This document provides definitions and notations for 2-D systems and matrices. It defines how continuous and sampled 2-D signals like images are represented. It introduces some common 2-D functions used in signal processing like the Dirac delta, rectangle, and sinc functions. It describes how 2-D linear systems can be represented by matrices and discusses properties of the 2-D Fourier transform including the frequency response and eigenfunctions. It also introduces concepts of Toeplitz and circulant matrices and provides an example of convolving periodic sequences using circulant matrices. Finally, it defines orthogonal and unitary matrices.