SlideShare a Scribd company logo
1 of 42
Download to read offline
METODE RESPONSE
SURFACE (RSM)
RESPONSE SURFACE
METHODOLOGY (RSM)
• Merupakan suatu metode gabungan antara
teknik matematika dan teknik statistik yang
digunakan untuk membuat model dan
menganalisa suatu respon y yang dipengaruhi
oleh beberapa variabel x yang tujuannya
untuk mengoptimalkan respon tersebut.
 Hubungan antara respon Y dan variabel bebas X
adalah:
Y = f(X1, X2,...., Xk) + ε
dimana:
Y = variabel respon
Xi = variabel bebas/faktor (i = 1, 2,.., k )
ε = error
 Jika ekspektasi response dinotasikan dengan E(y) =
f(X1, X2, .. , Xk) = ŋ, maka surface dinyatakan dengan:
ŋ = f(X1, X2, …, Xk)
MODEL ORDE-PERTAMA
Langkah pertama dari RSM adalah menemukan
fungsi pendekatan yang tepat untuk melihat
hubungan antara respon y dan faktor x melalui
persamaan polinomial orde pertama (first-
order model):
y= β0 + β1x1 + β2x2 + … + βkxk +ε
MODEL ORDE-KEDUA
Jika hubungan tidak linier, maka fungsi
polinomial dengan orde yang lebih tinggi
digunakan seperti fungsi polinomial orde
kedua (second-order model):
k k
y= β0 + ∑ βixi + ∑ βiixi
2 + … +∑ ∑ βijxi xj+ε
i=1 i=1 i<j
Contoh :
y = β0 + β1 x1 + β2 x2 + β3 x1
2 + β4 x2
2 + β5 x1 x2
KURVA RESPONSE SURFACE
Sumber : Montgomery (2007)
• RSM adalah prosedur yang
bertahap/berurutan
• Pada titik diluar daerah
optimum, bentuk surface
tidak terlalu curve, sehingga
yang digunakan polinomial
orde-1
• Pada daerah optimum,
polinomial orde-2 yg
digunakan.
• Analisis “climbing the hill”
Models
Far away from
optimum:
first order model
Models
Near optimum:
second order
model
Metode Steepest Ascent
• Steepest Ascent adalah metode bergerak secara
bertahap melalui suatu jalur yang menaik, dimana
nilai response meningkat untuk mencapai
maksimum.
• Kebalikannya : Steepest Descent  minimum.
• Besar tahapan (step) proporsional terhadap nilai
koefisien regresi (βi).
• Ukuran step dihitung oleh pembuat eksperimen
berdasarkan pengetahuan proses atau
pertimbangan praktis.
Metode Steepest Ascent
direction of
steepest ascent
contour lines of
first-order model
perpendicular
to contour line
region where
1eorder-model
has been determined
Contoh
• Seorang ahli teknik kimia ingin mengetahui kondisi proses
yang dapat memaksimumkan hasil proses kimia. Variabel
yang mempengaruhi proses : waktu reaksi dan temperatur.
Si ahli pada saat ini mengoperasikan proses pada lama
waktu 35 menit dan temperatur 155oF, yang hasilnya
adalah lebih kurang 40 %. Karena sepertinya kondisi ini
belum yang optimum, ia ingin mengetahui kondisi
optimum dengan mengaplikasikan model orde pertama dan
metode steepest ascent. Si ahli membuat range percobaan
(30,40) menit untuk waktu reaksi, dan (150, 160)oF untuk
suhu reaksi.
Untuk penyederhanaan, variabel waktu reaksi dan suhu
dikodekan dengan interval (-1,1). Jadi, jika ξ1 adalah
variabel waktu reaksi yang aktual dan ξ2 adalah variabel
temperatur yang aktual, maka variabel yang dikodekan :
x1 = _ξ1- 35 dan x2 = ξ2 – 155
5 5
Desain eksperimen dilakukan dengan desain 22 faktorial
ditambah dengan 5 kali percobaan pada nilai tengah.
Pengulangan pada nilai tengah digunakan untuk
mengestimasi error dan mengecek kecukupan model orde-1.
Hasilnya dapat dilihat pada tabel dibawah ini.
Variabel aktual Variabel dikodekan Response
ξ1 ξ2 x1 x2 y
30 150 -1 -1 39.3
30 160 -1 1 40.0
40 150 1 -1 40.9
40 160 1 1 41.5
35 155 0 0 40.3
35 155 0 0 40.5
35 155 0 0 40.7
35 155 0 0 40.2
35 155 0 0 40.6
Model orde-1 berdasarkan hasil regresi least square :
y = 40.44 + 0.775 x1 + 0.325 x2
Sebelum melakukan metode steepest ascent:
1. Estimasi nilai error :
σ2 = (40.32 + 40.52 + 40.72 + 40.22+40.62) – (202.32/5)
5-1
= 0.043
2. Periksa interaksi dalam model :
β12 = ¼[(1x39.3)+(1x41.5)+(-1x40.0)+(-1x40.9)]
= ¼ (-0.1) = - 0.025.
Sum square interaksi :
SS interaksi = (-0.1)2/4 = 0.0025
Hitung nilai F statistik :
F = SS interaksi/ σ2 = 0.0025/0.043 = 0.058.
Kesimpulan F statistik kecil, sehingga interaksi diabaikan.
3. Periksa efek kuadratik :
β11 + β22 = ȳF – ȳC = 40.425 – 40.46 = -0.035
Sum square kuadratik murni :
SS kuadratik = (nFnC(ȳF – ȳC )2 )/nF +nC)
= 4(5)(-0.035)2 = 0.0027
9
Hitung nilai F statistik :
F = SS kuadratik/ σ2 = 0.0027/0.043 = 0.063.
Kesimpulan F statistik kecil, sehingga interaksi diabaikan.
Metode steepest ascent
• Berdasarkan model orde-1 untuk bergerak dari nilai
tengah (x1=0, x2=0) diperlukan step 0.775 unit x1 untuk
setiap 0.325 unit x2.
• Kemiringan jalur = 0.325/0.775.
• Besarnya step Δx1 = 1 ; Δx2 = 0.325/0.775 = 0.42
• Lakukan prosedur step ascent dengan menambahkan
nilai tengah dengan besarnya step sampai didapatkan
response yang menurun.
•
Step Variabel dikodekan Variabel aktual Response
x1 x2 ξ1 ξ2 y
Origin 0 0 -1 -1 39.3
Δ 1.0 0.42 -1 1 40.0
Origin+Δ 1.0 0.42 1 -1 40.9
Origin+2Δ 2.0 160 1 1 41.5
Origin+3Δ 3.0 155 0 0 40.3
Origin+4Δ 4.0 155 0 0 40.5
Origin+5Δ 5.0 155 0 0 40.7
Origin+6Δ 6.0 155 0 0 40.2
Origin+7Δ 35 155 0 0 40.6
Origin+8Δ
Origin+9Δ
Origin+10Δ
Origin+11Δ
Origin+12Δ
FACTORS TO CONSIDER
• CRITICAL FACTORS ARE KNOWN
• REGION OF INTEREST , WHERE FACTOR
LEVELS INFLUENCING PRODUCT IS KNOWN
• FACTORS VARY CONTINUOUSLY THROUGH-
OUT THE EXPERIMENTAL RANGE TESTED
• A MATHEMATICAL FUNCTION RELATES THE
FACTORS TO THE MEASURED RESPONSE
• THE RESPONSE DEFINED BY THE FUNCTION
IS A SMOOTH CURVE
LIMITATIONS TO RSM
• LARGE VARIATIONS IN THE FACTORS CAN BE
MISLEADING (ERROR, BIAS, NO REPLICATION)
• CRITICAL FACTORS MAY NOT BE CORRECTLY
DEFINED OR SPECIFIED
• RANGE OF LEVELS OF FACTORS TO NARROW OR
TO WIDE --OPTIMUM CAN NOT BE DEFINED
• LACK OF USE OF GOOD STATISTICAL PRINCIPLES
• OVER-RELIANCE ON COMPUTER -- MAKE SURE
THE RESULTS MAKE GOOD SENSE
POLYNOMIAL MODELS
• SECOND DEGREE - ONE INDEPENDENT
VARIABLE
Y = bo +b1x1 + b11x12
constant term,+ linear term + quadratic term
• FOR p FACTORS, THERE WILL BE ONE
CONSTANT TERM, p LINEAR TERMS
p QUADRATIC TERMS AND p(P-1) CROSS
PRODUCT TERMS
USES OF RSM
• TO DETERMINE THE FACTOR LEVELS THAT WILL
SIMULTANEOUSLY SATISFY A SET OF DESIRED
SPECIFICATIONS
• TO DETERMINE THE OPTIMUM COMBINATION OF
FACTORS THAT YIELD A DESIRED RESPONSE AND
DESCRIBES THE RESPONSE NEAR THE OPTIMUM
• TO DETERMINE HOW A SPECIFIC RESPONSE IS
AFFECTED BY CHANGES IN THE LEVEL OF THE
FACTORS OVER THE SPECIFIED LEVELS OF
INTEREST
USES -CONTINUED
• TO ACHIEVE A QUANTITATIVE
UNDERSTANDING OF THE SYSTEM
BEHAVIOR OVER THE REGION TESTED
• TO PRODUCT PRODUCT PROPERTIES
THROUGHOUT THE REGION - EVEN AT
FACTOR COMBINATIONS NOT ACTUALLY
RUN
• TO FIND CONDITIONS FOR PROCESS
STABILITY = INSENSITIVE SPOT
PROCESS MODELS
• Ym = fm(x1, x2, ….,xp)
• Polynomials with a small number of terms
are most desirable
• Most process outputs are some sort of
smooth function of the inputs
• Second-degree polynomials are generally
adequate
POLYNOMIAL MODELS
• POLYNOMIAL MODEL DOES A POOR
JOB OF PREDICTING RESPONSE
OUTSIDE THE REGION OF
EXPERIMENTATION
SIZE OF RESPONSE SURFACE MODELS
NUMBER OF
FACTORS
RUNS IN 3
LEVEL FACT.
COEF. IN
FULL QUAND
TRIALS IN
FACE-
CENTERED
TRIALS IN
BOX-
BEHNKEN
2 9 6 11 11
3 27 10 17 15
4 81 16 27 27
5 243 21 45 46
6 729 28 81 54
7 2187 36 62
DESIGNS
• PREDICTIONS ALWAYS HAVE SOME DEGREE OF
UNCERTAINTY
• SHOULD HAVE REASONABLE PREDICTION
THROUGHOUT THE EXPERIMENTAL RANGE
• UNIFORM PREDICTIONS ERROR IS OBTAINED BY
USING A DESIGN THE FILLS OUT THE REGION OF
INTEREST
• THE CHOICE OF EXPERIMENTAL DESIGN IS
AFFECTED BY THE SHAPE OF THE
EXPERIMENTAL REGION
DESIGNS - CONTINUED
• IN MOST CASES, THE REGION IS DETERMINED BY
THE RANGES OF THE INDEPENDENT VARIABLE.
IN THIS CASE THE REGION IS CUBICAL (IN CODED
VALUES OF X) AND THE BEST DESIGN IN FACE
CENTERED
• IF “STANDING THE THE CENTER” AND ONE IT IS
DESIRED THAT THE PRECISION OF PREDICATIONS
BE INDEPENDENT OF DIRECTION FROM CENTER -
THEN THE REGION IS SPHERICAL AND DESIGN OF
CHOICE IS BOX-BEHNKEN
DESIGNS - CONTINUED
• BOX-BEHNKEN DESIGNS EXCLUDE THE
CORNERS, WHERE ALL VARIABLE ARE
SIMULTANEOUSLY AT THE MAXIMUM LEVELS -
THEREFORE BOX-BEHNKEN DESIGN PERMITS A
WIDER RANGE OF INDIVIDUAL RANGES.
• IF THE SHAPE OF THE EXPERIMENT IS NEITHER
SPHERICAL OR CUBICAL AND HAS STRONG
CONSTRAINTS - THEN THE REGION MAY BE AN
IRREGULAR TETRAHEDRON AND WILL
REQUIRE A SPECIAL DESIGN
FACE CENTERED CUBE
FOR 3 FACTORS -
• TWO-LEVEL FACTORIAL
• TWO FACE CENTERED POINTS FOR EACH FACTOR
• THREE OR MORE CENTER POINTS
• WHEN RUN IN BLOCKS, CENTER POINTS ARE RUN
WITH EACH BLOCK
• FACE POINTS ARE RUNS FOR WHICH ALL
FACTORS EXCEPT ONE ARE AT THE MIDDLE
SETTING - AND PROVIDE THE INFORMATION
NEEDED TO DETERMINE CURVATURE
BLOCKING
• IN LARGE SIZES, BOTH FACE-CENTERED
CUBE AND BOX-BEHNKEN PERMIT
BLOCKING.
• DIFFERENCE (OR BIASES) IN THE LEVEL
OF THE RESPONSES BETWEEN BLOCKS
WITH NOT AFFECT ESTIMATES OF
COEFFICIENTS NOR ESTIMATES OF THE
FACTOR AND INTERACTION EFFECTS
FACE CENTERED CUBE
• THE MAIN PART OF THE FACE-CENTERED
CUBEDESIGN IS A TWO-LEVEL FACTORIAL,
WHICH FILLS OUT A CUBIC REGION
• THE FACE POINTS CONSTITUTE A SEPARATE
BLOCK - SO THAT THE FIRST TWO BLOCKS,
WHICH COMPRISE A TWO LEVEL FACTORIAL,
CAN BE RUN FIRST.
• THE FACE POINTS ARE ADDED IF SERIOUS
CURVITURE IS FOUND
• “PIGGY BACK” APPROACH GIVES FLEXIBILITY
FACE CENTERED CUBE
• CENTER POINTS ARE NEED TO PROVIDE GOOD
PREDICTORS OF CENTER OF REGION
• FOR 3 OR MORE FACTORS, IT IS BEST TO USE
BLOCKS
-FIRST HALF-FRACTION
-SECOND HALF-FRACTION
-FACE POINTS
THREE FACTOR FACE CENTEREDCUBE
TRIAL X1 X2 X3 BLOCK
1 - - - 1
2 + - - 2
3 - + - 2
4 + + - 1
5 - - + 2
6 + - + 1
7 - + + 1
8 + + + 2
9 - 0 0 3
10 + 0 0 3
11 0 - 0 3
12 0 + 0 3
13 0 0 - 3
14 0 0 + 3
15 0 0 0 *
16 0 0 0 *
17 0 0 0 *
BOX-BEHNKEN DESIGN
• THE BOX-BEHNKEN DESIGN FILLS OUT A
POLYHEDRON, APPROXIMATING A SPHERE
• FOR 3 FACTORS (15 RUNS) THE DESIGN CONSIST
OF THREE FOUR-RUN, TWO-LEVEL FACTORIALS
IN TWO FACTORS, WITH THE THIRD FACTOR AT
ITS MID-LEVEL AND THREE CENTER POINT - RUN
IN THREE BLOCKS OF 10 RUNS
BOX-BEHNKEN DESIGN
• FOR A 3 FACTOR EXPERIMENT, THE 15 RUNS
CONSIST OF THREE FOUR-RUN, TWO-LEVEL
FACTORIALS IN TWO FACTORS - WITH THE THIRD
FACTOR AT ITS MID-LEVEL, AND THREE CENTER
POINTS.
• BOX-BEHNKEN AND FACE-CENTERED CUBIC
DESIGNS ARE SUBSETS OF THE FULL THREE
LEVEL FACTORIAL DESIGNS. EXCEPT FOR
CENTER POINTS, THEY ARE COMPLETMENTARY
FRACTIONS IN THAT NO POINT IN ONE DESIGN IS
IN THE OTHER DESIGN
DESIGN CHOICE
• FACE CENTERED CUBE AND BOX-BEHNKEN TAKE
ABOUT THE SAME NUMBER OF EXPERIMENTS
• IF TIME OR MONEY DICTATES FEWER THAT THE
REQUIRED NUMBER OF INDEPENDENT
VARIABLES, THEN CONSIDER -
-REDUCE NUMBER OF FACTORS
-TRY A SIMPLEX DESIGN
-CONSIDER RUNNING A TWO-LEVEL
FACTORIAL DESIGN THAT IS THE FIRST TWO
BLOCKS OF THE FACE-CENTERED CUBE AND
COMPLETE THE LAST BLOCKS WHEN
ADDITIONAL EXPERIMENTATION IS POSSIBLE
DESIGN CHOICES
• UNREPLICATED RESPONSE SURFACE DESIGNS
CAN DETECT EFFECTS ABOUT 1-2 TIMES
EXPERIMENTAL ERROR.
• A FEW RUNS MAY BE INCLUDED IN THE
PROGRAM TO TEST HUNCHES, SPECIAL CASES,
“POLITICAL PREFERENCES” OR STANDARD OR
REFERENCE RUNS. UP TO 20% OF THE NUMBER
OF RUNS AVAILABLE MAY BE USED FOR THIS
PURPOSE - IF A GOOD STATISTICAL DESIGN IS AT
THE HEART OF THE PROGRAM
OPERABILITY REVIEW
• RUNS SHOULD BE REVIEWED FOR OPERABILITY.
• RUNS THAT SET ALL THE “DRIVING FORCE”
VARIABLES AT MINIMUM OR MAXIMUM VALUES
MAY NOT WORK
• RANDOMIZATION CAN BE ALTERED TO
SCHEDULE THESE RUNS EARLY TO ALLOW FOR
LATTER ADJUSTMENTS
• EXPLORATORY TESTING OF POTENTIAL
TROUBLESOME RUNS BEFORE
EXPERIMENTATION SHOULD BE CONSIDERED
OPERABILITY REVIEW
• YOU MAY FIND, PART-WAY THROUGH THE
EXPERIMENT THAT SOME DESIGN POINTS WILL
NOT RUN. THIS IS TRUE IS A BOUNDARY CURVE
PASSES THROUGH THE EXPERIMENTAL REGION.
• IF ONLY ONE OR A FEW POINTS ARE INVOLVED,
THEY MAY BE MOVED TOWARDS THE CENTER,
JUST ENOUGH TO BECOME OPERABLE
• ALL STANDARD RESPONSE SURFACE DESIGNS
ARE ROBUST AGAINST MODEST DISPLACEMENT
OR A FEW DATA POINTS
AVOIDING BLUNDERS
• EXECUTE EXPERIMENT WITH CARE. SMALL
STATISTICAL DESIGNS ARE SUSCEPTIBLE TO
ERRORS BECAUSE EVERY RUN ESTIMATES
MORE THAN ONE EFFECT
• RECORD RESULTS FOR ALL RUNS
• PLAN FOR ANALYSIS FROM THE BEGINNING
• A COMPUTER IS GENERALLY REQUIRED FOR
ANALYSIS - AND REGRESSION ANALYSIS IS THE
BASIS FOR MOST ANALYTICAL PROCEDURES
• MAKE SURE THE RESULTS “MAKE SENSE”
TAKE-AWAYS
• SURFACE RESPONSE SURFACE ANALYSIS
PROVIDES A MEANS FOR OPTIMIZATION OF
FORMULATION AND PROCESS
• SELECTION OF VARIABLES AND VARIABLE
LEVELS ARE CRITICAL
• EACH DIFFERENT APPROACH HAS DIFFERENT
ADVANTAGES AND DISADVANTAGES
• MOST LARGE COMPANIES INSIST ON YOU USING
THEIR TRAINED STATISTICIANS
• BOTTOM LINE - DOES IN MAKE SENSE??????

More Related Content

What's hot

Analisis Komponen Utama (2)
Analisis Komponen Utama (2)Analisis Komponen Utama (2)
Analisis Komponen Utama (2)Rani Nooraeni
 
APG Pertemuan 5 : Inferensia Vektor Rata-rata
APG Pertemuan 5 : Inferensia Vektor Rata-rataAPG Pertemuan 5 : Inferensia Vektor Rata-rata
APG Pertemuan 5 : Inferensia Vektor Rata-rataRani Nooraeni
 
Model regresi-non-linear
Model regresi-non-linearModel regresi-non-linear
Model regresi-non-linearGifard Narut
 
APG Pertemuan 1 dan 2 (2)
APG Pertemuan 1 dan 2 (2)APG Pertemuan 1 dan 2 (2)
APG Pertemuan 1 dan 2 (2)Rani Nooraeni
 
APG Pertemuan 6 : Mean Vectors From Two Populations
APG Pertemuan 6 : Mean Vectors From Two PopulationsAPG Pertemuan 6 : Mean Vectors From Two Populations
APG Pertemuan 6 : Mean Vectors From Two PopulationsRani Nooraeni
 
APG Pertemuan 5 : Inferensia Satu Vektor Rata-rata
APG Pertemuan 5 : Inferensia Satu Vektor Rata-rataAPG Pertemuan 5 : Inferensia Satu Vektor Rata-rata
APG Pertemuan 5 : Inferensia Satu Vektor Rata-rataRani Nooraeni
 
APG Pertemuan 5 : Inferences about a Mean Vector and Comparison of Several Mu...
APG Pertemuan 5 : Inferences about a Mean Vector and Comparison of Several Mu...APG Pertemuan 5 : Inferences about a Mean Vector and Comparison of Several Mu...
APG Pertemuan 5 : Inferences about a Mean Vector and Comparison of Several Mu...Rani Nooraeni
 
APG Pertemuan 1-2 (1)
APG Pertemuan 1-2 (1)APG Pertemuan 1-2 (1)
APG Pertemuan 1-2 (1)Rani Nooraeni
 
ANALYSIS OF VARIANCE (ANAVA/ANOVA) SATU JALUR
ANALYSIS OF VARIANCE (ANAVA/ANOVA) SATU JALURANALYSIS OF VARIANCE (ANAVA/ANOVA) SATU JALUR
ANALYSIS OF VARIANCE (ANAVA/ANOVA) SATU JALURT. Astari
 
APG Pertemuan 7 : Manova
APG Pertemuan 7 : ManovaAPG Pertemuan 7 : Manova
APG Pertemuan 7 : ManovaRani Nooraeni
 
Korelasi dan regresi sederhana
Korelasi dan regresi sederhanaKorelasi dan regresi sederhana
Korelasi dan regresi sederhanaDia Cahyawati
 
APG Pertemuan 7 : Manova and Repeated Measures
APG Pertemuan 7 : Manova and Repeated MeasuresAPG Pertemuan 7 : Manova and Repeated Measures
APG Pertemuan 7 : Manova and Repeated MeasuresRani Nooraeni
 
APG Pertemuan 5 : Inferensia Vektor Rata-rata 1 Populasi
APG Pertemuan 5 : Inferensia Vektor Rata-rata 1 PopulasiAPG Pertemuan 5 : Inferensia Vektor Rata-rata 1 Populasi
APG Pertemuan 5 : Inferensia Vektor Rata-rata 1 PopulasiRani Nooraeni
 
Analisis Regresi Linier Sederhana
Analisis Regresi Linier SederhanaAnalisis Regresi Linier Sederhana
Analisis Regresi Linier SederhanaArning Susilawati
 

What's hot (20)

Analisis Komponen Utama (2)
Analisis Komponen Utama (2)Analisis Komponen Utama (2)
Analisis Komponen Utama (2)
 
APG Pertemuan 5 : Inferensia Vektor Rata-rata
APG Pertemuan 5 : Inferensia Vektor Rata-rataAPG Pertemuan 5 : Inferensia Vektor Rata-rata
APG Pertemuan 5 : Inferensia Vektor Rata-rata
 
Model regresi-non-linear
Model regresi-non-linearModel regresi-non-linear
Model regresi-non-linear
 
APG Pertemuan 1 dan 2 (2)
APG Pertemuan 1 dan 2 (2)APG Pertemuan 1 dan 2 (2)
APG Pertemuan 1 dan 2 (2)
 
Makalah Korelasi
Makalah KorelasiMakalah Korelasi
Makalah Korelasi
 
Korelasi product-moment
Korelasi product-momentKorelasi product-moment
Korelasi product-moment
 
APG Pertemuan 6 : Mean Vectors From Two Populations
APG Pertemuan 6 : Mean Vectors From Two PopulationsAPG Pertemuan 6 : Mean Vectors From Two Populations
APG Pertemuan 6 : Mean Vectors From Two Populations
 
APG Pertemuan 5 : Inferensia Satu Vektor Rata-rata
APG Pertemuan 5 : Inferensia Satu Vektor Rata-rataAPG Pertemuan 5 : Inferensia Satu Vektor Rata-rata
APG Pertemuan 5 : Inferensia Satu Vektor Rata-rata
 
APG Pertemuan 5 : Inferences about a Mean Vector and Comparison of Several Mu...
APG Pertemuan 5 : Inferences about a Mean Vector and Comparison of Several Mu...APG Pertemuan 5 : Inferences about a Mean Vector and Comparison of Several Mu...
APG Pertemuan 5 : Inferences about a Mean Vector and Comparison of Several Mu...
 
bahan sidang
bahan sidangbahan sidang
bahan sidang
 
APG Pertemuan 1-2 (1)
APG Pertemuan 1-2 (1)APG Pertemuan 1-2 (1)
APG Pertemuan 1-2 (1)
 
ANALYSIS OF VARIANCE (ANAVA/ANOVA) SATU JALUR
ANALYSIS OF VARIANCE (ANAVA/ANOVA) SATU JALURANALYSIS OF VARIANCE (ANAVA/ANOVA) SATU JALUR
ANALYSIS OF VARIANCE (ANAVA/ANOVA) SATU JALUR
 
APG Pertemuan 7 : Manova
APG Pertemuan 7 : ManovaAPG Pertemuan 7 : Manova
APG Pertemuan 7 : Manova
 
Ning ade
Ning adeNing ade
Ning ade
 
Korelasi dan regresi sederhana
Korelasi dan regresi sederhanaKorelasi dan regresi sederhana
Korelasi dan regresi sederhana
 
APG Pertemuan 7 : Manova and Repeated Measures
APG Pertemuan 7 : Manova and Repeated MeasuresAPG Pertemuan 7 : Manova and Repeated Measures
APG Pertemuan 7 : Manova and Repeated Measures
 
Cara mencari korelasi dan regresi
Cara mencari korelasi dan regresiCara mencari korelasi dan regresi
Cara mencari korelasi dan regresi
 
APG Pertemuan 5 : Inferensia Vektor Rata-rata 1 Populasi
APG Pertemuan 5 : Inferensia Vektor Rata-rata 1 PopulasiAPG Pertemuan 5 : Inferensia Vektor Rata-rata 1 Populasi
APG Pertemuan 5 : Inferensia Vektor Rata-rata 1 Populasi
 
Analisis korelasi
Analisis korelasiAnalisis korelasi
Analisis korelasi
 
Analisis Regresi Linier Sederhana
Analisis Regresi Linier SederhanaAnalisis Regresi Linier Sederhana
Analisis Regresi Linier Sederhana
 

Similar to Tm13 response-surface-method

chapter_4.pptx
chapter_4.pptxchapter_4.pptx
chapter_4.pptxyumiad
 
operasihitungmatriks-161110104448.pdf
operasihitungmatriks-161110104448.pdfoperasihitungmatriks-161110104448.pdf
operasihitungmatriks-161110104448.pdfWindi Andrianita
 
Analisis korelasi linier sederhana
Analisis korelasi linier sederhanaAnalisis korelasi linier sederhana
Analisis korelasi linier sederhanaPutra Samada
 
Integrasi_Numerik.ppt
Integrasi_Numerik.pptIntegrasi_Numerik.ppt
Integrasi_Numerik.pptMunajiMoena
 
3 regresi and-korelasi_berganda.ppt
3 regresi and-korelasi_berganda.ppt3 regresi and-korelasi_berganda.ppt
3 regresi and-korelasi_berganda.pptaliff_aimann
 
PRK - Pertemuan 3-4 - Distributed.pdf
PRK - Pertemuan 3-4 - Distributed.pdfPRK - Pertemuan 3-4 - Distributed.pdf
PRK - Pertemuan 3-4 - Distributed.pdfMiqdadRobbani3
 
Ev.pend3 hp-df
Ev.pend3 hp-dfEv.pend3 hp-df
Ev.pend3 hp-dfMas Ragil
 
Handout 13 - Kuliah RSM.pdf
Handout 13 - Kuliah RSM.pdfHandout 13 - Kuliah RSM.pdf
Handout 13 - Kuliah RSM.pdfHarisNumanAulia1
 
DETEKSI POLA SEBARAN TITIK SPASIAL SECARA REGULER MELALUI PENELUSURAN FUNGSI ...
DETEKSI POLA SEBARAN TITIK SPASIAL SECARA REGULER MELALUI PENELUSURAN FUNGSI ...DETEKSI POLA SEBARAN TITIK SPASIAL SECARA REGULER MELALUI PENELUSURAN FUNGSI ...
DETEKSI POLA SEBARAN TITIK SPASIAL SECARA REGULER MELALUI PENELUSURAN FUNGSI ...Repository Ipb
 
Presentasi method secant group 1
Presentasi method secant group 1Presentasi method secant group 1
Presentasi method secant group 1Arthur Putra
 
MetNum3-Sistem_Persamaan_Non_Linier.ppt
MetNum3-Sistem_Persamaan_Non_Linier.pptMetNum3-Sistem_Persamaan_Non_Linier.ppt
MetNum3-Sistem_Persamaan_Non_Linier.pptssuserb7d229
 
KNAR13 - MATEMATIKA MINAT SMA (KLIPING)
KNAR13 - MATEMATIKA MINAT SMA (KLIPING)KNAR13 - MATEMATIKA MINAT SMA (KLIPING)
KNAR13 - MATEMATIKA MINAT SMA (KLIPING)KNAR 13
 
Kelas x-eksponen-dan-logaritma
Kelas x-eksponen-dan-logaritmaKelas x-eksponen-dan-logaritma
Kelas x-eksponen-dan-logaritmaabdillahmia
 
010 statistika-analisis-korelasi
010 statistika-analisis-korelasi010 statistika-analisis-korelasi
010 statistika-analisis-korelasiMizayanti Mizayanti
 
Met num02 persamaan non linier
Met num02 persamaan non linierMet num02 persamaan non linier
Met num02 persamaan non linierAlvin Setiawan
 
Ekonometrika - Otokorelasi lengkap
Ekonometrika - Otokorelasi lengkapEkonometrika - Otokorelasi lengkap
Ekonometrika - Otokorelasi lengkapRifatin Aprilia
 

Similar to Tm13 response-surface-method (20)

Eksponen dan Logaritma
Eksponen dan LogaritmaEksponen dan Logaritma
Eksponen dan Logaritma
 
chapter_4.pptx
chapter_4.pptxchapter_4.pptx
chapter_4.pptx
 
operasihitungmatriks-161110104448.pdf
operasihitungmatriks-161110104448.pdfoperasihitungmatriks-161110104448.pdf
operasihitungmatriks-161110104448.pdf
 
Analisis korelasi linier sederhana
Analisis korelasi linier sederhanaAnalisis korelasi linier sederhana
Analisis korelasi linier sederhana
 
Integrasi_Numerik.ppt
Integrasi_Numerik.pptIntegrasi_Numerik.ppt
Integrasi_Numerik.ppt
 
3 regresi and-korelasi_berganda.ppt
3 regresi and-korelasi_berganda.ppt3 regresi and-korelasi_berganda.ppt
3 regresi and-korelasi_berganda.ppt
 
PRK - Pertemuan 3-4 - Distributed.pdf
PRK - Pertemuan 3-4 - Distributed.pdfPRK - Pertemuan 3-4 - Distributed.pdf
PRK - Pertemuan 3-4 - Distributed.pdf
 
Ev.pend3 hp-df
Ev.pend3 hp-dfEv.pend3 hp-df
Ev.pend3 hp-df
 
Operasi Hitung Matriks
Operasi Hitung MatriksOperasi Hitung Matriks
Operasi Hitung Matriks
 
Handout 13 - Kuliah RSM.pdf
Handout 13 - Kuliah RSM.pdfHandout 13 - Kuliah RSM.pdf
Handout 13 - Kuliah RSM.pdf
 
DETEKSI POLA SEBARAN TITIK SPASIAL SECARA REGULER MELALUI PENELUSURAN FUNGSI ...
DETEKSI POLA SEBARAN TITIK SPASIAL SECARA REGULER MELALUI PENELUSURAN FUNGSI ...DETEKSI POLA SEBARAN TITIK SPASIAL SECARA REGULER MELALUI PENELUSURAN FUNGSI ...
DETEKSI POLA SEBARAN TITIK SPASIAL SECARA REGULER MELALUI PENELUSURAN FUNGSI ...
 
3 path analysis
3 path analysis3 path analysis
3 path analysis
 
Presentasi method secant group 1
Presentasi method secant group 1Presentasi method secant group 1
Presentasi method secant group 1
 
ANALISIS-JALUR.ppt
ANALISIS-JALUR.pptANALISIS-JALUR.ppt
ANALISIS-JALUR.ppt
 
MetNum3-Sistem_Persamaan_Non_Linier.ppt
MetNum3-Sistem_Persamaan_Non_Linier.pptMetNum3-Sistem_Persamaan_Non_Linier.ppt
MetNum3-Sistem_Persamaan_Non_Linier.ppt
 
KNAR13 - MATEMATIKA MINAT SMA (KLIPING)
KNAR13 - MATEMATIKA MINAT SMA (KLIPING)KNAR13 - MATEMATIKA MINAT SMA (KLIPING)
KNAR13 - MATEMATIKA MINAT SMA (KLIPING)
 
Kelas x-eksponen-dan-logaritma
Kelas x-eksponen-dan-logaritmaKelas x-eksponen-dan-logaritma
Kelas x-eksponen-dan-logaritma
 
010 statistika-analisis-korelasi
010 statistika-analisis-korelasi010 statistika-analisis-korelasi
010 statistika-analisis-korelasi
 
Met num02 persamaan non linier
Met num02 persamaan non linierMet num02 persamaan non linier
Met num02 persamaan non linier
 
Ekonometrika - Otokorelasi lengkap
Ekonometrika - Otokorelasi lengkapEkonometrika - Otokorelasi lengkap
Ekonometrika - Otokorelasi lengkap
 

Recently uploaded

FORMULASI SEDIAAN PADAT DAN BAHAN ALAM.pptx
FORMULASI SEDIAAN PADAT DAN BAHAN ALAM.pptxFORMULASI SEDIAAN PADAT DAN BAHAN ALAM.pptx
FORMULASI SEDIAAN PADAT DAN BAHAN ALAM.pptxantonkustanto
 
Biokimia Gizi 13: Metabolisme Mineral 2024.pptx
Biokimia Gizi 13: Metabolisme Mineral 2024.pptxBiokimia Gizi 13: Metabolisme Mineral 2024.pptx
Biokimia Gizi 13: Metabolisme Mineral 2024.pptxEmmyKardianasari
 
PENGEMBANGAN & PERBANYAKAN TRICHODERMA SP.ppt
PENGEMBANGAN & PERBANYAKAN TRICHODERMA SP.pptPENGEMBANGAN & PERBANYAKAN TRICHODERMA SP.ppt
PENGEMBANGAN & PERBANYAKAN TRICHODERMA SP.pptaprilianto6
 
Materi Kelas 8 - Unsur, Senyawa dan Campuran.pptx
Materi Kelas 8 - Unsur, Senyawa dan Campuran.pptxMateri Kelas 8 - Unsur, Senyawa dan Campuran.pptx
Materi Kelas 8 - Unsur, Senyawa dan Campuran.pptxRizkya19
 
Biokimia Gizi 12: Metabolisme Vitamin 2024.pptx
Biokimia Gizi 12: Metabolisme Vitamin 2024.pptxBiokimia Gizi 12: Metabolisme Vitamin 2024.pptx
Biokimia Gizi 12: Metabolisme Vitamin 2024.pptxEmmyKardianasari
 
2. soal ujian sekolah dasar bahasa indonesia.docx
2. soal ujian sekolah dasar bahasa indonesia.docx2. soal ujian sekolah dasar bahasa indonesia.docx
2. soal ujian sekolah dasar bahasa indonesia.docxNiWayanEkaLansuna1
 
455797170-PROSES dan metode ELISA-pptx.pptx
455797170-PROSES dan metode ELISA-pptx.pptx455797170-PROSES dan metode ELISA-pptx.pptx
455797170-PROSES dan metode ELISA-pptx.pptxKennisRozana3
 
Ruang Lingkup Lembaga Keuangan Bank dan Non Bank
Ruang Lingkup Lembaga Keuangan Bank dan Non BankRuang Lingkup Lembaga Keuangan Bank dan Non Bank
Ruang Lingkup Lembaga Keuangan Bank dan Non BankYunitaReykasari
 

Recently uploaded (8)

FORMULASI SEDIAAN PADAT DAN BAHAN ALAM.pptx
FORMULASI SEDIAAN PADAT DAN BAHAN ALAM.pptxFORMULASI SEDIAAN PADAT DAN BAHAN ALAM.pptx
FORMULASI SEDIAAN PADAT DAN BAHAN ALAM.pptx
 
Biokimia Gizi 13: Metabolisme Mineral 2024.pptx
Biokimia Gizi 13: Metabolisme Mineral 2024.pptxBiokimia Gizi 13: Metabolisme Mineral 2024.pptx
Biokimia Gizi 13: Metabolisme Mineral 2024.pptx
 
PENGEMBANGAN & PERBANYAKAN TRICHODERMA SP.ppt
PENGEMBANGAN & PERBANYAKAN TRICHODERMA SP.pptPENGEMBANGAN & PERBANYAKAN TRICHODERMA SP.ppt
PENGEMBANGAN & PERBANYAKAN TRICHODERMA SP.ppt
 
Materi Kelas 8 - Unsur, Senyawa dan Campuran.pptx
Materi Kelas 8 - Unsur, Senyawa dan Campuran.pptxMateri Kelas 8 - Unsur, Senyawa dan Campuran.pptx
Materi Kelas 8 - Unsur, Senyawa dan Campuran.pptx
 
Biokimia Gizi 12: Metabolisme Vitamin 2024.pptx
Biokimia Gizi 12: Metabolisme Vitamin 2024.pptxBiokimia Gizi 12: Metabolisme Vitamin 2024.pptx
Biokimia Gizi 12: Metabolisme Vitamin 2024.pptx
 
2. soal ujian sekolah dasar bahasa indonesia.docx
2. soal ujian sekolah dasar bahasa indonesia.docx2. soal ujian sekolah dasar bahasa indonesia.docx
2. soal ujian sekolah dasar bahasa indonesia.docx
 
455797170-PROSES dan metode ELISA-pptx.pptx
455797170-PROSES dan metode ELISA-pptx.pptx455797170-PROSES dan metode ELISA-pptx.pptx
455797170-PROSES dan metode ELISA-pptx.pptx
 
Ruang Lingkup Lembaga Keuangan Bank dan Non Bank
Ruang Lingkup Lembaga Keuangan Bank dan Non BankRuang Lingkup Lembaga Keuangan Bank dan Non Bank
Ruang Lingkup Lembaga Keuangan Bank dan Non Bank
 

Tm13 response-surface-method

  • 2. RESPONSE SURFACE METHODOLOGY (RSM) • Merupakan suatu metode gabungan antara teknik matematika dan teknik statistik yang digunakan untuk membuat model dan menganalisa suatu respon y yang dipengaruhi oleh beberapa variabel x yang tujuannya untuk mengoptimalkan respon tersebut.
  • 3.  Hubungan antara respon Y dan variabel bebas X adalah: Y = f(X1, X2,...., Xk) + ε dimana: Y = variabel respon Xi = variabel bebas/faktor (i = 1, 2,.., k ) ε = error  Jika ekspektasi response dinotasikan dengan E(y) = f(X1, X2, .. , Xk) = ŋ, maka surface dinyatakan dengan: ŋ = f(X1, X2, …, Xk)
  • 4. MODEL ORDE-PERTAMA Langkah pertama dari RSM adalah menemukan fungsi pendekatan yang tepat untuk melihat hubungan antara respon y dan faktor x melalui persamaan polinomial orde pertama (first- order model): y= β0 + β1x1 + β2x2 + … + βkxk +ε
  • 5. MODEL ORDE-KEDUA Jika hubungan tidak linier, maka fungsi polinomial dengan orde yang lebih tinggi digunakan seperti fungsi polinomial orde kedua (second-order model): k k y= β0 + ∑ βixi + ∑ βiixi 2 + … +∑ ∑ βijxi xj+ε i=1 i=1 i<j Contoh : y = β0 + β1 x1 + β2 x2 + β3 x1 2 + β4 x2 2 + β5 x1 x2
  • 6. KURVA RESPONSE SURFACE Sumber : Montgomery (2007)
  • 7. • RSM adalah prosedur yang bertahap/berurutan • Pada titik diluar daerah optimum, bentuk surface tidak terlalu curve, sehingga yang digunakan polinomial orde-1 • Pada daerah optimum, polinomial orde-2 yg digunakan. • Analisis “climbing the hill”
  • 10. Metode Steepest Ascent • Steepest Ascent adalah metode bergerak secara bertahap melalui suatu jalur yang menaik, dimana nilai response meningkat untuk mencapai maksimum. • Kebalikannya : Steepest Descent  minimum. • Besar tahapan (step) proporsional terhadap nilai koefisien regresi (βi). • Ukuran step dihitung oleh pembuat eksperimen berdasarkan pengetahuan proses atau pertimbangan praktis.
  • 11. Metode Steepest Ascent direction of steepest ascent contour lines of first-order model perpendicular to contour line region where 1eorder-model has been determined
  • 12. Contoh • Seorang ahli teknik kimia ingin mengetahui kondisi proses yang dapat memaksimumkan hasil proses kimia. Variabel yang mempengaruhi proses : waktu reaksi dan temperatur. Si ahli pada saat ini mengoperasikan proses pada lama waktu 35 menit dan temperatur 155oF, yang hasilnya adalah lebih kurang 40 %. Karena sepertinya kondisi ini belum yang optimum, ia ingin mengetahui kondisi optimum dengan mengaplikasikan model orde pertama dan metode steepest ascent. Si ahli membuat range percobaan (30,40) menit untuk waktu reaksi, dan (150, 160)oF untuk suhu reaksi.
  • 13. Untuk penyederhanaan, variabel waktu reaksi dan suhu dikodekan dengan interval (-1,1). Jadi, jika ξ1 adalah variabel waktu reaksi yang aktual dan ξ2 adalah variabel temperatur yang aktual, maka variabel yang dikodekan : x1 = _ξ1- 35 dan x2 = ξ2 – 155 5 5 Desain eksperimen dilakukan dengan desain 22 faktorial ditambah dengan 5 kali percobaan pada nilai tengah. Pengulangan pada nilai tengah digunakan untuk mengestimasi error dan mengecek kecukupan model orde-1. Hasilnya dapat dilihat pada tabel dibawah ini.
  • 14. Variabel aktual Variabel dikodekan Response ξ1 ξ2 x1 x2 y 30 150 -1 -1 39.3 30 160 -1 1 40.0 40 150 1 -1 40.9 40 160 1 1 41.5 35 155 0 0 40.3 35 155 0 0 40.5 35 155 0 0 40.7 35 155 0 0 40.2 35 155 0 0 40.6 Model orde-1 berdasarkan hasil regresi least square : y = 40.44 + 0.775 x1 + 0.325 x2
  • 15. Sebelum melakukan metode steepest ascent: 1. Estimasi nilai error : σ2 = (40.32 + 40.52 + 40.72 + 40.22+40.62) – (202.32/5) 5-1 = 0.043 2. Periksa interaksi dalam model : β12 = ¼[(1x39.3)+(1x41.5)+(-1x40.0)+(-1x40.9)] = ¼ (-0.1) = - 0.025. Sum square interaksi : SS interaksi = (-0.1)2/4 = 0.0025 Hitung nilai F statistik : F = SS interaksi/ σ2 = 0.0025/0.043 = 0.058. Kesimpulan F statistik kecil, sehingga interaksi diabaikan.
  • 16. 3. Periksa efek kuadratik : β11 + β22 = ȳF – ȳC = 40.425 – 40.46 = -0.035 Sum square kuadratik murni : SS kuadratik = (nFnC(ȳF – ȳC )2 )/nF +nC) = 4(5)(-0.035)2 = 0.0027 9 Hitung nilai F statistik : F = SS kuadratik/ σ2 = 0.0027/0.043 = 0.063. Kesimpulan F statistik kecil, sehingga interaksi diabaikan.
  • 17. Metode steepest ascent • Berdasarkan model orde-1 untuk bergerak dari nilai tengah (x1=0, x2=0) diperlukan step 0.775 unit x1 untuk setiap 0.325 unit x2. • Kemiringan jalur = 0.325/0.775. • Besarnya step Δx1 = 1 ; Δx2 = 0.325/0.775 = 0.42 • Lakukan prosedur step ascent dengan menambahkan nilai tengah dengan besarnya step sampai didapatkan response yang menurun. •
  • 18. Step Variabel dikodekan Variabel aktual Response x1 x2 ξ1 ξ2 y Origin 0 0 -1 -1 39.3 Δ 1.0 0.42 -1 1 40.0 Origin+Δ 1.0 0.42 1 -1 40.9 Origin+2Δ 2.0 160 1 1 41.5 Origin+3Δ 3.0 155 0 0 40.3 Origin+4Δ 4.0 155 0 0 40.5 Origin+5Δ 5.0 155 0 0 40.7 Origin+6Δ 6.0 155 0 0 40.2 Origin+7Δ 35 155 0 0 40.6 Origin+8Δ Origin+9Δ Origin+10Δ Origin+11Δ Origin+12Δ
  • 19. FACTORS TO CONSIDER • CRITICAL FACTORS ARE KNOWN • REGION OF INTEREST , WHERE FACTOR LEVELS INFLUENCING PRODUCT IS KNOWN • FACTORS VARY CONTINUOUSLY THROUGH- OUT THE EXPERIMENTAL RANGE TESTED • A MATHEMATICAL FUNCTION RELATES THE FACTORS TO THE MEASURED RESPONSE • THE RESPONSE DEFINED BY THE FUNCTION IS A SMOOTH CURVE
  • 20. LIMITATIONS TO RSM • LARGE VARIATIONS IN THE FACTORS CAN BE MISLEADING (ERROR, BIAS, NO REPLICATION) • CRITICAL FACTORS MAY NOT BE CORRECTLY DEFINED OR SPECIFIED • RANGE OF LEVELS OF FACTORS TO NARROW OR TO WIDE --OPTIMUM CAN NOT BE DEFINED • LACK OF USE OF GOOD STATISTICAL PRINCIPLES • OVER-RELIANCE ON COMPUTER -- MAKE SURE THE RESULTS MAKE GOOD SENSE
  • 21. POLYNOMIAL MODELS • SECOND DEGREE - ONE INDEPENDENT VARIABLE Y = bo +b1x1 + b11x12 constant term,+ linear term + quadratic term • FOR p FACTORS, THERE WILL BE ONE CONSTANT TERM, p LINEAR TERMS p QUADRATIC TERMS AND p(P-1) CROSS PRODUCT TERMS
  • 22. USES OF RSM • TO DETERMINE THE FACTOR LEVELS THAT WILL SIMULTANEOUSLY SATISFY A SET OF DESIRED SPECIFICATIONS • TO DETERMINE THE OPTIMUM COMBINATION OF FACTORS THAT YIELD A DESIRED RESPONSE AND DESCRIBES THE RESPONSE NEAR THE OPTIMUM • TO DETERMINE HOW A SPECIFIC RESPONSE IS AFFECTED BY CHANGES IN THE LEVEL OF THE FACTORS OVER THE SPECIFIED LEVELS OF INTEREST
  • 23. USES -CONTINUED • TO ACHIEVE A QUANTITATIVE UNDERSTANDING OF THE SYSTEM BEHAVIOR OVER THE REGION TESTED • TO PRODUCT PRODUCT PROPERTIES THROUGHOUT THE REGION - EVEN AT FACTOR COMBINATIONS NOT ACTUALLY RUN • TO FIND CONDITIONS FOR PROCESS STABILITY = INSENSITIVE SPOT
  • 24. PROCESS MODELS • Ym = fm(x1, x2, ….,xp) • Polynomials with a small number of terms are most desirable • Most process outputs are some sort of smooth function of the inputs • Second-degree polynomials are generally adequate
  • 25. POLYNOMIAL MODELS • POLYNOMIAL MODEL DOES A POOR JOB OF PREDICTING RESPONSE OUTSIDE THE REGION OF EXPERIMENTATION
  • 26. SIZE OF RESPONSE SURFACE MODELS NUMBER OF FACTORS RUNS IN 3 LEVEL FACT. COEF. IN FULL QUAND TRIALS IN FACE- CENTERED TRIALS IN BOX- BEHNKEN 2 9 6 11 11 3 27 10 17 15 4 81 16 27 27 5 243 21 45 46 6 729 28 81 54 7 2187 36 62
  • 27. DESIGNS • PREDICTIONS ALWAYS HAVE SOME DEGREE OF UNCERTAINTY • SHOULD HAVE REASONABLE PREDICTION THROUGHOUT THE EXPERIMENTAL RANGE • UNIFORM PREDICTIONS ERROR IS OBTAINED BY USING A DESIGN THE FILLS OUT THE REGION OF INTEREST • THE CHOICE OF EXPERIMENTAL DESIGN IS AFFECTED BY THE SHAPE OF THE EXPERIMENTAL REGION
  • 28. DESIGNS - CONTINUED • IN MOST CASES, THE REGION IS DETERMINED BY THE RANGES OF THE INDEPENDENT VARIABLE. IN THIS CASE THE REGION IS CUBICAL (IN CODED VALUES OF X) AND THE BEST DESIGN IN FACE CENTERED • IF “STANDING THE THE CENTER” AND ONE IT IS DESIRED THAT THE PRECISION OF PREDICATIONS BE INDEPENDENT OF DIRECTION FROM CENTER - THEN THE REGION IS SPHERICAL AND DESIGN OF CHOICE IS BOX-BEHNKEN
  • 29. DESIGNS - CONTINUED • BOX-BEHNKEN DESIGNS EXCLUDE THE CORNERS, WHERE ALL VARIABLE ARE SIMULTANEOUSLY AT THE MAXIMUM LEVELS - THEREFORE BOX-BEHNKEN DESIGN PERMITS A WIDER RANGE OF INDIVIDUAL RANGES. • IF THE SHAPE OF THE EXPERIMENT IS NEITHER SPHERICAL OR CUBICAL AND HAS STRONG CONSTRAINTS - THEN THE REGION MAY BE AN IRREGULAR TETRAHEDRON AND WILL REQUIRE A SPECIAL DESIGN
  • 30. FACE CENTERED CUBE FOR 3 FACTORS - • TWO-LEVEL FACTORIAL • TWO FACE CENTERED POINTS FOR EACH FACTOR • THREE OR MORE CENTER POINTS • WHEN RUN IN BLOCKS, CENTER POINTS ARE RUN WITH EACH BLOCK • FACE POINTS ARE RUNS FOR WHICH ALL FACTORS EXCEPT ONE ARE AT THE MIDDLE SETTING - AND PROVIDE THE INFORMATION NEEDED TO DETERMINE CURVATURE
  • 31. BLOCKING • IN LARGE SIZES, BOTH FACE-CENTERED CUBE AND BOX-BEHNKEN PERMIT BLOCKING. • DIFFERENCE (OR BIASES) IN THE LEVEL OF THE RESPONSES BETWEEN BLOCKS WITH NOT AFFECT ESTIMATES OF COEFFICIENTS NOR ESTIMATES OF THE FACTOR AND INTERACTION EFFECTS
  • 32. FACE CENTERED CUBE • THE MAIN PART OF THE FACE-CENTERED CUBEDESIGN IS A TWO-LEVEL FACTORIAL, WHICH FILLS OUT A CUBIC REGION • THE FACE POINTS CONSTITUTE A SEPARATE BLOCK - SO THAT THE FIRST TWO BLOCKS, WHICH COMPRISE A TWO LEVEL FACTORIAL, CAN BE RUN FIRST. • THE FACE POINTS ARE ADDED IF SERIOUS CURVITURE IS FOUND • “PIGGY BACK” APPROACH GIVES FLEXIBILITY
  • 33. FACE CENTERED CUBE • CENTER POINTS ARE NEED TO PROVIDE GOOD PREDICTORS OF CENTER OF REGION • FOR 3 OR MORE FACTORS, IT IS BEST TO USE BLOCKS -FIRST HALF-FRACTION -SECOND HALF-FRACTION -FACE POINTS
  • 34. THREE FACTOR FACE CENTEREDCUBE TRIAL X1 X2 X3 BLOCK 1 - - - 1 2 + - - 2 3 - + - 2 4 + + - 1 5 - - + 2 6 + - + 1 7 - + + 1 8 + + + 2 9 - 0 0 3 10 + 0 0 3 11 0 - 0 3 12 0 + 0 3 13 0 0 - 3 14 0 0 + 3 15 0 0 0 * 16 0 0 0 * 17 0 0 0 *
  • 35. BOX-BEHNKEN DESIGN • THE BOX-BEHNKEN DESIGN FILLS OUT A POLYHEDRON, APPROXIMATING A SPHERE • FOR 3 FACTORS (15 RUNS) THE DESIGN CONSIST OF THREE FOUR-RUN, TWO-LEVEL FACTORIALS IN TWO FACTORS, WITH THE THIRD FACTOR AT ITS MID-LEVEL AND THREE CENTER POINT - RUN IN THREE BLOCKS OF 10 RUNS
  • 36. BOX-BEHNKEN DESIGN • FOR A 3 FACTOR EXPERIMENT, THE 15 RUNS CONSIST OF THREE FOUR-RUN, TWO-LEVEL FACTORIALS IN TWO FACTORS - WITH THE THIRD FACTOR AT ITS MID-LEVEL, AND THREE CENTER POINTS. • BOX-BEHNKEN AND FACE-CENTERED CUBIC DESIGNS ARE SUBSETS OF THE FULL THREE LEVEL FACTORIAL DESIGNS. EXCEPT FOR CENTER POINTS, THEY ARE COMPLETMENTARY FRACTIONS IN THAT NO POINT IN ONE DESIGN IS IN THE OTHER DESIGN
  • 37. DESIGN CHOICE • FACE CENTERED CUBE AND BOX-BEHNKEN TAKE ABOUT THE SAME NUMBER OF EXPERIMENTS • IF TIME OR MONEY DICTATES FEWER THAT THE REQUIRED NUMBER OF INDEPENDENT VARIABLES, THEN CONSIDER - -REDUCE NUMBER OF FACTORS -TRY A SIMPLEX DESIGN -CONSIDER RUNNING A TWO-LEVEL FACTORIAL DESIGN THAT IS THE FIRST TWO BLOCKS OF THE FACE-CENTERED CUBE AND COMPLETE THE LAST BLOCKS WHEN ADDITIONAL EXPERIMENTATION IS POSSIBLE
  • 38. DESIGN CHOICES • UNREPLICATED RESPONSE SURFACE DESIGNS CAN DETECT EFFECTS ABOUT 1-2 TIMES EXPERIMENTAL ERROR. • A FEW RUNS MAY BE INCLUDED IN THE PROGRAM TO TEST HUNCHES, SPECIAL CASES, “POLITICAL PREFERENCES” OR STANDARD OR REFERENCE RUNS. UP TO 20% OF THE NUMBER OF RUNS AVAILABLE MAY BE USED FOR THIS PURPOSE - IF A GOOD STATISTICAL DESIGN IS AT THE HEART OF THE PROGRAM
  • 39. OPERABILITY REVIEW • RUNS SHOULD BE REVIEWED FOR OPERABILITY. • RUNS THAT SET ALL THE “DRIVING FORCE” VARIABLES AT MINIMUM OR MAXIMUM VALUES MAY NOT WORK • RANDOMIZATION CAN BE ALTERED TO SCHEDULE THESE RUNS EARLY TO ALLOW FOR LATTER ADJUSTMENTS • EXPLORATORY TESTING OF POTENTIAL TROUBLESOME RUNS BEFORE EXPERIMENTATION SHOULD BE CONSIDERED
  • 40. OPERABILITY REVIEW • YOU MAY FIND, PART-WAY THROUGH THE EXPERIMENT THAT SOME DESIGN POINTS WILL NOT RUN. THIS IS TRUE IS A BOUNDARY CURVE PASSES THROUGH THE EXPERIMENTAL REGION. • IF ONLY ONE OR A FEW POINTS ARE INVOLVED, THEY MAY BE MOVED TOWARDS THE CENTER, JUST ENOUGH TO BECOME OPERABLE • ALL STANDARD RESPONSE SURFACE DESIGNS ARE ROBUST AGAINST MODEST DISPLACEMENT OR A FEW DATA POINTS
  • 41. AVOIDING BLUNDERS • EXECUTE EXPERIMENT WITH CARE. SMALL STATISTICAL DESIGNS ARE SUSCEPTIBLE TO ERRORS BECAUSE EVERY RUN ESTIMATES MORE THAN ONE EFFECT • RECORD RESULTS FOR ALL RUNS • PLAN FOR ANALYSIS FROM THE BEGINNING • A COMPUTER IS GENERALLY REQUIRED FOR ANALYSIS - AND REGRESSION ANALYSIS IS THE BASIS FOR MOST ANALYTICAL PROCEDURES • MAKE SURE THE RESULTS “MAKE SENSE”
  • 42. TAKE-AWAYS • SURFACE RESPONSE SURFACE ANALYSIS PROVIDES A MEANS FOR OPTIMIZATION OF FORMULATION AND PROCESS • SELECTION OF VARIABLES AND VARIABLE LEVELS ARE CRITICAL • EACH DIFFERENT APPROACH HAS DIFFERENT ADVANTAGES AND DISADVANTAGES • MOST LARGE COMPANIES INSIST ON YOU USING THEIR TRAINED STATISTICIANS • BOTTOM LINE - DOES IN MAKE SENSE??????