This document discusses assignment problems and how to solve them using the Hungarian method. Assignment problems involve efficiently allocating people to tasks when each person has varying abilities. The Hungarian method is an algorithm that can find the optimal solution to an assignment problem in polynomial time. It involves constructing a cost matrix and then subtracting elements in rows and columns to create zeros, which indicate assignments. The method is iterated until all tasks are assigned with the minimum total cost. While typically used for minimization, the method can also solve maximization problems by converting the cost matrix.