The one-dimensional wave equation governs vibrations of an elastic string. It is solved by separating variables, yielding solutions of the form F(x)G(t) where F and G satisfy ordinary differential equations. Boundary conditions require F(x) to be sinusoidal, with wavelengths that are integer multiples of the string length. The general solution is a superposition of these sinusoidal modes, with coefficients determined by the initial conditions. Motions of strings with different initial displacements are expressed as solutions to the one-dimensional wave equation.