The document discusses various clustering approaches including partitioning, hierarchical, density-based, grid-based, model-based, frequent pattern-based, and constraint-based methods. It focuses on partitioning methods such as k-means and k-medoids clustering. K-means clustering aims to partition objects into k clusters by minimizing total intra-cluster variance, representing each cluster by its centroid. K-medoids clustering is a more robust variant that represents each cluster by its medoid or most centrally located object. The document also covers algorithms for implementing k-means and k-medoids clustering.