Physics Helpline
L K Satapathy
Inverse Trigonometry 6
Inverse Trigonometry 6
Physics Helpline
L K Satapathy
Question :
Answer
   1 12 2tan tan ,
4 4 4
x xIf find the value of x
x x
   
 
   1 12 2tan tan
4 4 4
x x
x x
   
 
   
  
1
2 2
4 4
tan
42 21
4 4
x x
x x
x x
x x

 
 
 
 
 
1 1 1
tan tan tan
1
x y
x y
xy
    
   
1 ( 2)( 4) ( 2)( 4)
tan
( 4)( 4) ( 2)( 2) 4
x x x x
x x x x
     
 
    
2 2
1
2 2
2 8 2 8tan
4( 16) ( 4)
x x x x
x x
      
  
Inverse Trigonometry 6
Physics Helpline
L K Satapathy
2
2 16 tan 1
12 4
x   

2
2 4x 
2
1 2 16tan
12 4
x   

1
tan tanx x 
    
2
2 16 12x   
[2 ]nsx A  
Inverse Trigonometry 6
Physics Helpline
L K Satapathy
Question :
Answer
1 11 1 1tan cos
4 21 1
x xShow that x
x x
       
   
1 1 1tan
1 1
x xLHS
x x
      
   
1 1 cos2 1 cos2tan
1 cos2 1 cos2
 
 
      
   
 cos2Put x 
1 2 cos 2 sintan
2 cos 2 sin
 
 
    
 
2 2
1
2 2
2cos 2sintan
2cos 2sin
 
 

    
 
2
1 cos2 2cos    
2
1 cos2 2sin    
Inverse Trigonometry 6
Physics Helpline
L K Satapathy
 1 cos sintan
cos sin
LHS  
 
  

4
  
11cos2 cos
2
x x     
  
 1 1 tantan
1 tan


 

1
tan tan
4tan
1 tan .tan
4
 
 

 
 
  
 
 
  1
tan tan
4
 
 
[Dividing numerator & denominator by cos]
tan 1
4
 
  
11 cos
4 4 2
x RHS  
   
 1
tan tan 
   
Physics Helpline
L K Satapathy
For More details:
www.physics-helpline.com
Subscribe our channel:
youtube.com/physics-helpline
Follow us on Facebook and Twitter:
facebook.com/physics-helpline
twitter.com/physics-helpline

Inverse Trigonometry QA.6

  • 1.
    Physics Helpline L KSatapathy Inverse Trigonometry 6
  • 2.
    Inverse Trigonometry 6 PhysicsHelpline L K Satapathy Question : Answer    1 12 2tan tan , 4 4 4 x xIf find the value of x x x          1 12 2tan tan 4 4 4 x x x x              1 2 2 4 4 tan 42 21 4 4 x x x x x x x x            1 1 1 tan tan tan 1 x y x y xy          1 ( 2)( 4) ( 2)( 4) tan ( 4)( 4) ( 2)( 2) 4 x x x x x x x x              2 2 1 2 2 2 8 2 8tan 4( 16) ( 4) x x x x x x          
  • 3.
    Inverse Trigonometry 6 PhysicsHelpline L K Satapathy 2 2 16 tan 1 12 4 x     2 2 4x  2 1 2 16tan 12 4 x     1 tan tanx x       2 2 16 12x    [2 ]nsx A  
  • 4.
    Inverse Trigonometry 6 PhysicsHelpline L K Satapathy Question : Answer 1 11 1 1tan cos 4 21 1 x xShow that x x x             1 1 1tan 1 1 x xLHS x x            1 1 cos2 1 cos2tan 1 cos2 1 cos2                 cos2Put x  1 2 cos 2 sintan 2 cos 2 sin            2 2 1 2 2 2cos 2sintan 2cos 2sin             2 1 cos2 2cos     2 1 cos2 2sin    
  • 5.
    Inverse Trigonometry 6 PhysicsHelpline L K Satapathy  1 cos sintan cos sin LHS         4    11cos2 cos 2 x x          1 1 tantan 1 tan      1 tan tan 4tan 1 tan .tan 4                   1 tan tan 4     [Dividing numerator & denominator by cos] tan 1 4      11 cos 4 4 2 x RHS        1 tan tan     
  • 6.
    Physics Helpline L KSatapathy For More details: www.physics-helpline.com Subscribe our channel: youtube.com/physics-helpline Follow us on Facebook and Twitter: facebook.com/physics-helpline twitter.com/physics-helpline