
VS
9 kΩ
12 kΩ 4 kΩ
+
V1
_
I2 I1
Io
2
1
4 k 136 mW 12 V
4000
V
P VΩ = = ⇒ =
1
1 mA
12 k
o
V
I = =
Ω
1
1 3 mA
4 k
V
I = =
Ω
2 1 1 mA 3 mA 4 mAoI I I= + = + =
( ) 2 19 k 48 VSV I V= Ω + =
Problem 2.61
In the network shown, the power absorbed by the 4-Ω resistor is 100 W. Find V .S
VS
3 Ω
4 Ω
7 Ω
3 Ω
Suggested Solution
VS
3 Ω
4 Ω
7 Ω
3 Ω
+
V1
_
I1
I2I3
( )2
4 1 14 100 W 5 AP I IΩ = Ω = ⇒ =
1 14 20V I= = V
1
2 2 A
7 3
V
I = =
Ω + Ω
3 1 2 7 AI I I= + =
13 21 20 4S SV I V= + = + = 1 V
Problem 2.62
In the network shown, V . Find6 Vo = SI .
4 kΩ
8 kΩ 4 kΩ
2 kΩ
IS
+
Vo
_
Suggested Solution
4 kΩ
8 kΩ 4 kΩ
2 kΩ
IS
+
Vo
_
+
VS
_
I1I2
1
6
3 mA
2 k 2000
oV
I = = =
Ω
( ) 14 k 12 6 18 VS oV I V= Ω + = + =
2
18
1.5 mA
8 k 4 k 12000
SV
I = = =
Ω + Ω
1 2 3 mA 1.5 mA 4.5 mASI I I= + = + =
Problem 2.63
In the circuit shown, 4 mAI = . Find V .S
2 kΩ
6 kΩ
5 kΩ
3 kΩVS
I
Suggested Solution
2 kΩ
6 kΩ
5 kΩ
3 kΩVS
I
+
V1
_
I2 I1
( )1 6 k 24 VV I= Ω =
1
1
24
3 mA
5 k 3 k 8000
V
I = = =
Ω + Ω
2 1 0.004 0.003 7 mAI I I= + = + =
( ) 2 12 k 14 24 38 VSV I V= Ω + = + =
Problem 2.64
In the circuit shown, . Find2 mAoI = SI .
4 kΩ
4 kΩ 2 kΩ
6 kΩ
1 kΩ
2 kΩ
IS
Io
Suggested Solution
4 kΩ
4 kΩ 2 kΩ
6 kΩ
1 kΩ
2 kΩIS
Io
+
V1
_
+ V2 -
+
V3
_
I3
I2
I1
( )1 6 k 12 VoV I= Ω =
1
1
12
4 mA
1 k 2 k 3000
V
I = = =
Ω + Ω
2 1 0.002 0.004 6 mAoI I I= + = + =
( )2 22 k 12 VV I= Ω =
3 2 1 12 12 24 VV V V= + = + =
3
3
24
3 mA
4 k 4 k 8000
V
I = = =
Ω + Ω
3 2 0.003 0.006 9 mASI I I= + = + =
Problem 2.65
In the network shown, V . Find V .1 12 V= S
2 kΩ
6 kΩ
4 kΩ
4 kΩ
1 kΩ
3 kΩVS
+ V1 -
Suggested Solution
2 kΩ
6 kΩ
4 kΩ
4 kΩ
1 kΩ
3 kΩVS
+ V1 -+
V2
_
A
A
I2
I1I3
At A-A: ( )4000 1000 3000 2 k+ = Ω
1
1
12
3 mA
4 k 4000
V
I = = =
Ω
( )2 1 12 k 12 6 18 VV V I= + Ω = + =
2
2
18
3 mA
6 k 6000
V
I = = =
Ω
3 1 2 0.003 0.003 6 mAI I I= + = + =
( ) 3 22 k 12 18 30 VSV I V= Ω + = + =
Problem 2.66
In the circuit shown, V . Find2 Vo = SI .
IS
10 Ω
12 Ω 2 Ω
3 Ω
8 Ω
4 Ω
+
Vo
_
Suggested Solution
IS
10 Ω
12 Ω 2 Ω
3 Ω
8 Ω
4 Ω
+
Vo
_
+
V1
_
+
V2
_
I1
I2
I3I4
1
2
0.5 A
4 4
oV
I = = =
Ω
( )1 18 6 VoV I V= Ω + =
1
2 2 A
3
V
I = =
Ω
3 2 1 2.5 AI I I= + =
( )2 3 12 11 VV I V= Ω + =
2
4 0.5 A
10 12
V
I = =
Ω + Ω
3 4 2.5 0.5 3 ASI I I= + = + =
Problem 2.67
In the network shown, V . Find6 Vo = SI .
IS 9 kΩ
3 kΩ
2 kΩ
1 kΩ
5 kΩ
+
Vo
_
Suggested Solution
IS 9 kΩ
3 kΩ
2 kΩ
1 kΩ
5 kΩ
+
Vo
_
+ V1 -
+
V2
_
I1
I2
I3
I4
1
6
3 mA
2 k 2000
oV
I = = =
Ω
2
6
1 mA
1 k 5 k 6000
oV
I = = =
Ω + Ω
3 1 2 0.003 0.001 4 mAI I I= + = + =
( )1 33 k 12 VV I= Ω =
2 1 12 6 18 VoV V V= + = + =
2
4
18
2 mA
9 k 9000
V
I = = =
Ω
3 4 0.004 0.003 6 mASI I I= + = + =
Problem 2.68
In the circuit shown, . Find2 AoI = SI .
8 Ω
4 Ω
4 Ω3 ΩIS
Io
6 V
Suggested Solution
8 Ω
4 Ω
4 Ω3 ΩIS
Io
6 V
+
V1
_
+
V2
_
I1I2I3
( )1 3 6 VoV I= Ω =
1
1
6
1.5 A
4 4
V
I = = =
Ω
2 1 2 1.5 3.5 AoI I I= + = + =
2 16 V 6 6 12 VV V= + = + =
2
3
12
1 A
8 4 12
V
I = =
Ω + Ω
=
2 3 3.5 1 4.5 ASI I I= + = + =
Problem 2.69
If in the circuit shown, find4 mAoI = SI .
10 kΩ
1 kΩ
4 kΩ
2 kΩ
12 V
IS
Io
Suggested Solution
10 kΩ
1 kΩ
4 kΩ
2 kΩ
12 V
IS
Io
+
V1
_
+ V2 -
+
V3
_
I1
I2
I3
( )1 4 k 12 V 16 12 4 VoV I= Ω − = − =
1
1
4
2 mA
2 k 2000
V
I = = =
Ω
2 1 0.004 0.002 6 mAoI I I= + = + =
( )2 21 k 6 VV I= Ω =
3 2 1 6 4 10 VV V V= + = + =
3
3
10
1 mA
10 k 10000
V
I = = =
Ω
2 3 0.006 0.001 7 mASI I I= + = + =
Problem 2.70
Find oI in the circuit shown.
12 kΩ
2 kΩ
12 kΩ
12 kΩ
8 kΩ
I1 = 5 mA
Io
9 mA
Suggested Solution
12 kΩ
2 kΩ
12 kΩ
12 kΩ
8 kΩ
I1 = 5 mA
Io
9 mA
_
V1
+
+ V3 -
_
V2
+
I2
I3
1 2 29 mA 4 mAI I I+ = ⇒ =
( )1 112 k 60 VV I= Ω =
( )2 212 k 48 VV I= Ω =
3 1 2 60 48 12 VV V V= − = − =
3
3
12
1 mA
12 k 12000
V
I = = =
Ω
1 3 0.005 0.001 6 mAoI I I= + = + =
Problem 2.71
Find V in the circuit shown.o
12 kΩ
4 kΩ 6 kΩ 18 kΩ
6 kΩ
42 VI1 = 4 mA
+
Vo
_
Suggested Solution
12 kΩ
4 kΩ 6 kΩ 18 kΩ
6 kΩ
42 VI1 = 4 mA
+
Vo
_
+ V3 -
_
V2
+
+
V1
_
I3
I2
( )1 14 k 16 VV I= Ω =
2 142 V 42 16 26 VV V= − = − =
2
2
26 13
mA
6 k 6000 3
V
I = = =
Ω
3 2 1
13 1
mA 4 mA mA
3 3
I I I= − = − =
( )3 312 k 4 VV I= Ω =
1 3 16 4 12 VoV V V= − = − =
Problem 2.72
Find the power absorbed by the network shown.
12 kΩ
6 kΩ 6 kΩ
2 kΩ 18 kΩ
21 V
Suggested Solution
Redrawing the network:
Y∆ →
⇒
12 kΩ
2 kΩ 6 kΩ
18 kΩ 6 kΩ
21 V
3 kΩ
2 kΩ 6 kΩ
6 kΩ 2 kΩ
21 V
The equivalent resistance seen by the source is:
( ) ( )2 k 6 k 6 k 2 k 3 k
4 k 3 k
7 k
eqR  = Ω + Ω Ω + Ω + 
= Ω + Ω
= Ω
Ω
Then,
( )
2
21 V 441
63 mA
7000eq
P
R
= = =
Problem 2.73
Find oI in the circuit shown.
2 Ω
3 Ω
4 Ω
5 Ω
18 Ω
12 Ω
9 Ω
36 V
Io
12 Ω
Suggested Solution
Note that the four right-most resistors can be combined as ( )3 4 5 12 6Ω + Ω + Ω Ω = Ω . Then the circuit
can be redrawn as:
Y∆ →
⇒
Io
36 V
9 Ω
3 Ω 2 Ω
2 Ω
6 Ω
I
Io
36 V
9 Ω
18 Ω 12 Ω
2 Ω
6 Ω
( ) ( )
36 V
4 A
9 3 2 2 6
I = =
 Ω + Ω Ω + Ω + Ω 
( )
( ) ( )
9 3
3 A
9 3 2 2
oI I
 +
= = 
+ + +  
Problem 2.74
Find oI in the circuit shown.
Suggested Solution
Applying the transformation to the three 12-Y∆ → Ω resistors yields:
12 Ω
5 Ω
12 Ω
12 Ω
14 Ω
12 V
Io
5 Ω 14 Ω
12 V
Io
4 Ω 4 Ω
4 Ω
Ix
( )
( ) ( )
4 14
4 5 4 14
o xI I
 +
= −  
+ + +  
where
( ) ( )
12 V 12
1.2 A
104 4 5 4 14
xI = =
 Ω + Ω + Ω Ω + Ω 
=
18 12 4
0.80 A
27 10 5
oI∴ = − = − ≈ −i
Problem 2.75
Find oI in the circuit shown.
Io
12 Ω
6 Ω
4 Ω
18 Ω
6 Ω
12 A
Suggested Solution
Converting the to a Y yields the circuit:∆
Io
4 Ω 6 Ω
12 A
3 Ω
2 Ω 6 Ω
( )
( ) ( )
( )
2 4
12 A 4 A
2 4 6 6
oI
 +
= = 
+ + +  
Problem 2.76
Find oI in the circuit shown.
4 Ω
4 Ω
4 Ω
12 Ω
12 Ω
Io
12 A
Suggested Solution
Applying the transformation:Y → ∆
12 A
⇒
12 Ω
12 Ω
12 Ω
Io
12 Ω
12 Ω
I Io
12 A 12 Ω
12 Ω
12 Ω
12 Ω
12 Ω
The circuit can be further simplified to:
I
12 A
12 Ω
12 Ω
12 A
6 A
2
I = =
3 A
2
o
I
I = =
Problem 2.77
Find oI in the circuit shown.
12 Ω 12 Ω
6 Ω
6 Ω 6 Ω
6 Ω
12 V
Io
Suggested Solution
Combining the two 12-Ω resistors yields:
6
Y∆ →
⇒
6 Ω
Ω
Ω 6 Ω
6 Ω
12 V
Io
6 Ω
6 Ω 2 Ω
2 Ω
12 V
Io
2 Ω
6
The circuit can be further simplified to the following:
⇒
I
12 V
o
2 Ω
8 Ω
8 Ω
12 V
Io
2 Ω
4 Ω
12 V
2 A
6
oI = =
Ω
Problem 2.78
Find V in the circuit shown.o
12 V
+
Vo
_
IS
2000 IS
3 kΩ
5 kΩ
Suggested Solution
KVL: 12 3000 2000 5000 0S S SI I I− + − + =
2 mASI⇒ =
5000 10 Vo SV I= =
Problem 2.79
Find V in the network shown.o
12 V
2 kΩ
2 Vo
2 kΩ
+
Vo
_
Suggested Solution
12 V
2 kΩ
2 Vo
2 kΩ
+
Vo
_
I
KVL: where V I12 2000 2 0o oI V V− + + + = 2000o =
Therefore,
12 2000 4000 2000 0I I I− + + + =
1.5 mAI⇒ =
( )3
2000 1.5 10 3 VoV −
= × =
Problem 2.80
Find V in the network shown.o
5 mA 2 kΩ 1 kΩ2 Ix
Ix
+
Vo
_
Suggested Solution
KCL: 0.005 2 0
2000 1000
o o
x
V V
I− + + + = where
2 k
o
x
V
I =
Ω
Therefore,
0.005 2 0 2 V
2000 2000 1000
o o o
o
V V V
V− + + + = ⇒ =
Problem 2.81
Find oI in the network shown.
Io
+
Vx
_
5 A 3 Vx6 Ω
4 Ω
8 Ω
Suggested Solution
Io
+
Vx
_
5 A 3 Vx6 Ω
4 Ω
8 Ω
+
V1
_
KCL: 1 1
5 3 0
6 8 4
x
V V
V+ − + =
+
where 1
1
4
8 4 3
x
V 
V V= = 
+ 
Therefore,
1 1 1
5 3 0
6 12 3
V V V
+ − + =
1 4 VV⇒ =
1 4 2
A
6 6 3
o
V
I = = =
Ω
Problem 2.82
Find V in the circuit shown.o
6 kΩ
2 kΩ
1 kΩ
+
Vo
_
4 mA
2000
oV
Suggested Solution
6 kΩ
2 kΩ
1 kΩ
+
Vo
_
4 mA
2000
oV
+
V1
_
KCL: 1 1
0.004 0
6000 2000 2000 1000
oVV V
− − + =
+
where 1
1
1000
2000 1000 3
o
V 
V V= = 
+ 
Therefore,
3 3
0.004 0
6000 2000 3000
o o oV V V
− − + =
4 VoV⇒ =
Problem 2.83
A single-stage transistor amplifier is modeled as shown. Find the current in the load LR .
+
VS = 250 mV
_
RS = 1 kΩ Rb = 250 Ω
Ib
110 Ib
Ro = 4 kΩ
RL = 400 Ω
Io
Suggested Solution
0.25
0.2 mA
1000 250
S
b
S b
V
I
R R
= = =
+ +
( )
4000
110 100 20 mA
4000 400
o b bI I I
 
= − = − = − 
+ 
Problem 2.84
A typical transistor amplifier is shown. Find the amplifier gain G (i.e., the ratio of the output voltage to
the input voltage).
250 mVSV =
5
3.5 10 bI×
100 Ω
5 kΩ
500 Ω
Ib
5 kΩ
300 Ω
+
Vo
_
Suggested Solution
250 mVSV =
5
3.5 10 bI×
100 Ω
5 kΩ
500 Ω
Ib
5 kΩ
300 Ω
+
Vo
_
I1
( )1
0.25
451 A
554.5100 5 k 500
SV
I µ= =
Ω + Ω Ω
=
1
5000
409.8 A
5000 500
bI I µ
 
= = 
+ 
( )5300
3.5 10 8.12 V
300 5000
o bV I
  = − × = −  + 
8.12
32.5
0.250
o
S
V
G
V
−
= ≈ −
Problem 2.85
For the network shown, choose the values of and such that V is maximized. What is the resulting
ratio,
inR oR o
o SV V ?
VS
RS
Rin
Ro
RLµ Vin
+
Vin
_
+
Vo
_
Suggested Solution
in
in S
S in
R
V V
R R
 
=  
+ 
( ) inL L
o in
o L S in o L
RR R
V V
R R R R R R
µ µ
   
= =   
+ +   
SV


+ 
Therefore,
o in L
S S in o
V R R
V R R R R
µ
 
=  
+ +  L



Clearly, to maximize o
S
V
V
, we must maximize . This is becauseinR in
S i
R
R R+ n
is always less than 1, but gets
closer and closer to 1 as is made larger and larger.inR
On the other hand, to maximize o
S
V
V
, we must minimize . This is becauseoR L
o L
R
R R+
is always less than
1, but gets closer and closer to 1 as is made smaller and smaller.oR
In the limit,
0 0
lim lim lim lim 1 1
in o in o
o in L
R R R R
S S in o L
V R R
V R R R R
µ µ µ
→∞ → →∞ →
    
= =    
+ +    
× × =
Problem 2.86
In many amplifier applications we are concerned not only with voltage gain, but also with power gain.
( ) ( )Power gain = = power delivered to the load power delivered by the inputpA
Find the power gain for the circuit shown, where 50 kLR = Ω .
VS
+
V
_
8 kinR = Ω
2 kSR = Ω
V/100
100 koR = Ω
50 kLR = Ω
+
Vo
_
Suggested Solution
VS
+
V
_
8 kinR = Ω
2 kSR = Ω
V/100
100 koR = Ω
50 kLR = Ω
+
Vo
_
IS Io
8000
0.8
8000 2000
S SV V
 
= = 
+ 
V
3100,000
5.33 10
100,000 50,000 100
o S
V
I V−  
= − = − ×  
+   
( ) ( )
22 3
5.33 10 50,000) 1.422load o L S SP I R V V−
= = × = 2
2
8000 2000 10,000
S S
in S S S
V V
P V I V
 
= = = + 
2
3
2
1.422
14.22 10
10,000
load S
p
in S
P V
A
P V
= = = ×
 
 
 
Problem 2.87
Find the power absorbed by the 10- resistor in the circuit shown.kΩ
11 mA 2 kΩ
4 kΩ 4 kΩ
3 kΩ
10 kΩ
+
Vx
_
+
Vo
_
2000
xV
Suggested Solution
Combining the two resistors in parallel yields the following simplified circuit:4-kΩ
11 mA 2 kΩ
2 kΩ
3 kΩ
10 kΩ
+
Vx
_
+
Vo
_
2000
xV
0.011 0
2 k 2000 2 k 3 k 10 k
o x o oV V V V
− + + + + =
Ω Ω + Ω Ω
where
3000
0.6
2000 3000
x o o
 
= = 
+ 
V V V
Therefore,
3
0.011 0 10 V
2000 10,000 5000 10,000
o o o o
o
V V V V
V− + + + + = ⇒ =
( )
22
10 k
10
10 mW
10 k 10,000
oV
P Ω = = =
Ω
Problem 2.88
Find the power absorbed by the 12- resistor in the circuit shown.kΩ
6 mA 6 kΩ
3 Io
6 kΩ 3 kΩ
4 kΩ
12 kΩ
Io
+
Vo
_
Suggested Solution
6 mA 6 kΩ
3 Io
6 kΩ 3 kΩ
4 kΩ
12 kΩ
Io
+
Vo
_
I1
( )
0.006 3 0
6 k 12 k4 k 6 k 3 k
o o
o
V V
I− + + + + =
Ω ΩΩ + Ω Ω
oV
where 1 1
6000 2
6000 3000 3
oI I I
 
= = 
+ 
( )1
2
6000 3 6000 90004 k 6 k 3 k
o o o
o
V V V
I I
 
= = ⇒ =  
Ω + Ω Ω  
oV
=
Then, substituting:
0.006 3 0 8 V
6000 9000 6000 12,000
o o o o
o
V V V V
V
 
− + + + + = ⇒ = 
 
2
0
12 k
64
5.33 mW
12 k 12,000
V
P Ω = = =
Ω
Problem 2FE-1
Find the power generated by the source in the network shown.
5 kΩ
6 kΩ 18 kΩ
12 kΩ
4 kΩ 6 kΩ
120 V
Suggested Solution
Applying the transformation yields:Y∆ →
⇒
5 kΩ
4 kΩ 6 kΩ
120 V
3 kΩ
2 kΩ 6 kΩ
5 kΩ
120 V
3 kΩ
4 kΩ
I
120 V
10 mA
12 k
I = =
Ω
( )120 V 120 0.010 1.2 WP I= = × =
Problem 2FE-2
Find the equivalent resistance of the circuit shown at the terminals -A B .
A
B
RAB
12 kΩ
6 kΩ
6 kΩ
4 kΩ
12 kΩ
12 kΩ
12 kΩ
Suggested Solution
Combining resistors,
12 k 6 k 4 kΩ Ω = Ω
( )12 k 12 kΩ 12 kΩ 8 kΩ + = Ω
The circuit is now reduced to:
A
B
RAB
4 kΩ
6 kΩ
4 kΩ
8 kΩ
and further to:
A
B
RAB
4 kΩ
( )6 k 8 k 4 k 4 kΩ Ω+ Ω = Ω
Therefore,
4 k 4 k 8 kABR = Ω + Ω = Ω
Problem 2FE-3
Find the voltage V in the network shown.o
24 mA
1 kΩ 2 kΩ
6 kΩ3 kΩ
6 kΩ
12 kΩ
+
Vo
_
Suggested Solution
Combining resistors:
1 k 3 k 4 kΩ + Ω = Ω
6 k 12 k 4 kΩ Ω = Ω
The network is now reduced to:
24 mA
2 kΩ
6 kΩ4 kΩ
4 kΩ
+
Vo
_
I
Using current division,
( )
( )
4000
24 mA 6 mA
4000 2000 6000 4000
I
 
= = 
+ + +  
( )6 k 36 VoV I= Ω =
Problem 2FE-4
Find the current oI in the circuit shown.
Io
3 kΩ
3 kΩ 6 kΩ6 kΩ
6 kΩ
12 kΩ
4 kΩ
12 V
Suggested Solution
Combining resistors:
3 k 6 k 9 kΩ + Ω = Ω
3 k 6 k 2 kΩ Ω = Ω
Thus, the circuit simplifies to:
⇒ ⇒9 k
2 kΩ
6 kΩ
9 kΩ
12 kΩ
4 kΩ
12 V
Ix
I
18 kΩ
6 kΩ
Ω
12 V
Ix
I
6 kΩ
12 V
6 kΩ
I
12V
1 mA
6 k 6 k
I = − = −
Ω + Ω
9000 1
mA
9000 18,000 3
xI I
 
= = 
+ 
−
6000 2
mA
3000 6000 9
o xI I
 
= = 
+ 
−

More Related Content

What's hot

Cac dinh-ly-hinhhocphang
Cac dinh-ly-hinhhocphangCac dinh-ly-hinhhocphang
Cac dinh-ly-hinhhocphanghonghoi
 
Vat ly dai cuong tap 1
Vat ly dai cuong tap 1Vat ly dai cuong tap 1
Vat ly dai cuong tap 1
baolanchi
 
Chuyên đề phương tích và ứng dụng
Chuyên đề phương tích và ứng dụngChuyên đề phương tích và ứng dụng
Chuyên đề phương tích và ứng dụng
Ngo Quang Viet
 
Chuyên đề phương trình, bất phương trình, hệ phương trình
Chuyên đề phương trình, bất phương trình, hệ phương trình Chuyên đề phương trình, bất phương trình, hệ phương trình
Chuyên đề phương trình, bất phương trình, hệ phương trình
biology_dnu
 
BEER Cap 05 Solucionario
BEER Cap 05 SolucionarioBEER Cap 05 Solucionario
BEER Cap 05 Solucionario
nataly suarez garcia
 
kỹ thuật giải phương trình hàm
kỹ thuật giải phương trình hàmkỹ thuật giải phương trình hàm
kỹ thuật giải phương trình hàm
ljmonking
 
chuyên đề điện tích điện trường - chương 1 vật lý 11 hay nhất 2017
chuyên đề điện tích điện trường - chương 1 vật lý 11 hay nhất 2017chuyên đề điện tích điện trường - chương 1 vật lý 11 hay nhất 2017
chuyên đề điện tích điện trường - chương 1 vật lý 11 hay nhất 2017
Hoàng Thái Việt
 
13 ki-thuat-giai-phuong-trinh-ham (1)
13 ki-thuat-giai-phuong-trinh-ham (1)13 ki-thuat-giai-phuong-trinh-ham (1)
13 ki-thuat-giai-phuong-trinh-ham (1)
ljmonking
 
Giao trinh day them vat ly 12 tap 1
Giao trinh day them vat ly 12 tap 1Giao trinh day them vat ly 12 tap 1
Giao trinh day them vat ly 12 tap 1
Trường THPT Nguyễn Công Phương
 
Bai tap dao ham va vi phan
Bai tap dao ham va vi phanBai tap dao ham va vi phan
Bai tap dao ham va vi phan
Tran Duong
 
Bài tập sử dụng công thức nguyên hàm, tích phân
Bài tập sử dụng công thức nguyên hàm, tích phânBài tập sử dụng công thức nguyên hàm, tích phân
Bài tập sử dụng công thức nguyên hàm, tích phânThế Giới Tinh Hoa
 
GIẢI NHANH TRẮC NGHIỆM VẬT LÝ 12 BẰNG MÁY TÍNH CASIO Fx-570ES_2
GIẢI NHANH TRẮC NGHIỆM VẬT LÝ 12 BẰNG MÁY TÍNH CASIO Fx-570ES_2GIẢI NHANH TRẮC NGHIỆM VẬT LÝ 12 BẰNG MÁY TÍNH CASIO Fx-570ES_2
GIẢI NHANH TRẮC NGHIỆM VẬT LÝ 12 BẰNG MÁY TÍNH CASIO Fx-570ES_2
Tới Nguyễn
 
Bdt đánh giá trên biên nhìn vào điểm nút
Bdt đánh giá trên biên nhìn vào điểm nútBdt đánh giá trên biên nhìn vào điểm nút
Bdt đánh giá trên biên nhìn vào điểm nútThế Giới Tinh Hoa
 
Ứng dụng phương tích và trục đẳng phương vào bài toán hình học phẳng
Ứng dụng phương tích và trục đẳng phương vào bài toán hình học phẳng Ứng dụng phương tích và trục đẳng phương vào bài toán hình học phẳng
Ứng dụng phương tích và trục đẳng phương vào bài toán hình học phẳng
Bui Loi
 
[Vnmath.com] chuyên ðề lượng giác qua các kỳ thi
[Vnmath.com] chuyên ðề lượng giác qua các kỳ thi[Vnmath.com] chuyên ðề lượng giác qua các kỳ thi
[Vnmath.com] chuyên ðề lượng giác qua các kỳ thi
Antonio Krista
 
Tuyen tap cac_bat_dang_thuc_trong_cac_de_thi_tuyen_sing_dai_hoc(ca_hd)
Tuyen tap cac_bat_dang_thuc_trong_cac_de_thi_tuyen_sing_dai_hoc(ca_hd)Tuyen tap cac_bat_dang_thuc_trong_cac_de_thi_tuyen_sing_dai_hoc(ca_hd)
Tuyen tap cac_bat_dang_thuc_trong_cac_de_thi_tuyen_sing_dai_hoc(ca_hd)Nguyen KienHuyen
 
Bo de hinh hoc thcs
Bo de hinh hoc thcsBo de hinh hoc thcs
Bo de hinh hoc thcs
khanh271295
 
Do do tich-phan-thai_thuan_quang mearsure and intergral
Do do tich-phan-thai_thuan_quang mearsure and intergralDo do tich-phan-thai_thuan_quang mearsure and intergral
Do do tich-phan-thai_thuan_quang mearsure and intergral
Bui Loi
 
19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thức19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thứcThế Giới Tinh Hoa
 

What's hot (20)

Cac dinh-ly-hinhhocphang
Cac dinh-ly-hinhhocphangCac dinh-ly-hinhhocphang
Cac dinh-ly-hinhhocphang
 
Vat ly dai cuong tap 1
Vat ly dai cuong tap 1Vat ly dai cuong tap 1
Vat ly dai cuong tap 1
 
Chuyên đề phương tích và ứng dụng
Chuyên đề phương tích và ứng dụngChuyên đề phương tích và ứng dụng
Chuyên đề phương tích và ứng dụng
 
Phương trình hàm đa thức
Phương trình hàm đa thứcPhương trình hàm đa thức
Phương trình hàm đa thức
 
Chuyên đề phương trình, bất phương trình, hệ phương trình
Chuyên đề phương trình, bất phương trình, hệ phương trình Chuyên đề phương trình, bất phương trình, hệ phương trình
Chuyên đề phương trình, bất phương trình, hệ phương trình
 
BEER Cap 05 Solucionario
BEER Cap 05 SolucionarioBEER Cap 05 Solucionario
BEER Cap 05 Solucionario
 
kỹ thuật giải phương trình hàm
kỹ thuật giải phương trình hàmkỹ thuật giải phương trình hàm
kỹ thuật giải phương trình hàm
 
chuyên đề điện tích điện trường - chương 1 vật lý 11 hay nhất 2017
chuyên đề điện tích điện trường - chương 1 vật lý 11 hay nhất 2017chuyên đề điện tích điện trường - chương 1 vật lý 11 hay nhất 2017
chuyên đề điện tích điện trường - chương 1 vật lý 11 hay nhất 2017
 
13 ki-thuat-giai-phuong-trinh-ham (1)
13 ki-thuat-giai-phuong-trinh-ham (1)13 ki-thuat-giai-phuong-trinh-ham (1)
13 ki-thuat-giai-phuong-trinh-ham (1)
 
Giao trinh day them vat ly 12 tap 1
Giao trinh day them vat ly 12 tap 1Giao trinh day them vat ly 12 tap 1
Giao trinh day them vat ly 12 tap 1
 
Bai tap dao ham va vi phan
Bai tap dao ham va vi phanBai tap dao ham va vi phan
Bai tap dao ham va vi phan
 
Bài tập sử dụng công thức nguyên hàm, tích phân
Bài tập sử dụng công thức nguyên hàm, tích phânBài tập sử dụng công thức nguyên hàm, tích phân
Bài tập sử dụng công thức nguyên hàm, tích phân
 
GIẢI NHANH TRẮC NGHIỆM VẬT LÝ 12 BẰNG MÁY TÍNH CASIO Fx-570ES_2
GIẢI NHANH TRẮC NGHIỆM VẬT LÝ 12 BẰNG MÁY TÍNH CASIO Fx-570ES_2GIẢI NHANH TRẮC NGHIỆM VẬT LÝ 12 BẰNG MÁY TÍNH CASIO Fx-570ES_2
GIẢI NHANH TRẮC NGHIỆM VẬT LÝ 12 BẰNG MÁY TÍNH CASIO Fx-570ES_2
 
Bdt đánh giá trên biên nhìn vào điểm nút
Bdt đánh giá trên biên nhìn vào điểm nútBdt đánh giá trên biên nhìn vào điểm nút
Bdt đánh giá trên biên nhìn vào điểm nút
 
Ứng dụng phương tích và trục đẳng phương vào bài toán hình học phẳng
Ứng dụng phương tích và trục đẳng phương vào bài toán hình học phẳng Ứng dụng phương tích và trục đẳng phương vào bài toán hình học phẳng
Ứng dụng phương tích và trục đẳng phương vào bài toán hình học phẳng
 
[Vnmath.com] chuyên ðề lượng giác qua các kỳ thi
[Vnmath.com] chuyên ðề lượng giác qua các kỳ thi[Vnmath.com] chuyên ðề lượng giác qua các kỳ thi
[Vnmath.com] chuyên ðề lượng giác qua các kỳ thi
 
Tuyen tap cac_bat_dang_thuc_trong_cac_de_thi_tuyen_sing_dai_hoc(ca_hd)
Tuyen tap cac_bat_dang_thuc_trong_cac_de_thi_tuyen_sing_dai_hoc(ca_hd)Tuyen tap cac_bat_dang_thuc_trong_cac_de_thi_tuyen_sing_dai_hoc(ca_hd)
Tuyen tap cac_bat_dang_thuc_trong_cac_de_thi_tuyen_sing_dai_hoc(ca_hd)
 
Bo de hinh hoc thcs
Bo de hinh hoc thcsBo de hinh hoc thcs
Bo de hinh hoc thcs
 
Do do tich-phan-thai_thuan_quang mearsure and intergral
Do do tich-phan-thai_thuan_quang mearsure and intergralDo do tich-phan-thai_thuan_quang mearsure and intergral
Do do tich-phan-thai_thuan_quang mearsure and intergral
 
19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thức19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thức
 

Viewers also liked

CERTIFICATE OF REGISTRATION 2015
CERTIFICATE OF REGISTRATION 2015CERTIFICATE OF REGISTRATION 2015
CERTIFICATE OF REGISTRATION 2015Dr. Peter Roland
 
Cover daftar isi
Cover daftar isiCover daftar isi
Cover daftar isi
ardinovyan
 
3003 Kalakaua Ave Info & Photo Gallery
3003 Kalakaua Ave Info & Photo Gallery3003 Kalakaua Ave Info & Photo Gallery
3003 Kalakaua Ave Info & Photo Gallery
anneoliverHI
 
Military Transcripts
Military TranscriptsMilitary Transcripts
Military TranscriptsDan Scott
 
Instants privilegies
Instants privilegiesInstants privilegies
Instants privilegies
Hubert Gislot
 
Nivel de delincuencia en perú
Nivel de delincuencia en perúNivel de delincuencia en perú
Nivel de delincuencia en perú
claudiargomez2015
 
Flat tappetcamtechbulletin
Flat tappetcamtechbulletinFlat tappetcamtechbulletin
Flat tappetcamtechbulletin
Henry Rahmananto
 
Effectiveness of Recruitment Incentives Utilized by The Department of Veteran...
Effectiveness of Recruitment Incentives Utilized by The Department of Veteran...Effectiveness of Recruitment Incentives Utilized by The Department of Veteran...
Effectiveness of Recruitment Incentives Utilized by The Department of Veteran...Dan Scott
 
Extreme programming (xp)
Extreme programming (xp)Extreme programming (xp)
Extreme programming (xp)
Juan Jain
 
Byggtjeneste ECOproduct - BREEAM NOR materialer
Byggtjeneste ECOproduct - BREEAM NOR materialerByggtjeneste ECOproduct - BREEAM NOR materialer
Byggtjeneste ECOproduct - BREEAM NOR materialer
Ann-Kristin Schram
 
Director de seguridad
Director de seguridadDirector de seguridad
Director de seguridad
CenproexFormacion
 

Viewers also liked (13)

CERTIFICATE OF REGISTRATION 2015
CERTIFICATE OF REGISTRATION 2015CERTIFICATE OF REGISTRATION 2015
CERTIFICATE OF REGISTRATION 2015
 
Cover daftar isi
Cover daftar isiCover daftar isi
Cover daftar isi
 
3003 Kalakaua Ave Info & Photo Gallery
3003 Kalakaua Ave Info & Photo Gallery3003 Kalakaua Ave Info & Photo Gallery
3003 Kalakaua Ave Info & Photo Gallery
 
IN-Service 3-2-16
IN-Service 3-2-16IN-Service 3-2-16
IN-Service 3-2-16
 
Military Transcripts
Military TranscriptsMilitary Transcripts
Military Transcripts
 
Palestra Mobile Day IAB 2015
Palestra Mobile Day IAB 2015Palestra Mobile Day IAB 2015
Palestra Mobile Day IAB 2015
 
Instants privilegies
Instants privilegiesInstants privilegies
Instants privilegies
 
Nivel de delincuencia en perú
Nivel de delincuencia en perúNivel de delincuencia en perú
Nivel de delincuencia en perú
 
Flat tappetcamtechbulletin
Flat tappetcamtechbulletinFlat tappetcamtechbulletin
Flat tappetcamtechbulletin
 
Effectiveness of Recruitment Incentives Utilized by The Department of Veteran...
Effectiveness of Recruitment Incentives Utilized by The Department of Veteran...Effectiveness of Recruitment Incentives Utilized by The Department of Veteran...
Effectiveness of Recruitment Incentives Utilized by The Department of Veteran...
 
Extreme programming (xp)
Extreme programming (xp)Extreme programming (xp)
Extreme programming (xp)
 
Byggtjeneste ECOproduct - BREEAM NOR materialer
Byggtjeneste ECOproduct - BREEAM NOR materialerByggtjeneste ECOproduct - BREEAM NOR materialer
Byggtjeneste ECOproduct - BREEAM NOR materialer
 
Director de seguridad
Director de seguridadDirector de seguridad
Director de seguridad
 

Similar to Chapter2

Circuits and networks
Circuits and networksCircuits and networks
Circuits and networks
LingalaSowjanya
 
4 kirchoff law
4   kirchoff law4   kirchoff law
4 kirchoff law
Mohamed Sayed
 
Chapter 2 circuit elements
Chapter 2   circuit elementsChapter 2   circuit elements
Chapter 2 circuit elements
Samuel Ferreira
 
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrdChapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
LuisAngelLugoCuevas
 
EEE 2
EEE 2EEE 2
Nodal & Mesh Analysis
Nodal & Mesh AnalysisNodal & Mesh Analysis
Nodal & Mesh Analysis
QuaziRossi
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
Ankit Chaurasia
 
Basic Electric Circuits Session 9C
Basic Electric Circuits Session 9CBasic Electric Circuits Session 9C
A.gate by-rk-kanodia
A.gate by-rk-kanodiaA.gate by-rk-kanodia
A.gate by-rk-kanodia
Venugopala Rao P
 
Solution of problems of chapter 2 for simple resistiv circuits
Solution of problems of chapter 2  for simple resistiv circuitsSolution of problems of chapter 2  for simple resistiv circuits
Solution of problems of chapter 2 for simple resistiv circuits
Môstafâ Araby
 
MESH NODAL DC.pptx
MESH NODAL DC.pptxMESH NODAL DC.pptx
MESH NODAL DC.pptx
UDAIYAKUMAR S
 
ETB LO1 Advanced Network Theorems (Part 1).pdf
ETB LO1 Advanced Network Theorems (Part 1).pdfETB LO1 Advanced Network Theorems (Part 1).pdf
ETB LO1 Advanced Network Theorems (Part 1).pdf
MuhammadAmirzad
 
BEF 12403 - Week 7 - Linearity and Superposition Principles.ppt
BEF 12403 - Week 7 - Linearity and Superposition Principles.pptBEF 12403 - Week 7 - Linearity and Superposition Principles.ppt
BEF 12403 - Week 7 - Linearity and Superposition Principles.ppt
LiewChiaPing
 
module2.pdf
module2.pdfmodule2.pdf
module2.pdf
AnjanSengupta6
 
EEE 1
EEE 1EEE 1
Diode circuits-analysis
Diode circuits-analysisDiode circuits-analysis
Diode circuits-analysisRahmat Dani
 
Electrical Design Package
Electrical Design PackageElectrical Design Package
Electrical Design PackageDante Moore
 
Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253
Fairul Izwan Muzamuddin
 

Similar to Chapter2 (20)

Circuits and networks
Circuits and networksCircuits and networks
Circuits and networks
 
4 kirchoff law
4   kirchoff law4   kirchoff law
4 kirchoff law
 
Chapter 2 circuit elements
Chapter 2   circuit elementsChapter 2   circuit elements
Chapter 2 circuit elements
 
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrdChapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
 
Circuits5
Circuits5Circuits5
Circuits5
 
EEE 2
EEE 2EEE 2
EEE 2
 
Nodal & Mesh Analysis
Nodal & Mesh AnalysisNodal & Mesh Analysis
Nodal & Mesh Analysis
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
 
Basic Electric Circuits Session 9C
Basic Electric Circuits Session 9CBasic Electric Circuits Session 9C
Basic Electric Circuits Session 9C
 
A.gate by-rk-kanodia
A.gate by-rk-kanodiaA.gate by-rk-kanodia
A.gate by-rk-kanodia
 
Solution of problems of chapter 2 for simple resistiv circuits
Solution of problems of chapter 2  for simple resistiv circuitsSolution of problems of chapter 2  for simple resistiv circuits
Solution of problems of chapter 2 for simple resistiv circuits
 
mesh analysis
mesh analysismesh analysis
mesh analysis
 
MESH NODAL DC.pptx
MESH NODAL DC.pptxMESH NODAL DC.pptx
MESH NODAL DC.pptx
 
ETB LO1 Advanced Network Theorems (Part 1).pdf
ETB LO1 Advanced Network Theorems (Part 1).pdfETB LO1 Advanced Network Theorems (Part 1).pdf
ETB LO1 Advanced Network Theorems (Part 1).pdf
 
BEF 12403 - Week 7 - Linearity and Superposition Principles.ppt
BEF 12403 - Week 7 - Linearity and Superposition Principles.pptBEF 12403 - Week 7 - Linearity and Superposition Principles.ppt
BEF 12403 - Week 7 - Linearity and Superposition Principles.ppt
 
module2.pdf
module2.pdfmodule2.pdf
module2.pdf
 
EEE 1
EEE 1EEE 1
EEE 1
 
Diode circuits-analysis
Diode circuits-analysisDiode circuits-analysis
Diode circuits-analysis
 
Electrical Design Package
Electrical Design PackageElectrical Design Package
Electrical Design Package
 
Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253
 

Recently uploaded

Tyre Industrymarket overview with examples of CEAT
Tyre Industrymarket overview with examples of CEATTyre Industrymarket overview with examples of CEAT
Tyre Industrymarket overview with examples of CEAT
kshamashah95
 
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
European Service Center
 
Bài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.doc
Bài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.docBài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.doc
Bài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.doc
daothibichhang1
 
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
ahmedendrise81
 
What do the symbols on vehicle dashboard mean?
What do the symbols on vehicle dashboard mean?What do the symbols on vehicle dashboard mean?
What do the symbols on vehicle dashboard mean?
Hyundai Motor Group
 
Why Is Your BMW X3 Hood Not Responding To Release Commands
Why Is Your BMW X3 Hood Not Responding To Release CommandsWhy Is Your BMW X3 Hood Not Responding To Release Commands
Why Is Your BMW X3 Hood Not Responding To Release Commands
Dart Auto
 
Empowering Limpopo Entrepreneurs Consulting SMEs.pptx
Empowering Limpopo Entrepreneurs  Consulting SMEs.pptxEmpowering Limpopo Entrepreneurs  Consulting SMEs.pptx
Empowering Limpopo Entrepreneurs Consulting SMEs.pptx
Precious Mvulane CA (SA),RA
 
Wondering if Your Mercedes EIS is at Fault Here’s How to Tell
Wondering if Your Mercedes EIS is at Fault Here’s How to TellWondering if Your Mercedes EIS is at Fault Here’s How to Tell
Wondering if Your Mercedes EIS is at Fault Here’s How to Tell
Vic Auto Collision & Repair
 
Ec460b lc Excavator Volvo Service Repair.pdf
Ec460b lc Excavator Volvo Service Repair.pdfEc460b lc Excavator Volvo Service Repair.pdf
Ec460b lc Excavator Volvo Service Repair.pdf
Excavator
 
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptxStatistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
coc7987515756
 
一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理
一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理
一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理
eygkup
 
Things to remember while upgrading the brakes of your car
Things to remember while upgrading the brakes of your carThings to remember while upgrading the brakes of your car
Things to remember while upgrading the brakes of your car
jennifermiller8137
 
Digital Fleet Management - Why Your Business Need It?
Digital Fleet Management - Why Your Business Need It?Digital Fleet Management - Why Your Business Need It?
Digital Fleet Management - Why Your Business Need It?
jennifermiller8137
 
Ec330B Lc Excavator Volvo Service Repair.pdf
Ec330B Lc Excavator Volvo Service Repair.pdfEc330B Lc Excavator Volvo Service Repair.pdf
Ec330B Lc Excavator Volvo Service Repair.pdf
Excavator
 
Antique Plastic Traders Company Profile
Antique Plastic Traders Company ProfileAntique Plastic Traders Company Profile
Antique Plastic Traders Company Profile
Antique Plastic Traders
 
一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理
mymwpc
 
Core technology of Hyundai Motor Group's EV platform 'E-GMP'
Core technology of Hyundai Motor Group's EV platform 'E-GMP'Core technology of Hyundai Motor Group's EV platform 'E-GMP'
Core technology of Hyundai Motor Group's EV platform 'E-GMP'
Hyundai Motor Group
 
What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...
What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...
What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...
Autohaus Service and Sales
 
What Exactly Is The Common Rail Direct Injection System & How Does It Work
What Exactly Is The Common Rail Direct Injection System & How Does It WorkWhat Exactly Is The Common Rail Direct Injection System & How Does It Work
What Exactly Is The Common Rail Direct Injection System & How Does It Work
Motor Cars International
 
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out HereWhy Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Masters European & Gapanese Auto Repair
 

Recently uploaded (20)

Tyre Industrymarket overview with examples of CEAT
Tyre Industrymarket overview with examples of CEATTyre Industrymarket overview with examples of CEAT
Tyre Industrymarket overview with examples of CEAT
 
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
 
Bài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.doc
Bài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.docBài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.doc
Bài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.doc
 
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
 
What do the symbols on vehicle dashboard mean?
What do the symbols on vehicle dashboard mean?What do the symbols on vehicle dashboard mean?
What do the symbols on vehicle dashboard mean?
 
Why Is Your BMW X3 Hood Not Responding To Release Commands
Why Is Your BMW X3 Hood Not Responding To Release CommandsWhy Is Your BMW X3 Hood Not Responding To Release Commands
Why Is Your BMW X3 Hood Not Responding To Release Commands
 
Empowering Limpopo Entrepreneurs Consulting SMEs.pptx
Empowering Limpopo Entrepreneurs  Consulting SMEs.pptxEmpowering Limpopo Entrepreneurs  Consulting SMEs.pptx
Empowering Limpopo Entrepreneurs Consulting SMEs.pptx
 
Wondering if Your Mercedes EIS is at Fault Here’s How to Tell
Wondering if Your Mercedes EIS is at Fault Here’s How to TellWondering if Your Mercedes EIS is at Fault Here’s How to Tell
Wondering if Your Mercedes EIS is at Fault Here’s How to Tell
 
Ec460b lc Excavator Volvo Service Repair.pdf
Ec460b lc Excavator Volvo Service Repair.pdfEc460b lc Excavator Volvo Service Repair.pdf
Ec460b lc Excavator Volvo Service Repair.pdf
 
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptxStatistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
 
一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理
一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理
一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理
 
Things to remember while upgrading the brakes of your car
Things to remember while upgrading the brakes of your carThings to remember while upgrading the brakes of your car
Things to remember while upgrading the brakes of your car
 
Digital Fleet Management - Why Your Business Need It?
Digital Fleet Management - Why Your Business Need It?Digital Fleet Management - Why Your Business Need It?
Digital Fleet Management - Why Your Business Need It?
 
Ec330B Lc Excavator Volvo Service Repair.pdf
Ec330B Lc Excavator Volvo Service Repair.pdfEc330B Lc Excavator Volvo Service Repair.pdf
Ec330B Lc Excavator Volvo Service Repair.pdf
 
Antique Plastic Traders Company Profile
Antique Plastic Traders Company ProfileAntique Plastic Traders Company Profile
Antique Plastic Traders Company Profile
 
一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理
 
Core technology of Hyundai Motor Group's EV platform 'E-GMP'
Core technology of Hyundai Motor Group's EV platform 'E-GMP'Core technology of Hyundai Motor Group's EV platform 'E-GMP'
Core technology of Hyundai Motor Group's EV platform 'E-GMP'
 
What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...
What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...
What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...
 
What Exactly Is The Common Rail Direct Injection System & How Does It Work
What Exactly Is The Common Rail Direct Injection System & How Does It WorkWhat Exactly Is The Common Rail Direct Injection System & How Does It Work
What Exactly Is The Common Rail Direct Injection System & How Does It Work
 
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out HereWhy Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
 

Chapter2

  • 1. Problem 2.1 Find the current I and the power supplied by the source in the network shown. I 6 V 20 kΩ Suggested Solution 3 6 0.3 mA 20 10 I = = × 3 (6)(0.3 10 ) 1.8 mWP VI − = = × =
  • 2. Problem 2.2 In the circuit shown, find the voltage across the current source and the power absorbed by the resistor. 3 mA 3 kΩ + VCS _ Suggested Solution ( )( )3 3 3 10 3 10 9 VCSV − = × × = ( )( )3 3 10 9 27 mWP VI − = = × =
  • 3. Problem 2.3 If the 10- resistor in the network shown absorbs 2.5 mW, find V .kΩ S VS 10 kΩ Suggested Solution 2 10 k SV P = Ω or ( )( )3 3 2.5 10 10 10 5 VS R − = × = × × =V P
  • 4. Problem 2.4 In the network shown, the power absorbed by xR is 5 mW. Find xR . Rx 1 mA 2 Suggested Solution ( ) 3 2 23 5 10 20 k 0.5 10 x P R I − − × = = = Ω ×
  • 5. Problem 2.5 In the network shown, the power absorbed by xR is 20 mW. Find xR . 2 mA Rx Suggested Solution ( ) 3 2 23 20 10 5 k 2 10 P R I − − × = = = Ω ×
  • 6. Problem 2.6 A model for a standard two D-cell flashlight is shown. Find the power dissipated in the lamp. 1.5 V 1.5 V 1-Ω lamp Suggested Solution 1.5 1.5 3 VlampV = + = ( ) 22 3 9 W 1 lamp lamp lamp V P R = = =
  • 7. Problem 2.7 An automobile uses two halogen headlights connected as shown. Determine the power supplied by the battery if each headlight draws 3 A of current. 12 V Suggested Solution ( )( )12 3 3 72 WSP VI= = + =
  • 8. Problem 2.8 Many years ago a string of Christmas tree lights was manufactured in the form shown in (a). Today the lights are manufactured as shown in (b). Is there a good reason for this change? (a) (b) Suggested Solution First of all, one must recognize the fact that a failed lamp becomes an open circuit. Then: In (a), one faulty lamp would take out the whole string. There would be no way to identify the faulty lamp. In (b), if one lamp fails, the others stay lit. It is easy to identify the faulty lamp.
  • 9. Problem 2.9 Find 1I in the network shown. I1 12 mA 4 mA 2 mA Suggested Solution I1 12 mA 4 mA 2 mA I2 2 0.004 0.002 0.006 AI = + = 1 20.012 I I= + 1 6 mAI⇒ =
  • 10. Problem 2.10 Find 1I and 2I in the circuit shown. I3 = 5 mA IS I4 = 6 mA I1 I6 = 3 mA I2 Suggested Solution By KCL, 1 4 6 mAI I= = Also, 6 2 4I I I+ = or 20.003 0.006I+ = 2 3 mAI⇒ =
  • 11. Problem 2.11 Find xI and yI in the network shown. 4 mA 12 mA 8 mA Ix Iy Suggested Solution 0.012 0.004 xI= + 8 mAxI⇒ = 0.004 0.008yI= + 4 mAyI⇒ = −
  • 12. Problem 2.12 Find xI , yI and zI in the circuit shown. Ix Iy Iz2 mA 12 mA 4 mA Suggested Solution Ix Iy Iz2 mA 12 mA 4 mA 0.012 0.004xI + = 8 mAxI⇒ = − 0.004 0.002 0.012yI + = + 10 mAyI⇒ = 0.004 0.002zI + = 2 mAzI⇒ = −
  • 13. Problem 2.13 Find xI in the circuit shown. 1 mA 4 mA 2 Ix Ix Suggested Solution 1 mA 4 mA 2 Ix Ix 0.001 0.004 2x xI I+ = + 3 mAxI⇒ = −
  • 14. Problem 2.14 Find xI , yI and zI in the network shown. 12 mA 3 mA 2 mA 4 mA Ix Iy Iz Suggested Solution 12 mA 3 mA 2 mA 4 mA Ix Iy Iz 0.003 0.012xI + = 9 mAxI⇒ = 0.012 0.002 0.004yI + + = 10 mAyI⇒ = − 0.004 0.002zI + = 2 mAzI⇒ = −
  • 15. Problem 2.15 Find xI in the circuit shown. 2Ix Ix 2 mA 6 mA Suggested Solution 2Ix Ix 2 mA 6 mA 2 0.002 0.006x xI I+ = + 4 mAxI⇒ =
  • 16. Problem 2.16 Find xI in the network shown. 1 mA 4 Ix Ix 6 mA Suggested Solution 1 mA 4 Ix Ix 6 mA 4 0.001 0.006x xI I+ = + 5 mA 3 xI⇒ =
  • 17. Problem 2.17 Find xV in the circuit shown. 9 V + Vx - 2 Vx Suggested Solution KVL: 9 2xV V− + + = 0 3 VxV⇒ =
  • 18. Problem 2.18 Find V in the circuit shown.bd a b c d 12 V 6 V + 2 V _ + 4 V - Suggested Solution KVL: 12 4 0bdV− + + = 8 VbdV⇒ =
  • 19. Problem 2.19 Find V in the network shown.ad a b c de 4 V 12 V - 3 V + - 2 V + + 3 V - Suggested Solution KVL: 4 3adV− + − = 0 7 VadV⇒ =
  • 20. Problem 2.20 Find V and V in the circuit shown.af ec a b c d efg _ 2 V + - 2 V + + 1 V - 12 V 3 V + 3 V _ - 1 V + Suggested Solution KVL: 2 2afV+ + = 0 4 VafV⇒ = − KVL: 3 3 0ecV + + = 6 VecV⇒ = −
  • 21. Problem 2.21 Find V in the circuit shown.ac a b c d 12 V + 4 V - 3 Vx + Vx = 2 V _ Suggested Solution KVL: 2 12 0acV + − = 10 VacV⇒ =
  • 22. Problem 2.22 Find V and V in the circuit shown.ad ce a b c de 4 Vx 12 V - 1 V + - + Vx = 2 V + 1 V - Suggested Solution KVL: 12 2 1 0adV − + + = 9 VadV⇒ = KVL: 1 12 0ceV + − = 11 VceV⇒ =
  • 23. Problem 2.23 Find V in the network shown.ab a b c 12 V 3 Ω 6 Ω Suggested Solution Using voltage division, 3 12 4 V 3 6 abV   = =  + 
  • 24. Problem 2.24 Find V in the network shown.bd 12 V 3 kΩ 1 kΩ 4 V a b c d Suggested Solution 12 V 3 kΩ 1 kΩ 4 V a b c d I 12 4 2 mA 3000 1000 I − = = + KVL: 4 1000(0.002) 0bdV − − = 6 VbdV⇒ =
  • 25. Problem 2.25 Find xV in the circuit shown. 24 V 6 V 2 kΩ 5 kΩ 2 kΩ + Vx _ Suggested Solution Using voltage division, ( ) 5000 24 6 10 V 2000 5000 2000 xV   = −  + +  =
  • 26. Problem 2.26 Find xV in the circuit shown. _ Vx + 6 V 4 kΩ 6 kΩ 24 V 8 V Suggested Solution Using voltage division, ( ) 4000 6 8 24 4 V 4000 6000 xV   = + −  +  = −
  • 27. Problem 2.27 Find xV in the network shown. + Vx _ 5 Ω 3 Vx 15 Ω 5 V Suggested Solution + Vx _ 5 Ω 3 Vx 15 Ω 5 V I KVL: , where V I5 15 3 0x xI V V− + − + = 5x = Therefore, ( )5 15 3 5 5 0I I I− + − + = 1 AI⇒ = 5 VxV∴ =
  • 28. Problem 2.28 Find V in the network shown.1 + V1 _ + Vx - 5 V 20 kΩ 40 kΩ 2 xV Suggested Solution + V1 _ + Vx - 5 V 20 kΩ 40 kΩ 2 xV I KVL: 20000 40000 5 0 2 xV I I− + + + = , where V I40000x = Therefore, 40000 20000 40000 5 0 2 I I I− + + + = 0.125 mAI⇒ = − 1 5 40000 5 5 5 0 VxV V I= + = + = − + =
  • 29. Problem 2.29 Find the power absorbed by the resistor in the circuit shown.30-kΩ 30 kΩ 12 V 2 Vx 10 kΩ + Vx _ Suggested Solution 30 kΩ 12 V 2 Vx 10 kΩ + Vx _ I KVL: where V I12 30000 2 0x xI V V− + + + = 10000x = Therefore, ( )12 30000 2 10000 10000 0I I− + + + =I 200 AI µ⇒ = ( ) ( ) ( ) 22 6 30k 30000) 200 10 30000 1.2 mWP I − Ω = = × =
  • 30. Problem 2.30 Find oI in the network shown. 12 mA 2 kΩ 6 kΩ 3 kΩ Io Suggested Solution ( ) 1 2000 12 mA 6 mA 1 1 1 2000 6000 3000 oI     = =   + +   
  • 31. Problem 2.31 Find oI in the circuit shown. 120 mA 4 kΩ 4 kΩ 8 kΩ Io Suggested Solution Using current division, ( ) 1 4000 0.120 90 mA 1 1 4000 8000 4000 oI     = =   +  + 
  • 32. Problem 2.32 Find oI in the network shown. 6 kΩ 12 mA 12 kΩ 12 kΩ Io Suggested Solution Using current division, ( ) 1 12000 0.012 3 mA 1 1 1 6000 12000 12000 oI     = − = −   + +   
  • 33. Problem 2.33 Find V in the circuit shown.o 24 mA 8 kΩ 6 kΩ 6 kΩ 8 kΩ + Vo _ Suggested Solution Combining the 8- resistors in parallel yields the following circuit.kΩ 24 mA 4 kΩ 6 kΩ 6 kΩ + Vo _ I Using current division, ( ) 1 6000 6000 0.024 6 mA 1 1 4000 6000 6000 I    += =   +  +  Then, 6000 36 VoV I= =
  • 34. Problem 2.34 Find oI in the network shown. 12 mA 3 kΩ 6 kΩ 4 kΩ 2 kΩ Io Suggested Solution Combining the 3- and resistors in parallel yields the following equivalent circuit.kΩ 6-kΩ 12 mA 2 kΩ 4 kΩ 2 kΩ I1 ( ) ( )1 4000 0.012 6 mA 4000 2000 2000 I   = =  + +   Then, 1 6000 4 mA 6000 3000 oI I   = = + 
  • 35. Problem 2.35 Determine LI in the circuit shown. Ix IL 2 kΩ 6 mA 4 kΩ 2 xI Suggested Solution Ix IL 2 kΩ 6 mA 4 kΩ 2 xI + V1 _ KCL: 0.006 0 2 x x L I I I− + + = , where 1 2000 x V I = and 1 4000 L V I = Therefore, 1 1 0.006 0 2000 4000 4000 V V V − + + =1 1 6 VV⇒ = Then, 6 1.5 mA 4000 LI = =
  • 36. Problem 2.36 Determine LI in the circuit shown. 6 kΩ 6 mA 3 Ix 3 mA 2 kΩ 3 kΩ Ix IL Suggested Solution 6 kΩ 6 mA 3 Ix 3 mA 2 kΩ 3 kΩ Ix IL + V1 _ KCL: 1 0.006 3 0.003 0 6000 x x V I I I− + + + + =L , where 1 2000 x V I = and 1 3000 L V I = . Therefore, 1 1 1 0.006 3 0.003 0 6000 2000 2000 3000 V V V  − + + + + =    1V 1 6 1.2 V 5 V⇒ = = and 1.2 0.4 mA 3000 LI = =
  • 37. Problem 2.37 Find in the circuit shown.ABR A B RAB 2 kΩ 2 kΩ 3 kΩ 6 kΩ 12 kΩ Suggested Solution The network can be redrawn as shown below. A B RAB 2 kΩ 2 kΩ 3 kΩ 6 kΩ 12 kΩ C B A C B A Then, At A-A: 6000 12000 4 k= Ω At B-B: 2000 4000 6 k+ = Ω At C-C: 3000 6000 2 k= Ω and 2000 2000 4 kABR = + = Ω
  • 38. Problem 2.38 Find in the circuit shown.ABR RAB A B 5 kΩ 2 kΩ 2 kΩ 2 kΩ2 kΩ2 kΩ Suggested Solution RAB A B 5 kΩ 2 kΩ 2 kΩ 2 kΩ2 kΩ2 kΩ D C B A D C B A At A-A: 2000 2000 4 k+ = Ω At B-B: 4 2000 4000 k 3 = Ω At C-C: 4000 10 2000 k 3 3 + = Ω At D-D: 10000 2000 1250 3 = Ω Then, 5000 1250 6250ABR = + = Ω
  • 39. Problem 2.39 Find in the network shown.ABR RAB A B 6 kΩ 3 kΩ 3 kΩ 8 kΩ 4 kΩ 5 kΩ 4 kΩ Suggested Solution The network can be redrawn as shown below. RAB A B 6 kΩ 3 kΩ 3 kΩ 8 kΩ4 kΩ 5 kΩ 4 kΩ C B A C B A At A-A: 4000 8000 12 k+ = Ω At B-B: 3000 3000 4000 12000 1 k= Ω At C-C: 5000 1000 6 k+ = Ω Therefore, 6000 6000 3 kABR = = Ω
  • 40. Problem 2.40 Find in the circuit shown.ABR RAB A B 2 kΩ 4 kΩ 4 kΩ 3 kΩ 6 kΩ 12 kΩ Suggested Solution The circuit can be redrawn as shown below. RAB A B 2 kΩ 4 kΩ 4 kΩ 6 kΩ 12 kΩ 3 kΩ A B C C At A: 6000 3000 2 k= Ω At B: 4000 2000 6 k+ = Ω At C-C: 6000 12000 4 k= Ω Then, 2000 4000 4000 10 kABR = + + = Ω
  • 41. Problem 2.41 Find in the network shown.ABR A B RAB 6 kΩ 6 kΩ 6 kΩ 2 kΩ Suggested Solution The 2- resistor is shorted. Therefore, the network reduces to:kΩ A B RAB 6 kΩ 6 kΩ 6 kΩ Then, 6000 6000 6000 2 kABR = = Ω
  • 42. Problem 2.42 Find in the circuit shown.ABR A B RAB 12 kΩ 6 kΩ2 kΩ 4 kΩ 12 kΩ Suggested Solution The circuit maybe redrawn as follows: RAB A B 4 kΩ 2 kΩ 12 kΩ 12 kΩ 6 kΩ A B At A: 12000 6000 4 k= Ω At B: 2000 4000 6 k+ = Ω Then, 4000 6000 12000 2 kABR = = Ω
  • 43. Problem 2.43 Find in the circuit shown.ABR 2 kΩ 2 kΩ 2 kΩ 2 kΩ 2 kΩ2 kΩ 2 kΩ 2 kΩ 4 kΩ 4 kΩ A B RAB Suggested Solution Combining each series pair of resistors, the circuit can be redrawn as follows:2-kΩ ⇒ 4 kΩ 4 kΩ 4 kΩ4 kΩ 4 kΩ 4 kΩ A B RAB 4 kΩ4 kΩ 2 kΩ 2 kΩ A B RAB or hen, 6 kΩ 6 kΩ A B RAB T R 6000 6000 3 kAB = = Ω
  • 44. Problem 2.44 Find the range of resistance for the following resistors: a) with a tolerance of 5%.1 kΩ b) with a tolerance of 2%.470 Ω c) with a tolerance of 10%.22 kΩ Suggested Solution a) Minimum value = ( )( )1 0.05 1 k 950− Ω = Ω Ω Ω Ω Ω Ω Maximum value = ( )( )1 0.05 1 k 1050+ Ω = b) Minimum value = ( )( )1 0.02 470 460.6− Ω = Maximum value = ( )( )1 0.02 470 479.4+ Ω = c) Minimum value = ( )( )1 0.1 22 k 19.8 k− Ω = Maximum value = ( )( )1 0.1 22 k 24.2 k+ Ω =
  • 45. Problem 2.45 Given the network shown, find the possible range of values for the current and power dissipated by the following resistors: a) with a tolerance of 1%.390 Ω b) with a tolerance of 2%.560 Ω I 10 V R Suggested Solution Note that 10 V I R = and ( ) 2 10 V 100 P R R = = . a) Minimum resistor value = ( )( )1 0.01 390 386.1− Ω = Ω Maximum resistor value = ( )( )1 0.01 390 393.9+ Ω = Ω Minimum current value = 10 25.39 mA 393.9 = Maximum current value = 10 25.90 mA 386.1 = Minimum power value = 100 253.9 mW 393.9 = Maximum power value = 100 259 mW 386.1 = b) Minimum resistor value = ( )( )1 0.02 560 548.8− Ω = Ω Maximum resistor value = ( )( )1 0.02 560 571.2+ Ω = Ω Minimum current value = 10 17.51 mA 571.2 = Maximum current value = 10 18.22 mA 548.8 = Minimum power value = 100 175.1 mW 571.2 = Maximum power value = 100 182.2 mW 548.8 =
  • 46. Problem 2.46 Given the circuit shown: a) Find the required value of .R b) Use Table 2.1 to select a standard 10% tolerance resistor for .R c) Calculate the actual value of I . d) Determine the percent error between the actual value of I and that shown in the circuit. e) Determine the power rating for the resistor .R I = 40 mA 510 Ω 100 mA R Suggested Solution a) From KCL, the current in the 510-Ω resistor is 100 mA 40 mA 60 mA− = . From Ohm’s Law, the voltage across the circuit is ( )( ) 30.6 V=510 60 mAΩ . Therefore, the required value of R is ( ) ( )30.6 V 40 mA 765= Ω . b) From Table 2.1, the nearest 10% resistor value is 820 Ω . c) To find the actual value of I, first find the actual voltage across the circuit, which is ( )( )100 mA 510 820 31.44 VΩ Ω = . Then, 31.44 V 38.35 mA 820 I = = Ω . d) The percent error is ( ) ( ) 38.35 40 100 4.14 % 40 − = − . e) Since the power consumption in R is ( ) 2 31.44 V 1.206 W 820 = Ω , a resistor should be used.2-W
  • 47. Problem 2.47 The resistors and shown in the circuit are 11R 2R Ω with a tolerance of 5% and with a tolerance of 10%, respectively. 2 Ω a) What is the nominal value of the equivalent resistance? b) Determine the positive and negative tolerance for the equivalent resistance. Req R1 R2 Suggested Solution a) The nominal value is 1 2 3eqR R R= + = Ω b) The minimum and maximum values of are1R 0.95 Ω and 1.05 Ω , and the minimum and maximum values of are 1.82R Ω and 2.2 Ω . Thus, the minimum and maximum values of are and 1.0 eqR 0.95 1.8 2.75+ = Ω 5 2.2 3.25+ = Ω . The positive and negative tolerances are Positive Tolerance = ( ) ( ) 3.25 3 100 8.33 % 3 − = Negative Tolerance = ( ) ( ) 2.75 3 100 8.33 % 3 − = −
  • 48. Problem 2.48 Find 1I and V in the circuit shown.o 6 V 1 kΩ 12 kΩ 3 kΩ I1 + Vo _ Suggested Solution From Ohm’s Law: 1 6 V 0.5 mA 12 k I − = = − Ω By application of voltage division: ( ) 3 k 6 V 4.5 V 3 k 1 k oV Ω  = − =  Ω + Ω  −
  • 49. Problem 2.49 Find 1I and V in the circuit shown.o 12 V 2 kΩ 6 kΩ 8 kΩ 4 kΩ I1 + Vo _ Suggested Solution Combining resistors ( )6 k 8 k +4 k 4 k Ω Ω Ω = Ω  reduces the network to the following: 12 V 2 kΩ 4 kΩ + V1 _ Using voltage division, then ( )1 4000 12 V 8 V 2000 4000 V   = =  +  . Looking back at the original circuit, 12 V 2 kΩ 6 kΩ 8 kΩ 4 kΩ I1 + Vo _ + 8 V _ Ohm’s Law: 1 8 V 4 mA 6 k 3 I = = Ω Voltage division: ( ) 4000 8 8 V 8000 4000 3 oV   = =  + 
  • 50. Problem 2.50 Find 1I in the circuit shown. 12 mA 10 kΩ 2 kΩ 2 kΩ 2 kΩ 2 kΩ I1 Suggested Solution The circuit can be simplified as follows: 12 mA 10 kΩ 2 kΩ I2 ( ) 4 2 k 2 k +2 k k 3 Ω Ω Ω = Ω Then, ( )2 10000 0.012 9 mA 4000 10000 2000 3 I      = =   + +     and ( ) ( )1 2000 9 mA 3 mA 2000 2000 2000 I   = =  + +  
  • 51. Problem 2.51 Determine V in the network shown.o 14 kΩ 4 kΩ 9 kΩ 12 kΩ 2 kΩ 2 mA + Vo _ Suggested Solution The network can be redrawn as: 14 kΩ 4 kΩ 12 kΩ 2 kΩ 2 mA + Vo _ 9 kΩ A A The equivalent resistance to the left of A-A is ( )14 k 4 k 9 k 12 k 4 kΩ + Ω Ω Ω = Ω . 4 kΩ 2 kΩ 2 mA + Vo _ Then, V .( )( )2 k 4 k 2 mA 12 Vo = − Ω + Ω = −
  • 52. Problem 2.52 Find V in the network shown.o 2 Ω 8 Ω 2 Ω 4 Ω 4 Ω 24 V + Vo _ Suggested Solution The network can be redrawn as: Combining the four resistors on the right-hand side ( ) ( )4 2 8 4 4 Ω + Ω Ω + Ω = Ω  yields: 2 Ω 8 Ω 2 Ω 4 Ω 4 Ω 24 V + Vo _ 2 Ω 4 Ω 24 V I1 and ( )1 24 V 4 A 2 4 I = = Ω + Ω . Then, reconsidering the original circuit,
  • 53. 2 Ω 8 Ω 2 Ω 4 Ω 4 Ω 24 V + Vo _ 4 A I2 ( ) ( ) ( ) ( )2 4 2 4 4 A A 4 2 8 4 3 I  + = =  + + +   and ( ) 4 16 4 A A V 3 3 oV   = − = −   
  • 54. Problem 2.53 Find oI in the circuit shown. 9 kΩ 4 kΩ 6 kΩ 6 kΩ 3 kΩ24 V Io Suggested Solution The circuit can be redrawn as: 9 kΩ 4 kΩ 6 kΩ 6 kΩ 3 kΩ24 V I2 Io I1 B A B A At A-A: 6000 3000 2 k= Ω At B-B: ( )6000 4000 2000 3 k+ = Ω The circuit simplifies to: 9 kΩ 3 kΩ24 V I1 Then, ( )1 2 24 6000 2 mA 1 mA 9000 3000 6000 4000 2000 I I   = = ⇒ = =  + + +   1I and 2 3000 1 mA 3000 6000 3 oI I   = =  +  .
  • 55. Problem 2.54 Find V in the circuit shown.o 2 kΩ 2 kΩ4 kΩ 12 kΩ 3 kΩ 6 mA + Vo _ Suggested Solution 2 kΩ 2 kΩ4 kΩ 12 kΩ 3 kΩ 6 mA + Vo _ A B A B At A-A: ( )2000 4000 12000 4 k+ = Ω At B-B: ( )4000 2000 3000 2 k+ = Ω Then, V .( )( )2 k 6 mA 12 Vo = Ω =
  • 56. Problem 2.55 Find oI in the network shown. 1 kΩ 10 kΩ 2 kΩ 6 kΩ 3 kΩ 4 kΩ 4 kΩ 6 kΩ 12 V Io Suggested Solution Redrawing the network: 1 kΩ 10 kΩ 2 kΩ 6 kΩ3 kΩ4 kΩ4 kΩ 6 kΩ12 V Io D C B A I1 D C B A At A-A: 3000 6000 2 k= Ω At B-B: ( )4000 2000 2000 2 k+ = Ω At C-C: ( )6000 10000 2000 4 k+ = Ω At D-D: 4000 4000 2 k= Ω 1 12 4 mA 1000 2000 I = = + Using current division, 1 4000 2 mA 4000 4000 oI I   = = + 
  • 57. Problem 2.56 Find V in the network shown.o 6 kΩ 9 kΩ 8 kΩ 4 kΩ4 kΩ 12 mA + Vo _ Suggested Solution 6 kΩ 9 kΩ 8 kΩ 4 kΩ4 kΩ 12 mA + Vo _ I1 I2 A A At A-A: ( )4000 8000 4000 3 k+ = Ω Using current division, ( )1 6000 0.012 4 mA 6000 9000 3000 I   = =  + +   Again using current division, ( )2 1 4000 1 mA 4000 8000 4000 I I   = =  + +   Then, V .24000 4 Vo I= =
  • 58. Problem 2.57 Find oI in the circuit shown. 6 kΩ 6 kΩ 2 kΩ 4 kΩ 12 V Io 3 kΩ Suggested Solution The circuit can be redrawn as: ⇒12 V At A-A: ( )2000 2000 4000 2 k+ = Ω 6 kΩ 6 kΩ 2 kΩ 4 kΩ Io 3 kΩ 6 kΩ 2 kΩ 2 kΩ 4 kΩ 12 V Io I1 A A 1 12 1.5 mA 6000 2000 I = = + Using current division, ( ) ( ) 1 2000 2000 0.75 mA 2000 2000 4000 oI I  + = =  + +  
  • 59. Problem 2.58 If V in the network shown, find V .4 Vo = S VS 8 kΩ 4 kΩ + Vo = 4 V _ Suggested Solution VS 8 kΩ 4 kΩ + Vo = 4 V _ I 4 1 mA 4000 4000 oV I = = = Then, V I .8000 8 4 12 VS oV= + = + =
  • 60. Problem 2.59 If the power absorbed by the resistor in the network shown is 36 mW, find4-kΩ oI . 9 kΩ 12 kΩ 4 kΩ Io Suggested Solution 9 kΩ 12 kΩ 4 kΩ Io + V1 _ 2 1 4 k 136 mW 12 V 4 k V P VΩ = = ⇒ = Ω 12 V 1 mA 12 k oI = = Ω
  • 61. Problem 2.60 If the power absorbed by the resistor in the circuit shown is 36 mW, find V .4-kΩ S VS 9 kΩ 12 kΩ 4 kΩ Suggested Solution VS 9 kΩ 12 kΩ 4 kΩ + V1 _ I2 I1 Io 2 1 4 k 136 mW 12 V 4000 V P VΩ = = ⇒ = 1 1 mA 12 k o V I = = Ω 1 1 3 mA 4 k V I = = Ω 2 1 1 mA 3 mA 4 mAoI I I= + = + = ( ) 2 19 k 48 VSV I V= Ω + =
  • 62. Problem 2.61 In the network shown, the power absorbed by the 4-Ω resistor is 100 W. Find V .S VS 3 Ω 4 Ω 7 Ω 3 Ω Suggested Solution VS 3 Ω 4 Ω 7 Ω 3 Ω + V1 _ I1 I2I3 ( )2 4 1 14 100 W 5 AP I IΩ = Ω = ⇒ = 1 14 20V I= = V 1 2 2 A 7 3 V I = = Ω + Ω 3 1 2 7 AI I I= + = 13 21 20 4S SV I V= + = + = 1 V
  • 63. Problem 2.62 In the network shown, V . Find6 Vo = SI . 4 kΩ 8 kΩ 4 kΩ 2 kΩ IS + Vo _ Suggested Solution 4 kΩ 8 kΩ 4 kΩ 2 kΩ IS + Vo _ + VS _ I1I2 1 6 3 mA 2 k 2000 oV I = = = Ω ( ) 14 k 12 6 18 VS oV I V= Ω + = + = 2 18 1.5 mA 8 k 4 k 12000 SV I = = = Ω + Ω 1 2 3 mA 1.5 mA 4.5 mASI I I= + = + =
  • 64. Problem 2.63 In the circuit shown, 4 mAI = . Find V .S 2 kΩ 6 kΩ 5 kΩ 3 kΩVS I Suggested Solution 2 kΩ 6 kΩ 5 kΩ 3 kΩVS I + V1 _ I2 I1 ( )1 6 k 24 VV I= Ω = 1 1 24 3 mA 5 k 3 k 8000 V I = = = Ω + Ω 2 1 0.004 0.003 7 mAI I I= + = + = ( ) 2 12 k 14 24 38 VSV I V= Ω + = + =
  • 65. Problem 2.64 In the circuit shown, . Find2 mAoI = SI . 4 kΩ 4 kΩ 2 kΩ 6 kΩ 1 kΩ 2 kΩ IS Io Suggested Solution 4 kΩ 4 kΩ 2 kΩ 6 kΩ 1 kΩ 2 kΩIS Io + V1 _ + V2 - + V3 _ I3 I2 I1 ( )1 6 k 12 VoV I= Ω = 1 1 12 4 mA 1 k 2 k 3000 V I = = = Ω + Ω 2 1 0.002 0.004 6 mAoI I I= + = + = ( )2 22 k 12 VV I= Ω = 3 2 1 12 12 24 VV V V= + = + = 3 3 24 3 mA 4 k 4 k 8000 V I = = = Ω + Ω 3 2 0.003 0.006 9 mASI I I= + = + =
  • 66. Problem 2.65 In the network shown, V . Find V .1 12 V= S 2 kΩ 6 kΩ 4 kΩ 4 kΩ 1 kΩ 3 kΩVS + V1 - Suggested Solution 2 kΩ 6 kΩ 4 kΩ 4 kΩ 1 kΩ 3 kΩVS + V1 -+ V2 _ A A I2 I1I3 At A-A: ( )4000 1000 3000 2 k+ = Ω 1 1 12 3 mA 4 k 4000 V I = = = Ω ( )2 1 12 k 12 6 18 VV V I= + Ω = + = 2 2 18 3 mA 6 k 6000 V I = = = Ω 3 1 2 0.003 0.003 6 mAI I I= + = + = ( ) 3 22 k 12 18 30 VSV I V= Ω + = + =
  • 67. Problem 2.66 In the circuit shown, V . Find2 Vo = SI . IS 10 Ω 12 Ω 2 Ω 3 Ω 8 Ω 4 Ω + Vo _ Suggested Solution IS 10 Ω 12 Ω 2 Ω 3 Ω 8 Ω 4 Ω + Vo _ + V1 _ + V2 _ I1 I2 I3I4 1 2 0.5 A 4 4 oV I = = = Ω ( )1 18 6 VoV I V= Ω + = 1 2 2 A 3 V I = = Ω 3 2 1 2.5 AI I I= + = ( )2 3 12 11 VV I V= Ω + = 2 4 0.5 A 10 12 V I = = Ω + Ω 3 4 2.5 0.5 3 ASI I I= + = + =
  • 68. Problem 2.67 In the network shown, V . Find6 Vo = SI . IS 9 kΩ 3 kΩ 2 kΩ 1 kΩ 5 kΩ + Vo _ Suggested Solution IS 9 kΩ 3 kΩ 2 kΩ 1 kΩ 5 kΩ + Vo _ + V1 - + V2 _ I1 I2 I3 I4 1 6 3 mA 2 k 2000 oV I = = = Ω 2 6 1 mA 1 k 5 k 6000 oV I = = = Ω + Ω 3 1 2 0.003 0.001 4 mAI I I= + = + = ( )1 33 k 12 VV I= Ω = 2 1 12 6 18 VoV V V= + = + = 2 4 18 2 mA 9 k 9000 V I = = = Ω 3 4 0.004 0.003 6 mASI I I= + = + =
  • 69. Problem 2.68 In the circuit shown, . Find2 AoI = SI . 8 Ω 4 Ω 4 Ω3 ΩIS Io 6 V Suggested Solution 8 Ω 4 Ω 4 Ω3 ΩIS Io 6 V + V1 _ + V2 _ I1I2I3 ( )1 3 6 VoV I= Ω = 1 1 6 1.5 A 4 4 V I = = = Ω 2 1 2 1.5 3.5 AoI I I= + = + = 2 16 V 6 6 12 VV V= + = + = 2 3 12 1 A 8 4 12 V I = = Ω + Ω = 2 3 3.5 1 4.5 ASI I I= + = + =
  • 70. Problem 2.69 If in the circuit shown, find4 mAoI = SI . 10 kΩ 1 kΩ 4 kΩ 2 kΩ 12 V IS Io Suggested Solution 10 kΩ 1 kΩ 4 kΩ 2 kΩ 12 V IS Io + V1 _ + V2 - + V3 _ I1 I2 I3 ( )1 4 k 12 V 16 12 4 VoV I= Ω − = − = 1 1 4 2 mA 2 k 2000 V I = = = Ω 2 1 0.004 0.002 6 mAoI I I= + = + = ( )2 21 k 6 VV I= Ω = 3 2 1 6 4 10 VV V V= + = + = 3 3 10 1 mA 10 k 10000 V I = = = Ω 2 3 0.006 0.001 7 mASI I I= + = + =
  • 71. Problem 2.70 Find oI in the circuit shown. 12 kΩ 2 kΩ 12 kΩ 12 kΩ 8 kΩ I1 = 5 mA Io 9 mA Suggested Solution 12 kΩ 2 kΩ 12 kΩ 12 kΩ 8 kΩ I1 = 5 mA Io 9 mA _ V1 + + V3 - _ V2 + I2 I3 1 2 29 mA 4 mAI I I+ = ⇒ = ( )1 112 k 60 VV I= Ω = ( )2 212 k 48 VV I= Ω = 3 1 2 60 48 12 VV V V= − = − = 3 3 12 1 mA 12 k 12000 V I = = = Ω 1 3 0.005 0.001 6 mAoI I I= + = + =
  • 72. Problem 2.71 Find V in the circuit shown.o 12 kΩ 4 kΩ 6 kΩ 18 kΩ 6 kΩ 42 VI1 = 4 mA + Vo _ Suggested Solution 12 kΩ 4 kΩ 6 kΩ 18 kΩ 6 kΩ 42 VI1 = 4 mA + Vo _ + V3 - _ V2 + + V1 _ I3 I2 ( )1 14 k 16 VV I= Ω = 2 142 V 42 16 26 VV V= − = − = 2 2 26 13 mA 6 k 6000 3 V I = = = Ω 3 2 1 13 1 mA 4 mA mA 3 3 I I I= − = − = ( )3 312 k 4 VV I= Ω = 1 3 16 4 12 VoV V V= − = − =
  • 73. Problem 2.72 Find the power absorbed by the network shown. 12 kΩ 6 kΩ 6 kΩ 2 kΩ 18 kΩ 21 V Suggested Solution Redrawing the network: Y∆ → ⇒ 12 kΩ 2 kΩ 6 kΩ 18 kΩ 6 kΩ 21 V 3 kΩ 2 kΩ 6 kΩ 6 kΩ 2 kΩ 21 V The equivalent resistance seen by the source is: ( ) ( )2 k 6 k 6 k 2 k 3 k 4 k 3 k 7 k eqR  = Ω + Ω Ω + Ω +  = Ω + Ω = Ω Ω Then, ( ) 2 21 V 441 63 mA 7000eq P R = = =
  • 74. Problem 2.73 Find oI in the circuit shown. 2 Ω 3 Ω 4 Ω 5 Ω 18 Ω 12 Ω 9 Ω 36 V Io 12 Ω Suggested Solution Note that the four right-most resistors can be combined as ( )3 4 5 12 6Ω + Ω + Ω Ω = Ω . Then the circuit can be redrawn as: Y∆ → ⇒ Io 36 V 9 Ω 3 Ω 2 Ω 2 Ω 6 Ω I Io 36 V 9 Ω 18 Ω 12 Ω 2 Ω 6 Ω ( ) ( ) 36 V 4 A 9 3 2 2 6 I = =  Ω + Ω Ω + Ω + Ω  ( ) ( ) ( ) 9 3 3 A 9 3 2 2 oI I  + = =  + + +  
  • 75. Problem 2.74 Find oI in the circuit shown. Suggested Solution Applying the transformation to the three 12-Y∆ → Ω resistors yields: 12 Ω 5 Ω 12 Ω 12 Ω 14 Ω 12 V Io 5 Ω 14 Ω 12 V Io 4 Ω 4 Ω 4 Ω Ix ( ) ( ) ( ) 4 14 4 5 4 14 o xI I  + = −   + + +   where ( ) ( ) 12 V 12 1.2 A 104 4 5 4 14 xI = =  Ω + Ω + Ω Ω + Ω  = 18 12 4 0.80 A 27 10 5 oI∴ = − = − ≈ −i
  • 76. Problem 2.75 Find oI in the circuit shown. Io 12 Ω 6 Ω 4 Ω 18 Ω 6 Ω 12 A Suggested Solution Converting the to a Y yields the circuit:∆ Io 4 Ω 6 Ω 12 A 3 Ω 2 Ω 6 Ω ( ) ( ) ( ) ( ) 2 4 12 A 4 A 2 4 6 6 oI  + = =  + + +  
  • 77. Problem 2.76 Find oI in the circuit shown. 4 Ω 4 Ω 4 Ω 12 Ω 12 Ω Io 12 A Suggested Solution Applying the transformation:Y → ∆ 12 A ⇒ 12 Ω 12 Ω 12 Ω Io 12 Ω 12 Ω I Io 12 A 12 Ω 12 Ω 12 Ω 12 Ω 12 Ω The circuit can be further simplified to: I 12 A 12 Ω 12 Ω 12 A 6 A 2 I = = 3 A 2 o I I = =
  • 78. Problem 2.77 Find oI in the circuit shown. 12 Ω 12 Ω 6 Ω 6 Ω 6 Ω 6 Ω 12 V Io Suggested Solution Combining the two 12-Ω resistors yields: 6 Y∆ → ⇒ 6 Ω Ω Ω 6 Ω 6 Ω 12 V Io 6 Ω 6 Ω 2 Ω 2 Ω 12 V Io 2 Ω 6 The circuit can be further simplified to the following: ⇒ I 12 V o 2 Ω 8 Ω 8 Ω 12 V Io 2 Ω 4 Ω 12 V 2 A 6 oI = = Ω
  • 79. Problem 2.78 Find V in the circuit shown.o 12 V + Vo _ IS 2000 IS 3 kΩ 5 kΩ Suggested Solution KVL: 12 3000 2000 5000 0S S SI I I− + − + = 2 mASI⇒ = 5000 10 Vo SV I= =
  • 80. Problem 2.79 Find V in the network shown.o 12 V 2 kΩ 2 Vo 2 kΩ + Vo _ Suggested Solution 12 V 2 kΩ 2 Vo 2 kΩ + Vo _ I KVL: where V I12 2000 2 0o oI V V− + + + = 2000o = Therefore, 12 2000 4000 2000 0I I I− + + + = 1.5 mAI⇒ = ( )3 2000 1.5 10 3 VoV − = × =
  • 81. Problem 2.80 Find V in the network shown.o 5 mA 2 kΩ 1 kΩ2 Ix Ix + Vo _ Suggested Solution KCL: 0.005 2 0 2000 1000 o o x V V I− + + + = where 2 k o x V I = Ω Therefore, 0.005 2 0 2 V 2000 2000 1000 o o o o V V V V− + + + = ⇒ =
  • 82. Problem 2.81 Find oI in the network shown. Io + Vx _ 5 A 3 Vx6 Ω 4 Ω 8 Ω Suggested Solution Io + Vx _ 5 A 3 Vx6 Ω 4 Ω 8 Ω + V1 _ KCL: 1 1 5 3 0 6 8 4 x V V V+ − + = + where 1 1 4 8 4 3 x V  V V= =  +  Therefore, 1 1 1 5 3 0 6 12 3 V V V + − + = 1 4 VV⇒ = 1 4 2 A 6 6 3 o V I = = = Ω
  • 83. Problem 2.82 Find V in the circuit shown.o 6 kΩ 2 kΩ 1 kΩ + Vo _ 4 mA 2000 oV Suggested Solution 6 kΩ 2 kΩ 1 kΩ + Vo _ 4 mA 2000 oV + V1 _ KCL: 1 1 0.004 0 6000 2000 2000 1000 oVV V − − + = + where 1 1 1000 2000 1000 3 o V  V V= =  +  Therefore, 3 3 0.004 0 6000 2000 3000 o o oV V V − − + = 4 VoV⇒ =
  • 84. Problem 2.83 A single-stage transistor amplifier is modeled as shown. Find the current in the load LR . + VS = 250 mV _ RS = 1 kΩ Rb = 250 Ω Ib 110 Ib Ro = 4 kΩ RL = 400 Ω Io Suggested Solution 0.25 0.2 mA 1000 250 S b S b V I R R = = = + + ( ) 4000 110 100 20 mA 4000 400 o b bI I I   = − = − = −  + 
  • 85. Problem 2.84 A typical transistor amplifier is shown. Find the amplifier gain G (i.e., the ratio of the output voltage to the input voltage). 250 mVSV = 5 3.5 10 bI× 100 Ω 5 kΩ 500 Ω Ib 5 kΩ 300 Ω + Vo _ Suggested Solution 250 mVSV = 5 3.5 10 bI× 100 Ω 5 kΩ 500 Ω Ib 5 kΩ 300 Ω + Vo _ I1 ( )1 0.25 451 A 554.5100 5 k 500 SV I µ= = Ω + Ω Ω = 1 5000 409.8 A 5000 500 bI I µ   = =  +  ( )5300 3.5 10 8.12 V 300 5000 o bV I   = − × = −  +  8.12 32.5 0.250 o S V G V − = ≈ −
  • 86. Problem 2.85 For the network shown, choose the values of and such that V is maximized. What is the resulting ratio, inR oR o o SV V ? VS RS Rin Ro RLµ Vin + Vin _ + Vo _ Suggested Solution in in S S in R V V R R   =   +  ( ) inL L o in o L S in o L RR R V V R R R R R R µ µ     = =    + +    SV   +  Therefore, o in L S S in o V R R V R R R R µ   =   + +  L    Clearly, to maximize o S V V , we must maximize . This is becauseinR in S i R R R+ n is always less than 1, but gets closer and closer to 1 as is made larger and larger.inR On the other hand, to maximize o S V V , we must minimize . This is becauseoR L o L R R R+ is always less than 1, but gets closer and closer to 1 as is made smaller and smaller.oR In the limit, 0 0 lim lim lim lim 1 1 in o in o o in L R R R R S S in o L V R R V R R R R µ µ µ →∞ → →∞ →      = =     + +     × × =
  • 87. Problem 2.86 In many amplifier applications we are concerned not only with voltage gain, but also with power gain. ( ) ( )Power gain = = power delivered to the load power delivered by the inputpA Find the power gain for the circuit shown, where 50 kLR = Ω . VS + V _ 8 kinR = Ω 2 kSR = Ω V/100 100 koR = Ω 50 kLR = Ω + Vo _ Suggested Solution VS + V _ 8 kinR = Ω 2 kSR = Ω V/100 100 koR = Ω 50 kLR = Ω + Vo _ IS Io 8000 0.8 8000 2000 S SV V   = =  +  V 3100,000 5.33 10 100,000 50,000 100 o S V I V−   = − = − ×   +    ( ) ( ) 22 3 5.33 10 50,000) 1.422load o L S SP I R V V− = = × = 2 2 8000 2000 10,000 S S in S S S V V P V I V   = = = +  2 3 2 1.422 14.22 10 10,000 load S p in S P V A P V = = = ×      
  • 88. Problem 2.87 Find the power absorbed by the 10- resistor in the circuit shown.kΩ 11 mA 2 kΩ 4 kΩ 4 kΩ 3 kΩ 10 kΩ + Vx _ + Vo _ 2000 xV Suggested Solution Combining the two resistors in parallel yields the following simplified circuit:4-kΩ 11 mA 2 kΩ 2 kΩ 3 kΩ 10 kΩ + Vx _ + Vo _ 2000 xV 0.011 0 2 k 2000 2 k 3 k 10 k o x o oV V V V − + + + + = Ω Ω + Ω Ω where 3000 0.6 2000 3000 x o o   = =  +  V V V Therefore, 3 0.011 0 10 V 2000 10,000 5000 10,000 o o o o o V V V V V− + + + + = ⇒ = ( ) 22 10 k 10 10 mW 10 k 10,000 oV P Ω = = = Ω
  • 89. Problem 2.88 Find the power absorbed by the 12- resistor in the circuit shown.kΩ 6 mA 6 kΩ 3 Io 6 kΩ 3 kΩ 4 kΩ 12 kΩ Io + Vo _ Suggested Solution 6 mA 6 kΩ 3 Io 6 kΩ 3 kΩ 4 kΩ 12 kΩ Io + Vo _ I1 ( ) 0.006 3 0 6 k 12 k4 k 6 k 3 k o o o V V I− + + + + = Ω ΩΩ + Ω Ω oV where 1 1 6000 2 6000 3000 3 oI I I   = =  +  ( )1 2 6000 3 6000 90004 k 6 k 3 k o o o o V V V I I   = = ⇒ =   Ω + Ω Ω   oV = Then, substituting: 0.006 3 0 8 V 6000 9000 6000 12,000 o o o o o V V V V V   − + + + + = ⇒ =    2 0 12 k 64 5.33 mW 12 k 12,000 V P Ω = = = Ω
  • 90. Problem 2FE-1 Find the power generated by the source in the network shown. 5 kΩ 6 kΩ 18 kΩ 12 kΩ 4 kΩ 6 kΩ 120 V Suggested Solution Applying the transformation yields:Y∆ → ⇒ 5 kΩ 4 kΩ 6 kΩ 120 V 3 kΩ 2 kΩ 6 kΩ 5 kΩ 120 V 3 kΩ 4 kΩ I 120 V 10 mA 12 k I = = Ω ( )120 V 120 0.010 1.2 WP I= = × =
  • 91. Problem 2FE-2 Find the equivalent resistance of the circuit shown at the terminals -A B . A B RAB 12 kΩ 6 kΩ 6 kΩ 4 kΩ 12 kΩ 12 kΩ 12 kΩ Suggested Solution Combining resistors, 12 k 6 k 4 kΩ Ω = Ω ( )12 k 12 kΩ 12 kΩ 8 kΩ + = Ω The circuit is now reduced to: A B RAB 4 kΩ 6 kΩ 4 kΩ 8 kΩ and further to: A B RAB 4 kΩ ( )6 k 8 k 4 k 4 kΩ Ω+ Ω = Ω Therefore, 4 k 4 k 8 kABR = Ω + Ω = Ω
  • 92. Problem 2FE-3 Find the voltage V in the network shown.o 24 mA 1 kΩ 2 kΩ 6 kΩ3 kΩ 6 kΩ 12 kΩ + Vo _ Suggested Solution Combining resistors: 1 k 3 k 4 kΩ + Ω = Ω 6 k 12 k 4 kΩ Ω = Ω The network is now reduced to: 24 mA 2 kΩ 6 kΩ4 kΩ 4 kΩ + Vo _ I Using current division, ( ) ( ) 4000 24 mA 6 mA 4000 2000 6000 4000 I   = =  + + +   ( )6 k 36 VoV I= Ω =
  • 93. Problem 2FE-4 Find the current oI in the circuit shown. Io 3 kΩ 3 kΩ 6 kΩ6 kΩ 6 kΩ 12 kΩ 4 kΩ 12 V Suggested Solution Combining resistors: 3 k 6 k 9 kΩ + Ω = Ω 3 k 6 k 2 kΩ Ω = Ω Thus, the circuit simplifies to: ⇒ ⇒9 k 2 kΩ 6 kΩ 9 kΩ 12 kΩ 4 kΩ 12 V Ix I 18 kΩ 6 kΩ Ω 12 V Ix I 6 kΩ 12 V 6 kΩ I 12V 1 mA 6 k 6 k I = − = − Ω + Ω 9000 1 mA 9000 18,000 3 xI I   = =  +  − 6000 2 mA 3000 6000 9 o xI I   = =  +  −