Physics Helpline
L K Satapathy
Maxima and Minima 1
Physics Helpline
L K Satapathy
Application of Derivative 5
Maxima and Minima
D
B
A C
E
F
maxf
minf
1c 2ca b
Maximum at B 1( )x c Minimum at E 2( )x c
Tangents at B and E are parallel to x-axis
 f (x) = 0 at B and E [ critical points ]
f changes from +ve  –ve across B  f  is –ve at B (max at B)
f changes from –ve  +ve across E  f  is +ve at E (min at E)
 is a Local maximum And is a Local minimum
In [ a , b ] , the maximum of = absolute maximum1 2( ) , ( ) , ( ) , ( )f a f c f c f b
and the minimum of = absolute minimum
1x c 2x c
1 2( ) , ( ) , ( ) , ( )f a f c f c f b
In the figure , the value of f(x) is
Physics Helpline
L K Satapathy
Application of Derivative 5
Maxima and Minima
Question : Find the maximum and minimum values of the function
in the interval [ 0 , 3 ] .4 3 2
( ) 3 8 12 48 25f x x x x x    
Answer :
4 3 2
( ) 3 8 12 48 25f x x x x x    
2
12( 2)( 2)x x  
2
( ) 36 48 24 . . . (1)f x x x   
The given function
Differentiating , we get 3 2 3 2
( ) 12 24 24 48 12( 2 2 4)f x x x x x x x        
Again differentiating , we get
We need tot find the absolute maximum and minimum values of f (x) in [0 , 3]
Physics Helpline
L K Satapathy
Application of Derivative 5
Maxima and Minima
2 2
2 0 2 ( )x x no soln     
(1) (2) 36 4 48 2 24Now f      
To get the critical points , we solve the equation f (x) = 0
2
( ) 12( 2)( 2) 0f x x x    
2 0 2or x x   
144 96 24 72   
We observe that is a local minimum(2) 0 2f x   
Physics Helpline
L K Satapathy
Application of Derivative 5
Maxima and Minima
We have One critical point at x = 2 and the closed interval is [ 0 , 3 ]
 We need to find f (0) , f (2) and f (3)
4 3 2
( ) 3 8 12 48 25f x x x x x    
(0) 25f 
(2) 3 16 8 8 12 4 48 2 25 48 64 48 96 25 39f                
(3) 3 81 8 27 12 9 48 3 25 243 216 108 144 25 16f               
max 25 [ ]f Ans
min 3 [ ]9f Ans 
 Absolute maximum
And absolute minimum
Physics Helpline
L K Satapathy
For More details:
www.physics-helpline.com
Subscribe our channel:
youtube.com/physics-helpline
Follow us on Facebook and Twitter:
facebook.com/physics-helpline
twitter.com/physics-helpline

Application of Derivative 5

  • 1.
    Physics Helpline L KSatapathy Maxima and Minima 1
  • 2.
    Physics Helpline L KSatapathy Application of Derivative 5 Maxima and Minima D B A C E F maxf minf 1c 2ca b Maximum at B 1( )x c Minimum at E 2( )x c Tangents at B and E are parallel to x-axis  f (x) = 0 at B and E [ critical points ] f changes from +ve  –ve across B  f  is –ve at B (max at B) f changes from –ve  +ve across E  f  is +ve at E (min at E)  is a Local maximum And is a Local minimum In [ a , b ] , the maximum of = absolute maximum1 2( ) , ( ) , ( ) , ( )f a f c f c f b and the minimum of = absolute minimum 1x c 2x c 1 2( ) , ( ) , ( ) , ( )f a f c f c f b In the figure , the value of f(x) is
  • 3.
    Physics Helpline L KSatapathy Application of Derivative 5 Maxima and Minima Question : Find the maximum and minimum values of the function in the interval [ 0 , 3 ] .4 3 2 ( ) 3 8 12 48 25f x x x x x     Answer : 4 3 2 ( ) 3 8 12 48 25f x x x x x     2 12( 2)( 2)x x   2 ( ) 36 48 24 . . . (1)f x x x    The given function Differentiating , we get 3 2 3 2 ( ) 12 24 24 48 12( 2 2 4)f x x x x x x x         Again differentiating , we get We need tot find the absolute maximum and minimum values of f (x) in [0 , 3]
  • 4.
    Physics Helpline L KSatapathy Application of Derivative 5 Maxima and Minima 2 2 2 0 2 ( )x x no soln      (1) (2) 36 4 48 2 24Now f       To get the critical points , we solve the equation f (x) = 0 2 ( ) 12( 2)( 2) 0f x x x     2 0 2or x x    144 96 24 72    We observe that is a local minimum(2) 0 2f x   
  • 5.
    Physics Helpline L KSatapathy Application of Derivative 5 Maxima and Minima We have One critical point at x = 2 and the closed interval is [ 0 , 3 ]  We need to find f (0) , f (2) and f (3) 4 3 2 ( ) 3 8 12 48 25f x x x x x     (0) 25f  (2) 3 16 8 8 12 4 48 2 25 48 64 48 96 25 39f                 (3) 3 81 8 27 12 9 48 3 25 243 216 108 144 25 16f                max 25 [ ]f Ans min 3 [ ]9f Ans   Absolute maximum And absolute minimum
  • 6.
    Physics Helpline L KSatapathy For More details: www.physics-helpline.com Subscribe our channel: youtube.com/physics-helpline Follow us on Facebook and Twitter: facebook.com/physics-helpline twitter.com/physics-helpline