SlideShare a Scribd company logo
• BJT biasing and Amplifier
• Unit-1 and 2
Prepared by
S.Vijayakumar, AP/ECE
Ramco Institute of Technology
Academic year
(2018-2019 odd sem)
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
1
Chap. 4 BJT transistors
•Widely used in amplifier circuits
•Formed by junction of 3 materials
•npn or pnp structure
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
2
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
3
pnp transistor
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
4
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
5
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
6
Large current
Operation of npn transistor
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
7
Modes of operation of a BJT transistor
Mode BE junction BC junction
cutoff reverse biased reverse biased
linear(active) forward biased reverse biased
saturation forward biased forward biased
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
8
Summary of npn transistor behavior
npn
collector
emitter
base
IB
IE
IC
small
current
large current
+
VBE
-
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
9
Summary of pnp transistor behavior
pnp
collector
emitter
base
IB
IE
IC
small
current
large current
+
VBE
-
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
10
Summary of equations for a BJT
IE  IC
IC = bIB
b is the current gain of the transistor  100
VBE = 0.7V(npn)
VBE = -0.7V(pnp)
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
11
4.5 Graphical representation of transistor
characteristics
IB
IC
IE
Output
circuit
Input
circuit
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
12
Input characteristics
•Acts as a diode
•VBE 0.7V
IB IB
VBE
0.7V
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
13
Output characteristics
IC
IC
VCE
IB = 10mA
IB = 20mA
IB = 30mA
IB = 40mA
Cutoff
region
•At a fixed IB, IC is not dependent on VCE
•Slope of output characteristics in linear region is near 0 (scale exaggerated)
Early voltage
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
14
Biasing a transistor
•We must operate the transistor in the linear region.
•A transistor’s operating point (Q-point) is defined by
IC, VCE, and IB.
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
15
4.6 Analysis of transistor circuits at DC
For all circuits: assume transistor operates in linear region
write B-E voltage loop
write C-E voltage loop
Example 4.2
B-E junction acts like a diode
VE = VB - VBE = 4V - 0.7V = 3.3V
IE
IC
IE = (VE - 0)/RE = 3.3/3.3K = 1mA
IC  IE = 1mA
VC = 10 - ICRC = 10 - 1(4.7) = 5.3V
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
16
Example 4.6
B-E Voltage loop
5 = IBRB + VBE, solve forIB
IB = (5 - VBE)/RB = (5-.7)/100k = 0.043mA
IC = bIB = (100)0.043mA = 4.3mA
VC = 10 - ICRC = 10 - 4.3(2) = 1.4V
IE
IC
IB
b = 100
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
17
Exercise 4.8
VE = 0 - .7 = - 0.7V
IE
IC
IB
b = 50
IE = (VE - -10)/RE = (-.7 +10)/10K =
0.93mA
IC  IE = 0.93mA
IB = IC/b = .93mA/50 = 18.6mA
VC = 10 - ICRC = 10 - .93(5) = 5.35V
VCE = 5.35 - -0.7 = 6.05V
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
18
Summary of npn transistor behavior
npn
collector
emitter
base
IB
IE
IC
small
current
large current
+
VBE
-
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
19
Summary of equations for a BJT
IE  IC
IC = bIB
b is the current gain of the transistor  100
VBE = 0.7V(npn)
VBE = -0.7V(pnp)
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
20
Prob. 4.32
•Use a voltage divider, RB1 and RB2 to bias VB to
avoid two power supplies.
•Make the current in the voltage divider about 10
times IB to simplify the analysis. Use VB = 3V and
I = 0.2mA.
IB
I
(a) RB1 and RB2 form a voltage divider.
Assume I >> IB I = VCC/(RB1 + RB2)
.2mA = 9 /(RB1 + RB2)
AND
VB = VCC[RB2/(RB1 + RB2)]
3 = 9 [RB2/(RB1 + RB2)], Solve for RB1 and RB2.
RB1 = 30KW, and RB2 = 15KW.
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
21
Prob. 4.32
Find the operating point
•Use the Thevenin equivalent circuit for the base
•Makes the circuit simpler
•VBB = VB = 3V
•RBB is measured with voltage sources grounded
•RBB = RB1|| RB2 = 30KW || 15KW = . 10KW
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
22
Prob. 4.32
Write B-E loop and C-E loop
B-E
loop
C-E loop
B-E loop
VBB = IBRBB + VBE +IERE
C-E loop
VCC = ICRC + VCE +IERE
Solve for,IC, VCE, and IB.
This is how all DC circuits are analyzed
and designed!
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
23
Example 4.8
•2-stage amplifier, 1st stage has
an npn transistor; 2nd stage has
an pnp transistor.
IC = bIB
IC  IE
VBE = 0.7(npn) = -0.7(pnp)
b = 100
Find IC1, IC2, VCE1, VCE2
•Use Thevenin circuits.
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
24
Example 4.8
•RBB1 = RB1||RB2 = 33K
•VBB1 = VCC[RB2/(RB1+RB2)]
VBB1 = 15[50K/150K] = 5V
Stage 1
•B-E loop
VBB1 = IB1RBB1 + VBE +IE1RE1
Use IB1  IE1/ b
5 = IE133K/ 100 + .7 + IE13K
IE1 = 1.3mA
IB1
IE1
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
25
Example 4.8
C-E loop
neglect IB2 because it is IB2 << IC1
IE1
IC1
VCC = IC1RC1 + VCE1 +IE1RE1
15 = 1.3(5) + VCE1 +1.3(3)
VCE1= 4.87V
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
26
Example 4.8
Stage 2
•B-E loop
IB2
IE2
VCC = IE2RE2 + VEB +IB2RBB2 + VBB2
15 = IE2(2K) + .7 +IB2 (5K)+ 4.87 + 1.3(3)
Use IB2  IE2/ b, solve for IE2
IE2 = 2.8mA
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
27
Example 4.8
Stage 2
•C-E loop
IE2
IC2
VCC = IE2RE2 + VEC2 +IC2RC2
15 = 2.8(2) + VEC2 + 2.8(2.7)
solve for VEC2
VCE2 = 1.84V
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
28
Summary of DC problem
•Bias transistors so that they operate in the linear region B-
E junction forward biased, C-E junction reversed biased
•Use VBE = 0.7 (npn), IC  IE, IC = bIB
•Represent base portion of circuit by the Thevenin circuit
•Write B-E, and C-E voltage loops.
•For analysis, solve for IC, and VCE.
•For design, solve for resistor values (IC and VCE specified).
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
29
4.7 Transistor as an amplifier
•Transistor circuits are analyzed and designed in terms of DC
and ac versions of the same circuit.
•An ac signal is usually superimposed on the DC circuit.
•The location of the operating point (values of IC and VCE) of the
transistor affects the ac operation of the circuit.
•There are at least two ac parameters determined from DC
quantities.
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
30
A small ac signal vbe is
superimposed on the DC voltage
VBE. It gives rise to a collector
signal current ic, superimposed on
the dc current IC.
Transconductance
ac input signal
(DC input signal 0.7V)
ac output signal
DC output signal
IB
The slope of the ic - vBE curve at the
bias point Q is the
transconductance gm: the amount of
ac current produced by an ac
voltage.
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
31
Transconductance = slope at Q point
gm = dic/dvBE|ic = ICQ
where IC = IS[exp(-VBE/VT)-1]; the
equation for a diode.
Transconductance
ac input signal
DC input signal (0.7V)
ac output signal
DC output signal
gm = ISexp(-VBE/VT) (1/VT)
gm  IC/VT (A/V)
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
32
ac input resistance  1/slope at Q point
rp = dvBE/dib|ic = ICQ
rp  VT /IB
re  VT /IE
ac input resistance of transistor
ac input signal
DC input signal (0.7V)
ac output signal
DC output signal
IB
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
33
4.8 Small-signal equivalent circuit models
•ac model
•Hybrid-p model
•They are equivalent
•Works in linear region only
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
34
Steps to analyze a transistor circuit
1 DC problem
Set ac sources to zero, solve for DC quantities, IC and VCE.
2 Determine ac quantities from DC parameters
Find gm, rp, and re.
3 ac problem
Set DC sources to zero, replace transistor by hybrid-p
model, find ac quantites, Rin, Rout, Av, and Ai.
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
35
Example 4.9
Find vout/vin, (b = 100)
DC problem
Short vi, determine IC and VCE
B-E voltage loop
3 = IBRB + VBE
IB = (3 - .7)/RB = 0.023mA
C-E voltage loop
VCE = 10 - ICRC
VCE = 10 - (2.3)(3)
VCE = 3.1V
Q point: VCE = 3.1V, IC = 2.3mA
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
36
Example 4.9
ac problem
Short DC sources, input and output circuits are separate, only coupled mathematically
gm = IC/VT = 2.3mA/25mV = 92mA/V
rp = VT/ IB = 25mV/.023mA = 1.1K
vbe= vi [rp / (100K + rp)] = 0.011vi
vout = - gm vbeRC
vout = - 92(0.011vi)3K
vout/vi = -3.04
+
vout
-
e
b c
+
vbe
-
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
37
Exercise 4.24
(a) Find VC, VB, and VE, given: b = 100, VA = 100V
IE = 1 mA
IB  IE/b= 0.01mA
VB = 0 - IB10K = -0.1V
VE = VB - VBE = -0.1 - 0.7 = -0.8V
VC = 10V - IC8K = 10 - 1(8) = 2V
VB
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
38
Exercise 4.24
(b) Find gm, rp, and r0, given: b = 100, VA = 100V
gm = IC/VT = 1 mA/25mV = 40 mA/V
rp = VT/ IB = 25mV/.01mA = 2.5K
r0 = output resistance of transistor
r0 = 1/slope of transistor output characteristics
r0 = | VA|/IC = 100K
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
39
Summary of transistor analysis
•Transistor circuits are analyzed and designed in terms of DC
and ac versions of the same circuit.
•An ac signal is usually superimposed on the DC circuit.
•The location of the operating point (values of IC and VCE) of the
transistor affects the ac operation of the circuit.
•There are at least two ac parameters determined from DC
quantities.
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
40
Steps to analyze a transistor circuit
1 DC problem
Set ac sources to zero, solve for DC quantities, IC and VCE.
2 Determine ac quantities from DC parameters
Find gm, rp, and ro.
3 ac problem
Set DC sources to zero, replace transistor by hybrid-p
model, find ac quantites, Rin, Rout, Av, and Ai.
ro
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
41
Circuit from Exercise 4.24
IE = 1 mA VC = 10V - IC8K = 10 - 1(8) = 2V
IB  IE/b= 0.01mA gm = IC/VT = 1 mA/25mV = 40 mA/V
VB = 0 - IB10K = -0.1V rp = VT/ IB = 25mV/.01mA = 2.5K
VE = VB - VBE = -0.1 - 0.7 = -0.8V
+
Vout
-
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
42
ac equivalent circuit
b
e
c
vbe = (Rb||Rpi)/ [(Rb||Rpi) +Rs]vi
vbe = 0.5vi
vout = -(gmvbe)(Ro||Rc ||RL)
vout = -154vbe
Av =vout/vi = - 77
+
vout
-
Neglecting Ro
vout = -(gmvbe)(Rc ||RL)
Av =vout/vi = - 80
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
43
Prob. 4.76
+
Vout
-
b=100
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
44
Prob. 4.76
+
Vout
-
(a) Find Rin
Rin = Rpi = VT/IB = (25mV)100/.1 = 2.5KW
(c) Find Rout
Rout = Rc = 47KW
Rin
Rout
(b) Find Av = vout/vin
vout = - bib Rc
vin = ib (R +Rpi)
Av = vout/vin = - bib Rc/ ib (R +Rpi )
= - bRc/(R +Rpi)
= - 100(47K)/(100K + 2.5K)
= - 37.6
= bib
b
e
c
ib
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
45
4.9 Graphical analysis
Input circuit
B-E voltage loop
VBB = IBRB +VBE
IB = (VBB - VBE)/RB
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
46
Graphical construction of IB and VBE
IB = (VBB - VBE)/RB
If VBE = 0, IB = VBB/RB
If IB = 0, VBE = VBB
VBB/RB
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
47
Load line
Output circuit
C-E voltage loop
VCC = ICRC +VCE
IC = (VCC - VCE)/RC
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
48
Graphical construction of IC and VCE
VCC/RC
IC = (VCC - VCE)/RC
If VCE = 0, IC = VCC/RC
If IC = 0, VCE = VCC
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
49
Graphical analysis
Input
signal Output
signal
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
50
•Load-line A results in bias point QA which is too close to VCC and thus limits the
positive swing of vCE.
•Load-line B results in an operating point too close to the saturation region, thus
limiting the negative swing of vCE.
Bias point location effects
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
51
4.11 Basic single-stage BJT amplifier
configurations
We will study 3 types of BJT amplifiers
•CE - common emitter, used for AV, Ai, and general purpose
•CE with RE - common emitter with RE,
same as CE but more stable
•CC common collector, used for Ai, low output resistance,
used as an output stage
CB common base (not covered)
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
52
Common emitter amplifier
ac equivalent circuit
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
53
Common emitter amplifier
Rin
Rout
+
Vout
-
Rin
(Does not include source)
Rin =Rpi
Rout
(Does not include load)
Rout =RC
AV
= Vout/Vin
Vout = - bibRC
Vin = ib(Rs + Rpi)
AV = - bRC/ (Rs + Rpi)
Ai
= iout/iin
iout = - bib
iin = ib
Ai = - b
ib
iout
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
54
Common emitter with RE amplifier
ac equivalent circuit
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
55
Common emitter with RE amplifier
Rin
Rout
+
Vout
-
Rin
Rin =V/ib
V = ib Rpi + (ib + bib)RE
Rin = Rpi + (1 + b)RE
(usually large)
Rout
Rout =RC
AV
= Vout/Vin
Vout = - bibRC
Vin = ib Rs + ib Rpi + (ib + bib)RE
AV = - bRC/ (Rs + Rpi + (1 + b)RE)
(less than CE, but less sensitive to b variations)
Ai
= iout/iin
iout = - bib
iin = ib
Ai = - b
ib
iout
ib + bib
+
V
-
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
56
Common collector (emitter follower) amplifier
b c
e
+
vout
-
(vout at emitter) ac equivalent circuit
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
57
Common collector amplifier
Rin
+
vout
-
Rin
Rin =V/ib
V = ib Rpi + (ib + bib)RL
Rin = Rpi + (1 + b)RL
AV
= vout/vs
vout = (ib + bib)RL
vs = ib Rs + ib Rpi + (ib + bib)RL
AV = (1+ b)RL/ (Rs + Rpi + (1 + b)RL)
(always < 1)
ib
ib + bib
+
V
-
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
58
Common collector amplifier
Rout
+
vout
-
Rout
(don’t include RL, set Vs = 0)
Rout = vout /- (ib + bib)
vout = -ib Rpi + -ibRs
Rout = (Rpi + Rs)/ (1+ b)
(usually low)
Ai
= iout/iin
iout = ib + bib
iin = ib
Ai = b + 1
ib
ib + bib
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
59
Prob. 4.84
+
vout
-
b = 50
ac
circuit
CE with RE
amp, because RE
is in ac circuit
Given
Rpi =VT/IB
= 25mV(50)/.2mA
= 6.6K
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
60
Prob. 4.84
(a) Find Rin
Rin =V/ib
V = ib Rpi + (ib + bib)RE
Rin = Rpi + (1 + b)RE
Rin = 6.6K+ (1 + 50)125
Rin  13K
Rin
+
V
-
ib
ib + bib
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
61
Prob. 4.84
(b) Find AV = vout/vs
vout = - bib(RC||RL)
vs = ib Rs + ib Rpi + (ib + bib)RE
AV = - b (RC||RL) / (Rs + Rpi + (1 + b)RE)
AV = - 50 (10K||10K)/(10K + 6.6Ki + (1 + 50)125)
AV  - 11
ib
ib + bib
+
vout
-
-bib
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
62
Prob. 4.84
(c) If vbe is limited to 5mV, what is the largest signal at input and output?
vbe = ib Rpi = 5mV
ib = vbe /Rpi = 5mV/6.6K = 0.76mA (ac value)
vs = ib Rs + ib Rpi + (ib + bib)RE
vs = (0.76mA)10K + (0.76mA) 6.6K + (0.76mA + (50)0.76mA )125
vs  17.4mV
ib
ib + bib
+
vout
-
+
vbe
-
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
63
Prob. 4.84
(c) If vbe is limited to 5mV, what is the largest signal at input and output?
vout = vs AV
vout = 17.4mV(-11)
vout  -191mV (ac value)
ib
ib + bib
+
vout
-
+
vbe
-
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
64
Prob. 4.79
Using this circuit, design an amp
with:
IE = 2mA
AV = -8
current in voltage divider I = 0.2mA
(CE amp because RE is not in ac circuit)
b = 100
Voltage divider
Vcc/I = 9/0.2mA = 45K
45K = R1 + R2
Choose VB  1/3 Vcc to put operating point near the
center of the transistor characteristics
R2/(R1 + R2) = 3V
Combining gives, R1 = 30K, R2 = 15K
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
65
Prob. 4.79
b = 100Find RE (input circuit)
Use Thevenin equivalent
B-E loop
VBB=IBRBB+VBE+IERE
using IB  IE/b
RE = [VBB - VBE - (IE/b)RBB]/IE
RE = [3 - .7 - (2mA/100)10K]/2mA
RE = 1.05KW
+
VBE -
IE
IB
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
66
Prob. 4.79
Find Rc (ac circuit)
Rpi = VT/IB = 25mV(100)/2mA = 1.25K
Ro = VA/IC = 100/2mA = 50K
Av = vout/vin
vout = -gmvbe (Ro||Rc||RL)
vbe = 10K||1.2K / [10K+ 10K||1.2K]vi
Av = -gm(Ro||Rc||RL)(10K||1.2K) / [10K||1.2K +Rs]
Set Av = -8, and solve for Rc, Rc  2K
+
vout
-
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
67
CE amplifier
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
68
CE amplifier
Av  -12.2
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
69
FOURIER COMPONENTS OF TRANSIENT RESPONSE V($N_0009)
DC COMPONENT = -1.226074E-01
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 1.581E+00 1.000E+00 -1.795E+02 0.000E+00
2 2.000E+03 1.992E-01 1.260E-01 9.111E+01 2.706E+02
3 3.000E+03 2.171E-02 1.374E-02 -1.778E+02 1.668E+00
4 4.000E+03 3.376E-03 2.136E-03 -1.441E+02 3.533E+01
TOTAL HARMONIC DISTORTION = 1.267478E+01 PERCENT
CE amplifier
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
70
CE amplifier with RE
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
71
CE amplifier with RE
Av  - 7.5
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
72
FOURIER COMPONENTS OF TRANSIENT RESPONSE V($N_0009)
DC COMPONENT = -1.353568E-02
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 7.879E-01 1.000E+00 -1.794E+02 0.000E+00
2 2.000E+03 1.604E-02 2.036E-02 9.400E+01 2.734E+02
3 3.000E+03 5.210E-03 6.612E-03 -1.389E+02 4.056E+01
4 4.000E+03 3.824E-03 4.854E-03 -1.171E+02 6.231E+01
TOTAL HARMONIC DISTORTION = 2.194882E+00 PERCENT
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
73
Summary
Av THD
CE -12.2 12.7%
CE w/RE (RE = 100) -7.5 2.19%
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
74
Prob. 4.83
+
vout
-
•2 stage amplifier (a) Find IC and VC of each transistor
•Both stages are the same (same for each stage)
•Capacitively coupled
b = 100
RL=2K
Rc=6.8K
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
75
Prob. 4.83
(a) Find IC and VC of each transistor
(same for each stage)
B-E voltage loop
VBB = IBRBB + VBE + IERE
where RBB = R1||R2 = 32K
VBB = VCCR2/(R1+R2) = 4.8V, and
IB  IE/b
IE = [VBB - VBE ]/[RBB/b + RE]
IE = 0.97mA
VC = VCC - ICRC
VC = 15 - .97(6.8)
VC = 8.39V
+
VC
-
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
76
Prob. 4.83
b c
e
+
vout
-
(b) find ac circuit
b c
e
RBB = R1||R2 = 100K||47K = 32KW
Rpi = VT/IB = 25mV(100)/.97mA  2.6KW
gm = IC/VT = .97mA/25mV  39mA/V
RL=2K
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
77
Prob. 4.83
b c
e
+
vout
-
(c) find Rin1
Rin1 = RBB||Rpi
= 32K||2.6K
= 2.4KW
b c
e
Rin1
(d) find Rin2
Rin2 = RBB||Rpi
= 2.4KW
Rin2
find vb1/vi
= Rin1/[Rin1 + RS]
= 2.4K/[2.4K + 5K]
= 0.32
+
vb1
-
find vb2/vb1
vb2 = -gmvbe1[RC||RBB||Rpi]
vb2/vbe1 = -gm[RC||RBB||Rpi]
vb2/vb1 = -(39mA/V)[6.8||32K||2.6K]
= -69.1
+
vb2
-
RL=2K
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
78
Prob. 4.83
b c
e
+
vout
-
(e) find vout/vb2
vout = -gmvbe2[RC||RL]
vout/vbe2 = -gm[RC||RL]
vb2/vb1 = -(39mA/V)[6.8K||2K]
= -60.3
b c
e
(f) find overall voltage gain
vout/vi = (vb1/vi) (vb2/vb1) (vout/vb2)
vout/vi = (0.32) (-69.1) (-60.3)
vout/vi = 1332
+
vb1
-
+
vb2
-
RL=2K
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
79
Prob. 4.96
Find IE1, IE2, VB1, and VB2
IE2 = 2mA
IE1 = I20mA + IB2
IE1 = I20mA + IE2/b2
IE1 = 20mA + 10mA
IE1 = 30mA
IE1 IE2
Q1 has b1 = 20
Q2 has b2 = 200
Q1
Q2
IB2
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
80
Prob. 4.96
Find VB1, and VB2
Use Thevenin equivalent
VB1 = VBB1 - IB1(RBB1)
= 4.5 - (30mA/20)500K
= 3.8V
VB2 = VB1 - VBE
= 3.8V - 0.7
= 3.1V
Q1 has b1 = 20
Q2 has b2 = 200
IB2+
vB1
-
+
vB2
-
IB1
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
81
Prob. 4.96
(b) find vout/vb2
vout = (ib2 + b2ib2)RL
vb2 = (ib2 + b2ib2)RL + ib2Rpi2
vout/vb2 = (1 + b2)RL/[(1 + b2)RL + Rpi2]
= (1 + 200)1K/[(1 + 200)1K+ 2.5K]
 0.988
b1
e1
c1
b2
e2
c2
+
vout
-
+
vB2
-
Rpi2 = VT/IB2
= VT b2/IE2
= 25mV(200)/2mA
= 2.5KW
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
82
Prob. 4.96
(b) find Rin2 = vb2/ib2
vb2 = (ib2 + b2ib2)RL + ib2Rpi2
Rin2 = vb2/ib2 = (1 + b2)RL + Rpi2
= (1 + 200)1K + 2.5K
 204K
b1
e1
c1
b2
e2
c2
+
vB2
-Rin2
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
83
Prob. 4.96
(c) find Rin1 = RBB1||(vb1/ib1)
= RBB1|| [ib1Rpi1 +(ib1 + b1ib1)Rin2]/ib1
= RBB1|| [Rpi1 +(1+ b1)Rin2],
where Rpi1 = VT b1/IE1 = 25mV(20)/30mA = 16.7K
= 500K||[16.7K + (1+ 20)204K]
 500KW
b1
e1
c1
b2
e2
c2
+
vB1
-
Rin1
iB1
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
84
Prob. 4.96
(c) find ve1/vb1
ve1 = (ib1 + b1ib1)Rin2
vb1 = (ib1 + b1ib1)Rin2 + ib1Rpi1
ve1/vb1 = (1 + b1) Rin2 /[(1 + b1) Rin2 + Rpi1]
= (1 + 20)204K/[(1 + 20)204K+ 16.7K]
 0.996
b1
e1
c1
b2
e2
c2
+
ve1
-
iB1+
vB1
-
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
85
Prob. 4.96
(d) find vb1/vi
vb1/vi = Rin1/[RS + Rin1]
= 0.82
b1
e1
c1
b2
e2
c2
+
vb1
-
(e) find overall voltage gain
vout/vi = (vb1/vi) (ve1/vb1) (vout/ve1)
vout/vi = (0.82) (0.99) (0.99)
vout/vi = 0.81
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
86
(Prob. 4.96) Voltage outputs at each stage
Output of
stage 2
Output of
stage 1
Input
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
87
(Prob. 4.96) Current
Input
current
Input to
stage 2 (ib2)
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
88
(Prob. 4.96) Current
output
current
Input to
stage 2 (ib2)
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
89
(Prob. 4.96) Current
output
current
Input to
stage 2 (ib2)
Input
current
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
90
(Prob. 4.96) Power and current gain
Input current = (Vi)/Rin = 1/500K = 2.0mA
output current= (Vout)/RL = (0.81V)/1K= 0.81mA
current gain = 0.81mA/ 2.0mA = 405
Input power = (Vi) (Vi)/Rin = 1 x 1/500K = 2.0mW
output power = (Vout) (Vout)/RL = (0.81V) (0.81V)/1K= 656mW
power gain = 656mW/2mW = 329
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
91
BJT Output Characteristics
•Plot Ic vs. Vce for multiple values of Vce and Ib
•From Analysis menu use DC Sweep
•Use Nested sweep in DC Sweep section
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
92
Probe: BJT Output Characteristics
1 Result of probe
2 Add plot (plot menu) -> Add trace (trace menu) -> IC(Q1)
3 Delete plot (plot menu)
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
93
BJT Output Characteristics: current gain
Ib = 5mA
(Each plot 10mA difference)
b at Vce = 4V, and Ib = 45mA
b = 8mA/45mA = 178
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
94
BJT Output Characteristics: transistor output
resistance
Ib = 5mA
(Each plot 10mA difference)
Ro = 1/slope
At Ib = 45mA,
1/slope = (8.0 - 1.6)V/(8.5 - 7.8)mA
Rout = 9.1KW
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
95
CE Amplifier: Measurements with Spice
Rin Rout
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
96
Input Resistance Measurement Using SPICE
•Replace source, Vs and Rs with Vin, measure
Rin = Vin/Iin
•Do not change DC problem: keep capacitive coupling
if present
•Source (Vin) should be a high enough frequency so that
capacitors act as shorts: Rcap = |1/wC|. For C = 100mF,
w = 1KHz, Rcap = 1/2p(1K)(100E-6)  1.6W
•Vin should have a small value so operating point does not change
Vin  1mV
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
97
Rin Measurement
•Transient analysis
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
98
Probe results
I(C2)
Rin = 1mV/204nA
= 4.9KW
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
99
Output Resistance Measurement Using SPICE
•Replace load, RL with Vin, measure Rin = Vin/Iin
•Set Vs = 0
•Do not change DC problem: keep capacitive coupling
if present
•Source (Vin) should be a high enough frequency so that
capacitors act as shorts: Rcap = |1/wC|. For C = 100mF,
w = 1KHz, Rcap = 1/2p(1K)(100E-6)  1.6W
•Vin should have a small value so operating point does not change
Vin  1mV
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
100
Rout Measurement
•Transient analysis
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
101
Probe results
-I(C1)
Rout = 1mV/111nA
= 9KW
-I(C1) is current in Vin flowing out of + terminal
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
102
DC Power measurements
Power delivered by + 10 sources:
(10)(872mA) + (10)(877mA) = 8.72mW + 8.77mW = 17.4mW
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
103
ac Power Measurements of Load
instantaneous
power
average
power
Vout
Vin
Reference
• www.electronics.teipir.gr/personalpages/.../1/..
./ECE3111BJTTransistors.
ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002
104

More Related Content

What's hot

Transformer Fundamentals
Transformer FundamentalsTransformer Fundamentals
Transformer Fundamentals
michaeljmack
 
As built and proposed SLD
As built and proposed SLDAs built and proposed SLD
As built and proposed SLDQasim Muhammad
 
Problemas de circuitos ejemplos resueltos
Problemas de circuitos ejemplos resueltosProblemas de circuitos ejemplos resueltos
Problemas de circuitos ejemplos resueltosprogram visual
 
4.respuesta de un_circuito_de_segundo_orden
4.respuesta de un_circuito_de_segundo_orden4.respuesta de un_circuito_de_segundo_orden
4.respuesta de un_circuito_de_segundo_orden
manuel Luna Urquizo
 
ETAP - Curso etap
ETAP - Curso etapETAP - Curso etap
ETAP - Curso etap
Himmelstern
 
El diodo entradas seniodales2
El diodo entradas seniodales2El diodo entradas seniodales2
El diodo entradas seniodales2Monica Patiño
 
Amplificador operacional
Amplificador operacionalAmplificador operacional
Amplificador operacional
PepeRodriguez81
 
ca monofásica y trifásica
ca monofásica y trifásicaca monofásica y trifásica
ca monofásica y trifásica
andogon
 
Constrastación
ConstrastaciónConstrastación
Constrastación
Jaime David Ruiz Romero
 
ETAP - Modelado de cables de potencia regimen permanente etap 12
ETAP - Modelado de cables de potencia regimen permanente etap 12ETAP - Modelado de cables de potencia regimen permanente etap 12
ETAP - Modelado de cables de potencia regimen permanente etap 12
Himmelstern
 
controles eléctricos industriales 2do. parcial
controles eléctricos industriales 2do. parcialcontroles eléctricos industriales 2do. parcial
controles eléctricos industriales 2do. parcial
Ivan Salazar C
 
Asignacion3.Importancia Factor de Potencia
Asignacion3.Importancia Factor de PotenciaAsignacion3.Importancia Factor de Potencia
Asignacion3.Importancia Factor de PotenciaMila Alvarez
 
IEEE-std80.pdf
IEEE-std80.pdfIEEE-std80.pdf
IEEE-std80.pdf
ssuser7af765
 
Transformada de laplace
Transformada de laplaceTransformada de laplace
Transformada de laplace
Alexis Miranda
 
Cable Data Sheet
Cable Data SheetCable Data Sheet
Cable Data Sheet
Kristian Saragi
 
Motores electricos de corriente continua
Motores electricos de corriente continuaMotores electricos de corriente continua
Motores electricos de corriente continuaArturo Iglesias Castro
 

What's hot (20)

Transformer Fundamentals
Transformer FundamentalsTransformer Fundamentals
Transformer Fundamentals
 
Inversor monofasico
Inversor monofasicoInversor monofasico
Inversor monofasico
 
As built and proposed SLD
As built and proposed SLDAs built and proposed SLD
As built and proposed SLD
 
Problemas de circuitos ejemplos resueltos
Problemas de circuitos ejemplos resueltosProblemas de circuitos ejemplos resueltos
Problemas de circuitos ejemplos resueltos
 
4.respuesta de un_circuito_de_segundo_orden
4.respuesta de un_circuito_de_segundo_orden4.respuesta de un_circuito_de_segundo_orden
4.respuesta de un_circuito_de_segundo_orden
 
ETAP - Curso etap
ETAP - Curso etapETAP - Curso etap
ETAP - Curso etap
 
El diodo entradas seniodales2
El diodo entradas seniodales2El diodo entradas seniodales2
El diodo entradas seniodales2
 
Amplificador operacional
Amplificador operacionalAmplificador operacional
Amplificador operacional
 
Resistencia de aislamiento
Resistencia de aislamientoResistencia de aislamiento
Resistencia de aislamiento
 
ca monofásica y trifásica
ca monofásica y trifásicaca monofásica y trifásica
ca monofásica y trifásica
 
Constrastación
ConstrastaciónConstrastación
Constrastación
 
ETAP - Modelado de cables de potencia regimen permanente etap 12
ETAP - Modelado de cables de potencia regimen permanente etap 12ETAP - Modelado de cables de potencia regimen permanente etap 12
ETAP - Modelado de cables de potencia regimen permanente etap 12
 
Máquinas eléctricas II
Máquinas eléctricas IIMáquinas eléctricas II
Máquinas eléctricas II
 
Flyback Converters v4
Flyback Converters v4Flyback Converters v4
Flyback Converters v4
 
controles eléctricos industriales 2do. parcial
controles eléctricos industriales 2do. parcialcontroles eléctricos industriales 2do. parcial
controles eléctricos industriales 2do. parcial
 
Asignacion3.Importancia Factor de Potencia
Asignacion3.Importancia Factor de PotenciaAsignacion3.Importancia Factor de Potencia
Asignacion3.Importancia Factor de Potencia
 
IEEE-std80.pdf
IEEE-std80.pdfIEEE-std80.pdf
IEEE-std80.pdf
 
Transformada de laplace
Transformada de laplaceTransformada de laplace
Transformada de laplace
 
Cable Data Sheet
Cable Data SheetCable Data Sheet
Cable Data Sheet
 
Motores electricos de corriente continua
Motores electricos de corriente continuaMotores electricos de corriente continua
Motores electricos de corriente continua
 

Similar to Bjt transistors converted

Analysis of CE Amplifier
Analysis of CE AmplifierAnalysis of CE Amplifier
Analysis of CE Amplifier
Yong Heui Cho
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
Dr Naim R Kidwai
 
Dc analysis of four resistor biasing circuit
Dc analysis of four resistor biasing circuitDc analysis of four resistor biasing circuit
Dc analysis of four resistor biasing circuit
MahoneyKadir
 
addeunit-2-191121144848.pptx
addeunit-2-191121144848.pptxaddeunit-2-191121144848.pptx
addeunit-2-191121144848.pptx
KUMARS641064
 
ec8353 Edc unit2
ec8353 Edc unit2ec8353 Edc unit2
ec8353 Edc unit2
elakkia8
 
Basic electronics - Bi Junction Terminals 01.pptx
Basic electronics - Bi Junction Terminals 01.pptxBasic electronics - Bi Junction Terminals 01.pptx
Basic electronics - Bi Junction Terminals 01.pptx
happycocoman
 
Bjt
BjtBjt
BIPOLAR JUNCTION TRANSISTOR BJT power Electronic
BIPOLAR JUNCTION TRANSISTOR BJT power ElectronicBIPOLAR JUNCTION TRANSISTOR BJT power Electronic
BIPOLAR JUNCTION TRANSISTOR BJT power Electronic
SazibMollik1
 
bjt1.ppt
bjt1.pptbjt1.ppt
bjt1.ppt
deepaMS4
 
bjt1.ppt
bjt1.pptbjt1.ppt
bjt1.ppt
bhanu15317
 
BJT - Bipolar Junction Transistor / Electron Devices
BJT -  Bipolar Junction Transistor /  Electron DevicesBJT -  Bipolar Junction Transistor /  Electron Devices
BJT - Bipolar Junction Transistor / Electron Devices
Shiny Christobel
 
Basic engineering electronics MODULE_1-3_Transistor.pptx
Basic engineering electronics MODULE_1-3_Transistor.pptxBasic engineering electronics MODULE_1-3_Transistor.pptx
Basic engineering electronics MODULE_1-3_Transistor.pptx
happycocoman
 
Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253
Fairul Izwan Muzamuddin
 
Chap21.ppt
Chap21.pptChap21.ppt
Chap21.ppt
ssuserd19b38
 
BJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year EngineeringBJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year Engineering
Raghav Bansal
 
BJT-PPT-2021-1.pptx
BJT-PPT-2021-1.pptxBJT-PPT-2021-1.pptx
BJT-PPT-2021-1.pptx
varunphone332
 
Physics Investigatory Project
Physics Investigatory ProjectPhysics Investigatory Project
Physics Investigatory Project
Nishant Jha
 
ECA Unit-2 Topic-9 Digital Content.pptx
ECA Unit-2 Topic-9 Digital Content.pptxECA Unit-2 Topic-9 Digital Content.pptx
ECA Unit-2 Topic-9 Digital Content.pptx
SattiBabu16
 
BIPOLAR JUNCTION TRANSISTOR
BIPOLAR JUNCTION TRANSISTORBIPOLAR JUNCTION TRANSISTOR
BIPOLAR JUNCTION TRANSISTOR
ssuserb29892
 
Bjts
BjtsBjts

Similar to Bjt transistors converted (20)

Analysis of CE Amplifier
Analysis of CE AmplifierAnalysis of CE Amplifier
Analysis of CE Amplifier
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
 
Dc analysis of four resistor biasing circuit
Dc analysis of four resistor biasing circuitDc analysis of four resistor biasing circuit
Dc analysis of four resistor biasing circuit
 
addeunit-2-191121144848.pptx
addeunit-2-191121144848.pptxaddeunit-2-191121144848.pptx
addeunit-2-191121144848.pptx
 
ec8353 Edc unit2
ec8353 Edc unit2ec8353 Edc unit2
ec8353 Edc unit2
 
Basic electronics - Bi Junction Terminals 01.pptx
Basic electronics - Bi Junction Terminals 01.pptxBasic electronics - Bi Junction Terminals 01.pptx
Basic electronics - Bi Junction Terminals 01.pptx
 
Bjt
BjtBjt
Bjt
 
BIPOLAR JUNCTION TRANSISTOR BJT power Electronic
BIPOLAR JUNCTION TRANSISTOR BJT power ElectronicBIPOLAR JUNCTION TRANSISTOR BJT power Electronic
BIPOLAR JUNCTION TRANSISTOR BJT power Electronic
 
bjt1.ppt
bjt1.pptbjt1.ppt
bjt1.ppt
 
bjt1.ppt
bjt1.pptbjt1.ppt
bjt1.ppt
 
BJT - Bipolar Junction Transistor / Electron Devices
BJT -  Bipolar Junction Transistor /  Electron DevicesBJT -  Bipolar Junction Transistor /  Electron Devices
BJT - Bipolar Junction Transistor / Electron Devices
 
Basic engineering electronics MODULE_1-3_Transistor.pptx
Basic engineering electronics MODULE_1-3_Transistor.pptxBasic engineering electronics MODULE_1-3_Transistor.pptx
Basic engineering electronics MODULE_1-3_Transistor.pptx
 
Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253
 
Chap21.ppt
Chap21.pptChap21.ppt
Chap21.ppt
 
BJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year EngineeringBJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year Engineering
 
BJT-PPT-2021-1.pptx
BJT-PPT-2021-1.pptxBJT-PPT-2021-1.pptx
BJT-PPT-2021-1.pptx
 
Physics Investigatory Project
Physics Investigatory ProjectPhysics Investigatory Project
Physics Investigatory Project
 
ECA Unit-2 Topic-9 Digital Content.pptx
ECA Unit-2 Topic-9 Digital Content.pptxECA Unit-2 Topic-9 Digital Content.pptx
ECA Unit-2 Topic-9 Digital Content.pptx
 
BIPOLAR JUNCTION TRANSISTOR
BIPOLAR JUNCTION TRANSISTORBIPOLAR JUNCTION TRANSISTOR
BIPOLAR JUNCTION TRANSISTOR
 
Bjts
BjtsBjts
Bjts
 

More from vijayakumar sivaji

Unit 1
Unit 1Unit 1
Op amps-converted
Op amps-convertedOp amps-converted
Op amps-converted
vijayakumar sivaji
 
Presentationvlsi converted
Presentationvlsi convertedPresentationvlsi converted
Presentationvlsi converted
vijayakumar sivaji
 
Optical detection devices unit 3
Optical detection devices unit 3 Optical detection devices unit 3
Optical detection devices unit 3
vijayakumar sivaji
 
Introduction to ic
Introduction to icIntroduction to ic
Introduction to ic
vijayakumar sivaji
 
Quantum mechanics review
Quantum mechanics reviewQuantum mechanics review
Quantum mechanics review
vijayakumar sivaji
 
Polarization
PolarizationPolarization
Polarization
vijayakumar sivaji
 
Magneto optic devices
Magneto optic devicesMagneto optic devices
Magneto optic devices
vijayakumar sivaji
 
Plasma and lcd display
Plasma  and lcd displayPlasma  and lcd display
Plasma and lcd display
vijayakumar sivaji
 
Magneto optic devices
Magneto optic devicesMagneto optic devices
Magneto optic devices
vijayakumar sivaji
 
Electron wave function of first 3 states
Electron wave function of first 3 statesElectron wave function of first 3 states
Electron wave function of first 3 states
vijayakumar sivaji
 

More from vijayakumar sivaji (11)

Unit 1
Unit 1Unit 1
Unit 1
 
Op amps-converted
Op amps-convertedOp amps-converted
Op amps-converted
 
Presentationvlsi converted
Presentationvlsi convertedPresentationvlsi converted
Presentationvlsi converted
 
Optical detection devices unit 3
Optical detection devices unit 3 Optical detection devices unit 3
Optical detection devices unit 3
 
Introduction to ic
Introduction to icIntroduction to ic
Introduction to ic
 
Quantum mechanics review
Quantum mechanics reviewQuantum mechanics review
Quantum mechanics review
 
Polarization
PolarizationPolarization
Polarization
 
Magneto optic devices
Magneto optic devicesMagneto optic devices
Magneto optic devices
 
Plasma and lcd display
Plasma  and lcd displayPlasma  and lcd display
Plasma and lcd display
 
Magneto optic devices
Magneto optic devicesMagneto optic devices
Magneto optic devices
 
Electron wave function of first 3 states
Electron wave function of first 3 statesElectron wave function of first 3 states
Electron wave function of first 3 states
 

Recently uploaded

Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
An Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering TechniquesAn Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering Techniques
ambekarshweta25
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 
Water billing management system project report.pdf
Water billing management system project report.pdfWater billing management system project report.pdf
Water billing management system project report.pdf
Kamal Acharya
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
dxobcob
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
camseq
 
Fundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptxFundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptx
manasideore6
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 

Recently uploaded (20)

Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
An Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering TechniquesAn Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering Techniques
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 
Water billing management system project report.pdf
Water billing management system project report.pdfWater billing management system project report.pdf
Water billing management system project report.pdf
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
 
Fundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptxFundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptx
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 

Bjt transistors converted

  • 1. • BJT biasing and Amplifier • Unit-1 and 2 Prepared by S.Vijayakumar, AP/ECE Ramco Institute of Technology Academic year (2018-2019 odd sem)
  • 2. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 1 Chap. 4 BJT transistors •Widely used in amplifier circuits •Formed by junction of 3 materials •npn or pnp structure
  • 3. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 2
  • 4. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 3 pnp transistor
  • 5. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 4
  • 6. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 5
  • 7. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 6 Large current Operation of npn transistor
  • 8. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 7 Modes of operation of a BJT transistor Mode BE junction BC junction cutoff reverse biased reverse biased linear(active) forward biased reverse biased saturation forward biased forward biased
  • 9. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 8 Summary of npn transistor behavior npn collector emitter base IB IE IC small current large current + VBE -
  • 10. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 9 Summary of pnp transistor behavior pnp collector emitter base IB IE IC small current large current + VBE -
  • 11. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 10 Summary of equations for a BJT IE  IC IC = bIB b is the current gain of the transistor  100 VBE = 0.7V(npn) VBE = -0.7V(pnp)
  • 12. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 11 4.5 Graphical representation of transistor characteristics IB IC IE Output circuit Input circuit
  • 13. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 12 Input characteristics •Acts as a diode •VBE 0.7V IB IB VBE 0.7V
  • 14. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 13 Output characteristics IC IC VCE IB = 10mA IB = 20mA IB = 30mA IB = 40mA Cutoff region •At a fixed IB, IC is not dependent on VCE •Slope of output characteristics in linear region is near 0 (scale exaggerated) Early voltage
  • 15. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 14 Biasing a transistor •We must operate the transistor in the linear region. •A transistor’s operating point (Q-point) is defined by IC, VCE, and IB.
  • 16. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 15 4.6 Analysis of transistor circuits at DC For all circuits: assume transistor operates in linear region write B-E voltage loop write C-E voltage loop Example 4.2 B-E junction acts like a diode VE = VB - VBE = 4V - 0.7V = 3.3V IE IC IE = (VE - 0)/RE = 3.3/3.3K = 1mA IC  IE = 1mA VC = 10 - ICRC = 10 - 1(4.7) = 5.3V
  • 17. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 16 Example 4.6 B-E Voltage loop 5 = IBRB + VBE, solve forIB IB = (5 - VBE)/RB = (5-.7)/100k = 0.043mA IC = bIB = (100)0.043mA = 4.3mA VC = 10 - ICRC = 10 - 4.3(2) = 1.4V IE IC IB b = 100
  • 18. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 17 Exercise 4.8 VE = 0 - .7 = - 0.7V IE IC IB b = 50 IE = (VE - -10)/RE = (-.7 +10)/10K = 0.93mA IC  IE = 0.93mA IB = IC/b = .93mA/50 = 18.6mA VC = 10 - ICRC = 10 - .93(5) = 5.35V VCE = 5.35 - -0.7 = 6.05V
  • 19. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 18 Summary of npn transistor behavior npn collector emitter base IB IE IC small current large current + VBE -
  • 20. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 19 Summary of equations for a BJT IE  IC IC = bIB b is the current gain of the transistor  100 VBE = 0.7V(npn) VBE = -0.7V(pnp)
  • 21. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 20 Prob. 4.32 •Use a voltage divider, RB1 and RB2 to bias VB to avoid two power supplies. •Make the current in the voltage divider about 10 times IB to simplify the analysis. Use VB = 3V and I = 0.2mA. IB I (a) RB1 and RB2 form a voltage divider. Assume I >> IB I = VCC/(RB1 + RB2) .2mA = 9 /(RB1 + RB2) AND VB = VCC[RB2/(RB1 + RB2)] 3 = 9 [RB2/(RB1 + RB2)], Solve for RB1 and RB2. RB1 = 30KW, and RB2 = 15KW.
  • 22. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 21 Prob. 4.32 Find the operating point •Use the Thevenin equivalent circuit for the base •Makes the circuit simpler •VBB = VB = 3V •RBB is measured with voltage sources grounded •RBB = RB1|| RB2 = 30KW || 15KW = . 10KW
  • 23. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 22 Prob. 4.32 Write B-E loop and C-E loop B-E loop C-E loop B-E loop VBB = IBRBB + VBE +IERE C-E loop VCC = ICRC + VCE +IERE Solve for,IC, VCE, and IB. This is how all DC circuits are analyzed and designed!
  • 24. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 23 Example 4.8 •2-stage amplifier, 1st stage has an npn transistor; 2nd stage has an pnp transistor. IC = bIB IC  IE VBE = 0.7(npn) = -0.7(pnp) b = 100 Find IC1, IC2, VCE1, VCE2 •Use Thevenin circuits.
  • 25. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 24 Example 4.8 •RBB1 = RB1||RB2 = 33K •VBB1 = VCC[RB2/(RB1+RB2)] VBB1 = 15[50K/150K] = 5V Stage 1 •B-E loop VBB1 = IB1RBB1 + VBE +IE1RE1 Use IB1  IE1/ b 5 = IE133K/ 100 + .7 + IE13K IE1 = 1.3mA IB1 IE1
  • 26. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 25 Example 4.8 C-E loop neglect IB2 because it is IB2 << IC1 IE1 IC1 VCC = IC1RC1 + VCE1 +IE1RE1 15 = 1.3(5) + VCE1 +1.3(3) VCE1= 4.87V
  • 27. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 26 Example 4.8 Stage 2 •B-E loop IB2 IE2 VCC = IE2RE2 + VEB +IB2RBB2 + VBB2 15 = IE2(2K) + .7 +IB2 (5K)+ 4.87 + 1.3(3) Use IB2  IE2/ b, solve for IE2 IE2 = 2.8mA
  • 28. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 27 Example 4.8 Stage 2 •C-E loop IE2 IC2 VCC = IE2RE2 + VEC2 +IC2RC2 15 = 2.8(2) + VEC2 + 2.8(2.7) solve for VEC2 VCE2 = 1.84V
  • 29. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 28 Summary of DC problem •Bias transistors so that they operate in the linear region B- E junction forward biased, C-E junction reversed biased •Use VBE = 0.7 (npn), IC  IE, IC = bIB •Represent base portion of circuit by the Thevenin circuit •Write B-E, and C-E voltage loops. •For analysis, solve for IC, and VCE. •For design, solve for resistor values (IC and VCE specified).
  • 30. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 29 4.7 Transistor as an amplifier •Transistor circuits are analyzed and designed in terms of DC and ac versions of the same circuit. •An ac signal is usually superimposed on the DC circuit. •The location of the operating point (values of IC and VCE) of the transistor affects the ac operation of the circuit. •There are at least two ac parameters determined from DC quantities.
  • 31. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 30 A small ac signal vbe is superimposed on the DC voltage VBE. It gives rise to a collector signal current ic, superimposed on the dc current IC. Transconductance ac input signal (DC input signal 0.7V) ac output signal DC output signal IB The slope of the ic - vBE curve at the bias point Q is the transconductance gm: the amount of ac current produced by an ac voltage.
  • 32. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 31 Transconductance = slope at Q point gm = dic/dvBE|ic = ICQ where IC = IS[exp(-VBE/VT)-1]; the equation for a diode. Transconductance ac input signal DC input signal (0.7V) ac output signal DC output signal gm = ISexp(-VBE/VT) (1/VT) gm  IC/VT (A/V)
  • 33. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 32 ac input resistance  1/slope at Q point rp = dvBE/dib|ic = ICQ rp  VT /IB re  VT /IE ac input resistance of transistor ac input signal DC input signal (0.7V) ac output signal DC output signal IB
  • 34. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 33 4.8 Small-signal equivalent circuit models •ac model •Hybrid-p model •They are equivalent •Works in linear region only
  • 35. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 34 Steps to analyze a transistor circuit 1 DC problem Set ac sources to zero, solve for DC quantities, IC and VCE. 2 Determine ac quantities from DC parameters Find gm, rp, and re. 3 ac problem Set DC sources to zero, replace transistor by hybrid-p model, find ac quantites, Rin, Rout, Av, and Ai.
  • 36. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 35 Example 4.9 Find vout/vin, (b = 100) DC problem Short vi, determine IC and VCE B-E voltage loop 3 = IBRB + VBE IB = (3 - .7)/RB = 0.023mA C-E voltage loop VCE = 10 - ICRC VCE = 10 - (2.3)(3) VCE = 3.1V Q point: VCE = 3.1V, IC = 2.3mA
  • 37. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 36 Example 4.9 ac problem Short DC sources, input and output circuits are separate, only coupled mathematically gm = IC/VT = 2.3mA/25mV = 92mA/V rp = VT/ IB = 25mV/.023mA = 1.1K vbe= vi [rp / (100K + rp)] = 0.011vi vout = - gm vbeRC vout = - 92(0.011vi)3K vout/vi = -3.04 + vout - e b c + vbe -
  • 38. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 37 Exercise 4.24 (a) Find VC, VB, and VE, given: b = 100, VA = 100V IE = 1 mA IB  IE/b= 0.01mA VB = 0 - IB10K = -0.1V VE = VB - VBE = -0.1 - 0.7 = -0.8V VC = 10V - IC8K = 10 - 1(8) = 2V VB
  • 39. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 38 Exercise 4.24 (b) Find gm, rp, and r0, given: b = 100, VA = 100V gm = IC/VT = 1 mA/25mV = 40 mA/V rp = VT/ IB = 25mV/.01mA = 2.5K r0 = output resistance of transistor r0 = 1/slope of transistor output characteristics r0 = | VA|/IC = 100K
  • 40. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 39 Summary of transistor analysis •Transistor circuits are analyzed and designed in terms of DC and ac versions of the same circuit. •An ac signal is usually superimposed on the DC circuit. •The location of the operating point (values of IC and VCE) of the transistor affects the ac operation of the circuit. •There are at least two ac parameters determined from DC quantities.
  • 41. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 40 Steps to analyze a transistor circuit 1 DC problem Set ac sources to zero, solve for DC quantities, IC and VCE. 2 Determine ac quantities from DC parameters Find gm, rp, and ro. 3 ac problem Set DC sources to zero, replace transistor by hybrid-p model, find ac quantites, Rin, Rout, Av, and Ai. ro
  • 42. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 41 Circuit from Exercise 4.24 IE = 1 mA VC = 10V - IC8K = 10 - 1(8) = 2V IB  IE/b= 0.01mA gm = IC/VT = 1 mA/25mV = 40 mA/V VB = 0 - IB10K = -0.1V rp = VT/ IB = 25mV/.01mA = 2.5K VE = VB - VBE = -0.1 - 0.7 = -0.8V + Vout -
  • 43. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 42 ac equivalent circuit b e c vbe = (Rb||Rpi)/ [(Rb||Rpi) +Rs]vi vbe = 0.5vi vout = -(gmvbe)(Ro||Rc ||RL) vout = -154vbe Av =vout/vi = - 77 + vout - Neglecting Ro vout = -(gmvbe)(Rc ||RL) Av =vout/vi = - 80
  • 44. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 43 Prob. 4.76 + Vout - b=100
  • 45. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 44 Prob. 4.76 + Vout - (a) Find Rin Rin = Rpi = VT/IB = (25mV)100/.1 = 2.5KW (c) Find Rout Rout = Rc = 47KW Rin Rout (b) Find Av = vout/vin vout = - bib Rc vin = ib (R +Rpi) Av = vout/vin = - bib Rc/ ib (R +Rpi ) = - bRc/(R +Rpi) = - 100(47K)/(100K + 2.5K) = - 37.6 = bib b e c ib
  • 46. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 45 4.9 Graphical analysis Input circuit B-E voltage loop VBB = IBRB +VBE IB = (VBB - VBE)/RB
  • 47. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 46 Graphical construction of IB and VBE IB = (VBB - VBE)/RB If VBE = 0, IB = VBB/RB If IB = 0, VBE = VBB VBB/RB
  • 48. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 47 Load line Output circuit C-E voltage loop VCC = ICRC +VCE IC = (VCC - VCE)/RC
  • 49. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 48 Graphical construction of IC and VCE VCC/RC IC = (VCC - VCE)/RC If VCE = 0, IC = VCC/RC If IC = 0, VCE = VCC
  • 50. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 49 Graphical analysis Input signal Output signal
  • 51. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 50 •Load-line A results in bias point QA which is too close to VCC and thus limits the positive swing of vCE. •Load-line B results in an operating point too close to the saturation region, thus limiting the negative swing of vCE. Bias point location effects
  • 52. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 51 4.11 Basic single-stage BJT amplifier configurations We will study 3 types of BJT amplifiers •CE - common emitter, used for AV, Ai, and general purpose •CE with RE - common emitter with RE, same as CE but more stable •CC common collector, used for Ai, low output resistance, used as an output stage CB common base (not covered)
  • 53. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 52 Common emitter amplifier ac equivalent circuit
  • 54. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 53 Common emitter amplifier Rin Rout + Vout - Rin (Does not include source) Rin =Rpi Rout (Does not include load) Rout =RC AV = Vout/Vin Vout = - bibRC Vin = ib(Rs + Rpi) AV = - bRC/ (Rs + Rpi) Ai = iout/iin iout = - bib iin = ib Ai = - b ib iout
  • 55. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 54 Common emitter with RE amplifier ac equivalent circuit
  • 56. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 55 Common emitter with RE amplifier Rin Rout + Vout - Rin Rin =V/ib V = ib Rpi + (ib + bib)RE Rin = Rpi + (1 + b)RE (usually large) Rout Rout =RC AV = Vout/Vin Vout = - bibRC Vin = ib Rs + ib Rpi + (ib + bib)RE AV = - bRC/ (Rs + Rpi + (1 + b)RE) (less than CE, but less sensitive to b variations) Ai = iout/iin iout = - bib iin = ib Ai = - b ib iout ib + bib + V -
  • 57. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 56 Common collector (emitter follower) amplifier b c e + vout - (vout at emitter) ac equivalent circuit
  • 58. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 57 Common collector amplifier Rin + vout - Rin Rin =V/ib V = ib Rpi + (ib + bib)RL Rin = Rpi + (1 + b)RL AV = vout/vs vout = (ib + bib)RL vs = ib Rs + ib Rpi + (ib + bib)RL AV = (1+ b)RL/ (Rs + Rpi + (1 + b)RL) (always < 1) ib ib + bib + V -
  • 59. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 58 Common collector amplifier Rout + vout - Rout (don’t include RL, set Vs = 0) Rout = vout /- (ib + bib) vout = -ib Rpi + -ibRs Rout = (Rpi + Rs)/ (1+ b) (usually low) Ai = iout/iin iout = ib + bib iin = ib Ai = b + 1 ib ib + bib
  • 60. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 59 Prob. 4.84 + vout - b = 50 ac circuit CE with RE amp, because RE is in ac circuit Given Rpi =VT/IB = 25mV(50)/.2mA = 6.6K
  • 61. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 60 Prob. 4.84 (a) Find Rin Rin =V/ib V = ib Rpi + (ib + bib)RE Rin = Rpi + (1 + b)RE Rin = 6.6K+ (1 + 50)125 Rin  13K Rin + V - ib ib + bib
  • 62. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 61 Prob. 4.84 (b) Find AV = vout/vs vout = - bib(RC||RL) vs = ib Rs + ib Rpi + (ib + bib)RE AV = - b (RC||RL) / (Rs + Rpi + (1 + b)RE) AV = - 50 (10K||10K)/(10K + 6.6Ki + (1 + 50)125) AV  - 11 ib ib + bib + vout - -bib
  • 63. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 62 Prob. 4.84 (c) If vbe is limited to 5mV, what is the largest signal at input and output? vbe = ib Rpi = 5mV ib = vbe /Rpi = 5mV/6.6K = 0.76mA (ac value) vs = ib Rs + ib Rpi + (ib + bib)RE vs = (0.76mA)10K + (0.76mA) 6.6K + (0.76mA + (50)0.76mA )125 vs  17.4mV ib ib + bib + vout - + vbe -
  • 64. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 63 Prob. 4.84 (c) If vbe is limited to 5mV, what is the largest signal at input and output? vout = vs AV vout = 17.4mV(-11) vout  -191mV (ac value) ib ib + bib + vout - + vbe -
  • 65. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 64 Prob. 4.79 Using this circuit, design an amp with: IE = 2mA AV = -8 current in voltage divider I = 0.2mA (CE amp because RE is not in ac circuit) b = 100 Voltage divider Vcc/I = 9/0.2mA = 45K 45K = R1 + R2 Choose VB  1/3 Vcc to put operating point near the center of the transistor characteristics R2/(R1 + R2) = 3V Combining gives, R1 = 30K, R2 = 15K
  • 66. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 65 Prob. 4.79 b = 100Find RE (input circuit) Use Thevenin equivalent B-E loop VBB=IBRBB+VBE+IERE using IB  IE/b RE = [VBB - VBE - (IE/b)RBB]/IE RE = [3 - .7 - (2mA/100)10K]/2mA RE = 1.05KW + VBE - IE IB
  • 67. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 66 Prob. 4.79 Find Rc (ac circuit) Rpi = VT/IB = 25mV(100)/2mA = 1.25K Ro = VA/IC = 100/2mA = 50K Av = vout/vin vout = -gmvbe (Ro||Rc||RL) vbe = 10K||1.2K / [10K+ 10K||1.2K]vi Av = -gm(Ro||Rc||RL)(10K||1.2K) / [10K||1.2K +Rs] Set Av = -8, and solve for Rc, Rc  2K + vout -
  • 68. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 67 CE amplifier
  • 69. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 68 CE amplifier Av  -12.2
  • 70. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 69 FOURIER COMPONENTS OF TRANSIENT RESPONSE V($N_0009) DC COMPONENT = -1.226074E-01 HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG) 1 1.000E+03 1.581E+00 1.000E+00 -1.795E+02 0.000E+00 2 2.000E+03 1.992E-01 1.260E-01 9.111E+01 2.706E+02 3 3.000E+03 2.171E-02 1.374E-02 -1.778E+02 1.668E+00 4 4.000E+03 3.376E-03 2.136E-03 -1.441E+02 3.533E+01 TOTAL HARMONIC DISTORTION = 1.267478E+01 PERCENT CE amplifier
  • 71. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 70 CE amplifier with RE
  • 72. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 71 CE amplifier with RE Av  - 7.5
  • 73. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 72 FOURIER COMPONENTS OF TRANSIENT RESPONSE V($N_0009) DC COMPONENT = -1.353568E-02 HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG) 1 1.000E+03 7.879E-01 1.000E+00 -1.794E+02 0.000E+00 2 2.000E+03 1.604E-02 2.036E-02 9.400E+01 2.734E+02 3 3.000E+03 5.210E-03 6.612E-03 -1.389E+02 4.056E+01 4 4.000E+03 3.824E-03 4.854E-03 -1.171E+02 6.231E+01 TOTAL HARMONIC DISTORTION = 2.194882E+00 PERCENT
  • 74. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 73 Summary Av THD CE -12.2 12.7% CE w/RE (RE = 100) -7.5 2.19%
  • 75. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 74 Prob. 4.83 + vout - •2 stage amplifier (a) Find IC and VC of each transistor •Both stages are the same (same for each stage) •Capacitively coupled b = 100 RL=2K Rc=6.8K
  • 76. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 75 Prob. 4.83 (a) Find IC and VC of each transistor (same for each stage) B-E voltage loop VBB = IBRBB + VBE + IERE where RBB = R1||R2 = 32K VBB = VCCR2/(R1+R2) = 4.8V, and IB  IE/b IE = [VBB - VBE ]/[RBB/b + RE] IE = 0.97mA VC = VCC - ICRC VC = 15 - .97(6.8) VC = 8.39V + VC -
  • 77. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 76 Prob. 4.83 b c e + vout - (b) find ac circuit b c e RBB = R1||R2 = 100K||47K = 32KW Rpi = VT/IB = 25mV(100)/.97mA  2.6KW gm = IC/VT = .97mA/25mV  39mA/V RL=2K
  • 78. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 77 Prob. 4.83 b c e + vout - (c) find Rin1 Rin1 = RBB||Rpi = 32K||2.6K = 2.4KW b c e Rin1 (d) find Rin2 Rin2 = RBB||Rpi = 2.4KW Rin2 find vb1/vi = Rin1/[Rin1 + RS] = 2.4K/[2.4K + 5K] = 0.32 + vb1 - find vb2/vb1 vb2 = -gmvbe1[RC||RBB||Rpi] vb2/vbe1 = -gm[RC||RBB||Rpi] vb2/vb1 = -(39mA/V)[6.8||32K||2.6K] = -69.1 + vb2 - RL=2K
  • 79. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 78 Prob. 4.83 b c e + vout - (e) find vout/vb2 vout = -gmvbe2[RC||RL] vout/vbe2 = -gm[RC||RL] vb2/vb1 = -(39mA/V)[6.8K||2K] = -60.3 b c e (f) find overall voltage gain vout/vi = (vb1/vi) (vb2/vb1) (vout/vb2) vout/vi = (0.32) (-69.1) (-60.3) vout/vi = 1332 + vb1 - + vb2 - RL=2K
  • 80. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 79 Prob. 4.96 Find IE1, IE2, VB1, and VB2 IE2 = 2mA IE1 = I20mA + IB2 IE1 = I20mA + IE2/b2 IE1 = 20mA + 10mA IE1 = 30mA IE1 IE2 Q1 has b1 = 20 Q2 has b2 = 200 Q1 Q2 IB2
  • 81. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 80 Prob. 4.96 Find VB1, and VB2 Use Thevenin equivalent VB1 = VBB1 - IB1(RBB1) = 4.5 - (30mA/20)500K = 3.8V VB2 = VB1 - VBE = 3.8V - 0.7 = 3.1V Q1 has b1 = 20 Q2 has b2 = 200 IB2+ vB1 - + vB2 - IB1
  • 82. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 81 Prob. 4.96 (b) find vout/vb2 vout = (ib2 + b2ib2)RL vb2 = (ib2 + b2ib2)RL + ib2Rpi2 vout/vb2 = (1 + b2)RL/[(1 + b2)RL + Rpi2] = (1 + 200)1K/[(1 + 200)1K+ 2.5K]  0.988 b1 e1 c1 b2 e2 c2 + vout - + vB2 - Rpi2 = VT/IB2 = VT b2/IE2 = 25mV(200)/2mA = 2.5KW
  • 83. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 82 Prob. 4.96 (b) find Rin2 = vb2/ib2 vb2 = (ib2 + b2ib2)RL + ib2Rpi2 Rin2 = vb2/ib2 = (1 + b2)RL + Rpi2 = (1 + 200)1K + 2.5K  204K b1 e1 c1 b2 e2 c2 + vB2 -Rin2
  • 84. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 83 Prob. 4.96 (c) find Rin1 = RBB1||(vb1/ib1) = RBB1|| [ib1Rpi1 +(ib1 + b1ib1)Rin2]/ib1 = RBB1|| [Rpi1 +(1+ b1)Rin2], where Rpi1 = VT b1/IE1 = 25mV(20)/30mA = 16.7K = 500K||[16.7K + (1+ 20)204K]  500KW b1 e1 c1 b2 e2 c2 + vB1 - Rin1 iB1
  • 85. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 84 Prob. 4.96 (c) find ve1/vb1 ve1 = (ib1 + b1ib1)Rin2 vb1 = (ib1 + b1ib1)Rin2 + ib1Rpi1 ve1/vb1 = (1 + b1) Rin2 /[(1 + b1) Rin2 + Rpi1] = (1 + 20)204K/[(1 + 20)204K+ 16.7K]  0.996 b1 e1 c1 b2 e2 c2 + ve1 - iB1+ vB1 -
  • 86. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 85 Prob. 4.96 (d) find vb1/vi vb1/vi = Rin1/[RS + Rin1] = 0.82 b1 e1 c1 b2 e2 c2 + vb1 - (e) find overall voltage gain vout/vi = (vb1/vi) (ve1/vb1) (vout/ve1) vout/vi = (0.82) (0.99) (0.99) vout/vi = 0.81
  • 87. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 86 (Prob. 4.96) Voltage outputs at each stage Output of stage 2 Output of stage 1 Input
  • 88. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 87 (Prob. 4.96) Current Input current Input to stage 2 (ib2)
  • 89. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 88 (Prob. 4.96) Current output current Input to stage 2 (ib2)
  • 90. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 89 (Prob. 4.96) Current output current Input to stage 2 (ib2) Input current
  • 91. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 90 (Prob. 4.96) Power and current gain Input current = (Vi)/Rin = 1/500K = 2.0mA output current= (Vout)/RL = (0.81V)/1K= 0.81mA current gain = 0.81mA/ 2.0mA = 405 Input power = (Vi) (Vi)/Rin = 1 x 1/500K = 2.0mW output power = (Vout) (Vout)/RL = (0.81V) (0.81V)/1K= 656mW power gain = 656mW/2mW = 329
  • 92. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 91 BJT Output Characteristics •Plot Ic vs. Vce for multiple values of Vce and Ib •From Analysis menu use DC Sweep •Use Nested sweep in DC Sweep section
  • 93. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 92 Probe: BJT Output Characteristics 1 Result of probe 2 Add plot (plot menu) -> Add trace (trace menu) -> IC(Q1) 3 Delete plot (plot menu)
  • 94. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 93 BJT Output Characteristics: current gain Ib = 5mA (Each plot 10mA difference) b at Vce = 4V, and Ib = 45mA b = 8mA/45mA = 178
  • 95. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 94 BJT Output Characteristics: transistor output resistance Ib = 5mA (Each plot 10mA difference) Ro = 1/slope At Ib = 45mA, 1/slope = (8.0 - 1.6)V/(8.5 - 7.8)mA Rout = 9.1KW
  • 96. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 95 CE Amplifier: Measurements with Spice Rin Rout
  • 97. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 96 Input Resistance Measurement Using SPICE •Replace source, Vs and Rs with Vin, measure Rin = Vin/Iin •Do not change DC problem: keep capacitive coupling if present •Source (Vin) should be a high enough frequency so that capacitors act as shorts: Rcap = |1/wC|. For C = 100mF, w = 1KHz, Rcap = 1/2p(1K)(100E-6)  1.6W •Vin should have a small value so operating point does not change Vin  1mV
  • 98. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 97 Rin Measurement •Transient analysis
  • 99. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 98 Probe results I(C2) Rin = 1mV/204nA = 4.9KW
  • 100. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 99 Output Resistance Measurement Using SPICE •Replace load, RL with Vin, measure Rin = Vin/Iin •Set Vs = 0 •Do not change DC problem: keep capacitive coupling if present •Source (Vin) should be a high enough frequency so that capacitors act as shorts: Rcap = |1/wC|. For C = 100mF, w = 1KHz, Rcap = 1/2p(1K)(100E-6)  1.6W •Vin should have a small value so operating point does not change Vin  1mV
  • 101. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 100 Rout Measurement •Transient analysis
  • 102. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 101 Probe results -I(C1) Rout = 1mV/111nA = 9KW -I(C1) is current in Vin flowing out of + terminal
  • 103. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 102 DC Power measurements Power delivered by + 10 sources: (10)(872mA) + (10)(877mA) = 8.72mW + 8.77mW = 17.4mW
  • 104. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 103 ac Power Measurements of Load instantaneous power average power Vout Vin
  • 105. Reference • www.electronics.teipir.gr/personalpages/.../1/.. ./ECE3111BJTTransistors. ECE 3111 - Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002 104