Cellular Respiration copyright cmassengale
Cellular Respiration A  catabolic, exergonic, oxygen (O 2 )   requiring process that uses  energy   extracted from  macromolecules (glucose)  to produce  energy (ATP)   and  water (H 2 O). C 6 H 12 O 6  + 6O 2     6CO2 + 6H 2 O +  energy copyright cmassengale glucose ATP
Question: In what kinds organisms does cellular respiration take place? copyright cmassengale
Plants and Animals Plants - Autotrophs :  self-producers. Animals - Heterotrophs :  consumers. copyright cmassengale
Mitochondria Organelle  where  cellular respiration   takes place. copyright cmassengale Inner membrane Outer membrane Inner membrane space Matrix Cristae
Redox Reaction Transfer  of  one  or  more electrons   from  one reactant   to  another . Two types: 1. Oxidation 2. Reduction copyright cmassengale
Oxidation Reaction The  loss  of  electrons  from a  substance . Or the  gain  of  oxygen . C 6 H 12 O 6  + 6O 2   6CO 2  + 6H 2 O +  energy copyright cmassengale glucose ATP Oxidation
Reduction Reaction The  gain  of  electrons  to a  substance . Or the  loss  of  oxygen . copyright cmassengale glucose ATP C 6 H 12 O 6  + 6O 2    6CO 2  + 6H 2 O +  energy Reduction
Breakdown of Cellular Respiration Four main parts (reactions). 1.  Glycolysis (splitting of sugar) a.  cytosol, just outside of mitochondria. 2.  Grooming Phase a.  migration from cytosol to matrix. copyright cmassengale
Breakdown of Cellular Respiration 3.  Krebs Cycle (Citric Acid Cycle) a.  mitochondrial matrix 4.  Electron Transport Chain (ETC) and Oxidative Phosphorylation a.  Also called  Chemiosmosis b.  inner mitochondrial membrane. copyright cmassengale
1. Glycolysis Occurs in the   cytosol  just outside of mitochondria. Two phases (10 steps): A.  Energy investment phase a.  Preparatory phase   (first 5 steps) . B.  Energy yielding phase a.  Energy payoff phase  (second 5 steps) . copyright cmassengale
1. Glycolysis A.  Energy Investment Phase: copyright cmassengale Glucose  (6C) Glyceraldehyde phosphate  (2 - 3C) (G3P or GAP) 2 ATP  -  used 0 ATP  -  produced 0 NADH -  produced 2ATP 2ADP + P C-C-C-C-C-C C-C-C C-C-C
1. Glycolysis B.  Energy Yielding Phase copyright cmassengale Glyceraldehyde phosphate  (2 - 3C) (G3P or GAP) Pyruvate  (2 - 3C) (PYR) 0 ATP  -  used 4 ATP  -  produced 2 NADH -  produced 4ATP 4ADP + P C-C-C  C-C-C C-C-C  C-C-C GAP GAP (PYR) (PYR)
1. Glycolysis Total Net Yield 2 - 3C-Pyruvate (PYR) 2 - ATP  (Substrate-level Phosphorylation) 2 - NADH copyright cmassengale
Substrate-Level Phosphorylation ATP  is formed when an  enzyme  transfers a  phosphate group   from a  substrate  to  ADP . Example: PEP to PYR copyright cmassengale Enzyme Substrate O - C=O C-O- CH 2 P P P Adenosine ADP (PEP) P P P ATP O - C=O C=O CH 2 Product (Pyruvate) Adenosine
Fermentation  Occurs in  cytosol  when  “NO Oxygen”   is present  (called anaerobic). Remember:  glycolysis  is part of  fermentation . Two Types: 1. Alcohol Fermentation 2.  Lactic Acid Fermentation copyright cmassengale
Alcohol Fermentation Plants and Fungi    beer and wine copyright cmassengale glucose Glycolysis C C C C C C C C C 2 Pyruvic acid 2ATP 2ADP + 2 2NADH P 2 NAD + C C 2 Ethanol 2CO 2 released 2NADH 2 NAD +
Alcohol Fermentation End Products: Alcohol fermentation 2 - ATP  ( substrate-level phosphorylation) 2 - CO 2 2 - Ethanol’s copyright cmassengale
Lactic Acid Fermentation Animals (pain in muscle after a workout). copyright cmassengale 2 Lactic acid 2NADH 2 NAD + C C C Glucose Glycolysis C C C 2 Pyruvic acid 2ATP 2ADP + 2 2NADH P 2 NAD + C C C C C C
Lactic Acid Fermentation End Products: Lactic acid fermentation 2 - ATP  ( substrate-level phosphorylation) 2 - Lactic Acids copyright cmassengale
2. Grooming Phase Occurs when  Oxygen is present (aerobic). 2 Pyruvate (3C)   molecules are transported through the  mitochondria membrane   to the  matrix  and is converted to  2 Acetyl CoA (2C)   molecules. copyright cmassengale Cytosol C C C 2 Pyruvate 2 CO 2 2 Acetyl CoA C-C 2NADH 2 NAD + Matrix
2. Grooming Phase End Products:  grooming phase 2 - NADH 2 - CO 2 2- Acetyl CoA (2C) copyright cmassengale
3. Krebs Cycle (Citric Acid Cycle) Location:   mitochondrial matrix . Acetyl CoA (2C)   bonds to  Oxalacetic acid (4C - OAA)   to make  Citrate (6C) . It takes  2 turns   of the krebs cycle to  oxidize   1 glucose   molecule. copyright cmassengale Mitochondrial Matrix
3. Krebs Cycle (Citric Acid Cycle) copyright cmassengale Krebs Cycle 1 Acetyl CoA (2C) 3 NAD + 3 NADH FAD FADH 2 ATP ADP + P (one turn) OAA (4C) Citrate (6C) 2 CO 2
3. Krebs Cycle (Citric Acid Cycle) copyright cmassengale Krebs Cycle 2 Acetyl CoA (2C) 6 NAD + 6 NADH 2 FAD 2 FADH 2 2 ATP 2 ADP + P (two turns) OAA (4C) Citrate (6C) 4 CO 2
3. Krebs Cycle (Citric Acid Cycle) Total net yield   ( 2 turns   of krebs cycle) 1. 2 - ATP  (substrate-level phosphorylation) 2. 6 - NADH 3. 2 - FADH 2 4. 4 - CO 2 copyright cmassengale
4.  Electron Transport Chain (ETC) and   Oxidative Phosphorylation ( Chemiosmosis ) Location:   inner mitochondrial membrane. Uses  ETC (cytochrome proteins)  and  ATP   Synthase   (enzyme) to make  ATP . ETC   pumps  H +  (protons)  across innermembrane ( lowers pH in innermembrane space ). copyright cmassengale Inner Mitochondrial Membrane
4.  Electron Transport Chain (ETC) and   Oxidative Phosphorylation ( Chemiosmosis ) The   H+   then move via  diffusion   (Proton Motive Force)  through  ATP Synthase  to make  ATP . All  NADH  and  FADH 2   converted to  ATP  during this stage of  cellular respiration . Each  NADH  converts to  3 ATP . Each  FADH 2  converts to  2 ATP  (enters the ETC at a lower level than  NADH ). copyright cmassengale
4.  Electron Transport Chain (ETC) and   Oxidative Phosphorylation ( Chemiosmosis ) copyright cmassengale Inner membrane Outer membrane Inner membrane space Matrix Cristae
4.  ETC and Oxidative Phosphorylation ( Chemiosmosis for  NADH ) copyright cmassengale NADH +  H + ATP Synthase 1H + 2H + 3H + higher  H + concentration H + ADP +  ATP lower  H + concentration H + (Proton Pumping) P E T C NAD+ 2H +  +  1/2 O 2 H 2 O Intermembrane Space Matrix Inner Mitochondrial Membrane
4.  ETC  and  Oxidative Phosphorylation (Chemiosmosis for  FADH 2 ) copyright cmassengale FADH 2 +  H + ATP Synthase 1H + 2H + higher  H + concentration H + ADP +  ATP lower  H + concentration H + (Proton Pumping) P E T C FAD+ 2H +  +  1/2 O 2 H 2 O Intermembrane Space Matrix Inner Mitochondrial Membrane
TOTAL ATP YIELD 1.  04  ATP  -  substrate-level phosphorylation 2.  34  ATP  -  ETC &  oxidative phosphorylation 38  ATP  - TOTAL YIELD copyright cmassengale ATP
Eukaryotes (Have Membranes) Total  ATP  Yield 02  ATP  -  glycolysis   (substrate-level phosphorylation) 04  ATP  -  converted from  2 NADH  -  glycolysis 06  ATP   -  converted from  2 NADH  -  grooming phase 02  ATP  -  Krebs cycle  (substrate-level phosphorylation) 18  ATP   -  converted from  6   NADH  -  Krebs cycle 04   ATP  -  converted from  2 FADH 2   -  Krebs cycle 36  ATP  - TOTAL copyright cmassengale
Maximum  ATP  Yield for Cellular Respiration  (Eukaryotes) 36 ATP (maximum per glucose) copyright cmassengale Glucose Glycolysis 2ATP  4ATP  6ATP  18ATP  4ATP  2ATP 2 ATP (substrate-level phosphorylation) 2NADH 2NADH 6NADH Krebs Cycle 2FADH 2 2 ATP (substrate-level phosphorylation) 2 Pyruvate 2 Acetyl CoA ETC and Oxidative Phosphorylation Cytosol Mitochondria
Prokaryotes (Lack Membranes) Total ATP Yield 02  ATP  -  glycolysis   (substrate-level phosphorylation) 06   ATP  -  converted from  2 NADH  -  glycolysis 06  ATP   -  converted from  2 NADH  -  grooming phase 02  ATP  -  Krebs cycle  (substrate-level phosphorylation) 18  ATP   -  converted from  6   NADH  -  Krebs cycle 04   ATP  -  converted from  2 FADH 2   -  Krebs cycle 38  ATP  - TOTAL copyright cmassengale
Question: In addition to glucose, what other various food molecules are use in Cellular Respiration? copyright cmassengale
Catabolism of Various Food Molecules Other organic molecules used for fuel. 1.  Carbohydrates:  polysaccharides 2.   Fats:  glycerol’s and fatty acids 3.  Proteins:  amino acids  copyright cmassengale
copyright cmassengale

Cellular respiration ppt

  • 1.
  • 2.
    Cellular Respiration A catabolic, exergonic, oxygen (O 2 ) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H 2 O). C 6 H 12 O 6 + 6O 2  6CO2 + 6H 2 O + energy copyright cmassengale glucose ATP
  • 3.
    Question: In whatkinds organisms does cellular respiration take place? copyright cmassengale
  • 4.
    Plants and AnimalsPlants - Autotrophs : self-producers. Animals - Heterotrophs : consumers. copyright cmassengale
  • 5.
    Mitochondria Organelle where cellular respiration takes place. copyright cmassengale Inner membrane Outer membrane Inner membrane space Matrix Cristae
  • 6.
    Redox Reaction Transfer of one or more electrons from one reactant to another . Two types: 1. Oxidation 2. Reduction copyright cmassengale
  • 7.
    Oxidation Reaction The loss of electrons from a substance . Or the gain of oxygen . C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O + energy copyright cmassengale glucose ATP Oxidation
  • 8.
    Reduction Reaction The gain of electrons to a substance . Or the loss of oxygen . copyright cmassengale glucose ATP C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O + energy Reduction
  • 9.
    Breakdown of CellularRespiration Four main parts (reactions). 1. Glycolysis (splitting of sugar) a. cytosol, just outside of mitochondria. 2. Grooming Phase a. migration from cytosol to matrix. copyright cmassengale
  • 10.
    Breakdown of CellularRespiration 3. Krebs Cycle (Citric Acid Cycle) a. mitochondrial matrix 4. Electron Transport Chain (ETC) and Oxidative Phosphorylation a. Also called Chemiosmosis b. inner mitochondrial membrane. copyright cmassengale
  • 11.
    1. Glycolysis Occursin the cytosol just outside of mitochondria. Two phases (10 steps): A. Energy investment phase a. Preparatory phase (first 5 steps) . B. Energy yielding phase a. Energy payoff phase (second 5 steps) . copyright cmassengale
  • 12.
    1. Glycolysis A. Energy Investment Phase: copyright cmassengale Glucose (6C) Glyceraldehyde phosphate (2 - 3C) (G3P or GAP) 2 ATP - used 0 ATP - produced 0 NADH - produced 2ATP 2ADP + P C-C-C-C-C-C C-C-C C-C-C
  • 13.
    1. Glycolysis B. Energy Yielding Phase copyright cmassengale Glyceraldehyde phosphate (2 - 3C) (G3P or GAP) Pyruvate (2 - 3C) (PYR) 0 ATP - used 4 ATP - produced 2 NADH - produced 4ATP 4ADP + P C-C-C C-C-C C-C-C C-C-C GAP GAP (PYR) (PYR)
  • 14.
    1. Glycolysis TotalNet Yield 2 - 3C-Pyruvate (PYR) 2 - ATP (Substrate-level Phosphorylation) 2 - NADH copyright cmassengale
  • 15.
    Substrate-Level Phosphorylation ATP is formed when an enzyme transfers a phosphate group from a substrate to ADP . Example: PEP to PYR copyright cmassengale Enzyme Substrate O - C=O C-O- CH 2 P P P Adenosine ADP (PEP) P P P ATP O - C=O C=O CH 2 Product (Pyruvate) Adenosine
  • 16.
    Fermentation Occursin cytosol when “NO Oxygen” is present (called anaerobic). Remember: glycolysis is part of fermentation . Two Types: 1. Alcohol Fermentation 2. Lactic Acid Fermentation copyright cmassengale
  • 17.
    Alcohol Fermentation Plantsand Fungi  beer and wine copyright cmassengale glucose Glycolysis C C C C C C C C C 2 Pyruvic acid 2ATP 2ADP + 2 2NADH P 2 NAD + C C 2 Ethanol 2CO 2 released 2NADH 2 NAD +
  • 18.
    Alcohol Fermentation EndProducts: Alcohol fermentation 2 - ATP ( substrate-level phosphorylation) 2 - CO 2 2 - Ethanol’s copyright cmassengale
  • 19.
    Lactic Acid FermentationAnimals (pain in muscle after a workout). copyright cmassengale 2 Lactic acid 2NADH 2 NAD + C C C Glucose Glycolysis C C C 2 Pyruvic acid 2ATP 2ADP + 2 2NADH P 2 NAD + C C C C C C
  • 20.
    Lactic Acid FermentationEnd Products: Lactic acid fermentation 2 - ATP ( substrate-level phosphorylation) 2 - Lactic Acids copyright cmassengale
  • 21.
    2. Grooming PhaseOccurs when Oxygen is present (aerobic). 2 Pyruvate (3C) molecules are transported through the mitochondria membrane to the matrix and is converted to 2 Acetyl CoA (2C) molecules. copyright cmassengale Cytosol C C C 2 Pyruvate 2 CO 2 2 Acetyl CoA C-C 2NADH 2 NAD + Matrix
  • 22.
    2. Grooming PhaseEnd Products: grooming phase 2 - NADH 2 - CO 2 2- Acetyl CoA (2C) copyright cmassengale
  • 23.
    3. Krebs Cycle(Citric Acid Cycle) Location: mitochondrial matrix . Acetyl CoA (2C) bonds to Oxalacetic acid (4C - OAA) to make Citrate (6C) . It takes 2 turns of the krebs cycle to oxidize 1 glucose molecule. copyright cmassengale Mitochondrial Matrix
  • 24.
    3. Krebs Cycle(Citric Acid Cycle) copyright cmassengale Krebs Cycle 1 Acetyl CoA (2C) 3 NAD + 3 NADH FAD FADH 2 ATP ADP + P (one turn) OAA (4C) Citrate (6C) 2 CO 2
  • 25.
    3. Krebs Cycle(Citric Acid Cycle) copyright cmassengale Krebs Cycle 2 Acetyl CoA (2C) 6 NAD + 6 NADH 2 FAD 2 FADH 2 2 ATP 2 ADP + P (two turns) OAA (4C) Citrate (6C) 4 CO 2
  • 26.
    3. Krebs Cycle(Citric Acid Cycle) Total net yield ( 2 turns of krebs cycle) 1. 2 - ATP (substrate-level phosphorylation) 2. 6 - NADH 3. 2 - FADH 2 4. 4 - CO 2 copyright cmassengale
  • 27.
    4. ElectronTransport Chain (ETC) and Oxidative Phosphorylation ( Chemiosmosis ) Location: inner mitochondrial membrane. Uses ETC (cytochrome proteins) and ATP Synthase (enzyme) to make ATP . ETC pumps H + (protons) across innermembrane ( lowers pH in innermembrane space ). copyright cmassengale Inner Mitochondrial Membrane
  • 28.
    4. ElectronTransport Chain (ETC) and Oxidative Phosphorylation ( Chemiosmosis ) The H+ then move via diffusion (Proton Motive Force) through ATP Synthase to make ATP . All NADH and FADH 2 converted to ATP during this stage of cellular respiration . Each NADH converts to 3 ATP . Each FADH 2 converts to 2 ATP (enters the ETC at a lower level than NADH ). copyright cmassengale
  • 29.
    4. ElectronTransport Chain (ETC) and Oxidative Phosphorylation ( Chemiosmosis ) copyright cmassengale Inner membrane Outer membrane Inner membrane space Matrix Cristae
  • 30.
    4. ETCand Oxidative Phosphorylation ( Chemiosmosis for NADH ) copyright cmassengale NADH + H + ATP Synthase 1H + 2H + 3H + higher H + concentration H + ADP + ATP lower H + concentration H + (Proton Pumping) P E T C NAD+ 2H + + 1/2 O 2 H 2 O Intermembrane Space Matrix Inner Mitochondrial Membrane
  • 31.
    4. ETC and Oxidative Phosphorylation (Chemiosmosis for FADH 2 ) copyright cmassengale FADH 2 + H + ATP Synthase 1H + 2H + higher H + concentration H + ADP + ATP lower H + concentration H + (Proton Pumping) P E T C FAD+ 2H + + 1/2 O 2 H 2 O Intermembrane Space Matrix Inner Mitochondrial Membrane
  • 32.
    TOTAL ATP YIELD1. 04 ATP - substrate-level phosphorylation 2. 34 ATP - ETC & oxidative phosphorylation 38 ATP - TOTAL YIELD copyright cmassengale ATP
  • 33.
    Eukaryotes (Have Membranes)Total ATP Yield 02 ATP - glycolysis (substrate-level phosphorylation) 04 ATP - converted from 2 NADH - glycolysis 06 ATP - converted from 2 NADH - grooming phase 02 ATP - Krebs cycle (substrate-level phosphorylation) 18 ATP - converted from 6 NADH - Krebs cycle 04 ATP - converted from 2 FADH 2 - Krebs cycle 36 ATP - TOTAL copyright cmassengale
  • 34.
    Maximum ATP Yield for Cellular Respiration (Eukaryotes) 36 ATP (maximum per glucose) copyright cmassengale Glucose Glycolysis 2ATP 4ATP 6ATP 18ATP 4ATP 2ATP 2 ATP (substrate-level phosphorylation) 2NADH 2NADH 6NADH Krebs Cycle 2FADH 2 2 ATP (substrate-level phosphorylation) 2 Pyruvate 2 Acetyl CoA ETC and Oxidative Phosphorylation Cytosol Mitochondria
  • 35.
    Prokaryotes (Lack Membranes)Total ATP Yield 02 ATP - glycolysis (substrate-level phosphorylation) 06 ATP - converted from 2 NADH - glycolysis 06 ATP - converted from 2 NADH - grooming phase 02 ATP - Krebs cycle (substrate-level phosphorylation) 18 ATP - converted from 6 NADH - Krebs cycle 04 ATP - converted from 2 FADH 2 - Krebs cycle 38 ATP - TOTAL copyright cmassengale
  • 36.
    Question: In additionto glucose, what other various food molecules are use in Cellular Respiration? copyright cmassengale
  • 37.
    Catabolism of VariousFood Molecules Other organic molecules used for fuel. 1. Carbohydrates: polysaccharides 2. Fats: glycerol’s and fatty acids 3. Proteins: amino acids copyright cmassengale
  • 38.