SlideShare a Scribd company logo
Volumes of Solids
  of Revolution
 y
            y = f(x)


              x
Volumes of Solids
  of Revolution
 y
               y = f(x)


     a     b     x
Volumes of Solids
  of Revolution
 y
               y = f(x)


     a     b     x
Volumes of Solids
        of Revolution
           y
                                             y = f(x)


                 a                       b     x



Volume of a solid of revolution about;
Volumes of Solids
        of Revolution
            y
                                                 y = f(x)


                  a                         b      x



Volume of a solid of revolution about; i x axis : V   y 2 dx
                                                            b
                                                           a
Volumes of Solids
        of Revolution
            y
                                                  y = f(x)


                  a                         b        x



Volume of a solid of revolution about; i x axis : V   y 2 dx
                                                             b
                                                            a

                                        ii  y axis : V   c x 2 dy
                                                                 d
e.g. (i) cone

          y
                y  mx



                h x
e.g. (i) cone

          y
                y  mx



                h x
e.g. (i) cone            V    y 2 dx
                                h

          y                   m 2 x 2 dx
                y  mx          0




                h x
e.g. (i) cone            V    y 2 dx
                                h

          y                   m 2 x 2 dx
                y  mx          0
                                              h
                                2 1 3 
                             m  x 
                                  3  0

                h x
e.g. (i) cone            V    y 2 dx
                                h

          y                   m 2 x 2 dx
                y  mx          0
                                              h
                                2 1 3 
                             m  x 
                                  3  0
                             m 2 h 3  0 
                              1
                h x           3
                              1
                             m 2 h 3
                              3
e.g. (i) cone            V    y 2 dx
                                h

          y                   m 2 x 2 dx
                y  mx          0
                                              h
                                2 1 3 
                             m  x 
                                  3  0
                r
                             m 2 h 3  0 
                              1
                h x           3
                              1
                             m 2 h 3
                              3
e.g. (i) cone                   V    y 2 dx
                                       h

          y                          m 2 x 2 dx
                       y  mx          0
                                                     h
                                       2 1 3 
                                    m  x 
                                         3  0
                       r
                                    m 2 h 3  0 
                                     1
                       h x           3
                                     1
                                    m 2 h 3
                                     3
                   r
                m
                   h
e.g. (i) cone                   V    y 2 dx
                                       h

          y                          m 2 x 2 dx
                       y  mx          0
                                                     h
                                         2 1 3 
                                    m  x 
                                           3  0
                       r
                                    m 2 h 3  0 
                                     1
                       h x           3
                                     1
                                    m 2 h 3
                                     3        2
                   r
                                       h3
                m                   1 r
                                          
                   h                 3 h
                                     r 2 h 3
                                   
                                      3h 2
                                     r 2 h
                                   
                                       3
(ii) sphere

              y
                  x2  y2  r 2



                        rx
(ii) sphere

              y
                  x2  y2  r 2



                        rx
(ii) sphere

              y                   V    y 2 dx
                  x2  y2  r 2           r
                                     2  r 2  x 2 dx
                                          0


                        rx
(ii) sphere

              y                   V    y 2 dx
                  x2  y2  r 2           r
                                     2  r 2  x 2 dx
                                          0
                                                         r
                                          r 2 x  1 x 3 
                                      2 
                        rx
                                                  3 0  
(ii) sphere

              y                   V    y 2 dx
                  x2  y2  r 2           r
                                     2  r 2  x 2 dx
                                          0
                                                         r
                                          r 2 x  1 x 3 
                                      2 
                        rx
                                                  3 0  
                                                      1  
                                      2  r 2 r   r 3   0
                                           
                                                     3  
                                          2 3
                                      2  r 
                                          3 
                                       4 3
                                      r
                                       3
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2




                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2

              1


                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2

              1


                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2        V       x 2 dy
                                           1
              1                           ydy
                                           0




                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2        V          x 2 dy
                                              1
              1                              ydy
                                              0

                                          
                                      
                                          2
                                            y    2 1
                                                     0

                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2        V          x 2 dy
                                              1
              1                              ydy
                                              0

                                          
                                      
                                          2
                                            y     2 1
                                                      0

                           x
                                          
                                             1   2
                                                        0
                                          2
                                          
                                                 units    3

                                          2
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y
                      y  5x
      5



                     x
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
                                                     1
                                       x  1 x3 
                                 25 
                                       3 0     
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
                                                     1
                                       x  1 x3 
                                 25 
                                       3 0     
                                      1 1 13 0
                                 25             
                                       3            
                                  50
                                      unit 3
                                   3
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
                                                     1
                                       x  1 x3 
                                 25 
                                       3 0     
                                      1 1 13 0
 OR                              25             
                                       3            
                                  50
                                      unit 3
                                   3
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
                                                     1
                                       x  1 x3 
                                 25 
                                       3 0     
                 1                    1 1 13 0
 OR V  r 2 h  r 2 h          25             
                 3                     3            
        2                         50
        5 1               
                2
                                       unit 3
        3                          3
        50
             units 3
          3
2005 HSC Question 6c)




The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.                 (1)
2005 HSC Question 6c)




The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.                 (1)
                         x 2  12  2 x 2
2005 HSC Question 6c)




The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.                 (1)
                          x 2  12  2 x 2
                        3 x 2  12
                         x2  4
                          x  2
2005 HSC Question 6c)




The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.                 (1)
                          x 2  12  2 x 2
                        3 x 2  12
                         x2  4
                          x  2
                         meet at  2, 4 
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.




  V    x 2 dy
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.




  V    x 2 dy
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y




  V    x 2 dy
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
         4                12
           1  
  V   6   y  dy  ydy
        0
             2      4
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
         4                12
            1  
  V   6    y  dy    ydy
        0
              2        4
                    4         12

      6 y  y     y 
              1 2       1 2
        
             4 0      2 4
                       
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
         4                12
            1  
  V   6      y  dy      ydy
        0
                2          4
                      4           12

      6 y  y     y 
                1 2         1 2
        
               4 0        2 4
                           

                1 2
                              
                               
      6  4    4   0  12    4 
                 4             2
                                     2      2
                                                
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
         4                12
            1  
  V   6      y  dy      ydy
        0
                2          4
                      4           12

      6 y  y     y 
                1 2         1 2
        
               4 0        2 4
                           

                1 2
                              
                               
      6  4    4   0  12    4 
                 4             2
                                     2      2
                                                
     84 units3
Exercise 11G; 3bdef, 4eg, 5cd, 6d, 8ad,
      12, 16a, 19 to 22, 24*, 25*

More Related Content

What's hot

Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisespaufong
 
Numerical conformal mapping of an irregular area
Numerical conformal mapping of an irregular areaNumerical conformal mapping of an irregular area
Numerical conformal mapping of an irregular areaTarun Gehlot
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivativessahil9100
 
Control digital: Tema 2. transformada Z
Control digital: Tema 2. transformada ZControl digital: Tema 2. transformada Z
Control digital: Tema 2. transformada Z
SANTIAGO PABLO ALBERTO
 
TABLA DE DERIVADAS
TABLA DE DERIVADASTABLA DE DERIVADAS
TABLA DE DERIVADASEducación
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)Nigel Simmons
 
Complex form fourier series
Complex form fourier seriesComplex form fourier series
Complex form fourier seriesderry92
 
Perceptron Arboles De Decision
Perceptron Arboles De DecisionPerceptron Arboles De Decision
Perceptron Arboles De Decision
ESCOM
 
X2 t03 06 chord of contact & properties (2012)
X2 t03 06 chord of contact & properties (2012)X2 t03 06 chord of contact & properties (2012)
X2 t03 06 chord of contact & properties (2012)Nigel Simmons
 

What's hot (11)

Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercises
 
Numerical conformal mapping of an irregular area
Numerical conformal mapping of an irregular areaNumerical conformal mapping of an irregular area
Numerical conformal mapping of an irregular area
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
Control digital: Tema 2. transformada Z
Control digital: Tema 2. transformada ZControl digital: Tema 2. transformada Z
Control digital: Tema 2. transformada Z
 
TABLA DE DERIVADAS
TABLA DE DERIVADASTABLA DE DERIVADAS
TABLA DE DERIVADAS
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
 
Complex form fourier series
Complex form fourier seriesComplex form fourier series
Complex form fourier series
 
Perceptron Arboles De Decision
Perceptron Arboles De DecisionPerceptron Arboles De Decision
Perceptron Arboles De Decision
 
Fourier series
Fourier seriesFourier series
Fourier series
 
X2 t03 06 chord of contact & properties (2012)
X2 t03 06 chord of contact & properties (2012)X2 t03 06 chord of contact & properties (2012)
X2 t03 06 chord of contact & properties (2012)
 

Viewers also liked

12X1 T01 03 integrating derivative on function
12X1 T01 03 integrating derivative on function12X1 T01 03 integrating derivative on function
12X1 T01 03 integrating derivative on functionNigel Simmons
 
11X1 T01 03 factorising (2011)
11X1 T01 03 factorising (2011)11X1 T01 03 factorising (2011)
11X1 T01 03 factorising (2011)Nigel Simmons
 
12X1 T08 04 greatest coefficients & terms
12X1 T08 04 greatest coefficients & terms12X1 T08 04 greatest coefficients & terms
12X1 T08 04 greatest coefficients & termsNigel Simmons
 
X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)Nigel Simmons
 
11X1 T06 06 line through pt of intersection
11X1 T06 06 line through pt of intersection11X1 T06 06 line through pt of intersection
11X1 T06 06 line through pt of intersectionNigel Simmons
 
11X1 T12 09 locus problems (2011)
11X1 T12 09 locus problems (2011)11X1 T12 09 locus problems (2011)
11X1 T12 09 locus problems (2011)Nigel Simmons
 
11X1 T07 05 t results (2011)
11X1 T07 05 t results (2011)11X1 T07 05 t results (2011)
11X1 T07 05 t results (2011)Nigel Simmons
 
11X1 T05 01 permutations I (2011)
11X1 T05 01 permutations I (2011)11X1 T05 01 permutations I (2011)
11X1 T05 01 permutations I (2011)Nigel Simmons
 
11X1 T05 05 arrangements in a circle (2011)
11X1 T05 05 arrangements in a circle (2011)11X1 T05 05 arrangements in a circle (2011)
11X1 T05 05 arrangements in a circle (2011)Nigel Simmons
 
11X1 T09 05 product rule (2011)
11X1 T09 05 product rule (2011)11X1 T09 05 product rule (2011)
11X1 T09 05 product rule (2011)Nigel Simmons
 
11 x1 t04 07 3d trigonometry (2012)
11 x1 t04 07 3d trigonometry (2012)11 x1 t04 07 3d trigonometry (2012)
11 x1 t04 07 3d trigonometry (2012)Nigel Simmons
 
X2 T04 03 t results (2011)
X2 T04 03 t results (2011)X2 T04 03 t results (2011)
X2 T04 03 t results (2011)Nigel Simmons
 
X2 T06 02 resisted motion (2011)
X2 T06 02 resisted motion (2011)X2 T06 02 resisted motion (2011)
X2 T06 02 resisted motion (2011)Nigel Simmons
 
11X1 T09 06 quotient & reciprocal rules (2011)
11X1 T09 06 quotient & reciprocal rules (2011)11X1 T09 06 quotient & reciprocal rules (2011)
11X1 T09 06 quotient & reciprocal rules (2011)Nigel Simmons
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)Nigel Simmons
 
11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)Nigel Simmons
 
11X1 T06 05 perpendicular distance (2011)
11X1 T06 05 perpendicular distance (2011)11X1 T06 05 perpendicular distance (2011)
11X1 T06 05 perpendicular distance (2011)Nigel Simmons
 
12X1 T05 05 integration with inverse trig (2011)
12X1 T05 05 integration with inverse trig (2011)12X1 T05 05 integration with inverse trig (2011)
12X1 T05 05 integration with inverse trig (2011)Nigel Simmons
 
X2 T03 05 rectangular hyperbola (2011)
X2 T03 05 rectangular hyperbola (2011)X2 T03 05 rectangular hyperbola (2011)
X2 T03 05 rectangular hyperbola (2011)Nigel Simmons
 
X2 T01 05 de moivres theorem (2011)
X2 T01 05 de moivres theorem (2011)X2 T01 05 de moivres theorem (2011)
X2 T01 05 de moivres theorem (2011)Nigel Simmons
 

Viewers also liked (20)

12X1 T01 03 integrating derivative on function
12X1 T01 03 integrating derivative on function12X1 T01 03 integrating derivative on function
12X1 T01 03 integrating derivative on function
 
11X1 T01 03 factorising (2011)
11X1 T01 03 factorising (2011)11X1 T01 03 factorising (2011)
11X1 T01 03 factorising (2011)
 
12X1 T08 04 greatest coefficients & terms
12X1 T08 04 greatest coefficients & terms12X1 T08 04 greatest coefficients & terms
12X1 T08 04 greatest coefficients & terms
 
X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)
 
11X1 T06 06 line through pt of intersection
11X1 T06 06 line through pt of intersection11X1 T06 06 line through pt of intersection
11X1 T06 06 line through pt of intersection
 
11X1 T12 09 locus problems (2011)
11X1 T12 09 locus problems (2011)11X1 T12 09 locus problems (2011)
11X1 T12 09 locus problems (2011)
 
11X1 T07 05 t results (2011)
11X1 T07 05 t results (2011)11X1 T07 05 t results (2011)
11X1 T07 05 t results (2011)
 
11X1 T05 01 permutations I (2011)
11X1 T05 01 permutations I (2011)11X1 T05 01 permutations I (2011)
11X1 T05 01 permutations I (2011)
 
11X1 T05 05 arrangements in a circle (2011)
11X1 T05 05 arrangements in a circle (2011)11X1 T05 05 arrangements in a circle (2011)
11X1 T05 05 arrangements in a circle (2011)
 
11X1 T09 05 product rule (2011)
11X1 T09 05 product rule (2011)11X1 T09 05 product rule (2011)
11X1 T09 05 product rule (2011)
 
11 x1 t04 07 3d trigonometry (2012)
11 x1 t04 07 3d trigonometry (2012)11 x1 t04 07 3d trigonometry (2012)
11 x1 t04 07 3d trigonometry (2012)
 
X2 T04 03 t results (2011)
X2 T04 03 t results (2011)X2 T04 03 t results (2011)
X2 T04 03 t results (2011)
 
X2 T06 02 resisted motion (2011)
X2 T06 02 resisted motion (2011)X2 T06 02 resisted motion (2011)
X2 T06 02 resisted motion (2011)
 
11X1 T09 06 quotient & reciprocal rules (2011)
11X1 T09 06 quotient & reciprocal rules (2011)11X1 T09 06 quotient & reciprocal rules (2011)
11X1 T09 06 quotient & reciprocal rules (2011)
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)
 
11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)
 
11X1 T06 05 perpendicular distance (2011)
11X1 T06 05 perpendicular distance (2011)11X1 T06 05 perpendicular distance (2011)
11X1 T06 05 perpendicular distance (2011)
 
12X1 T05 05 integration with inverse trig (2011)
12X1 T05 05 integration with inverse trig (2011)12X1 T05 05 integration with inverse trig (2011)
12X1 T05 05 integration with inverse trig (2011)
 
X2 T03 05 rectangular hyperbola (2011)
X2 T03 05 rectangular hyperbola (2011)X2 T03 05 rectangular hyperbola (2011)
X2 T03 05 rectangular hyperbola (2011)
 
X2 T01 05 de moivres theorem (2011)
X2 T01 05 de moivres theorem (2011)X2 T01 05 de moivres theorem (2011)
X2 T01 05 de moivres theorem (2011)
 

Similar to 11X1 T16 05 volumes (2011)

11 x1 t16 05 volumes (2012)
11 x1 t16 05 volumes (2012)11 x1 t16 05 volumes (2012)
11 x1 t16 05 volumes (2012)Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)Nigel Simmons
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves IINigel Simmons
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
Christopher Chibangu
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5Garden City
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
sol pg 104 # 1,2,3.
sol pg 104 # 1,2,3.sol pg 104 # 1,2,3.
sol pg 104 # 1,2,3.Garden City
 
12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)Nigel Simmons
 
12 x1 t04 05 displacement, velocity, acceleration (2013)
12 x1 t04 05 displacement, velocity, acceleration (2013)12 x1 t04 05 displacement, velocity, acceleration (2013)
12 x1 t04 05 displacement, velocity, acceleration (2013)Nigel Simmons
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 
[4] num integration
[4] num integration[4] num integration
[4] num integrationikhulsys
 

Similar to 11X1 T16 05 volumes (2011) (20)

11 x1 t16 05 volumes (2012)
11 x1 t16 05 volumes (2012)11 x1 t16 05 volumes (2012)
11 x1 t16 05 volumes (2012)
 
1 d wave equation
1 d wave equation1 d wave equation
1 d wave equation
 
Figures
FiguresFigures
Figures
 
Figures
FiguresFigures
Figures
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
sol pg 104 # 1,2,3.
sol pg 104 # 1,2,3.sol pg 104 # 1,2,3.
sol pg 104 # 1,2,3.
 
12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)
 
12 x1 t04 05 displacement, velocity, acceleration (2013)
12 x1 t04 05 displacement, velocity, acceleration (2013)12 x1 t04 05 displacement, velocity, acceleration (2013)
12 x1 t04 05 displacement, velocity, acceleration (2013)
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 
[4] num integration
[4] num integration[4] num integration
[4] num integration
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
CarlosHernanMontoyab2
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 

Recently uploaded (20)

Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 

11X1 T16 05 volumes (2011)

  • 1. Volumes of Solids of Revolution y y = f(x) x
  • 2. Volumes of Solids of Revolution y y = f(x) a b x
  • 3. Volumes of Solids of Revolution y y = f(x) a b x
  • 4. Volumes of Solids of Revolution y y = f(x) a b x Volume of a solid of revolution about;
  • 5. Volumes of Solids of Revolution y y = f(x) a b x Volume of a solid of revolution about; i x axis : V   y 2 dx b  a
  • 6. Volumes of Solids of Revolution y y = f(x) a b x Volume of a solid of revolution about; i x axis : V   y 2 dx b  a ii  y axis : V   c x 2 dy d
  • 7. e.g. (i) cone y y  mx h x
  • 8. e.g. (i) cone y y  mx h x
  • 9. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h x
  • 10. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0 h x
  • 11. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0  m 2 h 3  0  1 h x 3 1  m 2 h 3 3
  • 12. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0 r  m 2 h 3  0  1 h x 3 1  m 2 h 3 3
  • 13. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0 r  m 2 h 3  0  1 h x 3 1  m 2 h 3 3 r m h
  • 14. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0 r  m 2 h 3  0  1 h x 3 1  m 2 h 3 3 2 r     h3 m 1 r   h 3 h r 2 h 3  3h 2 r 2 h  3
  • 15. (ii) sphere y x2  y2  r 2 rx
  • 16. (ii) sphere y x2  y2  r 2 rx
  • 17. (ii) sphere y V    y 2 dx x2  y2  r 2 r  2  r 2  x 2 dx 0 rx
  • 18. (ii) sphere y V    y 2 dx x2  y2  r 2 r  2  r 2  x 2 dx 0 r r 2 x  1 x 3   2  rx  3 0 
  • 19. (ii) sphere y V    y 2 dx x2  y2  r 2 r  2  r 2  x 2 dx 0 r r 2 x  1 x 3   2  rx  3 0   1    2  r 2 r   r 3   0   3   2 3  2  r  3  4 3  r 3
  • 20. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1.
  • 21. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 x
  • 22. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 1 x
  • 23. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 1 x
  • 24. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 V   x 2 dy 1 1   ydy 0 x
  • 25. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 V   x 2 dy 1 1   ydy 0   2 y  2 1 0 x
  • 26. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 V   x 2 dy 1 1   ydy 0   2 y  2 1 0 x   1 2  0 2   units 3 2
  • 27. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y y  5x 5 x
  • 28. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0
  • 29. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0 
  • 30. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0  1 1 13 0  25      3  50  unit 3 3
  • 31. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0  1 1 13 0 OR  25      3  50  unit 3 3
  • 32. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0  1 1 1 13 0 OR V  r 2 h  r 2 h  25     3  3  2 50   5 1  2 unit 3 3 3 50  units 3 3
  • 33. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1)
  • 34. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1) x 2  12  2 x 2
  • 35. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1) x 2  12  2 x 2 3 x 2  12 x2  4 x  2
  • 36. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1) x 2  12  2 x 2 3 x 2  12 x2  4 x  2  meet at  2, 4 
  • 37. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed.
  • 38. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed.
  • 39. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. V    x 2 dy
  • 40. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. V    x 2 dy
  • 41. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y V    x 2 dy
  • 42. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2
  • 43. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2 4 12   1   V   6 y  dy  ydy 0 2  4
  • 44. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2 4 12   1   V   6 y  dy  ydy 0 2  4 4 12   6 y  y     y  1 2 1 2   4 0  2 4 
  • 45. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2 4 12   1   V   6 y  dy  ydy 0 2  4 4 12   6 y  y     y  1 2 1 2   4 0  2 4   1 2      6  4    4   0  12    4  4 2 2 2 
  • 46. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2 4 12   1   V   6 y  dy  ydy 0 2  4 4 12   6 y  y     y  1 2 1 2   4 0  2 4   1 2      6  4    4   0  12    4  4 2 2 2   84 units3
  • 47. Exercise 11G; 3bdef, 4eg, 5cd, 6d, 8ad, 12, 16a, 19 to 22, 24*, 25*