SlideShare a Scribd company logo
1 of 95
Download to read offline
Relations & Functions
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x

                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x

                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x
                                                      function
                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x
                                                      function
                       x                          x
                                                note: actually two functions 
              function                                                       
                                                y  x and y   x 
Domain and Range y  f  x 
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
          To find a domain, look for values x could not be.
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
           To find a domain, look for values x could not be.
e.g.
       y             x  y2


                    x
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2


                       x


       domain: x  0
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2                       y            y  f  x
                                                     3
                                                      1
                       x                                   2     x


       domain: x  0
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2                       y            y  f  x
                                                     3
                                                      1
                       x                                   2     x


       domain: x  0                        domain: x  0 and x  2
Things to look for:
1. Fractions:
Things to look for:
1. Fractions: bottom of fraction  0
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
           x0
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
           x0
domain: all real x except x  0
Things to look for:
1. Fractions: bottom of fraction  0
               1                                      1
e.g.  i  y                           ii  y 
               x                                    x2 1
           x0
domain: all real x except x  0
Things to look for:
1. Fractions: bottom of fraction  0
               1                                      1
e.g.  i  y                           ii  y 
               x                                    x2 1
           x0                                 x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
                4x    3
  iii  y        
               x 1 7  x
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
                4x    3
  iii  y        
               x 1 7  x

    x 1  0
        x 1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
                4x    3
  iii  y        
               x 1 7  x

    x 1  0         7x  0
        x 1                x7
Things to look for:
1. Fractions: bottom of fraction  0
               1                                           1
e.g.  i  y                                ii  y 
               x                                         x2 1
           x0                                      x2 1  0
domain: all real x except x  0
                                                     x2  1
                                                      x  1
                                        domain: all real x except x  1
                4x    3
  iii  y        
               x 1 7  x

    x 1  0         7x  0
        x 1                x7
 domain: all real x except x  1 or 7
2. Root Signs:
2. Root Signs: you can’t find the square root of a negative number.
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
         4  x2  0
            x2  4
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
       4  x2  0
          x2  4
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0
          x2  4
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0
          x2  4                            x  3
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0        5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2

     x20
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2

     x20
     domain: x  2
Range: All possible y values obtained by substituting in the domain
Range: All possible y values obtained by substituting in the domain
         “Range is the OUTPUT of the function/relation”
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y             x  y2


                    x
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2


                        x


    range: all real y
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2                  y            y  f  x
                                                 3
                                                  1
                        x                             2     x


    range: all real y
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2                  y            y  f  x
                                                 3
                                                  1
                        x                             2     x


    range: all real y                     range: y  1 and y  3
Things to look for:
1. Maximum/Minimum values:
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x   2
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x
              2


           range: y  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x
              2
                                        ii  y  x 2  3
           range: y  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x
              2
                                        ii  y  x 2  3
           range: y  0                       y  03
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x
              2
                                        ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x2
                                        ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x2
                                        ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
        y  50
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x2
                                        ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
        y  50
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x2
                                        ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2                    iv  y  x  2
        y  50
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x2
                                        ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2                    iv  y  x  2
        y  50                              range: y  0
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x2
                                              ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x2
                                              ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
                                y  05
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x2
                                              ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
                                y  05
                            range: y  5
2. Restrictions on Domain:
2. Restrictions on Domain: sub in endpoints and centre of domain
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
  domain:  2  x  2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2      when x  2, y  4  22
  domain:  2  x  2               0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
                        when x  2, y  4  22   when x  0, y  4  02
  domain:  2  x  2                0                        2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
                        when x  2, y  4  22  when x  0, y  4  02
  domain:  2  x  2                0                       2
                                            range: 0  y  2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                        when x  2, y  4  22  when x  0, y  4  02
  domain:  2  x  2                0                       2
                                            range: 0  y  2

3. Fractions:
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x     2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x     2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
           y0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x   2
                          when x  2, y  4  22   when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
           y0
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x      2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

              x7
 iii  y 
              x4
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x      2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

              x7                      1
 iii  y                         x4 x7
              x4
                                       x4
                                         3
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x      2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

              x7                      1
 iii  y                         x4 x7
              x4
                 3                     x4
       y  1                            3
                x4
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x      2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

              x7                      1
 iii  y                         x4 x7
              x4
                3                      x4
       y  1                            3
              x4
       y  1 0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x      2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

              x7                      1
 iii  y                         x4 x7
              x4
                3                      x4
       y  1                            3
              x4
       y  1 0
 range: all real y except y  1
Function Notation
Function Notation
e.g. f  x   3 x 2  4
Function Notation
e.g. f  x   3 x 2  4
  a) f  5
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4
                    2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4   b) f  a 
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4   b) f  a   3a 2  4
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4    b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x 
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                      2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                       2


                            3 x 2  6 xh  3h 2  4  3 x 2  4
                            6 xh  3h 2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                       2


                            3 x 2  6 xh  3h 2  4  3 x 2  4
                            6 xh  3h 2



             Exercise 2F; 1, 2, 3acdfi, 4begh, 5a, 6, 7a, 8abd,
                       10abdf, 11aceh, 12bd, 14*

More Related Content

What's hot (12)

Partial derivative1
Partial derivative1Partial derivative1
Partial derivative1
 
Functions
FunctionsFunctions
Functions
 
Eigenvalues - Contd
Eigenvalues - ContdEigenvalues - Contd
Eigenvalues - Contd
 
Functions (Theory)
Functions (Theory)Functions (Theory)
Functions (Theory)
 
Peta karnaugh
Peta karnaughPeta karnaugh
Peta karnaugh
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
 
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleLesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
 
4.1 inverse functions
4.1 inverse functions4.1 inverse functions
4.1 inverse functions
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Module of algelbra analyses 2
Module of algelbra analyses 2Module of algelbra analyses 2
Module of algelbra analyses 2
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their Representations
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 

Viewers also liked

11 x1 t02 09 shifting curves i (2013)
11 x1 t02 09 shifting curves i (2013)11 x1 t02 09 shifting curves i (2013)
11 x1 t02 09 shifting curves i (2013)
Nigel Simmons
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)
Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t12 05 curve sketching (2013)
11 x1 t12 05 curve sketching (2013)11 x1 t12 05 curve sketching (2013)
11 x1 t12 05 curve sketching (2013)
Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
Nigel Simmons
 
11 x1 t03 06 asymptotes (2013)
11 x1 t03 06 asymptotes (2013)11 x1 t03 06 asymptotes (2013)
11 x1 t03 06 asymptotes (2013)
Nigel Simmons
 
11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)
Nigel Simmons
 

Viewers also liked (9)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
11 x1 t02 09 shifting curves i (2013)
11 x1 t02 09 shifting curves i (2013)11 x1 t02 09 shifting curves i (2013)
11 x1 t02 09 shifting curves i (2013)
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t12 05 curve sketching (2013)
11 x1 t12 05 curve sketching (2013)11 x1 t12 05 curve sketching (2013)
11 x1 t12 05 curve sketching (2013)
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11 x1 t03 06 asymptotes (2013)
11 x1 t03 06 asymptotes (2013)11 x1 t03 06 asymptotes (2013)
11 x1 t03 06 asymptotes (2013)
 
11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)
 

Similar to 11 x1 t02 06 relations & functions (2013)

7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
hisema01
 
12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)
Nigel Simmons
 
12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)
Nigel Simmons
 
12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)
Nigel Simmons
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functions
Njabulo Nkabinde
 
U1 Cn5 Inverse And Log Functions
U1 Cn5 Inverse And Log FunctionsU1 Cn5 Inverse And Log Functions
U1 Cn5 Inverse And Log Functions
Alexander Burt
 
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)
Nigel Simmons
 

Similar to 11 x1 t02 06 relations & functions (2013) (20)

Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
 
.
..
.
 
Functions
FunctionsFunctions
Functions
 
Functions
FunctionsFunctions
Functions
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
Radical functions
Radical functionsRadical functions
Radical functions
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
U1 Cn2 Functions
U1 Cn2 FunctionsU1 Cn2 Functions
U1 Cn2 Functions
 
Calculus 1 Lecture Notes (Functions and Their Graphs)
Calculus 1 Lecture Notes (Functions and Their Graphs)Calculus 1 Lecture Notes (Functions and Their Graphs)
Calculus 1 Lecture Notes (Functions and Their Graphs)
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
 
function
functionfunction
function
 
R lecture co4_math 21-1
R lecture co4_math 21-1R lecture co4_math 21-1
R lecture co4_math 21-1
 
12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)
 
12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)
 
12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)
 
Difcalc10week3
Difcalc10week3Difcalc10week3
Difcalc10week3
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functions
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6
 
U1 Cn5 Inverse And Log Functions
U1 Cn5 Inverse And Log FunctionsU1 Cn5 Inverse And Log Functions
U1 Cn5 Inverse And Log Functions
 
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 

Recently uploaded

Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
Peter Brusilovsky
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
AnaAcapella
 

Recently uploaded (20)

Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
 
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhĐề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
 
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
 
PSYPACT- Practicing Over State Lines May 2024.pptx
PSYPACT- Practicing Over State Lines May 2024.pptxPSYPACT- Practicing Over State Lines May 2024.pptx
PSYPACT- Practicing Over State Lines May 2024.pptx
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptx
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...
 
Basic Civil Engineering notes on Transportation Engineering & Modes of Transport
Basic Civil Engineering notes on Transportation Engineering & Modes of TransportBasic Civil Engineering notes on Transportation Engineering & Modes of Transport
Basic Civil Engineering notes on Transportation Engineering & Modes of Transport
 
ESSENTIAL of (CS/IT/IS) class 07 (Networks)
ESSENTIAL of (CS/IT/IS) class 07 (Networks)ESSENTIAL of (CS/IT/IS) class 07 (Networks)
ESSENTIAL of (CS/IT/IS) class 07 (Networks)
 
How to Manage Website in Odoo 17 Studio App.pptx
How to Manage Website in Odoo 17 Studio App.pptxHow to Manage Website in Odoo 17 Studio App.pptx
How to Manage Website in Odoo 17 Studio App.pptx
 
Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"
 
Supporting Newcomer Multilingual Learners
Supporting Newcomer  Multilingual LearnersSupporting Newcomer  Multilingual Learners
Supporting Newcomer Multilingual Learners
 
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
 
Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategies
 
The Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFThe Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDF
 
UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptx
 

11 x1 t02 06 relations & functions (2013)

  • 2. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25
  • 3. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2
  • 4. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all.
  • 5. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x
  • 6. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x
  • 7. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x function
  • 8. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x x x function
  • 9. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x x x function
  • 10. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x function x x function
  • 11. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x function x x  note: actually two functions  function    y  x and y   x 
  • 12. Domain and Range y  f  x 
  • 13. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation.
  • 14. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation”
  • 15. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be.
  • 16. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 x
  • 17. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 x domain: x  0
  • 18. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 y y  f  x 3 1 x 2 x domain: x  0
  • 19. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 y y  f  x 3 1 x 2 x domain: x  0 domain: x  0 and x  2
  • 20. Things to look for: 1. Fractions:
  • 21. Things to look for: 1. Fractions: bottom of fraction  0
  • 22. Things to look for: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x
  • 23. Things to look for: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x x0
  • 24. Things to look for: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x x0 domain: all real x except x  0
  • 25. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 domain: all real x except x  0
  • 26. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1
  • 27. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1
  • 28. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x
  • 29. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 x 1
  • 30. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 7x  0 x 1 x7
  • 31. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 7x  0 x 1 x7 domain: all real x except x  1 or 7
  • 33. 2. Root Signs: you can’t find the square root of a negative number.
  • 34. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2
  • 35. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2 4  x2  0 x2  4
  • 36. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2 4  x2  0 x2  4 domain:  2  x  2
  • 37. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x2  4 domain:  2  x  2
  • 38. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 x2  4 x  3 domain:  2  x  2
  • 39. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2
  • 40. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5
  • 41. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2
  • 42. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2 x20
  • 43. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2 x20 domain: x  2
  • 44. Range: All possible y values obtained by substituting in the domain
  • 45. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation”
  • 46. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 x
  • 47. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 x range: all real y
  • 48. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 y y  f  x 3 1 x 2 x range: all real y
  • 49. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 y y  f  x 3 1 x 2 x range: all real y range: y  1 and y  3
  • 50. Things to look for: 1. Maximum/Minimum values:
  • 51. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0
  • 52. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2
  • 53. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2 range: y  0
  • 54. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0
  • 55. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03
  • 56. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3
  • 57. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2
  • 58. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2 y  50
  • 59. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2 y  50 range: y  5
  • 60. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  5
  • 61. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5
  • 62. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5
  • 63. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5 y  05
  • 64. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5 y  05 range: y  5
  • 66. 2. Restrictions on Domain: sub in endpoints and centre of domain
  • 67. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2
  • 68. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 domain:  2  x  2
  • 69. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 domain:  2  x  2 0
  • 70. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2
  • 71. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2
  • 72. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions:
  • 73. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0
  • 74. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x
  • 75. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x y0
  • 76. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x y0 range: all real y except y  0
  • 77. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 range: all real y except y  0
  • 78. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0
  • 79. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5
  • 80. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7  iii  y  x4
  • 81. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 x4 3
  • 82. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4
  • 83. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4 y  1 0
  • 84. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4 y  1 0 range: all real y except y  1
  • 86. Function Notation e.g. f  x   3 x 2  4
  • 87. Function Notation e.g. f  x   3 x 2  4 a) f  5
  • 88. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 2
  • 89. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 2  75  4  79
  • 90. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a  2  75  4  79
  • 91. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79
  • 92. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x 
  • 93. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2
  • 94. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2  3 x 2  6 xh  3h 2  4  3 x 2  4  6 xh  3h 2
  • 95. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2  3 x 2  6 xh  3h 2  4  3 x 2  4  6 xh  3h 2 Exercise 2F; 1, 2, 3acdfi, 4begh, 5a, 6, 7a, 8abd, 10abdf, 11aceh, 12bd, 14*