The document discusses the application of transformers to computer vision tasks. It first introduces the standard transformer architecture and its use in natural language processing. It then summarizes recent works on applying transformers to object detection (DETR) and image classification (ViT). DETR proposes an end-to-end object detection method using a CNN-Transformer encoder-decoder architecture. Deformable DETR improves on DETR by incorporating deformable attention mechanisms. ViT represents images as sequences of patches and applies a standard Transformer encoder for image recognition, exceeding state-of-the-art models with less pre-training computation. While promising results have been achieved, challenges remain regarding model parameters and expanding transformer applications to other computer vision tasks.