Association rule mining finds frequent patterns and correlations among items in transaction databases. It involves two main steps:
1) Frequent itemset generation: Finds itemsets that occur together in a minimum number of transactions (above a support threshold). This is done efficiently using the Apriori algorithm.
2) Rule generation: Generates rules from frequent itemsets where the confidence (fraction of transactions with left hand side that also contain right hand side) is above a minimum threshold. Rules are a partitioning of an itemset into left and right sides.