Physics Helpline
L K Satapathy
Definite Integrals 8
Physics Helpline
L K Satapathy
Definite Integrals - 8
Question : The value of is equal to
22
2
cos
1 x
x x
dx
e




2 2
2 22 2
( ) 2 ( ) 2 ( ) ( )
4 4
a b c e d e
 
 
    
Answer :
22
2
cos
1 x
x x
I dx
e





[Putting x = – t ]
22
2
cos
( )
1 t
t t
dt
e




 

The given integral
22
2
cos
1 t
t t
dt
e






. . . (1)
( ) ( )
b a
a b
f x dx f x dx
 
  
 
 
Physics Helpline
L K Satapathy
Definite Integrals - 8
22
2
cos
1 x
x x
I dx
e




 

2
2
2
cosx xdx



 
22
2
cos
1
x
x
x e x
I dx
e



 

[Replacing t by x ]
[ Multiplying numerator
& denominator by ]x
e
. . . (2)
[ Adding equations (1) & (2) ]
22
2
cos (1 )
2
1
x
x
x x e
I dx
e




 

Physics Helpline
L K Satapathy
Definite Integrals - 8
2
22
0
0
sin 2 sinI x x x xdx


     
2
2
0
2 2 cosI x xdx

   [ Since is an even function]
2
2
0
cosI x xdx

  
2
cosx x
Integrating by parts :
2
& cosx u xdx dv  2 & sindu xdx v x  
udv uv vdu  
22
0
2 sin
4
I x xdx


    . . . (3)
Physics Helpline
L K Satapathy
Definite Integrals - 8
Correct option = (a)
Again integrating by parts :sinx xdx
& sin & cosx u xdx dv du dx v x     
sin ( cos ) cosx xdx x x xdx     
cos cosx x xdx   
cos sinx x x  
   
2
2 2
0 0
0
sin cos sin 0 1 1x xdx x x x

 
      
22 2
0
(3) 2 sin 2
4 4
[ ]I x xd sx An

 
    
Physics Helpline
L K Satapathy
For More details:
www.physics-helpline.com
Subscribe our channel:
youtube.com/physics-helpline
Follow us on Facebook and Twitter:
facebook.com/physics-helpline
twitter.com/physics-helpline

Definite Integrals 8/ Integration by Parts

  • 1.
    Physics Helpline L KSatapathy Definite Integrals 8
  • 2.
    Physics Helpline L KSatapathy Definite Integrals - 8 Question : The value of is equal to 22 2 cos 1 x x x dx e     2 2 2 22 2 ( ) 2 ( ) 2 ( ) ( ) 4 4 a b c e d e          Answer : 22 2 cos 1 x x x I dx e      [Putting x = – t ] 22 2 cos ( ) 1 t t t dt e        The given integral 22 2 cos 1 t t t dt e       . . . (1) ( ) ( ) b a a b f x dx f x dx         
  • 3.
    Physics Helpline L KSatapathy Definite Integrals - 8 22 2 cos 1 x x x I dx e        2 2 2 cosx xdx      22 2 cos 1 x x x e x I dx e       [Replacing t by x ] [ Multiplying numerator & denominator by ]x e . . . (2) [ Adding equations (1) & (2) ] 22 2 cos (1 ) 2 1 x x x x e I dx e       
  • 4.
    Physics Helpline L KSatapathy Definite Integrals - 8 2 22 0 0 sin 2 sinI x x x xdx         2 2 0 2 2 cosI x xdx     [ Since is an even function] 2 2 0 cosI x xdx     2 cosx x Integrating by parts : 2 & cosx u xdx dv  2 & sindu xdx v x   udv uv vdu   22 0 2 sin 4 I x xdx       . . . (3)
  • 5.
    Physics Helpline L KSatapathy Definite Integrals - 8 Correct option = (a) Again integrating by parts :sinx xdx & sin & cosx u xdx dv du dx v x      sin ( cos ) cosx xdx x x xdx      cos cosx x xdx    cos sinx x x       2 2 2 0 0 0 sin cos sin 0 1 1x xdx x x x           22 2 0 (3) 2 sin 2 4 4 [ ]I x xd sx An        
  • 6.
    Physics Helpline L KSatapathy For More details: www.physics-helpline.com Subscribe our channel: youtube.com/physics-helpline Follow us on Facebook and Twitter: facebook.com/physics-helpline twitter.com/physics-helpline