SlideShare a Scribd company logo
January 27, 2005 11:56      L24-CH16         Sheet number 1 Page number 693                 black



                                                           CHAPTER 16
                                        Topics in Vector Calculus

              EXERCISE SET 16.1
               1. (a) III because the vector field is independent of y and the direction is that of the negative x-axis
                      for negative x, and positive for positive
                    (b) IV, because the y-component is constant, and the x-component varies periodically with x

               2. (a) I, since the vector field is constant
                    (b) II, since the vector field points away from the origin

               3. (a) true                                 (b) true                                 (c) true

               4. (a) false, the lengths are equal to 1                     (b) false, the y-component is then zero
                  (c) false, the x-component is then zero
                                   y                                    y                                      y
               5.                                     6.                                      7.



                                                  x                                                                    x


                                                                                        x




                                  y                                     y                                      y
               8.                                     9.                                     10.



                                              x                                     x                                  x




                                                  y             x
              11. (a) ∇φ = φx i + φy j =                  i+            j = F, so F is conservative for all x, y
                                               1 + x2 y 2    1 + x2 y 2
                    (b) ∇φ = φx i + φy j = 2xi − 6yj + 8zk = F so F is conservative for all x, y

              12. (a) ∇φ = φx i + φy j = (6xy − y 3 )i + (4y + 3x2 − 3xy 2 )j = F, so F is conservative for all x, y
                    (b) ∇φ = φx i + φy j + φz k = (sin z + y cos x)i + (sin x + z cos y)j + (x cos z + sin y)k = F, so F is
                        conservative for all x, y

              13. div F = 2x + y, curl F = zi

              14. div F = z 3 + 8y 3 x2 + 10zy, curl F = 5z 2 i + 3xz 2 j + 4xy 4 k

              15. div F = 0, curl F = (40x2 z 4 − 12xy 3 )i + (14y 3 z + 3y 4 )j − (16xz 5 + 21y 2 z 2 )k

              16. div F = yexy + sin y + 2 sin z cos z, curl F = −xexy k


                                                                      693
January 27, 2005 11:56      L24-CH16            Sheet number 2 Page number 694         black



             694                                                                                               Chapter 16


                                     2
             17. div F =                        , curl F = 0
                               x2   + y2 + z2

                            1              x                            z
             18. div F =      + xzexyz + 2   2
                                               , curl F = −xyexyz i + 2     j + yzexyz k
                            x           x +z                         x + z2

             19. ∇ · (F × G) = ∇ · (−(z + 4y 2 )i + (4xy + 2xz)j + (2xy − x)k) = 4x

             20. ∇ · (F × G) = ∇ · ((x2 yz 2 − x2 y 2 )i − xy 2 z 2 j + xy 2 zk) = −xy 2

             21. ∇ · (∇ × F) = ∇ · (− sin(x − y)k) = 0

             22. ∇ · (∇ × F) = ∇ · (−zeyz i + xexz j + 3ey k) = 0

             23. ∇ × (∇ × F) = ∇ × (xzi − yzj + yk) = (1 + y)i + xj

             24. ∇ × (∇ × F) = ∇ × ((x + 3y)i − yj − 2xyk) = −2xi + 2yj − 3k

                                                               ∂f    ∂g    ∂h
             27. Let F = f i + gj + hk ; div (kF) = k             +k    +k    = k div F
                                                               ∂x    ∂y    ∂z

                                                                  ∂h ∂g           ∂f   ∂h         ∂g   ∂f
             28. Let F = f i + gj + hk ; curl (kF) = k               −      i+k      −      j+k      −      k = k curl F
                                                                  ∂y   ∂z         ∂z   ∂x         ∂x ∂y

             29. Let F = f (x, y, z)i + g(x, y, z)j + h(x, y, z)k and G = P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k, then
                                         ∂f   ∂P          ∂g   ∂Q           ∂h ∂R
                    div (F + G) =           +         +      +          +      +
                                         ∂x   ∂x          ∂y   ∂y           ∂z   ∂z
                                         ∂f   ∂g   ∂h              ∂P   ∂Q ∂R
                                    =       +    +            +       +    +       = div F + div G
                                         ∂x ∂y     ∂z              ∂x   ∂y   ∂z

             30. Let F = f (x, y, z)i + g(x, y, z)j + h(x, y, z)k and G = P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k, then
                                         ∂            ∂              ∂             ∂
                    curl (F + G) =          (h + R) −    (g + Q) i +    (f + P ) −    (h + R) j
                                         ∂y           ∂z             ∂z            ∂x
                                                  ∂            ∂
                                                    (g + Q) −
                                                    +            (f + P ) k;
                                                 ∂x           ∂y
                   expand and rearrange terms to get curl F + curl G.

             31. Let F = f i + gj + hk ;
                                ∂f    ∂φ                  ∂g   ∂φ       ∂h ∂φ
                 div (φF) = φ       +    f         + φ       +    g + φ    +    h
                                ∂x ∂x                     ∂y   ∂y       ∂z   ∂z
                                     ∂f   ∂g   ∂h              ∂φ    ∂φ    ∂φ
                             =φ         +    +            +       f+    g+    h
                                     ∂x ∂y     ∂z              ∂x    ∂y    ∂z
                             = φ div F + ∇φ · F

             32. Let F = f i + gj + hk ;
                                ∂         ∂            ∂           ∂           ∂          ∂
                 curl (φF) =      (φh) −    (φg) i+      (φf ) −     (φh) j+      (φg) −    (φf ) k; use the product
                               ∂y        ∂z           ∂z          ∂x           ∂x        ∂y
                 rule to expand each of the partial derivatives, rearrange to get φ curl F + ∇φ × F
January 27, 2005 11:56      L24-CH16            Sheet number 3 Page number 695                                    black



              Exercise Set 16.1                                                                                                                                 695


              33. Let F = f i + gj + hk ;
                                      ∂      ∂h ∂g            ∂         ∂f   ∂h                ∂         ∂g   ∂f
                    div(curl F) =               −       +                  −              +                 −
                                      ∂x     ∂y   ∂z          ∂y        ∂z   ∂x                ∂z        ∂x ∂y
                                  ∂2h      ∂2g     ∂2f     ∂2h      ∂2g     ∂2f
                                  =     −       +       −        +        −     = 0,
                                 ∂x∂y ∂x∂z        ∂y∂z    ∂y∂x ∂z∂x ∂z∂y
                    assuming equality of mixed second partial derivatives

                                  ∂2φ      ∂2φ           ∂2φ   ∂2φ                                    ∂2φ   ∂2φ
              34. curl (∇φ) =          −          i+         −                                j+          −                     k = 0, assuming equality
                                  ∂y∂z    ∂z∂y          ∂z∂x ∂x∂z                                    ∂x∂y ∂y∂x
                    of mixed second partial derivatives

              35. ∇ · (kF) = k∇ · F, ∇ · (F + G) = ∇ · F + ∇ · G, ∇ · (φF) = φ∇ · F + ∇φ · F, ∇ · (∇ × F) = 0

              36. ∇ × (kF) = k∇ × F, ∇ × (F + G) = ∇ × F + ∇ × G, ∇ × (φF) = φ∇ × F + ∇φ × F, ∇ × (∇φ) = 0

              37. (a) curl r = 0i + 0j + 0k = 0
                                                                         x                                y                          z                      r
                    (b) ∇ r = ∇            x2 + y 2 + z 2 =                               i+                               j+                          k=
                                                                   x2   +   y2   +   z2             x2   +   y2   +   z2        x2   +   y2   +   z2        r


              38. (a) div r = 1 + 1 + 1 = 3
                              1                               xi + yj + zk         r
                    (b) ∇       = ∇(x2 + y 2 + z 2 )−1/2 = − 2                  =−
                              r                             (x + y 2 + z 2 )3/2    r 3

                                             ∂r          ∂r        ∂r             f (r)
              39. (a) ∇f (r) = f (r)            i + f (r) j + f (r) k = f (r)∇r =       r
                                             ∂x          ∂y        ∂z               r
                                                                                           f (r)
                    (b) div[f (r)r] = f (r)div r + ∇f (r) · r = 3f (r) +                         r · r = 3f (r) + rf (r)
                                                                                             r

                                                                        f (r)
              40. (a) curl[f (r)r] = f (r)curl r + ∇f (r) × r = f (r)0 +      r×r=0+0=0
                                                                          r
                                                     f (r)     f (r)           f (r)
                    (b) ∇2 f (r) = div[∇f (r)] = div       r =       div r + ∇       ·r
                                                       r         r               r

                                           f (r) rf (r) − f (r)       f (r)
                                  =3            +               r·r=2       + f (r)
                                             r        r3                r

              41. f (r) = 1/r3 , f (r) = −3/r4 , div(r/r3 ) = 3(1/r3 ) + r(−3/r4 ) = 0

              42. Multiply 3f (r) + rf (r) = 0 through by r2 to obtain 3r2 f (r) + r3 f (r) = 0,
                  d[r3 f (r)]/dr = 0, r3 f (r) = C, f (r) = C/r3 , so F = Cr/r3 (an inverse-square field).


              43. (a) At the point (x, y) the slope of the line along which the vector −yi + xj lies is −x/y; the
                      slope of the tangent line to C at (x, y) is dy/dx, so dy/dx = −x/y.
                    (b) ydy = −xdx, y 2 /2 = −x2 /2 + K1 , x2 + y 2 = K
January 27, 2005 11:56           L24-CH16            Sheet number 4 Page number 696             black



             696                                                                                                                Chapter 16


             44. dy/dx = x, y = x2 /2 + K                                   45. dy/dx = 1/x, y = ln x + K
                                           y                                                     y




                                                                                                                   x

                                                       x




             46. dy/dx = −y/x, (1/y)dy = (−1/x)dx, ln y = − ln x + K1 ,                                 y
                   y = eK1 e− ln x = K/x




                                                                                                                                    x




             EXERCISE SET 16.2
                                 1
              1. (a)                 dy = 1 because s = y is arclength measured from (0, 0)
                             0

                   (b) 0, because sin xy = 0 along C

              2. (a)             ds = length of line segment = 2                 (b) 0, because x is constant and dx = 0
                         C

              3. Since F and r are parallel, F · r = F r , and since F is constant,
                                                        √    4 √
                    F · dr = d(F · r) = d( F r ) = 2              2dt = 16
                                                                           −4
                                       C              C


              4.       F · r = 0, since F is perpendicular to the curve.
                   C


              5. By inspection the tangent vector in part (a) is given by T = j, so F · T = F · j = sin x on C. But

                   x = −π/2 on C, thus sin x = −1, F · T = −1 and                    F · dr =       (−1)ds.
                                                                                 C              C

              6. (a) Let α be the angle between F and T. Since F = 1, cos α = F T cos α = F · T, and

                                 F · T ds =         cos α(s) ds. From Figure 16.2.12(b) it is apparent that α is close to zero on
                             C                  C

                         most of the parabola, thus cos α ≈ 1 though cos α ≤ 1. Hence                           cos α(s) ds ≤       ds and
                                                                                                            C                   C
                         the first integral is close to the second.
January 27, 2005 11:56             L24-CH16                        Sheet number 5 Page number 697                                                          black



              Exercise Set 16.2                                                                                                                                                              697


                    (b) From Example 8(b)                                 cos α ds =                          F · dr ≈ 5.83629, and
                                                                      C                                   C
                                                   2
                                          ds =                 1 + (2t)2 dt ≈ 6.125726619.
                                  C               −1


                                                                                                                                                                  11 √            √
                                                           2               2                      1
                                                 dx                  dy                                                                                                     1                4
               7. (a) ds =                                     +               dt, so                 (2t − 3t2 ) 4 + 36t2 dt = −                                      10 −    ln( 10 − 3) −
                                                 dt                  dt                       0                                                                  108        36               27
                                      1                                                                                                               1
                                                                                                                                                                                 1
                    (b)                   (2t − 3t2 )2 dt = 0                                                                     (c)                     (2t − 3t2 )6t dt = −
                                  0                                                                                                               0                              2

                                      1                                                                                                               1
                                                                                                                   864                                                          54
               8. (a)                     t(3t2 )(6t3 )2         1 + 36t2 + 324t4 dt =                                           (b)                      t(3t2 )(6t3 )2 dt =
                                  0                                                                                 5                             0                             5
                                      1                                                                                                               1
                                                                          648
                    (c)                   t(3t2 )(6t3 )2 6t dt =                                                                 (d)                      t(3t2 )(6t3 )2 18t2 dt = 162
                                  0                                       11                                                                      0

                                                                                      1
               9. (a) C : x = t, y = t, 0 ≤ t ≤ 1;                                        6t dt = 3
                                                                                  0
                                                                                          1
                    (b) C : x = t, y = t2 , 0 ≤ t ≤ 1;                                        (3t + 6t2 − 2t3 )dt = 3
                                                                                      0

                    (c) C : x = t, y = sin(πt/2), 0 ≤ t ≤ 1;
                                      1
                                          [3t + 2 sin(πt/2) + πt cos(πt/2) − (π/2) sin(πt/2) cos(πt/2)]dt = 3
                                  0
                                                                                          1
                    (d) C : x = t3 , y = t, 0 ≤ t ≤ 1;                                        (9t5 + 8t3 − t)dt = 3
                                                                                      0

                                                                                                      1
                                                                                                                                          1
              10. (a) C : x = t, y = t, z = t, 0 ≤ t ≤ 1;                                                 (t + t − t) dt =
                                                                                                  0                                       2
                                                                                                              1
                                                                                                                                                                       1
                    (b) C : x = t, y = t2 , z = t3 , 0 ≤ t ≤ 1;                                                   (t2 + t3 (2t) − t(3t2 )) dt = −
                                                                                                          0                                                           60
                                                                                                                             1
                                                                                                                                                                                         π   2
                    (c) C : x = cos πt, y = sin πt, z = t, 0 ≤ t ≤ 1;                                                            (−π sin2 πt + πt cos πt − cos πt) dt = −                  −
                                                                                                                         0                                                               2   π
                             √
                         3
                               1+t                         3                                                                      √           1
                                                                                                                                                  1 + 2t     √
              11.                  dt =                        (1 + t)−1/2 dt = 2                                    12.              5                  dt = 5(π/4 + ln 2)
                     0        1+t                      0                                                                                  0       1 + t2
                         1                                                                    1
              13.            3(t2 )(t2 )(2t3 /3)(1 + 2t2 ) dt = 2                                 t7 (1 + 2t2 ) dt = 13/20
                     0                                                                    0
                    √
                      5           2π                   √                                                                               π/4
              14.                         e−t dt =         5(1 − e−2π )/4                                            15.                     (8 cos2 t−16 sin2 t−20 sin t cos t)dt = 1−π
                     4        0                                                                                                    0

                         1
                                 2    2
              16.                  t − t5/3 + t2/3 dt = 6/5
                     −1          3    3
                                                                                                              3
                                                                                                                   1
              17. C : x = (3 − t)2 /3, y = 3 − t, 0 ≤ t ≤ 3;                                                         (3 − t)2 dt = 3
                                                                                                          0        3
                                                                                   1
                                                                                              2 2/3 2 1/3
              18. C : x = t2/3 , y = t, −1 ≤ t ≤ 1;                                             t − t + t7/3 dt = 4/5
                                                                                 −1           3     3
January 27, 2005 11:56             L24-CH16                         Sheet number 6 Page number 698                                      black



             698                                                                                                                                                Chapter 16

                                                                                                    π/2
             19. C : x = cos t, y = sin t, 0 ≤ t ≤ π/2;                                                   (− sin t − cos2 t)dt = −1 − π/4
                                                                                                0

                                                                                                    1
             20. C : x = 3 − t, y = 4 − 3t, 0 ≤ t ≤ 1;                                                  (−37 + 41t − 9t2 )dt = −39/2
                                                                                                0

                        1
             21.            (−3)e3t dt = 1 − e3
                    0

                        π/2
                                                                                                           π6
             22.              (sin2 t cos t − sin2 t cos t + t4 (2t)) dt =
                    0                                                                                      192

                                   ln 2
                                                                                                         63 √     1      √     1                        1√
             23. (a)                          e3t + e−3t                e2t + e−2t dt =                       17 + ln(4 + 17) − tanh−1                     17
                               0                                                                         64       4            4                        17
                                   π/2
                                                                                                                                  1 3 1 π/2 1   6
                   (b)                        et sin t cos t − (sin t − t) sin t + (1 + t2 ) dt =                                   π + e  + π+
                               0                                                                                                 24    5    4   5

                                   π/2
             24. (a)                      cos21 t sin9 t                (−3 cos2 t sin t)2 + (3 sin2 t cos t)2 dt
                               0
                                                         π/2
                                                                                                       61,047
                                          = 3                  cos22 t sin10 t dt =                               π
                                                     0                                              4,294,967,296
                                   e                                                                                             2
                                                                                        1                                    1
                   (b)                    t5 ln t + 7t2 (2t) + t4 (ln t)                                 1 + (2t)2 +                 dt ≈ 1177.660136
                               1                                                        t                                    t

             25. (a) C1 : (0, 0) to (1, 0); x = t, y = 0, 0 ≤ t ≤ 1
                     C2 : (1, 0) to (0, 1); x = 1 − t, y = t, 0 ≤ t ≤ 1
                     C3 : (0, 1) to (0, 0); x = 0, y = 1 − t, 0 ≤ t ≤ 1
                                              1                    1                        1
                                                  (0)dt +              (−1)dt +                 (0)dt = −1
                                          0                    0                        0

                   (b) C1 : (0, 0) to (1, 0); x = t, y = 0, 0 ≤ t ≤ 1
                       C2 : (1, 0) to (1, 1); x = 1, y = t, 0 ≤ t ≤ 1
                       C3 : (1, 1) to (0, 1); x = 1 − t, y = 1, 0 ≤ t ≤ 1
                              C4 : (0, 1) to (0, 0); x = 0, y = 1 − t, 0 ≤ t ≤ 1
                                              1                    1                        1                        1
                                                  (0)dt +              (−1)dt +                 (−1)dt +                 (0)dt = −2
                                          0                    0                        0                        0


             26. (a) C1 : (0, 0) to (1, 1); x = t, y = t, 0 ≤ t ≤ 1
                     C2 : (1, 1) to (2, 0); x = 1 + t, y = 1 − t, 0 ≤ t ≤ 1
                     C3 : (2, 0) to (0, 0); x = 2 − 2t, y = 0, 0 ≤ t ≤ 1
                                              1                    1               1
                                                  (0)dt +              2dt +           (0)dt = 2
                                          0                    0               0

                   (b) C1 : (−5, 0) to (5, 0); x = t, y = 0, −5 ≤ t ≤ 5
                       C2 : x = 5 cos t, y = 5 sin t, 0 ≤ t ≤ π
                                              5                     π
                                                  (0)dt +               (−25)dt = −25π
                                          −5                    0
January 27, 2005 11:56             L24-CH16                    Sheet number 7 Page number 699                                              black



              Exercise Set 16.2                                                                                                                                                        699

                                                                                           1                                                                             1
                                                                                                                                                                                           1
              27. C1 : x = t, y = z = 0, 0 ≤ t ≤ 1,                                            0 dt = 0; C2 : x = 1, y = t, z = 0, 0 ≤ t ≤ 1,                                (−t) dt = −
                                                                                       0                                                                             0                     2
                                                                                                   1
                                                                                                                                                       1      5
                    C3 : x = 1, y = 1, z = t, 0 ≤ t ≤ 1,                                               3 dt = 3;          x2 z dx − yx2 dy + 3 dz = 0 − + 3 =
                                                                                               0                        C                              2      2

              28. C1 : (0, 0, 0) to (1, 1, 0); x = t, y = t, z = 0, 0 ≤ t ≤ 1
                  C2 : (1, 1, 0) to (1, 1, 1); x = 1, y = 1, z = t, 0 ≤ t ≤ 1
                  C3 : (1, 1, 1) to (0, 0, 0); x = 1 − t, y = 1 − t, z = 1 − t, 0 ≤ t ≤ 1
                                   1                      1                       1
                                       (−t3 )dt +             3 dt +                  −3dt = −1/4
                               0                      0                       0


                         π                                                                                                     1
              29.            (0)dt = 0                                                                            30.              (e2t − 4e−t )dt = e2 /2 + 4e−1 − 9/2
                     0                                                                                                     0

                         1                                                                                                     π/2
              31.            e−t dt = 1 − e−1                                                                     32.                (7 sin2 t cos t + 3 sin t cos t)dt = 23/6
                     0                                                                                                     0


              33. Represent the circular arc by x = 3 cos t, y = 3 sin t, 0 ≤ t ≤ π/2.
                               √      π/2 √                   √
                      √
                    x yds = 9 3             sin t cos t dt = 6 3
                     C                               0


              34. δ(x, y) = k            x2 + y 2 where k is the constant of proportionality,
                                                   1     √          √      1                    √
                         k         x2 + y 2 ds = k   et ( 2et ) dt = 2k      e2t dt = (e2 − 1)k/ 2
                     C                                        0                                               0


                                                              π/2
                               kx                                      cos t
              35.                   ds = 15k                                     dt = 5k tan−1 3
                     C       1 + y2                       0         1 + 9 sin2 t

              36. δ(x, y, z) = kz where k is the constant of proportionality,
                                 4    √
                     k z ds =      k(4 t)(2 + 1/t) dt = 136k/3
                     C                         1


                                                                                               1
              37. C : x = t2 , y = t, 0 ≤ t ≤ 1; W =                                                   3t4 dt = 3/5
                                                                                           0


                                       3                                                                                                               1
              38. W =                      (t2 + 1 − 1/t3 + 1/t)dt = 92/9 + ln 3                                                     39.   W =             (t3 + 5t6 )dt = 27/28
                                   1                                                                                                               0


              40. C1 : (0, 0, 0) to (1, 3, 1); x = t, y = 3t, z = t, 0 ≤ t ≤ 1
                  C2 : (1, 3, 1) to (2, −1, 4); x = 1 + t, y = 3 − 4t, z = 1 + 3t, 0 ≤ t ≤ 1
                                       1                                1
                    W =                    (4t + 8t2 )dt +                  (−11 − 17t − 11t2 )dt = −37/2
                                   0                                0


              41. C : x = 4 cos t, y = 4 sin t, 0 ≤ t ≤ π/2
                                  π/2
                                              1
                                             − sin t + cos t dt = 3/4
                              0               4
January 27, 2005 11:56            L24-CH16                        Sheet number 8 Page number 700                           black



             700                                                                                                                                      Chapter 16


             42. C1 : (0, 3) to (6, 3); x = 6t, y = 3, 0 ≤ t ≤ 1
                 C2 : (6, 3) to (6, 0); x = 6, y = 3 − 3t, 0 ≤ t ≤ 1
                              1
                                     6                            1
                                                                           −12           1         2
                                                  dt +                               dt = tan−1 2 − tan−1 (1/2)
                          0       36t2 + 9                    0       36 + 9(1 − t)2     3         3

             43. Represent the parabola by x = t, y = t2 , 0 ≤ t ≤ 2.
                              2                     √
                   3x ds =      3t 1 + 4t2 dt = (17 17 − 1)/4
                    C                 0

             44. Represent the semicircle by x = 2 cos t, y = 2 sin t, 0 ≤ t ≤ π.
                                              π
                        x2 y ds =                 16 cos2 t sin t dt = 32/3
                    C                     0


             45. (a) 2πrh = 2π(1)2 = 4π                                                                     (b) S =            z(t) dt
                                                                                                                           C
                                                                                                  2π
                   (c) C : x = cos t, y = sin t, 0 ≤ t ≤ 2π; S =                                       (2 + (1/2) sin 3t) dt = 4π
                                                                                              0

             46. C : x = a cos t, y = −a sin t, 0 ≤ t ≤ 2π,
                        x dy − y dx                     2π
                                                              −a2 cos2 t − a2 sin2 t                        2π
                                    =                                                dt =                        dt = 2π
                    C     x2 + y 2                  0                  a2                               0

                                                        1
             47. W =              F · dr =                  (λt2 (1 − t), t − λt(1 − t)) · (1, λ − 2λt) dt = −λ/12, W = 1 when λ = −12
                              C                     0

                                                                                                                  1                       3
             48. The force exerted by the farmer is F =                               150 + 20 −                    z k=       170 −        t k, so
                                                                                                                 10                      4π
                                                                                         60
                                        1                                                                    1
                   F · dr =          170 −z dz, and W =                                       170 −             z    dz = 10,020. Note that the functions
                                       10                                            0                       10
                   x(z), y(z) are irrelevant.
                                                                      tk
             49. (a) From (8), ∆sk =                                       r (t) dt, thus m∆tk ≤ ∆sk ≤ M ∆tk for all k. Obviously
                                                                  tk−1
                          ∆sk ≤ M (max∆tk ), and since the right side of this inequality is independent of k, it follows
                          that max∆sk ≤ M (max∆tk ). Similarly m(max∆tk ) ≤ max∆sk .
                                                                                1
                   (b) This follows from max∆tk ≤                                 max∆sk and max∆sk ≤ M max∆tk .
                                                                                m



             EXERCISE SET 16.3
              1. ∂x/∂y = 0 = ∂y/∂x, conservative so ∂φ/∂x = x and ∂φ/∂y = y, φ = x2 /2 + k(y), k (y) = y,
                 k(y) = y 2 /2 + K, φ = x2 /2 + y 2 /2 + K

              2. ∂(3y 2 )/∂y = 6y = ∂(6xy)/∂x, conservative so ∂φ/∂x = 3y 2 and ∂φ/∂y = 6xy,
                 φ = 3xy 2 + k(y), 6xy + k (y) = 6xy, k (y) = 0, k(y) = K, φ = 3xy 2 + K

              3. ∂(x2 y)/∂y = x2 and ∂(5xy 2 )/∂x = 5y 2 , not conservative
January 27, 2005 11:56       L24-CH16        Sheet number 9 Page number 701                         black



              Exercise Set 16.3                                                                                                 701


               4. ∂(ex cos y)/∂y = −ex sin y = ∂(−ex sin y)/∂x, conservative so ∂φ/∂x = ex cos y and
                  ∂φ/∂y = −ex sin y, φ = ex cos y + k(y), −ex sin y + k (y) = −ex sin y,
                  k (y) = 0, k(y) = K, φ = ex cos y + K

               5. ∂(cos y + y cos x)/∂y = − sin y + cos x = ∂(sin x − x sin y)/∂x, conservative so
                  ∂φ/∂x = cos y + y cos x and ∂φ/∂y = sin x − x sin y, φ = x cos y + y sin x + k(y),
                  −x sin y + sin x + k (y) = sin x − x sin y, k (y) = 0, k(y) = K, φ = x cos y + y sin x + K

               6. ∂(x ln y)/∂y = x/y and ∂(y ln x)/∂x = y/x, not conservative

               7. (a) ∂(y 2 )/∂y = 2y = ∂(2xy)/∂x, independent of path
                                                                                 1
                    (b) C : x = −1 + 2t, y = 2 + t, 0 ≤ t ≤ 1;                       (4 + 14t + 6t2 )dt = 13
                                                                             0

                    (c) ∂φ/∂x = y 2 and ∂φ/∂y = 2xy, φ = xy 2 + k(y), 2xy + k (y) = 2xy, k (y) = 0, k(y) = K,
                        φ = xy 2 + K. Let K = 0 to get φ(1, 3) − φ(−1, 2) = 9 − (−4) = 13

               8. (a) ∂(y sin x)/∂y = sin x = ∂(− cos x)/∂x, independent of path
                                                                        1
                    (b) C1 : x = πt, y = 1 − 2t, 0 ≤ t ≤ 1;                 (π sin πt − 2πt sin πt + 2 cos πt)dt = 0
                                                                    0

                    (c) ∂φ/∂x = y sin x and ∂φ/∂y = − cos x, φ = −y cos x + k(y), − cos x + k (y) = − cos x,
                        k (y) = 0, k(y) = K, φ = −y cos x+K. Let K = 0 to get φ(π, −1)−φ(0, 1) = (−1)−(−1) = 0

               9. ∂(3y)/∂y = 3 = ∂(3x)/∂x, φ = 3xy, φ(4, 0) − φ(1, 2) = −6

              10. ∂(ex sin y)/∂y = ex cos y = ∂(ex cos y)/∂x, φ = ex sin y, φ(1, π/2) − φ(0, 0) = e

              11. ∂(2xey )/∂y = 2xey = ∂(x2 ey )/∂x, φ = x2 ey , φ(3, 2) − φ(0, 0) = 9e2

              12. ∂(3x − y + 1)/∂y = −1 = ∂[−(x + 4y + 2)]/∂x,
                  φ = 3x2 /2 − xy + x − 2y 2 − 2y, φ(0, 1) − φ(−1, 2) = 11/2

              13. ∂(2xy 3 )/∂y = 6xy 2 = ∂(3x2 y 2 )/∂x, φ = x2 y 3 , φ(−1, 0) − φ(2, −2) = 32

              14. ∂(ex ln y − ey /x)/∂y = ex /y − ey /x = ∂(ex /y − ey ln x)/∂x,
                  φ = ex ln y − ey ln x, φ(3, 3) − φ(1, 1) = 0

              15. φ = x2 y 2 /2, W = φ(0, 0) − φ(1, 1) = −1/2                    16. φ = x2 y 3 , W = φ(4, 1) − φ(−3, 0) = 16


              17. φ = exy , W = φ(2, 0) − φ(−1, 1) = 1 − e−1

              18. φ = e−y sin x, W = φ(−π/2, 0) − φ(π/2, 1) = −1 − 1/e

              19. ∂(ey + yex )/∂y = ey + ex = ∂(xey + ex )/∂x so F is conservative, φ(x, y) = xey + yex so

                         F · dr = φ(0, ln 2) − φ(1, 0) = ln 2 − 1
                     C


              20. ∂(2xy)/∂y = 2x = ∂(x2 + cos y)/∂x so F is conservative, φ(x, y) = x2 y + sin y so

                         F · dr = φ(π, π/2) − φ(0, 0) = π 3 /2 + 1
                     C
January 27, 2005 11:56         L24-CH16                      Sheet number 10 Page number 702           black



             702                                                                                                               Chapter 16


             21. F · dr = [(ey + yex )i + (xey + ex )j] · [(π/2) cos(πt/2)i + (1/t)j]dt
                            π
                        =     cos(πt/2)(ey + yex ) + (xey + ex )/t dt,
                            2
                                                      2
                                                          π                                             1
                   so        F · dr =                       cos(πt/2) t + (ln t)esin(πt/2) + sin(πt/2) + esin(πt/2)       dt = ln 2 − 1
                         C                        1       2                                             t

             22. F · dr = 2t2 cos(t/3) + [t2 + cos(t cos(t/3))](cos(t/3) − (t/3) sin(t/3)) dt, so
                                              π
                        F · dr =                  2t2 cos(t/3) + [t2 + cos(t cos(t/3))](cos(t/3) − (t/3) sin(t/3)) dt = 1 + π 3 /2
                    C                     0


             23. No; a closed loop can be found whose tangent everywhere makes an angle < π with the vector
                   field, so the line integral                      F · dr > 0, and by Theorem 16.3.2 the vector field is not conservative.
                                                               C


             24. The vector field is constant, say F = ai + bj, so let φ(x, y) = ax + by and F is conservative.

             25. Let r(t) be a parametrization of the circle C. Then by Theorem 16.3.2(b),

                        Fdr =             F · r (t) dt = 0. Let h(t) = F(x, y) · r (t). Then h is continuous. We must find two
                    C                 C
                   points at which h = 0. If h(t) = 0 everywhere on the circle, then we are done; otherwise there are
                   points at which h is nonzero, say h(t1 ) > 0. Then there is a small interval around t1 on which the
                   integral of h is positive.
                   (Let      = h(t1 )/2. Since h(t) is continuous there exists δ > 0 such that for |t − t1 | < δ, h(t) > /2.
                               t1 +δ
                   Then                h(t) dt ≥ (2δ) /2 > 0.)
                              t1 −δ

                   Since          h = 0, there are points on the circle where h < 0, say h(t2 ) < 0. Now consider the
                              C
                   parametrization h(θ), 0 ≤ θ ≤ 2π. Let θ1 < θ2 correspond to the points above where h > 0 and
                   h < 0. Then by the Intermediate Value Theorem on [θ1 , θ2 ] there must be a point where h = 0,
                   say h(θ3 ) = 0, θ1 < θ3 < θ2.
                   To find a second point where h = 0, assume that h is a periodic function with period 2π (if need be,
                   extend the definition of h). Then h(t2 − 2π) = h(t2 ) < 0. Apply the Intermediate Value Theorem
                   on [t2 − 2π, t1 ] to find an additional point θ4 at which h = 0. The reader should prove that θ3 and
                   θ4 do indeed correspond to distinct points on the circle.

             26. The function F · r (t) is not necessarily continuous since the tangent to the square has obvious
                 discontinuities. For a counterexample to the result, let the square have vertices at (0, 0), (0, 1),
                 (1, 1), (1, 0). Let Φ(x, y) = xy + x + y and let F = ∇Φ = (y + 1)i + (x + 1)j. Then F is conservative
                 , but on the bottom side of the square, where y = 0, F · r = −F · j = −x − 1 ≤ 1 < 0. On the top
                 edge F · r = F · j = x + 1 ≥ 1 > 0. Similarly for the other two sides of the square. Thus at no
                 point is F · r = 0.

                                                                            ∂φ    ∂φ    ∂φ                 ∂φ      ∂φ           ∂φ
             27. If F is conservative, then F = ∇φ =                           i+    j+    k and hence f =    ,g =    , and h =    .
                                                                            ∂x    ∂y    ∂z                 ∂x      ∂y           ∂z
                             ∂f    ∂2φ     ∂g    ∂ 2 φ ∂f    ∂2φ     ∂h    ∂ 2 φ ∂g   ∂2φ      ∂h   ∂2φ
                   Thus         =      and    =       ,   =      and    =       ,   =      and    =      .
                             ∂y   ∂y∂x     ∂x   ∂x∂y ∂z     ∂z∂x     ∂x   ∂x∂z ∂z     ∂z∂y     ∂y   ∂y∂z
                   The result follows from the equality of mixed second partial derivatives.
January 27, 2005 11:56      L24-CH16         Sheet number 11 Page number 703                            black



              Exercise Set 16.3                                                                                                         703


              28. Let f (x, y, z) = yz, g(x, y, z) = xz, h(x, y, z) = yx2 , then ∂f /∂z = y, ∂h/∂x = 2xy = ∂f /∂z, thus

                    by Exercise 27, F = f i+gj+hk is not conservative, and by Theorem 16.3.2,                            yz dx+xz dy+yx2 dz
                                                                                                                     C
                    is not independent of the path.

                    ∂
              29.      (h(x)[x sin y + y cos y]) = h(x)[x cos y − y sin y + cos y]
                    ∂y
                    ∂
                       (h(x)[x cos y − y sin y]) = h(x) cos y + h (x)[x cos y − y sin y],
                    ∂x
                    equate these two partial derivatives to get (x cos y − y sin y)(h (x) − h(x)) = 0 which holds for all
                    x and y if h (x) = h(x), h(x) = Cex where C is an arbitrary constant.

                          ∂       cx             3cxy          ∂       cy
              30. (a)          2 + y 2 )3/2
                                            =− 2     2 )−5/2
                                                             =      2 + y 2 )3/2
                                                                                 when (x, y) = (0, 0),
                          ∂y (x               (x + y           ∂x (x
                          so by Theorem 16.3.3, F is conservative. Set ∂φ/∂x = cx/(x2 + y 2 )−3/2 ,
                          then φ(x, y) = −c(x2 + y 2 )−1/2 + k(y), ∂φ/∂y = cy/(x2 + y 2 )−3/2 + k (y), so k (y) = 0.
                                                c
                          Thus φ(x, y) = − 2              is a potential function.
                                           (x + y 2 )1/2
                    (b) curl F = 0 is similar to Part (a), so F is conservative. Let
                                                   cx
                          φ(x, y, z) =                          dx = −c(x2 + y 2 + z 2 )−1/2 + k(y, z). As in Part (a),
                                           (x2 + y 2 + z 2 )3/2
                          ∂k/∂y = ∂k/∂z = 0, so φ(x, y, z) = −c/(x2 + y 2 + z 2 )1/2 is a potential function for F.

                                                            Q
                                                                                                      1   1
              31. (a) See Exercise 30, c = 1; W =               F · dr = φ(3, 2, 1) − φ(1, 1, 2) = − √ + √
                                                           P                                          14   6
                                                                                                     1   1
                    (b) C begins at P (1, 1, 2) and ends at Q(3, 2, 1) so the answer is again W = − √ + √ .
                                                                                                     14   6
                    (c) The circle is not specified, but cannot pass through (0, 0, 0), so Φ is continuous and differ-
                        entiable on the circle. Start at any point P on the circle and return to P , so the work is
                        Φ(P ) − Φ(P ) = 0.
                        C begins at, say, (3, 0) and ends at the same point so W = 0.

                                         dx    dy
              32. (a) F · dr =       y      −x      dt for points on the circle x2 + y 2 = 1, so
                                         dt    dt
                                                                                       π
                          C1 : x = cos t, y = sin t, 0 ≤ t ≤ π,        F · dr =            (− sin2 t − cos2 t) dt = −π
                                                                  C1               0
                                                                                               π
                          C2 : x = cos t, y = − sin t, 0 ≤ t ≤ π,           F · dr =               (sin2 t + cos2 t) dt = π
                                                                       C2                  0

                          ∂f   x2 − y 2 ∂g      y 2 − x2     ∂f
                    (b)      = 2         ,
                                     2 )2 ∂x
                                             =− 2          =
                          ∂y  (x + y           (x + y 2 )2   ∂y
                    (c) The circle about the origin of radius 1, which is formed by traversing C1 and then traversing
                        C2 in the reverse direction, does not lie in an open simply connected region inside which F
                        is continuous, since F is not defined at the origin, nor can it be defined there in such a way
                        as to make the resulting function continuous there.
January 27, 2005 11:56                   L24-CH16                    Sheet number 12 Page number 704                                           black



             704                                                                                                                                                               Chapter 16


             33. If C is composed of smooth curves C1 , C2 , . . . , Cn and curve Ci extends from (xi−1 , yi−1 ) to (xi , yi )
                                                        n                                   n
                   then                  F · dr =                        F · dr =                   [φ(xi , yi ) − φ(xi−1 , yi−1 )] = φ(xn , yn ) − φ(x0 , y0 )
                                     C               i=1            Ci                      i=1
                   where (x0 , y0 ) and (xn , yn ) are the endpoints of C.

             34.               F · dr +                 F · dr = 0, but                                 F · dr = −                 F · dr so             F · dr =            F · dr, thus
                       C1                         −C2                                           −C2                          C2                     C1                  C2


                           F · dr is independent of path.
                       C

             35. Let C1 be an arbitrary piecewise smooth curve from (a, b) to a point (x, y1 ) in the disk, and C2
                 the vertical line segment from (x, y1 ) to (x, y). Then
                                                                                                    (x,y1 )
                   φ(x, y) =                     F · dr +                    F · dr =                         F · dr +            F · dr.
                                            C1                       C2                         (a,b)                    C2

                   The first term does not depend on y;
                         ∂φ     ∂              ∂
                   hence     =        F · dr =       f (x, y)dx + g(x, y)dy.
                         ∂y    ∂y C2           ∂y C2
                                                                                                                                                ∂φ   ∂
                   However, the line integral with respect to x is zero along C2 , so                                                              =                g(x, y) dy.
                                                                                                                                                ∂y   ∂y        C2
                                                                                                                                                          y
                                                                                                                                            ∂φ   ∂
                   Express C2 as x = x, y = t where t varies from y1 to y, then                                                                =              g(x, t) dt = g(x, y).
                                                                                                                                            ∂y   ∂y      y1




             EXERCISE SET 16.4
                                                                1        1
              1.               (2x − 2y)dA =                                 (2x − 2y)dy dx = 0; for the line integral, on x = 0, y 2 dx = 0, x2 dy = 0;
                                                            0        0
                   R
                   on y = 0, y 2 dx = x2 dy = 0; on x = 1, y 2 dx + x2 dy = dy; and on y = 1, y 2 dx + x2 dy = dx,
                                                                                 1              0
                   hence                  y 2 dx + x2 dy =                           dy +           dx = 1 − 1 = 0
                                                                             0              1
                                 C


              2.               (1 − 1)dA = 0; for the line integral let x = cos t, y = sin t,
                   R
                                                         2π
                           y dx + x dy =                      (− sin2 t + cos2 t)dt = 0
                                                     0
                   C

                           4         2                                                                                       2π        3
              3.                         (2y − 3x)dy dx = 0                                                      4.                        (1 + 2r sin θ)r dr dθ = 9π
                       −2        1                                                                                       0         0

                           π/2           π/2
              5.                               (−y cos x + x sin y)dy dx = 0                                     6.              (sec2 x − tan2 x)dA =                  dA = π
                       0             0
                                                                                                                         R                                          R
                                                                                                                             1     x
              7.               [1 − (−1)]dA = 2                          dA = 8π                                 8.                    (2x − 2y)dy dx = 1/30
                                                                                                                         0        x2
                   R                                            R
January 27, 2005 11:56             L24-CH16                                  Sheet number 13 Page number 705                                                          black



              Exercise Set 16.4                                                                                                                                                                                 705


                                        y   1
               9.              −          −                                      dA = −                dA = −4
                                       1+y 1+y
                     R                                                                         R

                         π/2           4
              10.                          (−r2 )r dr dθ = −32π
                     0             0


                                        y2       1
              11.              −           2
                                             −                                     dA = −                    dA = −1
                                       1+y     1 + y2
                     R                                                                                 R

                                                                                                                                                     √
                                                                                                                                             1        x
              12.         (cos x cos y − cos x cos y)dA = 0                                                                13.                                (y 2 − x2 )dy dx = 0
                                                                                                                                         0       x2
                     R
                                   2        2x                                                                                                       2        2x
              14. (a)                            (−6x + 2y)dy dx = −56/15                                                        (b)                                  6y dy dx = 64/5
                               0           x2                                                                                                    0           x2


              15. (a) C : x = cos t, y = sin t, 0 ≤ t ≤ 2π;
                                                    2π
                                       =                     esin t (− sin t) + sin t cos tecos t dt ≈ −3.550999378;
                                C               0

                                             ∂           ∂ y
                                                (yex ) −    e dA =                                           [yex − ey ] dA
                                             ∂x          ∂y
                               R                                                                       R
                                                        2π           1
                                            =                            r sin θer cos θ − er sin θ r dr dθ ≈ −3.550999378
                                                    0            0
                                                                                                                                                     1
                                                                                                                                                                  2
                    (b) C1 : x = t, y = t2 , 0 ≤ t ≤ 1;                                                    [ey dx + yex dy] =                                et + 2t3 et dt ≈ 2.589524432
                                                                                                                                                 0
                                                                                                C1
                                                                                                                                                     1
                                                                                                                                                                              2               e+3
                               C2 : x = t2 , y = t, 0 ≤ t ≤ 1;                                             [ey dx + yex dy] =                                2tet + tet               dt =        ≈ 2.859140914
                                                                                                                                                 0                                             2
                                                                                                C2
                                                                                                                       √
                                                                                                                  1     x
                                       −            ≈ −0.269616482;                                    =                    [yex − ey ] dy dx ≈ −0.269616482
                                                                                                              0       x2
                           C1              C2                                                  R

                                                                 2π                                                                                                                   2π
              16. (a)                  x dy =                         ab cos2 t dt = πab                                             (b)                      −y dx =                      ab sin2 t dt = πab
                                C                            0                                                                                           C                        0

                                                                                          2π
                           1                                                      1
              17. A =                      −y dx + x dy =                                      (3a2 sin4 φ cos2 φ + 3a2 cos4 φ sin2 φ)dφ
                           2           C                                          2   0
                                                                                               2π                                                            2π
                                                                                  3 2                                                    3 2
                                                                             =      a               sin2 φ cos2 φ dφ =                     a                      sin2 2φ dφ = 3πa2 /8
                                                                                  2        0                                             8               0


              18. C1 : (0, 0) to (a, 0); x = at,     y = 0,      0≤t≤1
                  C2 : (a, 0) to (0, b); x = a − at, y = bt,     0≤t≤1
                  C3 : (0, b) to (0, 0); x = 0,      y = b − bt, 0 ≤ t ≤ 1
                                                                             1                     1                                 1
                                                                                                                                                              1
                               A=                   x dy =                       (0)dt +               ab(1 − t)dt +                     (0)dt =                ab
                                                C                        0                     0                                 0                            2
January 27, 2005 11:56             L24-CH16                      Sheet number 14 Page number 706                                           black



             706                                                                                                                                                               Chapter 16


             19. C1 : (0, 0) to (a, 0); x = at, y = 0, 0 ≤ t ≤ 1
                 C2 : (a, 0) to (a cos t0 , b sin t0 ); x = a cos t, y = b sin t, 0 ≤ t ≤ t0
                   C3 : (a cos t0 , b sin t0 ) to (0, 0); x = −a(cos t0 )t, y = −b(sin t0 )t, −1 ≤ t ≤ 0
                                                                                  1                          t0                   0
                          1                                           1                          1                          1                    1
                   A=                  −y dx + x dy =                                 (0) dt +                    ab dt +             (0) dt =     ab t0
                          2       C                                   2       0                  2       0                  2    −1              2

             20. C1 : (0, 0) to (a, 0); x = at, y = 0, 0 ≤ t ≤ 1
                 C2 : (a, 0) to (a cosh t0 , b sinh t0 ); x = a cosh t, y = b sinh t, 0 ≤ t ≤ t0
                   C3 : (a cosh t0 , b sinh t0 ) to (0, 0); x = −a(cosh t0 )t, y = −b(sinh t0 )t, −1 ≤ t ≤ 0
                                                                                  1                          t0                   0
                          1                                           1                          1                          1                    1
                   A=                  −y dx + x dy =                                 (0) dt +                    ab dt +             (0) dt =     ab t0
                          2       C                                   2       0                  2       0                  2    −1              2

             21. curl F(x, y, z) = −gz i + fz j + (gx − fy )k = fz j(gx − fy )k, since f and g are independent of z. Thus

                         curl F · k dA =                     (fx − gy ) dA =                         f (x, y) dx + g(x, y) dy =                      F · dr by Green’s Theorem.
                                                                                                 C                                               C
                   R                                     R

             22. The boundary of the region R in Figure Ex-22 is C = C1 − C2 , so by Green’s Theorem,
                         F · dr −                  F · dr =                            F · dr =              F · dr = 0 , since fy = gx . Thus                    =        .
                    C1                    C2                          C1 −C2                             C                                                   C1       C2


             23. Let C1 denote the graph of g(x) from left to right, and C2 the graph of f (x) from left to right. On
                 the vertical sides x = const, and so dx = 0 there. Thus the area between the curves is

                   A(R) =                 dA = −                 y dx = −                     g(x) dx +                   f (x) dx
                                                             C                           C1                          C2
                                   R
                                              b                           b                          b
                              =−                  g(x) dx +                   f (x) dx =                 (f (x) − g(x)) dx
                                          a                           a                          a

             24. Let A(R1 ) denote the area of the region R1 bounded by C and the lines y = y0 , y = y1 and the
                 y-axis. Then by Formula (6) A(R1 ) = C x dy, since the integrals on the top and bottom are zero
                 (dy = 0 there), and x = 0 on the y-axis. Similarly, A(R2 ) = −C y dx = − C y dx, where R2 is the
                 region bounded by C, x = x0 , x = x1 and the x-axis.
                   (a) R1                                                                                                 (b) R2

                   (c)             y dx + x dy = A(R1 ) + A(R2 ) = x1 y1 − x0 y0
                              C

                   (d) Let φ(x, y) = xy. Then ∇φ · dr = y dx + x dy and thus by the Fundamental Theorem

                                   y dx + x dy = φ(x1 , y1 ) − φ(x0 , y0 ) = x1 y1 − x0 y0 .
                              C
                                  t1                                                                                 t1
                                              dy                                                                                 dx
                   (e)                 x(t)      dt = x(t1 )y(t1 ) − x(t0 )y(t0 ) −                                       y(t)      dt which is equivalent to
                              t0              dt                                                                    t0           dt

                                   y dx + x dy = x1 y1 − x0 y0
                              C

                                                         π       5
             25. W =                   y dA =                        r2 sin θ dr dθ = 250/3
                                                     0       0
                              R
January 27, 2005 11:56              L24-CH16                           Sheet number 15 Page number 707                                                    black



              Exercise Set 16.4                                                                                                                                                               707


              26. We cannot apply Green’s Theorem on the region enclosed by the closed curve C, since F does not
                  have first order partial derivatives at the origin. However, the curve Cx0 , consisting of
                  y = x3 /4, x0 ≤ x ≤ 2; x = 2, x3 /4 ≤ y ≤ 2; and y = x3 /4, x0 ≤ x ≤ 2 encloses a region Rx0 in
                        0                         0
                  which Green’s Theorem does hold, and

                    W =                F · dr = lim                                   F · dr = lim                             ∇ · F dA
                                                             x0 →0+                                     x0 →0+
                               C                                   Cx0                                               Rx0
                                                                 3
                                                    2        x /4
                                                                           1 −1/2 1 −1/2
                            = lim                                            x   − y                                     dy dx
                               x0 →0+           x0       x3 /4
                                                          0
                                                                           2      2
                                                              √
                                                      18 √      2 3    3/2 3 7/2 3 5/2                                                                    18 √
                            = lim                   −      2−    x0 + x0 + x0 − x0                                                                   =−        2
                               x0   →0+               35       4           14    10                                                                       35

                                                                                                            2π       a(1+cos θ)
              27.           y dx − x dy =                            (−2)dA = −2                                                   r dr dθ = −3πa2
                        C                                                                               0        0
                                                             R


                              1                                               1 2
              28. x =
                  ¯                         x dA, but                           x dy =                      x dA from Green’s Theorem so
                              A                                        C      2
                                    R                                                               R

                       1                   1 2       1                                                                            1
                    x=
                    ¯                        x dy =                               x2 dy. Similarly, y = −
                                                                                                    ¯                                           y 2 dx.
                       A               C   2        2A                        C                                                  2A         C


                                   1        x                                                                                                                   1
                                                                      1                                                                                                               3
              29. A =                           dy dx =                 ; C1 : x = t, y = t3 , 0 ≤ t ≤ 1,                                       x2 dy =             t2 (3t2 ) dt =
                               0           x3                         4                                                                  C1                 0                         5
                                                                                                                     1
                                                                                                                                   1                                             3 1   4       8
                    C2 : x = t, y = t, 0 ≤ t ≤ 1;                                              x2 dy =                   t2 dt =     ,          x2 dy =             −        =    − =    ,x =
                                                                                                                                                                                          ¯
                                                                                          C2                     0                 3        C               C1          C2       5 3  15      15

                                                    1                         1
                                                                                                 1 1    4     8                                                     8 8
                            y 2 dx =                    t6 dt −                   t2 dt =         − = − ,y =
                                                                                                          ¯     , centroid                                            ,
                        C                       0                         0                      7 3   21    21                                                     15 21

                              a2
              30. A =            ; C1 : x = t, y = 0, 0 ≤ t ≤ a, C2 : x = a − t, y = t, 0 ≤ t ≤ a; C3 : x = 0, y = a − t, 0 ≤ t ≤ a;
                               2
                                                       a
                                                                      a3                                            a3        a
                            x2 dy = 0, x2 dy =           (a − t)2 dt = , x2 dy = 0, x2 dy = + + = , x = ;                 ¯
                                                     0                3                                              3        3
                    C1                          C2                                                                       C3                      C              C1      C2       C3
                                                             a                                  3
                                                                                               a      a                                     a a
                            y 2 dx = 0 −                         t2 dt + 0 = −                   , y = , centroid
                                                                                                   ¯                                         ,
                                                         0                                     3      3                                     3 3
                    C

              31. x = 0 from the symmetry of the region,
                  ¯
                                                  √
                  C1 : (a, 0) to (−a, 0) along y = a2 − x2 ; x = a cos t, y = a sin t, 0 ≤ t ≤ π
                    C2 : (−a, 0) to (a, 0); x = t, y = 0, −a ≤ t ≤ a
                                                                                      π                                    a
                                                                      1
                    A = πa2 /2,                     y= −
                                                    ¯                                     −a3 sin3 t dt +                      (0)dt
                                                                     2A           0                                       −a

                                                                      1               4a3               4a                                  4a
                                                        =−                        −                 =      ; centroid                  0,
                                                                     πa2               3                3π                                  3π
January 27, 2005 11:56         L24-CH16                     Sheet number 16 Page number 708                                          black



             708                                                                                                                                                 Chapter 16


                        ab
             32. A =       ; C1 : x = t, y = 0, 0 ≤ t ≤ a, C2 : x = a, y = t, 0 ≤ t ≤ b;
                         2
                   C3 : x = a − at, y = b − bt, 0 ≤ t ≤ 1;
                                                                          b                                                1
                                                                                                                                                         ba2
                         x2 dy = 0,               x2 dy =                     a2 dt = ba2 ,                  x2 dy =           a2 (1 − t)2 (−b) dt = −       ,
                    C1                       C2                       0                              C3                0                                  3
                                                                                   2
                                                                              2ba      2a
                        x2 dy =              +          +             =           , x=
                                                                                    ¯     ;
                    C                C1           C2          C3               3        3
                                                        1
                                                                                                 ab2      b                           2a b
                        y 2 dx = 0 + 0 −                    ab2 (1 − t)2 dt = −                      , y = , centroid
                                                                                                       ¯                                ,
                    C                               0                                             3       3                            3 3

             33. From Green’s Theorem, the given integral equals                                                    (1−x2 −y 2 )dA where R is the region enclosed
                                                                                                                R
                   by C. The value of this integral is maximum if the integration extends over the largest region for
                   which the integrand 1 − x2 − y 2 is nonnegative so we want 1 − x2 − y 2 ≥ 0, x2 + y 2 ≤ 1. The
                   largest region is that bounded by the circle x2 + y 2 = 1 which is the desired curve C.

             34. (a) C : x = a + (c − a)t, y = b + (d − b)t, 0 ≤ t ≤ 1
                                                                  1
                               −y dx + x dy =                         (ad − bc)dt = ad − bc
                           C                                  0

                   (b) Let C1 , C2 , and C3 be the line segments from (x1 , y1 ) to (x2 , y2 ), (x2 , y2 ) to (x3 , y3 ), and
                       (x3 , y3 ) to (x1 , y1 ), then if C is the entire boundary consisting of C1 , C2 , and C3
                                                                                    3
                                 1                                             1
                          A=                 −y dx + x dy =                                      −y dx + x dy
                                 2   C                                         2   i=1      Ci
                                 1
                             =     [(x1 y2 − x2 y1 ) + (x2 y3 − x3 y2 ) + (x3 y1 − x1 y3 )]
                                 2
                                 1
                   (c) A =         [(x1 y2 − x2 y1 ) + (x2 y3 − x3 y2 ) + · · · + (xn y1 − x1 yn )]
                                 2
                                 1
                   (d) A =         [(0 − 0) + (6 + 8) + (0 + 2) + (0 − 0)] = 8
                                 2

             35.        F · dr =             (x2 + y) dx + (4x − cos y) dy = 3                                      dA = 3(25 − 2) = 69
                    C                C
                                                                                                               R


             36.        F · dr =             (e−x + 3y) dx + x dy = −2                                       dA = −2[π(4)2 − π(2)2 ] = −24π
                    C                C
                                                                                                     R




             EXERCISE SET 16.5
              1. R is the annular region between x2 + y 2 = 1 and x2 + y 2 = 4;

                                                                              x2       y2
                         z 2 dS =            (x2 + y 2 )                           + 2     + 1 dA
                                                                   x2         +y 2  x + y2
                   σ                 R
                                     √                                             √            2π       2
                                                                                                                           15 √
                               =         2        (x2 + y 2 )dA =                       2                    r3 dr dθ =      π 2.
                                                                                            0        1                     2
                                              R
January 27, 2005 11:56      L24-CH16                    Sheet number 17 Page number 709                                           black



              Exercise Set 16.5                                                                                                                                               709


               2. z = 1 − x − y, R is the triangular region enclosed by x + y = 1, x = 0 and y = 0;
                                                                         √
                                      √        √      1   1−x
                                                                           3
                      xy dS =      xy 3 dA = 3                xy dy dx =     .
                                                    0   0                24
                     σ                R


               3. Let r(u, v) = cos ui + vj + sin uk, 0 ≤ u ≤ π, 0 ≤ v ≤ 1. Then ru = − sin ui + cos uk, rv = j,
                                                                                                                          1       π
                    ru × rv = − cos ui − sin uk, ru × rv = 1,                                  x2 y dS =                              v cos2 u du dv = π/4
                                                                                                                      0       0
                                                                                      σ


               4. z =       4 − x2 − y 2 , R is the circular region enclosed by x2 + y 2 = 3;

                                                                                                      x2            y2
                         (x2 + y 2 )z dS =                 (x2 + y 2 ) 4 − x2 − y 2                           +              + 1 dA
                                                                                                    4−x2 − y2   4 − x2 − y 2
                     σ                             R
                                                                                                    √
                                                                                          2π         3
                                          =                 2(x2 + y 2 )dA = 2                           r3 dr dθ = 9π.
                                                                                      0         0
                                                   R


               5. If we use the projection of σ onto the xz-plane then y = 1 − x and R is the rectangular region in
                  the xz-plane enclosed by x = 0, x = 1, z = 0 and z = 1;
                                                                           √     √                       1       1                        √
                         (x − y − z)dS =                       (2x − 1 − z) 2dA = 2                                  (2x − 1 − z)dz dx = − 2/2
                                                                                                     0       0
                     σ                             R


               6. R is the triangular region enclosed by 2x + 3y = 6, x = 0, and y = 0;
                                                          √       √                        3        (6−2x)/3                         √
                         (x + y)dS =               (x + y) 14 dA = 14                                                (x + y)dy dx = 5 14.
                                                                                       0        0
                     σ                    R


               7. There are six surfaces, parametrized by projecting onto planes:
                  σ1 : z = 0; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (onto xy-plane), σ2 : x = 0; 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 (onto yz-plane),
                  σ3 : y = 0; 0 ≤ x ≤ 1, 0 ≤ z ≤ 1 (onto xz-plane), σ4 : z = 1; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (onto xy-plane),
                    σ5 : x = 1; 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 (onto yz-plane), σ6 : y = 1; 0 ≤ x ≤ 1, 0 ≤ z ≤ 1 (onto xz-plane).

                    By symmetry the integrals over σ1 , σ2 and σ3 are equal, as are those over σ4 , σ5 and σ6 , and
                                                        1          1                                                                           1       1
                         (x + y + z)dS =                               (x + y)dx dy = 1;              (x + y + z)dS =                                      (x + y + 1)dx dy = 2,
                                                    0          0                                                                           0       0
                    σ1                                                                          σ4


                    thus,         (x + y + z)dS = 3 · 1 + 3 · 2 = 9.
                            σ


               8. Let r(φ, θ) = a sin φ cos θ i + a sin φ sin θ j + a cos φ k,
                    0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π; rφ × rθ = a2 sin φ, x2 + y 2 = a2 sin2 φ
                                              2π           π
                                                                                     8 4
                         f (x, y, z) =                         a4 sin3 φ dφ dθ =       πa
                                          0            0                             3
                     σ
January 27, 2005 11:56         L24-CH16                Sheet number 18 Page number 710                                  black



             710                                                                                                                                Chapter 16


              9. (a) The integral is improper because the function z(x, y) is not differentiable when x2 + y 2 = 1.
                   (b) Fix r0 , 0 < r0 < 1. Then z + 1 =                                  1 − x2 − y 2 + 1, and
                                                                                                            x2            y2
                               (z + 1) dS =                 ( 1 − ‘x2 − y 2 + 1) 1 +                                +              dx dy
                                                                                                          1−x2 − y2   1 − x2 − y 2
                         σr0                         σr 0
                                   2π       r0
                                                                            1                    1 2
                         =                       ( 1 − r2 + 1) √                 r dr dθ = 2π 1 + r0 −                      1 − r0 , and, after passing to
                                                                                                                                 2
                               0        0                                  1−r 2                 2

                         the limit as r0 → 1,                     (z + 1) dS = 3π
                                                            σ

                   (c) Let r(φ, θ) = sin φ cos θi + sin φ sin θj + cos φk, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2; rφ × rθ = sin φ,
                                                                 2π        π/2
                               (1 + cos φ) dS =                                  (1 + cos φ) sin φ dφ dθ
                                                             0         0
                         σ
                                                                      π/2
                                                      = 2π                  (1 + cos φ) sin φ dφ = 3π
                                                                  0

             10. (a) The function z(x, y) is not differentiable at the origin (in fact it’s partial derivatives are
                     unbounded there).
                   (b) R is the circular region enclosed by x2 + y 2 = 1;

                                                                                                          x2       y2
                                    x2 + y 2 + z 2 dS =                          2(x2 + y 2 )                  + 2     + 1 dA
                                                                                                     x2   +y 2  x + y2
                         σ                                            R

                                                             = lim 2                          x2 + y 2 dA
                                                                  r0 →0+
                                                                                     R

                         where R is the annular region enclosed by x2 +y 2 = 1 and x2 +y 2 = r0 with r0 slightly larger
                                                                                              2


                                                         x2         y2
                         than 0 because                         + 2     + 1 is not defined for x2 + y 2 = 0, so
                                                       x2 + y 2  x + y2
                                                                                         2π    1
                                                                                                                        4π             4π
                                    x2 + y 2 + z 2 dS = lim 2                                      r2 dr dθ = lim          (1 − r0 ) =
                                                                                                                                 3
                                                                                                                                          .
                                                                      r0   →0+       0        r0             r0   →0+    3              3
                         σ

                   (c) The cone is contained in the locus of points satisfying φ = π/4, so it can be parametrized
                       with spherical coordinates ρ, θ:
                                  1            1            1                         √
                       r(ρ, θ) = √ ρ cos θi + √ ρ sin θj + √ ρk, 0 ≤ θ ≤ 2π, r < ρ ≤ 2. Then
                                   2            2            2
                              1           1           1             1            1
                       rρ =  √ cos θi + √ sin θj + √ k, rθ = − √ ρ sin θi + √ ρ cos θ j
                               2           2            2            2            2
                                 ρ                                          1
                       rρ × rθ = (− cos θi − sin θj + k) and rρ × rθ = √ ρ, and thus
                                 2                                           2       √
                                                                                √
                                                                      2π         2                                               2
                                                                                        1                  1 1
                                f (x, y, z) dS = lim                                 ρ √ ρ dρ dθ = lim 2π √ ρ3
                                                        r→0       0         r            2         r→0      23               r
                         σr
                                    √
                                         2 √            4π
                         = lim             2 2 − r3 π =    .
                              r→0       3                3

             11. (a) Subdivide the right hemisphere σ ∩ {x > 0} into patches, each patch being as small as desired
                     (i). For each patch there is a corresponding patch on the left hemisphere σ ∩ {x < 0} which
                     is the reflection through the yz-plane. Condition (ii) now follows.
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 16

More Related Content

What's hot (19)

X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
 
Calculas
CalculasCalculas
Calculas
 
Lesson 15: The Chain Rule
Lesson 15: The Chain RuleLesson 15: The Chain Rule
Lesson 15: The Chain Rule
 
Lagrange
LagrangeLagrange
Lagrange
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
F.Komposisi
F.KomposisiF.Komposisi
F.Komposisi
 
Derivadas
DerivadasDerivadas
Derivadas
 
Ex algebra (5)
Ex algebra  (5)Ex algebra  (5)
Ex algebra (5)
 
Formulas de taylor
Formulas de taylorFormulas de taylor
Formulas de taylor
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)
 
Week 3 - Trigonometry
Week 3 - TrigonometryWeek 3 - Trigonometry
Week 3 - Trigonometry
 
BBMP1103 - Sept 2011 exam workshop - part 8
BBMP1103 - Sept 2011 exam workshop - part 8BBMP1103 - Sept 2011 exam workshop - part 8
BBMP1103 - Sept 2011 exam workshop - part 8
 
Integral (area)
Integral (area)Integral (area)
Integral (area)
 
Composicion de funciones
Composicion de funcionesComposicion de funciones
Composicion de funciones
 
Identidades
IdentidadesIdentidades
Identidades
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5
 

Similar to Chapter 16

15 multi variable functions
15 multi variable functions15 multi variable functions
15 multi variable functions
math267
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
goldenratio618
 
Quadratic Function by Jasmine & Cristina
Quadratic Function by Jasmine & CristinaQuadratic Function by Jasmine & Cristina
Quadratic Function by Jasmine & Cristina
Hope Scott
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regions
Himani Asija
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
Delta Pi Systems
 

Similar to Chapter 16 (20)

Satyabama niversity questions in vector
Satyabama niversity questions in vectorSatyabama niversity questions in vector
Satyabama niversity questions in vector
 
Chapter 5(partial differentiation)
Chapter 5(partial differentiation)Chapter 5(partial differentiation)
Chapter 5(partial differentiation)
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Partial Differentiation & Application
Partial Differentiation & Application Partial Differentiation & Application
Partial Differentiation & Application
 
15 multi variable functions
15 multi variable functions15 multi variable functions
15 multi variable functions
 
100 Functional Equations Problems (With Solutions)
100 Functional Equations Problems (With Solutions)100 Functional Equations Problems (With Solutions)
100 Functional Equations Problems (With Solutions)
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
 
Quadratic Function by Jasmine & Cristina
Quadratic Function by Jasmine & CristinaQuadratic Function by Jasmine & Cristina
Quadratic Function by Jasmine & Cristina
 
Complex varible
Complex varibleComplex varible
Complex varible
 
Complex varible
Complex varibleComplex varible
Complex varible
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regions
 
Aa3
Aa3Aa3
Aa3
 
Cosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsCosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical Simulations
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Sol Purcell Ingles
Sol Purcell InglesSol Purcell Ingles
Sol Purcell Ingles
 
33 curls and stoke's theorem
33 curls and stoke's theorem33 curls and stoke's theorem
33 curls and stoke's theorem
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 

More from ramiz100111 (10)

Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
 
Chapter 07
Chapter 07Chapter 07
Chapter 07
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Appendix a page_524
Appendix a page_524Appendix a page_524
Appendix a page_524
 

Recently uploaded

Industrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training ReportIndustrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training Report
Avinash Rai
 
Accounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdfAccounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdf
YibeltalNibretu
 

Recently uploaded (20)

Forest and Wildlife Resources Class 10 Free Study Material PDF
Forest and Wildlife Resources Class 10 Free Study Material PDFForest and Wildlife Resources Class 10 Free Study Material PDF
Forest and Wildlife Resources Class 10 Free Study Material PDF
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptx
 
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdfDanh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
 
B.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdfB.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdf
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Mattingly "AI & Prompt Design: Limitations and Solutions with LLMs"
Mattingly "AI & Prompt Design: Limitations and Solutions with LLMs"Mattingly "AI & Prompt Design: Limitations and Solutions with LLMs"
Mattingly "AI & Prompt Design: Limitations and Solutions with LLMs"
 
NCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdfNCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdf
 
Gyanartha SciBizTech Quiz slideshare.pptx
Gyanartha SciBizTech Quiz slideshare.pptxGyanartha SciBizTech Quiz slideshare.pptx
Gyanartha SciBizTech Quiz slideshare.pptx
 
Industrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training ReportIndustrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training Report
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
Advances in production technology of Grapes.pdf
Advances in production technology of Grapes.pdfAdvances in production technology of Grapes.pdf
Advances in production technology of Grapes.pdf
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
Accounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdfAccounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdf
 

Chapter 16

  • 1. January 27, 2005 11:56 L24-CH16 Sheet number 1 Page number 693 black CHAPTER 16 Topics in Vector Calculus EXERCISE SET 16.1 1. (a) III because the vector field is independent of y and the direction is that of the negative x-axis for negative x, and positive for positive (b) IV, because the y-component is constant, and the x-component varies periodically with x 2. (a) I, since the vector field is constant (b) II, since the vector field points away from the origin 3. (a) true (b) true (c) true 4. (a) false, the lengths are equal to 1 (b) false, the y-component is then zero (c) false, the x-component is then zero y y y 5. 6. 7. x x x y y y 8. 9. 10. x x x y x 11. (a) ∇φ = φx i + φy j = i+ j = F, so F is conservative for all x, y 1 + x2 y 2 1 + x2 y 2 (b) ∇φ = φx i + φy j = 2xi − 6yj + 8zk = F so F is conservative for all x, y 12. (a) ∇φ = φx i + φy j = (6xy − y 3 )i + (4y + 3x2 − 3xy 2 )j = F, so F is conservative for all x, y (b) ∇φ = φx i + φy j + φz k = (sin z + y cos x)i + (sin x + z cos y)j + (x cos z + sin y)k = F, so F is conservative for all x, y 13. div F = 2x + y, curl F = zi 14. div F = z 3 + 8y 3 x2 + 10zy, curl F = 5z 2 i + 3xz 2 j + 4xy 4 k 15. div F = 0, curl F = (40x2 z 4 − 12xy 3 )i + (14y 3 z + 3y 4 )j − (16xz 5 + 21y 2 z 2 )k 16. div F = yexy + sin y + 2 sin z cos z, curl F = −xexy k 693
  • 2. January 27, 2005 11:56 L24-CH16 Sheet number 2 Page number 694 black 694 Chapter 16 2 17. div F = , curl F = 0 x2 + y2 + z2 1 x z 18. div F = + xzexyz + 2 2 , curl F = −xyexyz i + 2 j + yzexyz k x x +z x + z2 19. ∇ · (F × G) = ∇ · (−(z + 4y 2 )i + (4xy + 2xz)j + (2xy − x)k) = 4x 20. ∇ · (F × G) = ∇ · ((x2 yz 2 − x2 y 2 )i − xy 2 z 2 j + xy 2 zk) = −xy 2 21. ∇ · (∇ × F) = ∇ · (− sin(x − y)k) = 0 22. ∇ · (∇ × F) = ∇ · (−zeyz i + xexz j + 3ey k) = 0 23. ∇ × (∇ × F) = ∇ × (xzi − yzj + yk) = (1 + y)i + xj 24. ∇ × (∇ × F) = ∇ × ((x + 3y)i − yj − 2xyk) = −2xi + 2yj − 3k ∂f ∂g ∂h 27. Let F = f i + gj + hk ; div (kF) = k +k +k = k div F ∂x ∂y ∂z ∂h ∂g ∂f ∂h ∂g ∂f 28. Let F = f i + gj + hk ; curl (kF) = k − i+k − j+k − k = k curl F ∂y ∂z ∂z ∂x ∂x ∂y 29. Let F = f (x, y, z)i + g(x, y, z)j + h(x, y, z)k and G = P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k, then ∂f ∂P ∂g ∂Q ∂h ∂R div (F + G) = + + + + + ∂x ∂x ∂y ∂y ∂z ∂z ∂f ∂g ∂h ∂P ∂Q ∂R = + + + + + = div F + div G ∂x ∂y ∂z ∂x ∂y ∂z 30. Let F = f (x, y, z)i + g(x, y, z)j + h(x, y, z)k and G = P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k, then ∂ ∂ ∂ ∂ curl (F + G) = (h + R) − (g + Q) i + (f + P ) − (h + R) j ∂y ∂z ∂z ∂x ∂ ∂ (g + Q) − + (f + P ) k; ∂x ∂y expand and rearrange terms to get curl F + curl G. 31. Let F = f i + gj + hk ; ∂f ∂φ ∂g ∂φ ∂h ∂φ div (φF) = φ + f + φ + g + φ + h ∂x ∂x ∂y ∂y ∂z ∂z ∂f ∂g ∂h ∂φ ∂φ ∂φ =φ + + + f+ g+ h ∂x ∂y ∂z ∂x ∂y ∂z = φ div F + ∇φ · F 32. Let F = f i + gj + hk ; ∂ ∂ ∂ ∂ ∂ ∂ curl (φF) = (φh) − (φg) i+ (φf ) − (φh) j+ (φg) − (φf ) k; use the product ∂y ∂z ∂z ∂x ∂x ∂y rule to expand each of the partial derivatives, rearrange to get φ curl F + ∇φ × F
  • 3. January 27, 2005 11:56 L24-CH16 Sheet number 3 Page number 695 black Exercise Set 16.1 695 33. Let F = f i + gj + hk ; ∂ ∂h ∂g ∂ ∂f ∂h ∂ ∂g ∂f div(curl F) = − + − + − ∂x ∂y ∂z ∂y ∂z ∂x ∂z ∂x ∂y ∂2h ∂2g ∂2f ∂2h ∂2g ∂2f = − + − + − = 0, ∂x∂y ∂x∂z ∂y∂z ∂y∂x ∂z∂x ∂z∂y assuming equality of mixed second partial derivatives ∂2φ ∂2φ ∂2φ ∂2φ ∂2φ ∂2φ 34. curl (∇φ) = − i+ − j+ − k = 0, assuming equality ∂y∂z ∂z∂y ∂z∂x ∂x∂z ∂x∂y ∂y∂x of mixed second partial derivatives 35. ∇ · (kF) = k∇ · F, ∇ · (F + G) = ∇ · F + ∇ · G, ∇ · (φF) = φ∇ · F + ∇φ · F, ∇ · (∇ × F) = 0 36. ∇ × (kF) = k∇ × F, ∇ × (F + G) = ∇ × F + ∇ × G, ∇ × (φF) = φ∇ × F + ∇φ × F, ∇ × (∇φ) = 0 37. (a) curl r = 0i + 0j + 0k = 0 x y z r (b) ∇ r = ∇ x2 + y 2 + z 2 = i+ j+ k= x2 + y2 + z2 x2 + y2 + z2 x2 + y2 + z2 r 38. (a) div r = 1 + 1 + 1 = 3 1 xi + yj + zk r (b) ∇ = ∇(x2 + y 2 + z 2 )−1/2 = − 2 =− r (x + y 2 + z 2 )3/2 r 3 ∂r ∂r ∂r f (r) 39. (a) ∇f (r) = f (r) i + f (r) j + f (r) k = f (r)∇r = r ∂x ∂y ∂z r f (r) (b) div[f (r)r] = f (r)div r + ∇f (r) · r = 3f (r) + r · r = 3f (r) + rf (r) r f (r) 40. (a) curl[f (r)r] = f (r)curl r + ∇f (r) × r = f (r)0 + r×r=0+0=0 r f (r) f (r) f (r) (b) ∇2 f (r) = div[∇f (r)] = div r = div r + ∇ ·r r r r f (r) rf (r) − f (r) f (r) =3 + r·r=2 + f (r) r r3 r 41. f (r) = 1/r3 , f (r) = −3/r4 , div(r/r3 ) = 3(1/r3 ) + r(−3/r4 ) = 0 42. Multiply 3f (r) + rf (r) = 0 through by r2 to obtain 3r2 f (r) + r3 f (r) = 0, d[r3 f (r)]/dr = 0, r3 f (r) = C, f (r) = C/r3 , so F = Cr/r3 (an inverse-square field). 43. (a) At the point (x, y) the slope of the line along which the vector −yi + xj lies is −x/y; the slope of the tangent line to C at (x, y) is dy/dx, so dy/dx = −x/y. (b) ydy = −xdx, y 2 /2 = −x2 /2 + K1 , x2 + y 2 = K
  • 4. January 27, 2005 11:56 L24-CH16 Sheet number 4 Page number 696 black 696 Chapter 16 44. dy/dx = x, y = x2 /2 + K 45. dy/dx = 1/x, y = ln x + K y y x x 46. dy/dx = −y/x, (1/y)dy = (−1/x)dx, ln y = − ln x + K1 , y y = eK1 e− ln x = K/x x EXERCISE SET 16.2 1 1. (a) dy = 1 because s = y is arclength measured from (0, 0) 0 (b) 0, because sin xy = 0 along C 2. (a) ds = length of line segment = 2 (b) 0, because x is constant and dx = 0 C 3. Since F and r are parallel, F · r = F r , and since F is constant, √ 4 √ F · dr = d(F · r) = d( F r ) = 2 2dt = 16 −4 C C 4. F · r = 0, since F is perpendicular to the curve. C 5. By inspection the tangent vector in part (a) is given by T = j, so F · T = F · j = sin x on C. But x = −π/2 on C, thus sin x = −1, F · T = −1 and F · dr = (−1)ds. C C 6. (a) Let α be the angle between F and T. Since F = 1, cos α = F T cos α = F · T, and F · T ds = cos α(s) ds. From Figure 16.2.12(b) it is apparent that α is close to zero on C C most of the parabola, thus cos α ≈ 1 though cos α ≤ 1. Hence cos α(s) ds ≤ ds and C C the first integral is close to the second.
  • 5. January 27, 2005 11:56 L24-CH16 Sheet number 5 Page number 697 black Exercise Set 16.2 697 (b) From Example 8(b) cos α ds = F · dr ≈ 5.83629, and C C 2 ds = 1 + (2t)2 dt ≈ 6.125726619. C −1 11 √ √ 2 2 1 dx dy 1 4 7. (a) ds = + dt, so (2t − 3t2 ) 4 + 36t2 dt = − 10 − ln( 10 − 3) − dt dt 0 108 36 27 1 1 1 (b) (2t − 3t2 )2 dt = 0 (c) (2t − 3t2 )6t dt = − 0 0 2 1 1 864 54 8. (a) t(3t2 )(6t3 )2 1 + 36t2 + 324t4 dt = (b) t(3t2 )(6t3 )2 dt = 0 5 0 5 1 1 648 (c) t(3t2 )(6t3 )2 6t dt = (d) t(3t2 )(6t3 )2 18t2 dt = 162 0 11 0 1 9. (a) C : x = t, y = t, 0 ≤ t ≤ 1; 6t dt = 3 0 1 (b) C : x = t, y = t2 , 0 ≤ t ≤ 1; (3t + 6t2 − 2t3 )dt = 3 0 (c) C : x = t, y = sin(πt/2), 0 ≤ t ≤ 1; 1 [3t + 2 sin(πt/2) + πt cos(πt/2) − (π/2) sin(πt/2) cos(πt/2)]dt = 3 0 1 (d) C : x = t3 , y = t, 0 ≤ t ≤ 1; (9t5 + 8t3 − t)dt = 3 0 1 1 10. (a) C : x = t, y = t, z = t, 0 ≤ t ≤ 1; (t + t − t) dt = 0 2 1 1 (b) C : x = t, y = t2 , z = t3 , 0 ≤ t ≤ 1; (t2 + t3 (2t) − t(3t2 )) dt = − 0 60 1 π 2 (c) C : x = cos πt, y = sin πt, z = t, 0 ≤ t ≤ 1; (−π sin2 πt + πt cos πt − cos πt) dt = − − 0 2 π √ 3 1+t 3 √ 1 1 + 2t √ 11. dt = (1 + t)−1/2 dt = 2 12. 5 dt = 5(π/4 + ln 2) 0 1+t 0 0 1 + t2 1 1 13. 3(t2 )(t2 )(2t3 /3)(1 + 2t2 ) dt = 2 t7 (1 + 2t2 ) dt = 13/20 0 0 √ 5 2π √ π/4 14. e−t dt = 5(1 − e−2π )/4 15. (8 cos2 t−16 sin2 t−20 sin t cos t)dt = 1−π 4 0 0 1 2 2 16. t − t5/3 + t2/3 dt = 6/5 −1 3 3 3 1 17. C : x = (3 − t)2 /3, y = 3 − t, 0 ≤ t ≤ 3; (3 − t)2 dt = 3 0 3 1 2 2/3 2 1/3 18. C : x = t2/3 , y = t, −1 ≤ t ≤ 1; t − t + t7/3 dt = 4/5 −1 3 3
  • 6. January 27, 2005 11:56 L24-CH16 Sheet number 6 Page number 698 black 698 Chapter 16 π/2 19. C : x = cos t, y = sin t, 0 ≤ t ≤ π/2; (− sin t − cos2 t)dt = −1 − π/4 0 1 20. C : x = 3 − t, y = 4 − 3t, 0 ≤ t ≤ 1; (−37 + 41t − 9t2 )dt = −39/2 0 1 21. (−3)e3t dt = 1 − e3 0 π/2 π6 22. (sin2 t cos t − sin2 t cos t + t4 (2t)) dt = 0 192 ln 2 63 √ 1 √ 1 1√ 23. (a) e3t + e−3t e2t + e−2t dt = 17 + ln(4 + 17) − tanh−1 17 0 64 4 4 17 π/2 1 3 1 π/2 1 6 (b) et sin t cos t − (sin t − t) sin t + (1 + t2 ) dt = π + e + π+ 0 24 5 4 5 π/2 24. (a) cos21 t sin9 t (−3 cos2 t sin t)2 + (3 sin2 t cos t)2 dt 0 π/2 61,047 = 3 cos22 t sin10 t dt = π 0 4,294,967,296 e 2 1 1 (b) t5 ln t + 7t2 (2t) + t4 (ln t) 1 + (2t)2 + dt ≈ 1177.660136 1 t t 25. (a) C1 : (0, 0) to (1, 0); x = t, y = 0, 0 ≤ t ≤ 1 C2 : (1, 0) to (0, 1); x = 1 − t, y = t, 0 ≤ t ≤ 1 C3 : (0, 1) to (0, 0); x = 0, y = 1 − t, 0 ≤ t ≤ 1 1 1 1 (0)dt + (−1)dt + (0)dt = −1 0 0 0 (b) C1 : (0, 0) to (1, 0); x = t, y = 0, 0 ≤ t ≤ 1 C2 : (1, 0) to (1, 1); x = 1, y = t, 0 ≤ t ≤ 1 C3 : (1, 1) to (0, 1); x = 1 − t, y = 1, 0 ≤ t ≤ 1 C4 : (0, 1) to (0, 0); x = 0, y = 1 − t, 0 ≤ t ≤ 1 1 1 1 1 (0)dt + (−1)dt + (−1)dt + (0)dt = −2 0 0 0 0 26. (a) C1 : (0, 0) to (1, 1); x = t, y = t, 0 ≤ t ≤ 1 C2 : (1, 1) to (2, 0); x = 1 + t, y = 1 − t, 0 ≤ t ≤ 1 C3 : (2, 0) to (0, 0); x = 2 − 2t, y = 0, 0 ≤ t ≤ 1 1 1 1 (0)dt + 2dt + (0)dt = 2 0 0 0 (b) C1 : (−5, 0) to (5, 0); x = t, y = 0, −5 ≤ t ≤ 5 C2 : x = 5 cos t, y = 5 sin t, 0 ≤ t ≤ π 5 π (0)dt + (−25)dt = −25π −5 0
  • 7. January 27, 2005 11:56 L24-CH16 Sheet number 7 Page number 699 black Exercise Set 16.2 699 1 1 1 27. C1 : x = t, y = z = 0, 0 ≤ t ≤ 1, 0 dt = 0; C2 : x = 1, y = t, z = 0, 0 ≤ t ≤ 1, (−t) dt = − 0 0 2 1 1 5 C3 : x = 1, y = 1, z = t, 0 ≤ t ≤ 1, 3 dt = 3; x2 z dx − yx2 dy + 3 dz = 0 − + 3 = 0 C 2 2 28. C1 : (0, 0, 0) to (1, 1, 0); x = t, y = t, z = 0, 0 ≤ t ≤ 1 C2 : (1, 1, 0) to (1, 1, 1); x = 1, y = 1, z = t, 0 ≤ t ≤ 1 C3 : (1, 1, 1) to (0, 0, 0); x = 1 − t, y = 1 − t, z = 1 − t, 0 ≤ t ≤ 1 1 1 1 (−t3 )dt + 3 dt + −3dt = −1/4 0 0 0 π 1 29. (0)dt = 0 30. (e2t − 4e−t )dt = e2 /2 + 4e−1 − 9/2 0 0 1 π/2 31. e−t dt = 1 − e−1 32. (7 sin2 t cos t + 3 sin t cos t)dt = 23/6 0 0 33. Represent the circular arc by x = 3 cos t, y = 3 sin t, 0 ≤ t ≤ π/2. √ π/2 √ √ √ x yds = 9 3 sin t cos t dt = 6 3 C 0 34. δ(x, y) = k x2 + y 2 where k is the constant of proportionality, 1 √ √ 1 √ k x2 + y 2 ds = k et ( 2et ) dt = 2k e2t dt = (e2 − 1)k/ 2 C 0 0 π/2 kx cos t 35. ds = 15k dt = 5k tan−1 3 C 1 + y2 0 1 + 9 sin2 t 36. δ(x, y, z) = kz where k is the constant of proportionality, 4 √ k z ds = k(4 t)(2 + 1/t) dt = 136k/3 C 1 1 37. C : x = t2 , y = t, 0 ≤ t ≤ 1; W = 3t4 dt = 3/5 0 3 1 38. W = (t2 + 1 − 1/t3 + 1/t)dt = 92/9 + ln 3 39. W = (t3 + 5t6 )dt = 27/28 1 0 40. C1 : (0, 0, 0) to (1, 3, 1); x = t, y = 3t, z = t, 0 ≤ t ≤ 1 C2 : (1, 3, 1) to (2, −1, 4); x = 1 + t, y = 3 − 4t, z = 1 + 3t, 0 ≤ t ≤ 1 1 1 W = (4t + 8t2 )dt + (−11 − 17t − 11t2 )dt = −37/2 0 0 41. C : x = 4 cos t, y = 4 sin t, 0 ≤ t ≤ π/2 π/2 1 − sin t + cos t dt = 3/4 0 4
  • 8. January 27, 2005 11:56 L24-CH16 Sheet number 8 Page number 700 black 700 Chapter 16 42. C1 : (0, 3) to (6, 3); x = 6t, y = 3, 0 ≤ t ≤ 1 C2 : (6, 3) to (6, 0); x = 6, y = 3 − 3t, 0 ≤ t ≤ 1 1 6 1 −12 1 2 dt + dt = tan−1 2 − tan−1 (1/2) 0 36t2 + 9 0 36 + 9(1 − t)2 3 3 43. Represent the parabola by x = t, y = t2 , 0 ≤ t ≤ 2. 2 √ 3x ds = 3t 1 + 4t2 dt = (17 17 − 1)/4 C 0 44. Represent the semicircle by x = 2 cos t, y = 2 sin t, 0 ≤ t ≤ π. π x2 y ds = 16 cos2 t sin t dt = 32/3 C 0 45. (a) 2πrh = 2π(1)2 = 4π (b) S = z(t) dt C 2π (c) C : x = cos t, y = sin t, 0 ≤ t ≤ 2π; S = (2 + (1/2) sin 3t) dt = 4π 0 46. C : x = a cos t, y = −a sin t, 0 ≤ t ≤ 2π, x dy − y dx 2π −a2 cos2 t − a2 sin2 t 2π = dt = dt = 2π C x2 + y 2 0 a2 0 1 47. W = F · dr = (λt2 (1 − t), t − λt(1 − t)) · (1, λ − 2λt) dt = −λ/12, W = 1 when λ = −12 C 0 1 3 48. The force exerted by the farmer is F = 150 + 20 − z k= 170 − t k, so 10 4π 60 1 1 F · dr = 170 −z dz, and W = 170 − z dz = 10,020. Note that the functions 10 0 10 x(z), y(z) are irrelevant. tk 49. (a) From (8), ∆sk = r (t) dt, thus m∆tk ≤ ∆sk ≤ M ∆tk for all k. Obviously tk−1 ∆sk ≤ M (max∆tk ), and since the right side of this inequality is independent of k, it follows that max∆sk ≤ M (max∆tk ). Similarly m(max∆tk ) ≤ max∆sk . 1 (b) This follows from max∆tk ≤ max∆sk and max∆sk ≤ M max∆tk . m EXERCISE SET 16.3 1. ∂x/∂y = 0 = ∂y/∂x, conservative so ∂φ/∂x = x and ∂φ/∂y = y, φ = x2 /2 + k(y), k (y) = y, k(y) = y 2 /2 + K, φ = x2 /2 + y 2 /2 + K 2. ∂(3y 2 )/∂y = 6y = ∂(6xy)/∂x, conservative so ∂φ/∂x = 3y 2 and ∂φ/∂y = 6xy, φ = 3xy 2 + k(y), 6xy + k (y) = 6xy, k (y) = 0, k(y) = K, φ = 3xy 2 + K 3. ∂(x2 y)/∂y = x2 and ∂(5xy 2 )/∂x = 5y 2 , not conservative
  • 9. January 27, 2005 11:56 L24-CH16 Sheet number 9 Page number 701 black Exercise Set 16.3 701 4. ∂(ex cos y)/∂y = −ex sin y = ∂(−ex sin y)/∂x, conservative so ∂φ/∂x = ex cos y and ∂φ/∂y = −ex sin y, φ = ex cos y + k(y), −ex sin y + k (y) = −ex sin y, k (y) = 0, k(y) = K, φ = ex cos y + K 5. ∂(cos y + y cos x)/∂y = − sin y + cos x = ∂(sin x − x sin y)/∂x, conservative so ∂φ/∂x = cos y + y cos x and ∂φ/∂y = sin x − x sin y, φ = x cos y + y sin x + k(y), −x sin y + sin x + k (y) = sin x − x sin y, k (y) = 0, k(y) = K, φ = x cos y + y sin x + K 6. ∂(x ln y)/∂y = x/y and ∂(y ln x)/∂x = y/x, not conservative 7. (a) ∂(y 2 )/∂y = 2y = ∂(2xy)/∂x, independent of path 1 (b) C : x = −1 + 2t, y = 2 + t, 0 ≤ t ≤ 1; (4 + 14t + 6t2 )dt = 13 0 (c) ∂φ/∂x = y 2 and ∂φ/∂y = 2xy, φ = xy 2 + k(y), 2xy + k (y) = 2xy, k (y) = 0, k(y) = K, φ = xy 2 + K. Let K = 0 to get φ(1, 3) − φ(−1, 2) = 9 − (−4) = 13 8. (a) ∂(y sin x)/∂y = sin x = ∂(− cos x)/∂x, independent of path 1 (b) C1 : x = πt, y = 1 − 2t, 0 ≤ t ≤ 1; (π sin πt − 2πt sin πt + 2 cos πt)dt = 0 0 (c) ∂φ/∂x = y sin x and ∂φ/∂y = − cos x, φ = −y cos x + k(y), − cos x + k (y) = − cos x, k (y) = 0, k(y) = K, φ = −y cos x+K. Let K = 0 to get φ(π, −1)−φ(0, 1) = (−1)−(−1) = 0 9. ∂(3y)/∂y = 3 = ∂(3x)/∂x, φ = 3xy, φ(4, 0) − φ(1, 2) = −6 10. ∂(ex sin y)/∂y = ex cos y = ∂(ex cos y)/∂x, φ = ex sin y, φ(1, π/2) − φ(0, 0) = e 11. ∂(2xey )/∂y = 2xey = ∂(x2 ey )/∂x, φ = x2 ey , φ(3, 2) − φ(0, 0) = 9e2 12. ∂(3x − y + 1)/∂y = −1 = ∂[−(x + 4y + 2)]/∂x, φ = 3x2 /2 − xy + x − 2y 2 − 2y, φ(0, 1) − φ(−1, 2) = 11/2 13. ∂(2xy 3 )/∂y = 6xy 2 = ∂(3x2 y 2 )/∂x, φ = x2 y 3 , φ(−1, 0) − φ(2, −2) = 32 14. ∂(ex ln y − ey /x)/∂y = ex /y − ey /x = ∂(ex /y − ey ln x)/∂x, φ = ex ln y − ey ln x, φ(3, 3) − φ(1, 1) = 0 15. φ = x2 y 2 /2, W = φ(0, 0) − φ(1, 1) = −1/2 16. φ = x2 y 3 , W = φ(4, 1) − φ(−3, 0) = 16 17. φ = exy , W = φ(2, 0) − φ(−1, 1) = 1 − e−1 18. φ = e−y sin x, W = φ(−π/2, 0) − φ(π/2, 1) = −1 − 1/e 19. ∂(ey + yex )/∂y = ey + ex = ∂(xey + ex )/∂x so F is conservative, φ(x, y) = xey + yex so F · dr = φ(0, ln 2) − φ(1, 0) = ln 2 − 1 C 20. ∂(2xy)/∂y = 2x = ∂(x2 + cos y)/∂x so F is conservative, φ(x, y) = x2 y + sin y so F · dr = φ(π, π/2) − φ(0, 0) = π 3 /2 + 1 C
  • 10. January 27, 2005 11:56 L24-CH16 Sheet number 10 Page number 702 black 702 Chapter 16 21. F · dr = [(ey + yex )i + (xey + ex )j] · [(π/2) cos(πt/2)i + (1/t)j]dt π = cos(πt/2)(ey + yex ) + (xey + ex )/t dt, 2 2 π 1 so F · dr = cos(πt/2) t + (ln t)esin(πt/2) + sin(πt/2) + esin(πt/2) dt = ln 2 − 1 C 1 2 t 22. F · dr = 2t2 cos(t/3) + [t2 + cos(t cos(t/3))](cos(t/3) − (t/3) sin(t/3)) dt, so π F · dr = 2t2 cos(t/3) + [t2 + cos(t cos(t/3))](cos(t/3) − (t/3) sin(t/3)) dt = 1 + π 3 /2 C 0 23. No; a closed loop can be found whose tangent everywhere makes an angle < π with the vector field, so the line integral F · dr > 0, and by Theorem 16.3.2 the vector field is not conservative. C 24. The vector field is constant, say F = ai + bj, so let φ(x, y) = ax + by and F is conservative. 25. Let r(t) be a parametrization of the circle C. Then by Theorem 16.3.2(b), Fdr = F · r (t) dt = 0. Let h(t) = F(x, y) · r (t). Then h is continuous. We must find two C C points at which h = 0. If h(t) = 0 everywhere on the circle, then we are done; otherwise there are points at which h is nonzero, say h(t1 ) > 0. Then there is a small interval around t1 on which the integral of h is positive. (Let = h(t1 )/2. Since h(t) is continuous there exists δ > 0 such that for |t − t1 | < δ, h(t) > /2. t1 +δ Then h(t) dt ≥ (2δ) /2 > 0.) t1 −δ Since h = 0, there are points on the circle where h < 0, say h(t2 ) < 0. Now consider the C parametrization h(θ), 0 ≤ θ ≤ 2π. Let θ1 < θ2 correspond to the points above where h > 0 and h < 0. Then by the Intermediate Value Theorem on [θ1 , θ2 ] there must be a point where h = 0, say h(θ3 ) = 0, θ1 < θ3 < θ2. To find a second point where h = 0, assume that h is a periodic function with period 2π (if need be, extend the definition of h). Then h(t2 − 2π) = h(t2 ) < 0. Apply the Intermediate Value Theorem on [t2 − 2π, t1 ] to find an additional point θ4 at which h = 0. The reader should prove that θ3 and θ4 do indeed correspond to distinct points on the circle. 26. The function F · r (t) is not necessarily continuous since the tangent to the square has obvious discontinuities. For a counterexample to the result, let the square have vertices at (0, 0), (0, 1), (1, 1), (1, 0). Let Φ(x, y) = xy + x + y and let F = ∇Φ = (y + 1)i + (x + 1)j. Then F is conservative , but on the bottom side of the square, where y = 0, F · r = −F · j = −x − 1 ≤ 1 < 0. On the top edge F · r = F · j = x + 1 ≥ 1 > 0. Similarly for the other two sides of the square. Thus at no point is F · r = 0. ∂φ ∂φ ∂φ ∂φ ∂φ ∂φ 27. If F is conservative, then F = ∇φ = i+ j+ k and hence f = ,g = , and h = . ∂x ∂y ∂z ∂x ∂y ∂z ∂f ∂2φ ∂g ∂ 2 φ ∂f ∂2φ ∂h ∂ 2 φ ∂g ∂2φ ∂h ∂2φ Thus = and = , = and = , = and = . ∂y ∂y∂x ∂x ∂x∂y ∂z ∂z∂x ∂x ∂x∂z ∂z ∂z∂y ∂y ∂y∂z The result follows from the equality of mixed second partial derivatives.
  • 11. January 27, 2005 11:56 L24-CH16 Sheet number 11 Page number 703 black Exercise Set 16.3 703 28. Let f (x, y, z) = yz, g(x, y, z) = xz, h(x, y, z) = yx2 , then ∂f /∂z = y, ∂h/∂x = 2xy = ∂f /∂z, thus by Exercise 27, F = f i+gj+hk is not conservative, and by Theorem 16.3.2, yz dx+xz dy+yx2 dz C is not independent of the path. ∂ 29. (h(x)[x sin y + y cos y]) = h(x)[x cos y − y sin y + cos y] ∂y ∂ (h(x)[x cos y − y sin y]) = h(x) cos y + h (x)[x cos y − y sin y], ∂x equate these two partial derivatives to get (x cos y − y sin y)(h (x) − h(x)) = 0 which holds for all x and y if h (x) = h(x), h(x) = Cex where C is an arbitrary constant. ∂ cx 3cxy ∂ cy 30. (a) 2 + y 2 )3/2 =− 2 2 )−5/2 = 2 + y 2 )3/2 when (x, y) = (0, 0), ∂y (x (x + y ∂x (x so by Theorem 16.3.3, F is conservative. Set ∂φ/∂x = cx/(x2 + y 2 )−3/2 , then φ(x, y) = −c(x2 + y 2 )−1/2 + k(y), ∂φ/∂y = cy/(x2 + y 2 )−3/2 + k (y), so k (y) = 0. c Thus φ(x, y) = − 2 is a potential function. (x + y 2 )1/2 (b) curl F = 0 is similar to Part (a), so F is conservative. Let cx φ(x, y, z) = dx = −c(x2 + y 2 + z 2 )−1/2 + k(y, z). As in Part (a), (x2 + y 2 + z 2 )3/2 ∂k/∂y = ∂k/∂z = 0, so φ(x, y, z) = −c/(x2 + y 2 + z 2 )1/2 is a potential function for F. Q 1 1 31. (a) See Exercise 30, c = 1; W = F · dr = φ(3, 2, 1) − φ(1, 1, 2) = − √ + √ P 14 6 1 1 (b) C begins at P (1, 1, 2) and ends at Q(3, 2, 1) so the answer is again W = − √ + √ . 14 6 (c) The circle is not specified, but cannot pass through (0, 0, 0), so Φ is continuous and differ- entiable on the circle. Start at any point P on the circle and return to P , so the work is Φ(P ) − Φ(P ) = 0. C begins at, say, (3, 0) and ends at the same point so W = 0. dx dy 32. (a) F · dr = y −x dt for points on the circle x2 + y 2 = 1, so dt dt π C1 : x = cos t, y = sin t, 0 ≤ t ≤ π, F · dr = (− sin2 t − cos2 t) dt = −π C1 0 π C2 : x = cos t, y = − sin t, 0 ≤ t ≤ π, F · dr = (sin2 t + cos2 t) dt = π C2 0 ∂f x2 − y 2 ∂g y 2 − x2 ∂f (b) = 2 , 2 )2 ∂x =− 2 = ∂y (x + y (x + y 2 )2 ∂y (c) The circle about the origin of radius 1, which is formed by traversing C1 and then traversing C2 in the reverse direction, does not lie in an open simply connected region inside which F is continuous, since F is not defined at the origin, nor can it be defined there in such a way as to make the resulting function continuous there.
  • 12. January 27, 2005 11:56 L24-CH16 Sheet number 12 Page number 704 black 704 Chapter 16 33. If C is composed of smooth curves C1 , C2 , . . . , Cn and curve Ci extends from (xi−1 , yi−1 ) to (xi , yi ) n n then F · dr = F · dr = [φ(xi , yi ) − φ(xi−1 , yi−1 )] = φ(xn , yn ) − φ(x0 , y0 ) C i=1 Ci i=1 where (x0 , y0 ) and (xn , yn ) are the endpoints of C. 34. F · dr + F · dr = 0, but F · dr = − F · dr so F · dr = F · dr, thus C1 −C2 −C2 C2 C1 C2 F · dr is independent of path. C 35. Let C1 be an arbitrary piecewise smooth curve from (a, b) to a point (x, y1 ) in the disk, and C2 the vertical line segment from (x, y1 ) to (x, y). Then (x,y1 ) φ(x, y) = F · dr + F · dr = F · dr + F · dr. C1 C2 (a,b) C2 The first term does not depend on y; ∂φ ∂ ∂ hence = F · dr = f (x, y)dx + g(x, y)dy. ∂y ∂y C2 ∂y C2 ∂φ ∂ However, the line integral with respect to x is zero along C2 , so = g(x, y) dy. ∂y ∂y C2 y ∂φ ∂ Express C2 as x = x, y = t where t varies from y1 to y, then = g(x, t) dt = g(x, y). ∂y ∂y y1 EXERCISE SET 16.4 1 1 1. (2x − 2y)dA = (2x − 2y)dy dx = 0; for the line integral, on x = 0, y 2 dx = 0, x2 dy = 0; 0 0 R on y = 0, y 2 dx = x2 dy = 0; on x = 1, y 2 dx + x2 dy = dy; and on y = 1, y 2 dx + x2 dy = dx, 1 0 hence y 2 dx + x2 dy = dy + dx = 1 − 1 = 0 0 1 C 2. (1 − 1)dA = 0; for the line integral let x = cos t, y = sin t, R 2π y dx + x dy = (− sin2 t + cos2 t)dt = 0 0 C 4 2 2π 3 3. (2y − 3x)dy dx = 0 4. (1 + 2r sin θ)r dr dθ = 9π −2 1 0 0 π/2 π/2 5. (−y cos x + x sin y)dy dx = 0 6. (sec2 x − tan2 x)dA = dA = π 0 0 R R 1 x 7. [1 − (−1)]dA = 2 dA = 8π 8. (2x − 2y)dy dx = 1/30 0 x2 R R
  • 13. January 27, 2005 11:56 L24-CH16 Sheet number 13 Page number 705 black Exercise Set 16.4 705 y 1 9. − − dA = − dA = −4 1+y 1+y R R π/2 4 10. (−r2 )r dr dθ = −32π 0 0 y2 1 11. − 2 − dA = − dA = −1 1+y 1 + y2 R R √ 1 x 12. (cos x cos y − cos x cos y)dA = 0 13. (y 2 − x2 )dy dx = 0 0 x2 R 2 2x 2 2x 14. (a) (−6x + 2y)dy dx = −56/15 (b) 6y dy dx = 64/5 0 x2 0 x2 15. (a) C : x = cos t, y = sin t, 0 ≤ t ≤ 2π; 2π = esin t (− sin t) + sin t cos tecos t dt ≈ −3.550999378; C 0 ∂ ∂ y (yex ) − e dA = [yex − ey ] dA ∂x ∂y R R 2π 1 = r sin θer cos θ − er sin θ r dr dθ ≈ −3.550999378 0 0 1 2 (b) C1 : x = t, y = t2 , 0 ≤ t ≤ 1; [ey dx + yex dy] = et + 2t3 et dt ≈ 2.589524432 0 C1 1 2 e+3 C2 : x = t2 , y = t, 0 ≤ t ≤ 1; [ey dx + yex dy] = 2tet + tet dt = ≈ 2.859140914 0 2 C2 √ 1 x − ≈ −0.269616482; = [yex − ey ] dy dx ≈ −0.269616482 0 x2 C1 C2 R 2π 2π 16. (a) x dy = ab cos2 t dt = πab (b) −y dx = ab sin2 t dt = πab C 0 C 0 2π 1 1 17. A = −y dx + x dy = (3a2 sin4 φ cos2 φ + 3a2 cos4 φ sin2 φ)dφ 2 C 2 0 2π 2π 3 2 3 2 = a sin2 φ cos2 φ dφ = a sin2 2φ dφ = 3πa2 /8 2 0 8 0 18. C1 : (0, 0) to (a, 0); x = at, y = 0, 0≤t≤1 C2 : (a, 0) to (0, b); x = a − at, y = bt, 0≤t≤1 C3 : (0, b) to (0, 0); x = 0, y = b − bt, 0 ≤ t ≤ 1 1 1 1 1 A= x dy = (0)dt + ab(1 − t)dt + (0)dt = ab C 0 0 0 2
  • 14. January 27, 2005 11:56 L24-CH16 Sheet number 14 Page number 706 black 706 Chapter 16 19. C1 : (0, 0) to (a, 0); x = at, y = 0, 0 ≤ t ≤ 1 C2 : (a, 0) to (a cos t0 , b sin t0 ); x = a cos t, y = b sin t, 0 ≤ t ≤ t0 C3 : (a cos t0 , b sin t0 ) to (0, 0); x = −a(cos t0 )t, y = −b(sin t0 )t, −1 ≤ t ≤ 0 1 t0 0 1 1 1 1 1 A= −y dx + x dy = (0) dt + ab dt + (0) dt = ab t0 2 C 2 0 2 0 2 −1 2 20. C1 : (0, 0) to (a, 0); x = at, y = 0, 0 ≤ t ≤ 1 C2 : (a, 0) to (a cosh t0 , b sinh t0 ); x = a cosh t, y = b sinh t, 0 ≤ t ≤ t0 C3 : (a cosh t0 , b sinh t0 ) to (0, 0); x = −a(cosh t0 )t, y = −b(sinh t0 )t, −1 ≤ t ≤ 0 1 t0 0 1 1 1 1 1 A= −y dx + x dy = (0) dt + ab dt + (0) dt = ab t0 2 C 2 0 2 0 2 −1 2 21. curl F(x, y, z) = −gz i + fz j + (gx − fy )k = fz j(gx − fy )k, since f and g are independent of z. Thus curl F · k dA = (fx − gy ) dA = f (x, y) dx + g(x, y) dy = F · dr by Green’s Theorem. C C R R 22. The boundary of the region R in Figure Ex-22 is C = C1 − C2 , so by Green’s Theorem, F · dr − F · dr = F · dr = F · dr = 0 , since fy = gx . Thus = . C1 C2 C1 −C2 C C1 C2 23. Let C1 denote the graph of g(x) from left to right, and C2 the graph of f (x) from left to right. On the vertical sides x = const, and so dx = 0 there. Thus the area between the curves is A(R) = dA = − y dx = − g(x) dx + f (x) dx C C1 C2 R b b b =− g(x) dx + f (x) dx = (f (x) − g(x)) dx a a a 24. Let A(R1 ) denote the area of the region R1 bounded by C and the lines y = y0 , y = y1 and the y-axis. Then by Formula (6) A(R1 ) = C x dy, since the integrals on the top and bottom are zero (dy = 0 there), and x = 0 on the y-axis. Similarly, A(R2 ) = −C y dx = − C y dx, where R2 is the region bounded by C, x = x0 , x = x1 and the x-axis. (a) R1 (b) R2 (c) y dx + x dy = A(R1 ) + A(R2 ) = x1 y1 − x0 y0 C (d) Let φ(x, y) = xy. Then ∇φ · dr = y dx + x dy and thus by the Fundamental Theorem y dx + x dy = φ(x1 , y1 ) − φ(x0 , y0 ) = x1 y1 − x0 y0 . C t1 t1 dy dx (e) x(t) dt = x(t1 )y(t1 ) − x(t0 )y(t0 ) − y(t) dt which is equivalent to t0 dt t0 dt y dx + x dy = x1 y1 − x0 y0 C π 5 25. W = y dA = r2 sin θ dr dθ = 250/3 0 0 R
  • 15. January 27, 2005 11:56 L24-CH16 Sheet number 15 Page number 707 black Exercise Set 16.4 707 26. We cannot apply Green’s Theorem on the region enclosed by the closed curve C, since F does not have first order partial derivatives at the origin. However, the curve Cx0 , consisting of y = x3 /4, x0 ≤ x ≤ 2; x = 2, x3 /4 ≤ y ≤ 2; and y = x3 /4, x0 ≤ x ≤ 2 encloses a region Rx0 in 0 0 which Green’s Theorem does hold, and W = F · dr = lim F · dr = lim ∇ · F dA x0 →0+ x0 →0+ C Cx0 Rx0 3 2 x /4 1 −1/2 1 −1/2 = lim x − y dy dx x0 →0+ x0 x3 /4 0 2 2 √ 18 √ 2 3 3/2 3 7/2 3 5/2 18 √ = lim − 2− x0 + x0 + x0 − x0 =− 2 x0 →0+ 35 4 14 10 35 2π a(1+cos θ) 27. y dx − x dy = (−2)dA = −2 r dr dθ = −3πa2 C 0 0 R 1 1 2 28. x = ¯ x dA, but x dy = x dA from Green’s Theorem so A C 2 R R 1 1 2 1 1 x= ¯ x dy = x2 dy. Similarly, y = − ¯ y 2 dx. A C 2 2A C 2A C 1 x 1 1 3 29. A = dy dx = ; C1 : x = t, y = t3 , 0 ≤ t ≤ 1, x2 dy = t2 (3t2 ) dt = 0 x3 4 C1 0 5 1 1 3 1 4 8 C2 : x = t, y = t, 0 ≤ t ≤ 1; x2 dy = t2 dt = , x2 dy = − = − = ,x = ¯ C2 0 3 C C1 C2 5 3 15 15 1 1 1 1 4 8 8 8 y 2 dx = t6 dt − t2 dt = − = − ,y = ¯ , centroid , C 0 0 7 3 21 21 15 21 a2 30. A = ; C1 : x = t, y = 0, 0 ≤ t ≤ a, C2 : x = a − t, y = t, 0 ≤ t ≤ a; C3 : x = 0, y = a − t, 0 ≤ t ≤ a; 2 a a3 a3 a x2 dy = 0, x2 dy = (a − t)2 dt = , x2 dy = 0, x2 dy = + + = , x = ; ¯ 0 3 3 3 C1 C2 C3 C C1 C2 C3 a 3 a a a a y 2 dx = 0 − t2 dt + 0 = − , y = , centroid ¯ , 0 3 3 3 3 C 31. x = 0 from the symmetry of the region, ¯ √ C1 : (a, 0) to (−a, 0) along y = a2 − x2 ; x = a cos t, y = a sin t, 0 ≤ t ≤ π C2 : (−a, 0) to (a, 0); x = t, y = 0, −a ≤ t ≤ a π a 1 A = πa2 /2, y= − ¯ −a3 sin3 t dt + (0)dt 2A 0 −a 1 4a3 4a 4a =− − = ; centroid 0, πa2 3 3π 3π
  • 16. January 27, 2005 11:56 L24-CH16 Sheet number 16 Page number 708 black 708 Chapter 16 ab 32. A = ; C1 : x = t, y = 0, 0 ≤ t ≤ a, C2 : x = a, y = t, 0 ≤ t ≤ b; 2 C3 : x = a − at, y = b − bt, 0 ≤ t ≤ 1; b 1 ba2 x2 dy = 0, x2 dy = a2 dt = ba2 , x2 dy = a2 (1 − t)2 (−b) dt = − , C1 C2 0 C3 0 3 2 2ba 2a x2 dy = + + = , x= ¯ ; C C1 C2 C3 3 3 1 ab2 b 2a b y 2 dx = 0 + 0 − ab2 (1 − t)2 dt = − , y = , centroid ¯ , C 0 3 3 3 3 33. From Green’s Theorem, the given integral equals (1−x2 −y 2 )dA where R is the region enclosed R by C. The value of this integral is maximum if the integration extends over the largest region for which the integrand 1 − x2 − y 2 is nonnegative so we want 1 − x2 − y 2 ≥ 0, x2 + y 2 ≤ 1. The largest region is that bounded by the circle x2 + y 2 = 1 which is the desired curve C. 34. (a) C : x = a + (c − a)t, y = b + (d − b)t, 0 ≤ t ≤ 1 1 −y dx + x dy = (ad − bc)dt = ad − bc C 0 (b) Let C1 , C2 , and C3 be the line segments from (x1 , y1 ) to (x2 , y2 ), (x2 , y2 ) to (x3 , y3 ), and (x3 , y3 ) to (x1 , y1 ), then if C is the entire boundary consisting of C1 , C2 , and C3 3 1 1 A= −y dx + x dy = −y dx + x dy 2 C 2 i=1 Ci 1 = [(x1 y2 − x2 y1 ) + (x2 y3 − x3 y2 ) + (x3 y1 − x1 y3 )] 2 1 (c) A = [(x1 y2 − x2 y1 ) + (x2 y3 − x3 y2 ) + · · · + (xn y1 − x1 yn )] 2 1 (d) A = [(0 − 0) + (6 + 8) + (0 + 2) + (0 − 0)] = 8 2 35. F · dr = (x2 + y) dx + (4x − cos y) dy = 3 dA = 3(25 − 2) = 69 C C R 36. F · dr = (e−x + 3y) dx + x dy = −2 dA = −2[π(4)2 − π(2)2 ] = −24π C C R EXERCISE SET 16.5 1. R is the annular region between x2 + y 2 = 1 and x2 + y 2 = 4; x2 y2 z 2 dS = (x2 + y 2 ) + 2 + 1 dA x2 +y 2 x + y2 σ R √ √ 2π 2 15 √ = 2 (x2 + y 2 )dA = 2 r3 dr dθ = π 2. 0 1 2 R
  • 17. January 27, 2005 11:56 L24-CH16 Sheet number 17 Page number 709 black Exercise Set 16.5 709 2. z = 1 − x − y, R is the triangular region enclosed by x + y = 1, x = 0 and y = 0; √ √ √ 1 1−x 3 xy dS = xy 3 dA = 3 xy dy dx = . 0 0 24 σ R 3. Let r(u, v) = cos ui + vj + sin uk, 0 ≤ u ≤ π, 0 ≤ v ≤ 1. Then ru = − sin ui + cos uk, rv = j, 1 π ru × rv = − cos ui − sin uk, ru × rv = 1, x2 y dS = v cos2 u du dv = π/4 0 0 σ 4. z = 4 − x2 − y 2 , R is the circular region enclosed by x2 + y 2 = 3; x2 y2 (x2 + y 2 )z dS = (x2 + y 2 ) 4 − x2 − y 2 + + 1 dA 4−x2 − y2 4 − x2 − y 2 σ R √ 2π 3 = 2(x2 + y 2 )dA = 2 r3 dr dθ = 9π. 0 0 R 5. If we use the projection of σ onto the xz-plane then y = 1 − x and R is the rectangular region in the xz-plane enclosed by x = 0, x = 1, z = 0 and z = 1; √ √ 1 1 √ (x − y − z)dS = (2x − 1 − z) 2dA = 2 (2x − 1 − z)dz dx = − 2/2 0 0 σ R 6. R is the triangular region enclosed by 2x + 3y = 6, x = 0, and y = 0; √ √ 3 (6−2x)/3 √ (x + y)dS = (x + y) 14 dA = 14 (x + y)dy dx = 5 14. 0 0 σ R 7. There are six surfaces, parametrized by projecting onto planes: σ1 : z = 0; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (onto xy-plane), σ2 : x = 0; 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 (onto yz-plane), σ3 : y = 0; 0 ≤ x ≤ 1, 0 ≤ z ≤ 1 (onto xz-plane), σ4 : z = 1; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (onto xy-plane), σ5 : x = 1; 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 (onto yz-plane), σ6 : y = 1; 0 ≤ x ≤ 1, 0 ≤ z ≤ 1 (onto xz-plane). By symmetry the integrals over σ1 , σ2 and σ3 are equal, as are those over σ4 , σ5 and σ6 , and 1 1 1 1 (x + y + z)dS = (x + y)dx dy = 1; (x + y + z)dS = (x + y + 1)dx dy = 2, 0 0 0 0 σ1 σ4 thus, (x + y + z)dS = 3 · 1 + 3 · 2 = 9. σ 8. Let r(φ, θ) = a sin φ cos θ i + a sin φ sin θ j + a cos φ k, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π; rφ × rθ = a2 sin φ, x2 + y 2 = a2 sin2 φ 2π π 8 4 f (x, y, z) = a4 sin3 φ dφ dθ = πa 0 0 3 σ
  • 18. January 27, 2005 11:56 L24-CH16 Sheet number 18 Page number 710 black 710 Chapter 16 9. (a) The integral is improper because the function z(x, y) is not differentiable when x2 + y 2 = 1. (b) Fix r0 , 0 < r0 < 1. Then z + 1 = 1 − x2 − y 2 + 1, and x2 y2 (z + 1) dS = ( 1 − ‘x2 − y 2 + 1) 1 + + dx dy 1−x2 − y2 1 − x2 − y 2 σr0 σr 0 2π r0 1 1 2 = ( 1 − r2 + 1) √ r dr dθ = 2π 1 + r0 − 1 − r0 , and, after passing to 2 0 0 1−r 2 2 the limit as r0 → 1, (z + 1) dS = 3π σ (c) Let r(φ, θ) = sin φ cos θi + sin φ sin θj + cos φk, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2; rφ × rθ = sin φ, 2π π/2 (1 + cos φ) dS = (1 + cos φ) sin φ dφ dθ 0 0 σ π/2 = 2π (1 + cos φ) sin φ dφ = 3π 0 10. (a) The function z(x, y) is not differentiable at the origin (in fact it’s partial derivatives are unbounded there). (b) R is the circular region enclosed by x2 + y 2 = 1; x2 y2 x2 + y 2 + z 2 dS = 2(x2 + y 2 ) + 2 + 1 dA x2 +y 2 x + y2 σ R = lim 2 x2 + y 2 dA r0 →0+ R where R is the annular region enclosed by x2 +y 2 = 1 and x2 +y 2 = r0 with r0 slightly larger 2 x2 y2 than 0 because + 2 + 1 is not defined for x2 + y 2 = 0, so x2 + y 2 x + y2 2π 1 4π 4π x2 + y 2 + z 2 dS = lim 2 r2 dr dθ = lim (1 − r0 ) = 3 . r0 →0+ 0 r0 r0 →0+ 3 3 σ (c) The cone is contained in the locus of points satisfying φ = π/4, so it can be parametrized with spherical coordinates ρ, θ: 1 1 1 √ r(ρ, θ) = √ ρ cos θi + √ ρ sin θj + √ ρk, 0 ≤ θ ≤ 2π, r < ρ ≤ 2. Then 2 2 2 1 1 1 1 1 rρ = √ cos θi + √ sin θj + √ k, rθ = − √ ρ sin θi + √ ρ cos θ j 2 2 2 2 2 ρ 1 rρ × rθ = (− cos θi − sin θj + k) and rρ × rθ = √ ρ, and thus 2 2 √ √ 2π 2 2 1 1 1 f (x, y, z) dS = lim ρ √ ρ dρ dθ = lim 2π √ ρ3 r→0 0 r 2 r→0 23 r σr √ 2 √ 4π = lim 2 2 − r3 π = . r→0 3 3 11. (a) Subdivide the right hemisphere σ ∩ {x > 0} into patches, each patch being as small as desired (i). For each patch there is a corresponding patch on the left hemisphere σ ∩ {x < 0} which is the reflection through the yz-plane. Condition (ii) now follows.