SlideShare a Scribd company logo
Rectangular Hyperbola
Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
      b b
           1
      a a
Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
      b b
            1
      a a
         b2  a 2
          ba
Rectangular Hyperbola
   A hyperbola whose asymptotes are perpendicular to each other
        b b
                 1
         a a
              b2  a 2
               ba
 hyperbola has the equation;
          x2 y2
           2
              2 1
          a a
          x2  y2  a2
Rectangular Hyperbola
   A hyperbola whose asymptotes are perpendicular to each other
        b b
                 1
        a a
              b2  a 2
               ba
 hyperbola has the equation;         a 2 e 2  1  a 2
         x2 y2
           2
              2 1
         a a
          x2  y2  a2
Rectangular Hyperbola
   A hyperbola whose asymptotes are perpendicular to each other
        b b
                 1
        a a
              b2  a 2
               ba
 hyperbola has the equation;         a 2 e 2  1  a 2
         x2 y2                              e2  1  1
           2
              2 1
         a a
                                               e2  2
          x2  y2  a2
                                                e 2
Rectangular Hyperbola
   A hyperbola whose asymptotes are perpendicular to each other
        b b
                 1
        a a
              b2  a 2
               ba
 hyperbola has the equation;         a 2 e 2  1  a 2
         x2 y2                              e2  1  1
           2
              2 1
         a a
                                               e2  2
          x2  y2  a2
                                                e 2
                                       eccentricity is 2
y       Y
    P  x, y 

                 x


      X
y       Y
                     In order to make the
    P  x, y        asymptotes the coordinate
                     axes we need to rotate the
                 x   curve 45 degrees
                     anticlockwise.
      X
y               Y
                                                   In order to make the
                           P  x, y               asymptotes the coordinate
                                                   axes we need to rotate the
                                            x      curve 45 degrees
                                                   anticlockwise.
                               X
i.e. P x, y   x  iy is multiplied by cis 45
y               Y
                                                   In order to make the
                           P  x, y               asymptotes the coordinate
                                                   axes we need to rotate the
                                            x      curve 45 degrees
                                                   anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
    x  iy 
                1       1 
                  i      
               2        2
y               Y
                                                   In order to make the
                           P  x, y               asymptotes the coordinate
                                                   axes we need to rotate the
                                            x      curve 45 degrees
                                                   anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
    x  iy 
                  1        1 
                     i      
                2           2
       1
           x  iy 1  i 
        2
       1
           x  ix  iy  y 
        2
      x y x y
                      i
         2          2
y              Y
                                               In order to make the
                          P  x, y            asymptotes the coordinate
                                               axes we need to rotate the
                                           x   curve 45 degrees
                                               anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
                1 i 1                         x y             x y
    x  iy                         X                  Y
                2           2                    2                2
       1
           x  iy 1  i 
        2
       1
           x  ix  iy  y 
        2
      x y x y
                      i
         2          2
y              Y
                                           In order to make the
                        P  x, y          asymptotes the coordinate
                                           axes we need to rotate the
                                       x   curve 45 degrees
                                           anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
                1 i 1                         x y            x y
    x  iy                         X                   Y
                2           2                    2               2
       1                                               x2  y2
           x  iy 1  i                      XY 
        2                                                 2
       1
           x  ix  iy  y 
        2
      x y x y
                      i
         2          2
y              Y
                                           In order to make the
                        P  x, y          asymptotes the coordinate
                                           axes we need to rotate the
                                       x   curve 45 degrees
                                           anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
                1 i 1                         x y            x y
    x  iy                         X                   Y
                2           2                    2               2
       1                                               x2  y2
           x  iy 1  i                      XY 
        2                                                 2
       1                                               a2
           x  ix  iy  y                     XY 
        2                                              2
      x y x y
                      i
         2          2
focus;  ae,0 
       2a,0 
focus;  ae,0 
        2a,0 

     1  1 i
  2a        
     2    2 
 a  ai
focus;  ae,0 
         2a,0 

     1  1 i
  2a            
     2      2 
 a  ai
  focus a, a 
a
 focus;  ae,0     directrix;   x
                                      e
         2a,0                       a
                                  x
                                         2
     1  1 i
  2a            
     2      2 
 a  ai
  focus a, a 
a
 focus;  ae,0     directrix;   x
                                         e
         2a,0                          a
                                  x
                                            2
     1  1 i
  2a                  directrices are || to y axis
     2      2 
                        when rotated || to y   x
 a  ai
  focus a, a 
a
 focus;  ae,0     directrix;   x
                                         e
         2a,0                          a
                                  x
                                            2
     1  1 i
  2a                  directrices are || to y axis
     2      2 
                        when rotated || to y   x
 a  ai
                       thus in form x  y  k  0
  focus a, a 
a
 focus;  ae,0       directrix;   x
                                           e
         2a,0                            a
                                    x
                                              2
     1  1 i
  2a                    directrices are || to y axis
     2      2 
                          when rotated || to y   x
 a  ai
                          thus in form x  y  k  0
  focus a, a                                          2a
                     Now distance between directrices is
                                                          2
a
 focus;  ae,0         directrix;   x
                                             e
         2a,0                              a
                                      x
                                                2
     1  1 i
  2a                      directrices are || to y axis
     2      2 
                             when rotated || to y   x
 a  ai
                             thus in form x  y  k  0
  focus a, a                                             2a
                      Now distance between directrices is
                                                              2
                                                            a
                      distance from origin to directrix is
                                                             2
a
 focus;  ae,0         directrix;   x
                                             e
         2a,0                              a
                                      x
                                                2
     1  1 i
  2a                      directrices are || to y axis
     2      2 
                             when rotated || to y   x
 a  ai
                             thus in form x  y  k  0
  focus a, a                                             2a
                      Now distance between directrices is
                                                              2
                                                            a
                      distance from origin to directrix is
                                                             2
                                   00k        a
                                             
                                        2        2
a
 focus;  ae,0         directrix;   x
                                             e
         2a,0                              a
                                      x
                                                2
     1  1 i
  2a                      directrices are || to y axis
     2      2 
                             when rotated || to y   x
 a  ai
                             thus in form x  y  k  0
  focus a, a                                             2a
                      Now distance between directrices is
                                                              2
                                                            a
                      distance from origin to directrix is
                                                             2
                                   00k        a
                                             
                                        2        2
                                       k a
                                        k  a
a
 focus;  ae,0         directrix;   x
                                             e
         2a,0                              a
                                      x
                                                2
     1  1 i
  2a                      directrices are || to y axis
     2      2 
                             when rotated || to y   x
 a  ai
                             thus in form x  y  k  0
  focus a, a                                             2a
                      Now distance between directrices is
                                                              2
                                                            a
                      distance from origin to directrix is
                                                             2
                                   00k        a
                                             
                                        2        2
                                       k a
                                       k  a
                            directrices are x  y   a
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
 where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
 where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2

Parametric Coordinates of xy  c 2
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
 where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2

Parametric Coordinates of xy  c 2
                                          c
                    x  ct           y
                                          t
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2

Parametric Coordinates of xy  c 2
                                          c
                    x  ct           y
                                          t

  Tangent: x  t 2 y  2ct
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2

Parametric Coordinates of xy  c 2
                                           c
                    x  ct            y
                                           t

  Tangent: x  t 2 y  2ct           Normal: t 3 x  ty  ct 4  1
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
            y          y=x



                             x
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
            y          y=x
                                             xy  4
                      2,2
                                             x2  4
                              x
    2,2                                   x  2
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
              y               y=x
                                              xy  4
                      2,2
                                              x2  4
                              x
    2,2                                    x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                                   t
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
              y               y=x
                                              xy  4
                      2,2
                                              x2  4
                              x
    2,2                                    x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                                   t
      4
   y
      x
   dy    4
       2
   dx    x
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
              y               y=x
                                              xy  4
                      2,2
                                              x2  4
                              x
    2,2                                    x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                                   t
      4                   dy          4
   y        when x  2t ,  
      x                   dx        2t 2
   dy    4
       2                      1
                               2
   dx    x                       t
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
              y               y=x
                                             xy  4
                      2,2
                                             x2  4
                              x
    2,2                                   x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                                   t
      4                   dy          4                 2    1
   y        when x  2t ,                         y    2  x  2t 
      x                   dx        2t 2
                                                        t   t
   dy    4
       2                      1
                               2
   dx    x                       t
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
              y               y=x
                                              xy  4
                      2,2
                                              x2  4
                              x
    2,2                                    x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                                   t
      4                   dy          4                    2      1
   y        when x  2t ,                          y    2  x  2t 
      x                   dx        2t 2
                                                           t     t
   dy    4                      1                t 2 y  2t   x  2t
       2                     2
   dx    x                       t                  x  t 2 y  4t
 s, 2 
c) s  0, s  t , show that the tangents at P and Q 2 
         2    2

                                                       s

   intersect at M  4 st , 4 
                              
                    st st
 s, 2 
c) s  0, s  t , show that the tangents at P and Q 2 
          2     2

                                                       s

   intersect at M  4 st , 4 
                              
                    st st
  P : x  t 2 y  4t
 Q : x  s 2 y  4s
 s, 2 
c) s  0, s  t , show that the tangents at P and Q 2 
                2    2

                                                       s

   intersect at M  4 st , 4 
                              
                    st st
  P : x  t 2 y  4t
 Q : x  s 2 y  4s
   t   2
             s 2 y  4t  4 s
 s, 2 
c) s  0, s  t , show that the tangents at P and Q 2 
                  2     2

                                                       s

   intersect at M  4 st , 4 
                              
                    st st
    P : x  t 2 y  4t
   Q : x  s 2 y  4s
     t   2
               s 2 y  4t  4 s
t  s t  s  y  4t  s 
                          4
                      y
                         st
 s, 2 
c) s  0, s  t , show that the tangents at P and Q 2 
                  2     2

                                                       s

   intersect at M  4 st , 4 
                              
                    st st
    P : x  t 2 y  4t                    4t 2
                                       x       4t
   Q : x  s 2 y  4s                     st
     t   2
               s 2 y  4t  4 s
t  s t  s  y  4t  s 
                          4
                      y
                         st
 s, 2 
c) s  0, s  t , show that the tangents at P and Q 2 
                 2     2

                                                       s

   intersect at M  4 st , 4 
                              
                    st st
    P : x  t 2 y  4t                    4t 2
                                       x       4t
   Q : x  s 2 y  4s                     st
     t   2
               s y  4t  4 s
                 2
                                     x
                                        4 st  4t 2  4t 2
                                              st
t  s t  s  y  4t  s           4 st
                         4            
                     y                 st
                        st
 2 s, 2 
c) s  0, s  t , show that the tangents at P and Q        
                 2     2

                                                         s

   intersect at M  4 st , 4 
                              
                    st st
    P : x  t 2 y  4t                           4t 2
                                              x       4t
   Q : x  s 2 y  4s                            st
     t   2
               s y  4t  4 s
                 2
                                             x
                                                4 st  4t 2  4t 2
                                                      st
t  s t  s  y  4t  s                   4 st
                         4                    
                     y                         st
                        st

                                      4 st , 4 
                               M is           
                                      st st
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
          4 st                     4
       x                      y
          st                     st
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                    4
       x                      y
           st                    st
        1
     s
         t
    st  1
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                    4
       x                      y
           st                    st
        1
     s
         t
    st  1
       4
    x
       st
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                    4
       x                      y
           st                    st
        1
     s
         t
    st  1
       4                      y
                                   4
    x
       st                        st
                                 x
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                      4
       x                        y
           st                      st
        1
     s
         t
    st  1
       4                        y
                                     4
    x
       st                          st
                                   x


                       y  x
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                      4
       x                        y
           st                      st
        1
     s
         t
    st  1
       4                        y
                                     4
    x
       st                          st
                                   x

                                     4
                       y  x           0, thus M  0,0 
                                    st
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                    4
       x                      y
           st                    st
        1
     s
         t
    st  1
       4                      y
                                   4
    x
       st                        st
                                 x

                                     4
                   y  x               0, thus M  0,0 
                                   st
           locus of M is y   x, excluding 0,0 
(ii) Show that PS  PS   2a


                                    P  x, y 

                    S          S                x
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 

                    S          S                x



 By definition of an ellipse;
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 
                                                 M

                    S          S                     x
           a
     x                                         x
                                                      a
           e                                          e
 By definition of an ellipse;
 PS  PS   ePM
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 
         M                                      M

                    S          S                     x
           a
     x                                         x
                                                      a
           e                                          e
 By definition of an ellipse;
 PS  PS   ePM  ePM 
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 
         M                                      M

                    S          S                     x
           a
     x                                         x
                                                      a
           e                                          e
 By definition of an ellipse;
 PS  PS   ePM  ePM 
            e PM  PM 
               2a 
            e 
               e 
            2a
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 
         M                                      M

                    S          S                     x
           a
     x                                         x
                                                      a
           e                                          e
 By definition of an ellipse;
 PS  PS   ePM  ePM 
            e PM  PM              Exercise 6D; 3, 4, 7, 10, 11a,
               2a 
            e 
                                          12, 14, 19, 21, 26, 29,
               e                              31, 43, 47
            2a

More Related Content

More from Nigel Simmons

11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 

More from Nigel Simmons (20)

11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 

Recently uploaded

Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
adhitya5119
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
Celine George
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Fajar Baskoro
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
National Information Standards Organization (NISO)
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5
sayalidalavi006
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 

Recently uploaded (20)

Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 

X2 T03 05 rectangular hyperbola (2011)

  • 2. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other
  • 3. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a
  • 4. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba
  • 5. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba  hyperbola has the equation; x2 y2 2  2 1 a a x2  y2  a2
  • 6. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba  hyperbola has the equation; a 2 e 2  1  a 2 x2 y2 2  2 1 a a x2  y2  a2
  • 7. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba  hyperbola has the equation; a 2 e 2  1  a 2 x2 y2 e2  1  1 2  2 1 a a e2  2 x2  y2  a2 e 2
  • 8. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba  hyperbola has the equation; a 2 e 2  1  a 2 x2 y2 e2  1  1 2  2 1 a a e2  2 x2  y2  a2 e 2  eccentricity is 2
  • 9. y Y P  x, y  x X
  • 10. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X
  • 11. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45
  • 12. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45    x  iy  1 1   i   2 2
  • 13. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45    x  iy  1 1   i   2 2 1   x  iy 1  i  2 1   x  ix  iy  y  2 x y x y   i 2 2
  • 14. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45   1 i 1  x y x y   x  iy   X  Y  2 2 2 2 1   x  iy 1  i  2 1   x  ix  iy  y  2 x y x y   i 2 2
  • 15. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45   1 i 1  x y x y   x  iy   X  Y  2 2 2 2 1 x2  y2   x  iy 1  i  XY  2 2 1   x  ix  iy  y  2 x y x y   i 2 2
  • 16. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45   1 i 1  x y x y   x  iy   X  Y  2 2 2 2 1 x2  y2   x  iy 1  i  XY  2 2 1 a2   x  ix  iy  y  XY  2 2 x y x y   i 2 2
  • 17. focus;  ae,0    2a,0 
  • 18. focus;  ae,0    2a,0   1  1 i 2a   2 2   a  ai
  • 19. focus;  ae,0    2a,0   1  1 i 2a   2 2   a  ai  focus a, a 
  • 20. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a   2 2   a  ai  focus a, a 
  • 21. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai  focus a, a 
  • 22. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a 
  • 23. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2
  • 24. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2 a  distance from origin to directrix is 2
  • 25. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2 a  distance from origin to directrix is 2 00k a  2 2
  • 26. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2 a  distance from origin to directrix is 2 00k a  2 2 k a k  a
  • 27. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2 a  distance from origin to directrix is 2 00k a  2 2 k a k  a  directrices are x  y   a
  • 28. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2
  • 29. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2 Parametric Coordinates of xy  c 2
  • 30. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2 Parametric Coordinates of xy  c 2 c x  ct y t
  • 31. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2 Parametric Coordinates of xy  c 2 c x  ct y t Tangent: x  t 2 y  2ct
  • 32. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2 Parametric Coordinates of xy  c 2 c x  ct y t Tangent: x  t 2 y  2ct Normal: t 3 x  ty  ct 4  1
  • 33. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry.
  • 34. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x x
  • 35. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2
  • 36. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t
  • 37. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t 4 y x dy 4  2 dx x
  • 38. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t 4 dy 4 y when x  2t ,   x dx 2t 2 dy 4  2 1  2 dx x t
  • 39. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t 4 dy 4 2 1 y when x  2t ,   y    2  x  2t  x dx 2t 2 t t dy 4  2 1  2 dx x t
  • 40. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t 4 dy 4 2 1 y when x  2t ,   y    2  x  2t  x dx 2t 2 t t dy 4 1 t 2 y  2t   x  2t  2  2 dx x t x  t 2 y  4t
  • 41.  s, 2  c) s  0, s  t , show that the tangents at P and Q 2  2 2  s intersect at M  4 st , 4    st st
  • 42.  s, 2  c) s  0, s  t , show that the tangents at P and Q 2  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t Q : x  s 2 y  4s
  • 43.  s, 2  c) s  0, s  t , show that the tangents at P and Q 2  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t Q : x  s 2 y  4s t 2  s 2 y  4t  4 s
  • 44.  s, 2  c) s  0, s  t , show that the tangents at P and Q 2  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t Q : x  s 2 y  4s t 2  s 2 y  4t  4 s t  s t  s  y  4t  s  4 y st
  • 45.  s, 2  c) s  0, s  t , show that the tangents at P and Q 2  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t 4t 2 x  4t Q : x  s 2 y  4s st t 2  s 2 y  4t  4 s t  s t  s  y  4t  s  4 y st
  • 46.  s, 2  c) s  0, s  t , show that the tangents at P and Q 2  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t 4t 2 x  4t Q : x  s 2 y  4s st t 2  s y  4t  4 s 2 x 4 st  4t 2  4t 2 st t  s t  s  y  4t  s  4 st 4  y st st
  • 47.  2 s, 2  c) s  0, s  t , show that the tangents at P and Q  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t 4t 2 x  4t Q : x  s 2 y  4s st t 2  s y  4t  4 s 2 x 4 st  4t 2  4t 2 st t  s t  s  y  4t  s  4 st 4  y st st  4 st , 4   M is    st st
  • 48. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin.
  • 49. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st
  • 50. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1
  • 51. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 x st
  • 52. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 y 4 x st st  x
  • 53. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 y 4 x st st  x  y  x
  • 54. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 y 4 x st st  x 4  y  x  0, thus M  0,0  st
  • 55. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 y 4 x st st  x 4  y  x  0, thus M  0,0  st  locus of M is y   x, excluding 0,0 
  • 56. (ii) Show that PS  PS   2a P  x, y  S S x
  • 57. (ii) Show that PS  PS   2a y P  x, y  S S x By definition of an ellipse;
  • 58. (ii) Show that PS  PS   2a y P  x, y  M S S x a x x a e e By definition of an ellipse; PS  PS   ePM
  • 59. (ii) Show that PS  PS   2a y P  x, y  M M S S x a x x a e e By definition of an ellipse; PS  PS   ePM  ePM 
  • 60. (ii) Show that PS  PS   2a y P  x, y  M M S S x a x x a e e By definition of an ellipse; PS  PS   ePM  ePM   e PM  PM   2a   e   e   2a
  • 61. (ii) Show that PS  PS   2a y P  x, y  M M S S x a x x a e e By definition of an ellipse; PS  PS   ePM  ePM   e PM  PM  Exercise 6D; 3, 4, 7, 10, 11a,  2a   e  12, 14, 19, 21, 26, 29,  e  31, 43, 47  2a