SlideShare a Scribd company logo
Mathematics
Session
Functions, Limits and Continuity-1
 Function
 Domain and Range
 Some Standard Real Functions
 Algebra of Real Functions
 Even and Odd Functions
 Limit of a Function; Left Hand and Right Hand Limit
 Algebraic Limits : Substitution Method, Factorisation Method,
Rationalization Method
 Standard Result
Session Objectives
Function
If f is a function from a set A to a set B, we represent it by
ƒ : A B→
If A and B are two non-empty sets, then a rule which associates
each element of A with a unique element of B is called a function
from a set A to a set B.
( )y = ƒ x .
x A to y B,∈ ∈If f associates then we say that y is the image of the
element x under the function or mapping and we write
Real Functions: Functions whose co-domain, is a subset of R
are called real functions.
Domain and Range
The set of the images of all the elements under the mapping
or function f is called the range of the function f and represented
by f(A).
( ) ( ){ }The range of f or ƒ A = ƒ x : x A∈ ( )and ƒ A B⊆
The set A is called the domain of the function and the set B is
called co-domain.
ƒ : A B→
Domain and Range (Cont.)
For example: Consider a function f from the set of natural
numbers N to the set of natural numbers N
i.e. f : N →N given by f(x) = x2
Domain is the set N itself as the function is defined for all values of N.
Range is the set of squares of all natural numbers.
Range = {1, 4, 9, 16 . . . }
Example– 1
Find the domain of the following functions:
( ) ( ) 2
i f x = 9- x ( ) 2
x
ii f(x)=
x -3x+2
( ) 2
Solution: We have f x = 9- x
( )The function f x is defined for
[ ]-3 x 3 x -3, 3⇒ ≤ ≤ ⇒ ∈
( ) ( )2 2
9- x 0 x -9 0 x-3 x+3 0≥ ⇒ ≤ ⇒ ≤
Domain of f = -3, 3∴   
( ) 2
x
Solution: ii We have f(x)=
x -3x+2
The function f(x) is not defined for the values of x for which the
denominator becomes zero
Hence, domain of f = R – {1, 2}
Example– 1 (ii)
( ) ( )2
i.e. x -3x+2=0 x-1 x-2 =0 x =1, 2⇒ ⇒
Example- 2
[ )Hence, range of f = 0 , ∞
Find the range of the following functions:
( ) ( )i f x = x-3 ( ) ( )ii f x = 1 + 3cos2x
( ) ( )Solution: i We have f x = x-3
( )f x is defined for all x R.
Domain of f = R
∈
∴
| x - 3 | 0 for all x R≥ ∈
| x - 3 | for all x R0⇒ ≤ < ∞ ∈
( )f x for all x R0⇒ ≤ < ∞ ∈
-1 ≤ cos2x ≤ 1 for all x∈R
⇒-3 ≤ 3cos2x ≤ 3 for all x∈R
⇒-2 ≤ 1 + 3cos2x ≤ 4 for all x∈R
⇒ -2 ≤ f(x) ≤ 4
Hence , range of f = [-2, 4]
Example – 2(ii)
( ) ( )Solution : ii We have f x = 1 + 3cos2x
( )Domain of cosx is R. f x is defined for all x R
Domain of f = R
∴ ∈
∴
Q
Some Standard Real Functions
(Constant Function)
( )
A function f : R R is defined by
f x = c for all x R, where c is a real number.fixed
→
∈
O
Y
X
(0, c) f(x) = c
Domain = R
Range = {c}
Domain = R
Range = R
Identity Function
( )
A function I : R R is defined by
I x = x for all x R
→
∈
X
Y
O
450
I(x) = x
Modulus Function
( )
A function f : R R is defined by
x, x 0
f x = x =
-x, x < 0
→
≥


f(x) = xf(x) = - x
O
X
Y
Domain = R
Range = Non-negative real numbers
y = sinx
– π O
y
2 π
1
x
– 2 π π
– π
O
y
– 1
2 π
1
x
– 2 π π
y = |sinx|
Example
Greatest Integer Function
= greatest integer less than or equal to x.
( )
A function f : R R is defined by
f x = x for all x R
→
∈  
For example : 2.4 = 2, -3.2 = -4 etc.      
Algebra of Real Functions
1 2Let ƒ :D R and g:D R be two functions. Then,→ →
1 2Addition: ƒ + g: D D R such that∩ →
( ) ( ) ( ) ( ) 1 2ƒ + g x = ƒ x + g x for all x D D∈ ∩
1 2Subtraction: ƒ - g:D D R such that∩ →
( ) ( ) ( ) ( ) 1 2ƒ - g x = ƒ x - g x for all x D D∈ ∩
Multiplication by a scalar: For any real number k, the function kf is
defined by
( ) ( ) ( ) 1kƒ x = kƒ x such that x D∈
Algebra of Real Functions (Cont.)
1 2Product : ƒg: D D R such that∩ →
( ) ( ) ( ) ( ) 1 2ƒg x = ƒ x g x for all x D D∈ ∩
( ){ }1 2
ƒ
Quotient : D D - x : g x = 0 R such that
g
: ∩ →
( )
( )
( )
( ){ }1 2
ƒ xƒ
x = for all x D D - x : g x = 0
g g x
 
∈ ∩ ÷
 
Composition of Two Functions
1 2Let ƒ :D R and g:D R be two functions. Then,→ →
( ) ( )( ) ( ) ( )
2fog:D R such that
fog x = ƒ g x , Range of g Domain of ƒ
→
⊆
( ) ( )( ) ( ) ( )
1gof :D R such that
gof x =g f x , Range of f Domain of g
→
⊆
Let f : R → R+
such that f(x) = ex
and g(x) : R+
→ R such
that g(x) = log x, then find
(i) (f+g)(1) (ii) (fg)(1)
(iii) (3f)(1) (iv) (fog)(1) (v) (gof)(1)
(i) (f+g)(1) (ii) (fg)(1) (iii) (3f)(1)
= f(1) + g(1) =f(1)g(1) =3 f(1)
= e1
+ log(1) =e1
log(1) =3 e1
= e + 0 = e x 0 =3 e
= e = 0
Example - 3
Solution :
(iv) (fog)(1) (v) (gof)(1)
= f(g(1)) = g(f(1))
= f(log1) = g(e1
)
= f(0) = g(e)
= e0
= log(e)
=1 = 1
Find fog and gof if f : R → R such that f(x) = [x]
and g : R → [-1, 1] such that g(x) = sinx.
Solution: We have f(x)= [x] and g(x) = sinx
fog(x) = f(g(x)) = f(sinx) = [sin x]
gof(x) = g(f(x)) = g ([x]) = sin [x]
Example – 4
Even and Odd Functions
Even Function : If f(-x) = f(x) for all x, then
f(x) is called an even function.
Example: f(x)= cosx
Odd Function : If f(-x)= - f(x) for all x, then
f(x) is called an odd function.
Example: f(x)= sinx
Example – 5
( ) 2
Solution : We have f x = x - | x |
( ) ( )2
f -x = -x - | -x |∴
( ) 2
f -x = x - | x |⇒
( ) ( )f -x = f x⇒
( )f x is an even function.∴
Prove that is an even function.
2
x - | x |
Example - 6
Let the function f be f(x) = x3
- kx2
+ 2x, x∈R, then
find k such that f is an odd function.
Solution:
The function f would be an odd function if f(-x) = - f(x)
⇒ (- x)3
- k(- x)2
+ 2(- x) = - (x3
- kx2
+ 2x) for all x∈R
⇒ 2kx2
= 0 for all x∈R
⇒ k = 0
⇒ -x3
- kx2
- 2x = - x3
+ kx2
- 2x for all x∈R
Limit of a Function
2
(x - 9) (x - 3)(x +3)
If x 3, f(x) = = = (x +3)
x - 3 (x - 3)
≠
x 2.5 2.6 2.7 2.8 2.9 2.99 3.01 3.1 3.2 3.3 3.4 3.5
f(x) 5.5 5.6 5.7 5.8 5.9 5.99 6.01 6.1 6.2 6.3 6.4 6.5
2
x - 9
f(x) = is defined for all x except at x = 3.
x - 3
As x approaches 3 from left hand side of the number
line, f(x) increases and becomes close to 6
-x 3
lim f(x) = 6i.e.
→
Limit of a Function (Cont.)
Similarly, as x approaches 3 from right hand side
of the number line, f(x) decreases and becomes
close to 6
+x 3
i.e. lim f(x) = 6
→
x takes the values
2.91
2.95
2.9991
..
2.9999 ……. 9221 etc.
x 3≠
Left Hand Limit
x
3
Y
O
X
-x 3
lim
→
x takes the values 3.1
3.002
3.000005
……..
3.00000000000257 etc.
x 3≠
Right Hand Limit
3
X
Y
O
x
+x 3
lim
→
Existence Theorem on Limits
( ) ( ) ( )- +x a x a x a
lim ƒ x exists iff lim ƒ x and lim ƒ x exist and are equal.
→ → →
( ) ( ) ( )- +x a x a x a
lim ƒ x exists lim ƒ x = lim ƒ xi.e.
→ → →
⇔
Example – 7
Which of the following limits exist:
( ) x 0
x
i lim
x→
[ ]5
x
2
(ii) lim x
→
( ) ( )
x
Solution : i Let f x =
x
( ) ( ) ( )- h 0 h 0 h 0x 0
0 - h -h
LHL at x = 0 = lim f x = limf 0 - h =lim =lim = -1
0 - h h→ → →→
( ) ( ) ( )+ h 0 h 0 h 0x 0
0 + h h
RHL at x = 0 = lim f x = limf 0 + h =lim =lim = 1
0 + h h→ → →→
( ) ( )- +
x 0 x 0
lim f x lim f x
→ →
≠Q x 0
x
lim does not exist.
x→
∴
Example - 7 (ii)
( ) [ ]Solution:(ii) Let f x = x
( ) h 0 h 05
x
2
5 5 5
LHL at x = = lim f x =limf -h =lim -h =2
2 2 2− → →
→
     
 ÷  ÷       
( ) h 0 h 05
x
2
5 5 5
RHL at x = = lim f x =limf +h =lim +h =2
2 2 2+ → →
→
     
 ÷  ÷       
( ) ( )5 5
x x
2 2
lim f x lim f x− +
→ →
=Q [ ]5
x
2
lim x exists.
→
∴
Properties of Limits
( )
x a x a x a
i lim [f(x) g(x)]= lim f(x) lim g(x) = m n
→ → →
± ± ±
( )
x a x a
ii lim [cf(x)]= c. lim f(x) = c.m
→ →
( ) ( )
x a x a x a
iii lim f(x). g(x) = lim f(x) . lim g(x) = m.n
→ → →
( )
x a
x a
x a
lim f(x)
f(x) m
iv lim = = , provided n 0
g(x) lim g(x) n
→
→
→
≠
If and
where ‘m’ and ‘n’ are real and finite then
x a
lim g(x)= n
→x a
lim f(x)= m
→
The limit can be found directly by substituting the value of x.
Algebraic Limits (Substitution Method)
( )2
x 2
For example : lim 2x +3x + 4
→
( ) ( )2
= 2 2 +3 2 + 4 = 8+6+ 4 =18
2 2
x 2
x +6 2 +6 10 5
lim = = =
x+2 2+2 4 2→
Algebraic Limits (Factorization Method)
When we substitute the value of x in the rational expression it
takes the form
0
.
0
2
2x 3
x -3x+2x-6
=lim
x (x-3)+1(x-3)→
2x 3
(x-3)(x+2)
=lim
(x +1)(x-3)→
2 2x 3
x-2 3-2 1
=lim = =
10x +1 3 +1→
2
3 2x 3
x -x-6 0
For example: lim form
0x -3x +x-3→
 
  
Algebraic Limits (Rationalization Method)
When we substitute the value of x in the rational expression it
takes the form
0
, etc.
0
∞
∞
[ ]
2 2
2 2x 4
x -16 ( x +9 +5)
=lim × Rationalizing the denominator
( x +9 -5) ( x +9 +5)→
2
2
2x 4
x -16
=lim ×( x +9 +5)
(x +9-25)→
2
2
2x 4
x -16
=lim ×( x +9 +5)
x -16→
2 2
x 4
=lim( x +9 +5) = 4 +9 +5 = 5+5=10
→
2
2x 4
x -16 0
For example: lim form
0x +9 -5→
 
  
Standard Result
n n
n-1
x a
x - a
lim = n a
x - a→
If n is any rational number, then
0
form
0
 
 
 
3
2
x 5
x -125
Evaluate: lim
x -7x+10→
( )
333
2 2x 5 x 5
x - 5x -125
Solution: lim =lim
x -7x+10 x -5x-2x-10→ →
Example – 8 (i)
2
x 5
(x-5)(x +5x+25)
=lim
(x-2)(x-5)→
2
x 5
(x +5x+25)
=lim
x-2→
2
5 +5×5+25 25+25+25
= = =25
5-2 3
2
x 3
1 1
Evaluate: lim (x -9) +
x+3 x-3→
 
  
2
x 3
1 1
Solution: lim (x -9) +
x+3 x-3→
 
  
x 3
x-3+x+3
=lim(x+3)(x-3)
(x+3)(x-3)→
 
 
 
Example – 8 (ii)
=2×3=6
x 3
=lim 2x
→
x a
a+2x - 3x
Evaluate:lim
3a+x -2 x→
x a
a+2x - 3x
Solution: lim
3a+x -2 x→
[ ]x a
a+2x - 3x 3a+x +2 x
=lim × Rationalizing the denominator
3a+x -2 x 3a+x +2 x→
Example – 8 (iii)
x a
a+2x - 3x
=lim × 3a+x +2 x
3a+x- 4x→
[ ]x a
3a+x +2 x a+2x + 3x
=lim × a+2x - 3x× Rationalizing thenumerator
3(a- x) a+2x + 3x→
x a
3a+x +2 x a+2x-3x
=lim ×
3(a- x)a+2x + 3x→
Solution Cont.
x a
3a+x +2 x a- x
=lim ×
3(a- x)a+2x + 3x→
x a
3a+x +2 x 1
=lim ×
3a+2x + 3x→
3a+a+2 a 1 2 a+2 a 1
= × = ×
3 3a+2a+ 3a 3a+ 3a
4 a 1 2
= × =
32 3a 3 3
2x 1
3+x - 5- x
Evaluate: lim
x -1→
2x 1
3+x - 5- x
Solution: lim
x -1→
[ ]2x 1
3+x - 5- x 3+x + 5- x
=lim × Rationalizing the numerator
x -1 3+x + 5- x→
Example – 8 (iv)
2x 1
3+x-5+x 1
=lim ×
x -1 3+x + 5-x→ x 1
2(x-1) 1
=lim ×
(x-1)(x+1) 3+x + 5- x→
( ) ( )x 1
2
=lim
x+1 3+x + 5- x→
2 1
= =
42( 4 + 4)
( ) ( )
2
=
1+1 3+1+ 5-1
5 5
x a
x -a
If lim = 405, find all possible values of a.
x-a→
5 5
x a
x -a
Solution: We have lim = 405
x-a→
Example – 8 (v)
n n
5-1 n-1
x a
x -a
5 a = 405 lim = na
x-a→
 
⇒  ÷
 
Q
4
a =81⇒
a=± 3⇒
Thank you

More Related Content

What's hot

Polynomial functionsandgraphs
Polynomial functionsandgraphsPolynomial functionsandgraphs
Polynomial functionsandgraphsJerlyn Fernandez
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpointcanalculus
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)
Matthew Leingang
 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a Function
Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Matthew Leingang
 
Lesson 1 derivative of trigonometric functions
Lesson 1 derivative of trigonometric functionsLesson 1 derivative of trigonometric functions
Lesson 1 derivative of trigonometric functions
Lawrence De Vera
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
Matthew Leingang
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
math260
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and Derivatives
Faisal Waqar
 
5 4 function notation
5 4 function notation5 4 function notation
5 4 function notationhisema01
 
Trigonometric Limits
Trigonometric LimitsTrigonometric Limits
Trigonometric Limits
Pablo Antuna
 
Limits and continuity
Limits and continuityLimits and continuity
Limits and continuity
Digvijaysinh Gohil
 
Transformations of functions
Transformations of functionsTransformations of functions
Transformations of functions
KyleJohnson54657
 
Exponential and logrithmic functions
Exponential and logrithmic functionsExponential and logrithmic functions
Exponential and logrithmic functionsMalikahmad105
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiationdicosmo178
 
Reducible equation to quadratic form
Reducible equation to quadratic formReducible equation to quadratic form
Reducible equation to quadratic form
MahrukhShehzadi1
 
Rational functions
Rational functionsRational functions
Rational functions
20kat06tha
 
22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x
math260
 
Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relationsJessica Garcia
 

What's hot (20)

Polynomial functionsandgraphs
Polynomial functionsandgraphsPolynomial functionsandgraphs
Polynomial functionsandgraphs
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpoint
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)
 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a Function
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 1 derivative of trigonometric functions
Lesson 1 derivative of trigonometric functionsLesson 1 derivative of trigonometric functions
Lesson 1 derivative of trigonometric functions
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and Derivatives
 
5 4 function notation
5 4 function notation5 4 function notation
5 4 function notation
 
Trigonometric Limits
Trigonometric LimitsTrigonometric Limits
Trigonometric Limits
 
Limits and continuity
Limits and continuityLimits and continuity
Limits and continuity
 
Transformations of functions
Transformations of functionsTransformations of functions
Transformations of functions
 
Exponential and logrithmic functions
Exponential and logrithmic functionsExponential and logrithmic functions
Exponential and logrithmic functions
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiation
 
Reducible equation to quadratic form
Reducible equation to quadratic formReducible equation to quadratic form
Reducible equation to quadratic form
 
Rational functions
Rational functionsRational functions
Rational functions
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x
 
Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relations
 

Similar to Functions limits and continuity

Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
Amr Mohamed
 
Derivatives
DerivativesDerivatives
Derivatives
Nisarg Amin
 
Functions
FunctionsFunctions
Functions
JJkedst
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minima
sudersana viswanathan
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
Chit Laplana
 
Modul 3 quadratic function
Modul 3 quadratic functionModul 3 quadratic function
Modul 3 quadratic function
Hafidz Mukhtar
 
The chain rule
The chain ruleThe chain rule
The chain rule
J M
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
Hanifa Zulfitri
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
Sufyan Sahoo
 
mathongo.com-NCERT-Solutions-Class-12-Maths-Chapter-5-Continuity-and-Differen...
mathongo.com-NCERT-Solutions-Class-12-Maths-Chapter-5-Continuity-and-Differen...mathongo.com-NCERT-Solutions-Class-12-Maths-Chapter-5-Continuity-and-Differen...
mathongo.com-NCERT-Solutions-Class-12-Maths-Chapter-5-Continuity-and-Differen...
myappagreat
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
Function
FunctionFunction
Function
KAZEMBETVOnline
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functions
dionesioable
 
Functions
FunctionsFunctions
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
Tarun Gehlot
 
Composite functions
Composite functionsComposite functions
Composite functions
Ghanshyam Tewani
 
exponential functions and their graphs.ppt
exponential functions and their graphs.pptexponential functions and their graphs.ppt
exponential functions and their graphs.ppt
TonetSalagoCantere
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Bahan ajar kalkulus integral
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integral
grand_livina_good
 
Operation on functions
Operation on functionsOperation on functions
Operation on functions
Jeralyn Obsina
 

Similar to Functions limits and continuity (20)

Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
 
Derivatives
DerivativesDerivatives
Derivatives
 
Functions
FunctionsFunctions
Functions
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minima
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Modul 3 quadratic function
Modul 3 quadratic functionModul 3 quadratic function
Modul 3 quadratic function
 
The chain rule
The chain ruleThe chain rule
The chain rule
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
 
mathongo.com-NCERT-Solutions-Class-12-Maths-Chapter-5-Continuity-and-Differen...
mathongo.com-NCERT-Solutions-Class-12-Maths-Chapter-5-Continuity-and-Differen...mathongo.com-NCERT-Solutions-Class-12-Maths-Chapter-5-Continuity-and-Differen...
mathongo.com-NCERT-Solutions-Class-12-Maths-Chapter-5-Continuity-and-Differen...
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Function
FunctionFunction
Function
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functions
 
Functions
FunctionsFunctions
Functions
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
 
Composite functions
Composite functionsComposite functions
Composite functions
 
exponential functions and their graphs.ppt
exponential functions and their graphs.pptexponential functions and their graphs.ppt
exponential functions and their graphs.ppt
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 
Bahan ajar kalkulus integral
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integral
 
Operation on functions
Operation on functionsOperation on functions
Operation on functions
 

More from sudersana viswanathan

Lesson5.1 complexnumbers demo
Lesson5.1 complexnumbers demoLesson5.1 complexnumbers demo
Lesson5.1 complexnumbers demo
sudersana viswanathan
 
Complex nos demo 2
Complex nos demo 2Complex nos demo 2
Complex nos demo 2
sudersana viswanathan
 
Solving absolute values
Solving absolute valuesSolving absolute values
Solving absolute values
sudersana viswanathan
 
Modulus vnr
Modulus vnrModulus vnr
Matrices and determinants-1
Matrices and determinants-1Matrices and determinants-1
Matrices and determinants-1
sudersana viswanathan
 
EUCLID'S DIVISION LEMMA
EUCLID'S DIVISION LEMMAEUCLID'S DIVISION LEMMA
EUCLID'S DIVISION LEMMA
sudersana viswanathan
 

More from sudersana viswanathan (9)

Lesson5.1 complexnumbers demo
Lesson5.1 complexnumbers demoLesson5.1 complexnumbers demo
Lesson5.1 complexnumbers demo
 
Complex nos demo 2
Complex nos demo 2Complex nos demo 2
Complex nos demo 2
 
Solving absolute values
Solving absolute valuesSolving absolute values
Solving absolute values
 
Modulus vnr
Modulus vnrModulus vnr
Modulus vnr
 
Matrices and determinants-1
Matrices and determinants-1Matrices and determinants-1
Matrices and determinants-1
 
Activity 03
Activity 03Activity 03
Activity 03
 
Activity 02
Activity 02Activity 02
Activity 02
 
Activity 2
Activity 2Activity 2
Activity 2
 
EUCLID'S DIVISION LEMMA
EUCLID'S DIVISION LEMMAEUCLID'S DIVISION LEMMA
EUCLID'S DIVISION LEMMA
 

Recently uploaded

FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Tobias Schneck
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
CatarinaPereira64715
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 

Recently uploaded (20)

FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 

Functions limits and continuity

  • 3.  Function  Domain and Range  Some Standard Real Functions  Algebra of Real Functions  Even and Odd Functions  Limit of a Function; Left Hand and Right Hand Limit  Algebraic Limits : Substitution Method, Factorisation Method, Rationalization Method  Standard Result Session Objectives
  • 4. Function If f is a function from a set A to a set B, we represent it by ƒ : A B→ If A and B are two non-empty sets, then a rule which associates each element of A with a unique element of B is called a function from a set A to a set B. ( )y = ƒ x . x A to y B,∈ ∈If f associates then we say that y is the image of the element x under the function or mapping and we write Real Functions: Functions whose co-domain, is a subset of R are called real functions.
  • 5. Domain and Range The set of the images of all the elements under the mapping or function f is called the range of the function f and represented by f(A). ( ) ( ){ }The range of f or ƒ A = ƒ x : x A∈ ( )and ƒ A B⊆ The set A is called the domain of the function and the set B is called co-domain. ƒ : A B→
  • 6. Domain and Range (Cont.) For example: Consider a function f from the set of natural numbers N to the set of natural numbers N i.e. f : N →N given by f(x) = x2 Domain is the set N itself as the function is defined for all values of N. Range is the set of squares of all natural numbers. Range = {1, 4, 9, 16 . . . }
  • 7. Example– 1 Find the domain of the following functions: ( ) ( ) 2 i f x = 9- x ( ) 2 x ii f(x)= x -3x+2 ( ) 2 Solution: We have f x = 9- x ( )The function f x is defined for [ ]-3 x 3 x -3, 3⇒ ≤ ≤ ⇒ ∈ ( ) ( )2 2 9- x 0 x -9 0 x-3 x+3 0≥ ⇒ ≤ ⇒ ≤ Domain of f = -3, 3∴   
  • 8. ( ) 2 x Solution: ii We have f(x)= x -3x+2 The function f(x) is not defined for the values of x for which the denominator becomes zero Hence, domain of f = R – {1, 2} Example– 1 (ii) ( ) ( )2 i.e. x -3x+2=0 x-1 x-2 =0 x =1, 2⇒ ⇒
  • 9. Example- 2 [ )Hence, range of f = 0 , ∞ Find the range of the following functions: ( ) ( )i f x = x-3 ( ) ( )ii f x = 1 + 3cos2x ( ) ( )Solution: i We have f x = x-3 ( )f x is defined for all x R. Domain of f = R ∈ ∴ | x - 3 | 0 for all x R≥ ∈ | x - 3 | for all x R0⇒ ≤ < ∞ ∈ ( )f x for all x R0⇒ ≤ < ∞ ∈
  • 10. -1 ≤ cos2x ≤ 1 for all x∈R ⇒-3 ≤ 3cos2x ≤ 3 for all x∈R ⇒-2 ≤ 1 + 3cos2x ≤ 4 for all x∈R ⇒ -2 ≤ f(x) ≤ 4 Hence , range of f = [-2, 4] Example – 2(ii) ( ) ( )Solution : ii We have f x = 1 + 3cos2x ( )Domain of cosx is R. f x is defined for all x R Domain of f = R ∴ ∈ ∴ Q
  • 11. Some Standard Real Functions (Constant Function) ( ) A function f : R R is defined by f x = c for all x R, where c is a real number.fixed → ∈ O Y X (0, c) f(x) = c Domain = R Range = {c}
  • 12. Domain = R Range = R Identity Function ( ) A function I : R R is defined by I x = x for all x R → ∈ X Y O 450 I(x) = x
  • 13. Modulus Function ( ) A function f : R R is defined by x, x 0 f x = x = -x, x < 0 → ≥   f(x) = xf(x) = - x O X Y Domain = R Range = Non-negative real numbers
  • 14. y = sinx – π O y 2 π 1 x – 2 π π – π O y – 1 2 π 1 x – 2 π π y = |sinx| Example
  • 15. Greatest Integer Function = greatest integer less than or equal to x. ( ) A function f : R R is defined by f x = x for all x R → ∈   For example : 2.4 = 2, -3.2 = -4 etc.      
  • 16. Algebra of Real Functions 1 2Let ƒ :D R and g:D R be two functions. Then,→ → 1 2Addition: ƒ + g: D D R such that∩ → ( ) ( ) ( ) ( ) 1 2ƒ + g x = ƒ x + g x for all x D D∈ ∩ 1 2Subtraction: ƒ - g:D D R such that∩ → ( ) ( ) ( ) ( ) 1 2ƒ - g x = ƒ x - g x for all x D D∈ ∩ Multiplication by a scalar: For any real number k, the function kf is defined by ( ) ( ) ( ) 1kƒ x = kƒ x such that x D∈
  • 17. Algebra of Real Functions (Cont.) 1 2Product : ƒg: D D R such that∩ → ( ) ( ) ( ) ( ) 1 2ƒg x = ƒ x g x for all x D D∈ ∩ ( ){ }1 2 ƒ Quotient : D D - x : g x = 0 R such that g : ∩ → ( ) ( ) ( ) ( ){ }1 2 ƒ xƒ x = for all x D D - x : g x = 0 g g x   ∈ ∩ ÷  
  • 18. Composition of Two Functions 1 2Let ƒ :D R and g:D R be two functions. Then,→ → ( ) ( )( ) ( ) ( ) 2fog:D R such that fog x = ƒ g x , Range of g Domain of ƒ → ⊆ ( ) ( )( ) ( ) ( ) 1gof :D R such that gof x =g f x , Range of f Domain of g → ⊆
  • 19. Let f : R → R+ such that f(x) = ex and g(x) : R+ → R such that g(x) = log x, then find (i) (f+g)(1) (ii) (fg)(1) (iii) (3f)(1) (iv) (fog)(1) (v) (gof)(1) (i) (f+g)(1) (ii) (fg)(1) (iii) (3f)(1) = f(1) + g(1) =f(1)g(1) =3 f(1) = e1 + log(1) =e1 log(1) =3 e1 = e + 0 = e x 0 =3 e = e = 0 Example - 3 Solution : (iv) (fog)(1) (v) (gof)(1) = f(g(1)) = g(f(1)) = f(log1) = g(e1 ) = f(0) = g(e) = e0 = log(e) =1 = 1
  • 20. Find fog and gof if f : R → R such that f(x) = [x] and g : R → [-1, 1] such that g(x) = sinx. Solution: We have f(x)= [x] and g(x) = sinx fog(x) = f(g(x)) = f(sinx) = [sin x] gof(x) = g(f(x)) = g ([x]) = sin [x] Example – 4
  • 21. Even and Odd Functions Even Function : If f(-x) = f(x) for all x, then f(x) is called an even function. Example: f(x)= cosx Odd Function : If f(-x)= - f(x) for all x, then f(x) is called an odd function. Example: f(x)= sinx
  • 22. Example – 5 ( ) 2 Solution : We have f x = x - | x | ( ) ( )2 f -x = -x - | -x |∴ ( ) 2 f -x = x - | x |⇒ ( ) ( )f -x = f x⇒ ( )f x is an even function.∴ Prove that is an even function. 2 x - | x |
  • 23. Example - 6 Let the function f be f(x) = x3 - kx2 + 2x, x∈R, then find k such that f is an odd function. Solution: The function f would be an odd function if f(-x) = - f(x) ⇒ (- x)3 - k(- x)2 + 2(- x) = - (x3 - kx2 + 2x) for all x∈R ⇒ 2kx2 = 0 for all x∈R ⇒ k = 0 ⇒ -x3 - kx2 - 2x = - x3 + kx2 - 2x for all x∈R
  • 24. Limit of a Function 2 (x - 9) (x - 3)(x +3) If x 3, f(x) = = = (x +3) x - 3 (x - 3) ≠ x 2.5 2.6 2.7 2.8 2.9 2.99 3.01 3.1 3.2 3.3 3.4 3.5 f(x) 5.5 5.6 5.7 5.8 5.9 5.99 6.01 6.1 6.2 6.3 6.4 6.5 2 x - 9 f(x) = is defined for all x except at x = 3. x - 3 As x approaches 3 from left hand side of the number line, f(x) increases and becomes close to 6 -x 3 lim f(x) = 6i.e. →
  • 25. Limit of a Function (Cont.) Similarly, as x approaches 3 from right hand side of the number line, f(x) decreases and becomes close to 6 +x 3 i.e. lim f(x) = 6 →
  • 26. x takes the values 2.91 2.95 2.9991 .. 2.9999 ……. 9221 etc. x 3≠ Left Hand Limit x 3 Y O X -x 3 lim →
  • 27. x takes the values 3.1 3.002 3.000005 …….. 3.00000000000257 etc. x 3≠ Right Hand Limit 3 X Y O x +x 3 lim →
  • 28. Existence Theorem on Limits ( ) ( ) ( )- +x a x a x a lim ƒ x exists iff lim ƒ x and lim ƒ x exist and are equal. → → → ( ) ( ) ( )- +x a x a x a lim ƒ x exists lim ƒ x = lim ƒ xi.e. → → → ⇔
  • 29. Example – 7 Which of the following limits exist: ( ) x 0 x i lim x→ [ ]5 x 2 (ii) lim x → ( ) ( ) x Solution : i Let f x = x ( ) ( ) ( )- h 0 h 0 h 0x 0 0 - h -h LHL at x = 0 = lim f x = limf 0 - h =lim =lim = -1 0 - h h→ → →→ ( ) ( ) ( )+ h 0 h 0 h 0x 0 0 + h h RHL at x = 0 = lim f x = limf 0 + h =lim =lim = 1 0 + h h→ → →→ ( ) ( )- + x 0 x 0 lim f x lim f x → → ≠Q x 0 x lim does not exist. x→ ∴
  • 30. Example - 7 (ii) ( ) [ ]Solution:(ii) Let f x = x ( ) h 0 h 05 x 2 5 5 5 LHL at x = = lim f x =limf -h =lim -h =2 2 2 2− → → →        ÷  ÷        ( ) h 0 h 05 x 2 5 5 5 RHL at x = = lim f x =limf +h =lim +h =2 2 2 2+ → → →        ÷  ÷        ( ) ( )5 5 x x 2 2 lim f x lim f x− + → → =Q [ ]5 x 2 lim x exists. → ∴
  • 31. Properties of Limits ( ) x a x a x a i lim [f(x) g(x)]= lim f(x) lim g(x) = m n → → → ± ± ± ( ) x a x a ii lim [cf(x)]= c. lim f(x) = c.m → → ( ) ( ) x a x a x a iii lim f(x). g(x) = lim f(x) . lim g(x) = m.n → → → ( ) x a x a x a lim f(x) f(x) m iv lim = = , provided n 0 g(x) lim g(x) n → → → ≠ If and where ‘m’ and ‘n’ are real and finite then x a lim g(x)= n →x a lim f(x)= m →
  • 32. The limit can be found directly by substituting the value of x. Algebraic Limits (Substitution Method) ( )2 x 2 For example : lim 2x +3x + 4 → ( ) ( )2 = 2 2 +3 2 + 4 = 8+6+ 4 =18 2 2 x 2 x +6 2 +6 10 5 lim = = = x+2 2+2 4 2→
  • 33. Algebraic Limits (Factorization Method) When we substitute the value of x in the rational expression it takes the form 0 . 0 2 2x 3 x -3x+2x-6 =lim x (x-3)+1(x-3)→ 2x 3 (x-3)(x+2) =lim (x +1)(x-3)→ 2 2x 3 x-2 3-2 1 =lim = = 10x +1 3 +1→ 2 3 2x 3 x -x-6 0 For example: lim form 0x -3x +x-3→     
  • 34. Algebraic Limits (Rationalization Method) When we substitute the value of x in the rational expression it takes the form 0 , etc. 0 ∞ ∞ [ ] 2 2 2 2x 4 x -16 ( x +9 +5) =lim × Rationalizing the denominator ( x +9 -5) ( x +9 +5)→ 2 2 2x 4 x -16 =lim ×( x +9 +5) (x +9-25)→ 2 2 2x 4 x -16 =lim ×( x +9 +5) x -16→ 2 2 x 4 =lim( x +9 +5) = 4 +9 +5 = 5+5=10 → 2 2x 4 x -16 0 For example: lim form 0x +9 -5→     
  • 35. Standard Result n n n-1 x a x - a lim = n a x - a→ If n is any rational number, then 0 form 0      
  • 36. 3 2 x 5 x -125 Evaluate: lim x -7x+10→ ( ) 333 2 2x 5 x 5 x - 5x -125 Solution: lim =lim x -7x+10 x -5x-2x-10→ → Example – 8 (i) 2 x 5 (x-5)(x +5x+25) =lim (x-2)(x-5)→ 2 x 5 (x +5x+25) =lim x-2→ 2 5 +5×5+25 25+25+25 = = =25 5-2 3
  • 37. 2 x 3 1 1 Evaluate: lim (x -9) + x+3 x-3→      2 x 3 1 1 Solution: lim (x -9) + x+3 x-3→      x 3 x-3+x+3 =lim(x+3)(x-3) (x+3)(x-3)→       Example – 8 (ii) =2×3=6 x 3 =lim 2x →
  • 38. x a a+2x - 3x Evaluate:lim 3a+x -2 x→ x a a+2x - 3x Solution: lim 3a+x -2 x→ [ ]x a a+2x - 3x 3a+x +2 x =lim × Rationalizing the denominator 3a+x -2 x 3a+x +2 x→ Example – 8 (iii) x a a+2x - 3x =lim × 3a+x +2 x 3a+x- 4x→ [ ]x a 3a+x +2 x a+2x + 3x =lim × a+2x - 3x× Rationalizing thenumerator 3(a- x) a+2x + 3x→
  • 39. x a 3a+x +2 x a+2x-3x =lim × 3(a- x)a+2x + 3x→ Solution Cont. x a 3a+x +2 x a- x =lim × 3(a- x)a+2x + 3x→ x a 3a+x +2 x 1 =lim × 3a+2x + 3x→ 3a+a+2 a 1 2 a+2 a 1 = × = × 3 3a+2a+ 3a 3a+ 3a 4 a 1 2 = × = 32 3a 3 3
  • 40. 2x 1 3+x - 5- x Evaluate: lim x -1→ 2x 1 3+x - 5- x Solution: lim x -1→ [ ]2x 1 3+x - 5- x 3+x + 5- x =lim × Rationalizing the numerator x -1 3+x + 5- x→ Example – 8 (iv) 2x 1 3+x-5+x 1 =lim × x -1 3+x + 5-x→ x 1 2(x-1) 1 =lim × (x-1)(x+1) 3+x + 5- x→ ( ) ( )x 1 2 =lim x+1 3+x + 5- x→ 2 1 = = 42( 4 + 4) ( ) ( ) 2 = 1+1 3+1+ 5-1
  • 41. 5 5 x a x -a If lim = 405, find all possible values of a. x-a→ 5 5 x a x -a Solution: We have lim = 405 x-a→ Example – 8 (v) n n 5-1 n-1 x a x -a 5 a = 405 lim = na x-a→   ⇒  ÷   Q 4 a =81⇒ a=± 3⇒