Hierarchical clustering is a method of partitioning a set of data into meaningful sub-classes or clusters. It involves two approaches - agglomerative, which successively links pairs of items or clusters, and divisive, which starts with the whole set as a cluster and divides it into smaller partitions. Agglomerative Nesting (AGNES) is an agglomerative technique that merges clusters with the least dissimilarity at each step, eventually combining all clusters. Divisive Analysis (DIANA) is the inverse, starting with all data in one cluster and splitting it until each data point is its own cluster. Both approaches can be visualized using dendrograms to show the hierarchical merging or splitting of clusters.