vektor
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
2,223
On Slideshare
2,223
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
25
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. 18. VEKTOR A. Vektor Secara Geometri 1. Ruas garis berarah AB = b – a B. 3. Bila AP : PB = m : n, maka: 2. Sudut antara dua vektor adalah θ Vektor Secara Aljabar 1. Komponen dan panjang vektor: a =  a1     a2  a   3 = a1i + a2j + a3k; 2 2 |a| = a 1 + a 2 + a 3 2 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real: a±b=  a1     a2  a   3 C. Dot Product ±  b1     b2  b   3 =  a 1 ± b1     a 2 ± b2  a ± b   3 3 ; ka = k  a1     a2  a   3 =  ka1     ka 2   ka   3
  • 2. LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com Apabila diketahui a =  a1     a2  a   3 dan b =  b1     b2  b   3 , maka: 1. a · b = |a| |b| cos θ = a1b1 + a2b2 + a3b3 2. a · a = |a|2 = a1a1 + a2a2 + a3a3 3. |a + b|2 = |a|2 + |b|2 + 2|a||b| cos θ 4. |a – b|2 = |a|2 + |b|2 – 2|a||b| cos θ 5. Dua vektor saling tegak lurus jika a · b = 0 D. Proyeksi Vektor 1. Proyeksi skalar ortogonal Panjang vektor proyeksi b pada a a ⋅b |p| = |a| SOAL 1. UN 2011 PAKET 12 Diketahui titik A(5, 1, 3), B(2, –1, –1), dan C(4, 2, – 4). Besar sudut ABC = … a. π 2. Vektor proyeksi ortogonal : vektor proyeksi b pada a a ⋅b ⋅a p= | a |2 PENYELESAIAN b. π 2 c. π 3 d. π 6 e. 0 Jawab : b 2. UN 2011 PAKET 46 Diketahui segitiga ABC dengan A(2, 1, 2), B(6, 1, 2), dan C(6, 5, 2). Jika u mewakili AB dan v mewakili AC , maka sudut yang dibentuk oleh vector u dan v adalah … a. 30° b. 45° c. 60° d. 90° e. 120 204 INFORMASI PENDIDIKAN http://ibnufajar75.blogspot.com
  • 3. LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com Jawab : b 3. UN 2010 PAKET A Diberikan vektor–vektor a = 4i – 2j + 2k dan b = i + j + 2k. Besar sudut yang dibentuk vektor a dan b sama dengan … a. 30º b. 45º c. 60º d. 90º e. 120º Jawab : c 4. UN 2009 PAKET A/B Diketahui balok ABCD EFGH dengan AB = 2 cm, BC = 3 cm, dan AE = 4 cm. Jika AC wakil vektor u dan wakil DH adalah vektor v, maka sudut antara vektor u dan v adalah … a. 0° b. 30° c. 45° d. 60° e. 90° Jawab : e SOAL PENYELESAIAN 5. UN 2011 PAKET 12 Diketahui vector a = 4i – 2j + 2k dan vector b = 2i – 6j + 4k. Proyeksi vector orthogonal vector a pada vector b adalah … a. i – j + k b. i – 3j + 2k c. i – 4j + 4k d. 2i – j + k e. 6i – 8j + 6k Jawab : b 6. UN 2011 PAKET 46 Diketahui vector a = 2i – 4j – 6k dan vector b = 2i – 2j + 4k. Proyeksi vector orthogonal vector a pada vector b adalah … a. –4i + 8j + 12k b. –4i + 4j – 8k c. –2i + 2j – 4k d. –i + 2j + 3k e. –i + j – 2k Jawab : e 7. UN 2010 PAKET A Diketahui koordinat A(–4, 2, 3), B(7, 8, –1), dan C(1, 0, 7). Jika AB wakil vector u, AC wakil vektor v, maka proyeksi u pada v 205 INFORMASI PENDIDIKAN http://ibnufajar75.blogspot.com
  • 4. LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com adalah … a. 3i – 6 j + 5 b. 3 5 i – c. d. e. 12 5 6 5 k j+ 12 5 k 9 5 (5i – 2j + 4k) 27 45 (5i – 2j + 4k) 9 55 (5i – 2j + 4k) Jawab : d 8. UN 2010 PAKET B Diketahui segitiga ABC dengan koordinat A(2, –1, –1), B(–1, 4, –2), dan C(5, 0, –3). Proyeksi vektor AB pada AC adalah … a. 1 (3i + j – 2k) 4 b. c. d. 3 14 (3i + j – 2k) − 1 (3i + j – 2k) 7 3 − 14 (3i + j – 2k) 3 − 7 (3i + j – 2k) e. Jawab : c SOAL 9. UN 2009 PAKET A/B Diketahui titik A(2,7,8), B(–1,1,–1) dan C(0,3,2). Jika AB wakil vektor u dan BC wakil vektor v, maka proyeksi orthogonal vektor u pada v adalah … a. –3i – 6j – 9k b. i + 2j + 3k c. 1 i + 2 j + k 3 3 d. –9i – 18j – 27k e. 3i + 6j + 9k PENYELESAIAN Jawab : a 10. UN 2008 PAKET A/B Jika vektor a = –3i – j + xk dan vektor b = 3i – 2j + 6k. Jika panjang proyeksi vektor a pada b adalah 5, maka nilai x = … a. –7 b. –6 c. 5 d. 6 e. 7 Jawab : e 206 INFORMASI PENDIDIKAN http://ibnufajar75.blogspot.com
  • 5. LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com 11. UN 2008 PAKET A/B Jika vektor a = xi – 4j + 8k tegak lurus vektor b = 2xi + 2xj – 3k, maka nilai x yang memenuhi adalah … a. –2 atau 6 b. –3 atau 4 c. –4 atau 3 d. –6 atau 2 e. 2 atau 6 Jawab : a 12. UN 2007 PAKET A Diketahui segitiga ABC dengan titik A(2, –1, – 3), B(–1, 1, –11), dan C(4, –3, –2). Proyeksi vektor AB pada AC adalah … a. –12i + 12j – 6k b. –6i + 4j – 16k c. –4i + 4j – 2k d. –6i – 4j + 16k e. 12i – 12j + 6k Jawab : c SOAL 13. UN 2007 PAKET B Diketahui segitiga ABC dengan titik A(–2, 3, 1), B(1, –1, 0), dan C(–1, 1, 0). Proyeksi vektor AB terhadap AC adalah … a. 2i – 4j + 2k b. 2i – 4j – 2k c. 2i + 4j – 2k d. i – 2j – k e. i + 2j – k PENYELESAIAN Jawab : c 14. UN 2006 Diketahui vektor a = 6xi + 2xj – 8k, b = –4i + 8j + 10k dan c = –2i + 3j – 5k. Jika vektor a tegak lurus b maka vector a–c=… a. –58i – 20j –3k b. –58i – 23j –3k c. –62i – 20j –3k d. –62i – 23j –3k 207 INFORMASI PENDIDIKAN http://ibnufajar75.blogspot.com
  • 6. LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com e. –62i – 23j –3k Jawab : b 15. UN 2005 Diketahui segitiga ABC dengan koordinat A(2, –3, 4), B(5, 0, 1), dan C(4, 2, 5). Titik P membagi AB sehingga AP : AB = 2 : 3. Panjang vektor PC adalah … 10 a. b. 13 15 c. d. 3 2 e. 9 2 Jawab : d SOAL 16. UN 2004 Diketahui p = 6i + 7j – 6k dan q = xi + j + 4k. Jika panjang proyeksi q pada p adalah 2, maka x adalah … a. 5 6 b. c. d. PENYELESAIAN 3 2 13 2 43 6 53 6 e. Jawab : c 17. UN 2004 Diketahui a = I + 2j + 3k, b = – 3i – 2j – k, dan c = I – 2j + 3k, maka 2a + b – c = … a. 2i – 4j + 2k b. 2i + 4j – 2k c. d. –2i + 4j – 2k 2i + 4j + 2k e. –2i + 4j + 2k Jawab : e 18. UAN 2003 208 INFORMASI PENDIDIKAN http://ibnufajar75.blogspot.com
  • 7. LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com − 2    Diberikan vektor a =  p  dengan p ∈ Real    2 2 1   dan vektor b =  1  . Jika a dan b    2 membentuk sudut 60º, maka kosinus sudut antara vektor a dan a + b adalah … a. 12 7 4 b. c. d. e. 5 2 5 4 5 14 2 7 7 7 7 7 Jawab : d SOAL 19. UAN 2003 Jika w adalah hasil proyeksi orthogonal dari PENYELESAIAN 2    vektor v = − 3 terhadap vektor u =   4    209 INFORMASI PENDIDIKAN http://ibnufajar75.blogspot.com
  • 8. LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com  − 1    2  , maka w = …  − 1   1    a. − 1   3    2    d. − 4   2    0    b. − 1    − 2    − 2   e. 4    − 2    0   c. 1    2   Jawab : d 20. EBTANAS 2002 Diketahui a + b = i – j + 4k dan | a – b | = 14 . Hasil dari a · b = … a. 4 b. 2 c. 1 d. 1 2 e. 0 Jawab : c 21. EBTANAS 2002 Jika | a | = 2, | b | = 3, dan sudut (a, b) = 120º. Maka | 3a + 2b | = … 210 INFORMASI PENDIDIKAN http://ibnufajar75.blogspot.com
  • 9. LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com a. b. c. d. e. 5 6 10 12 13 Jawab : b 22. EBTANAS 2002 Proyeksi vektor ortogonal v = (1 3 3) pada u = (4 2 2) adalah … a. – 4 (2 1 1) 3 b. –(2 1 1) c. d. 4 3 (2 1 1) ( 4 1 1) 3 e. (2 1 1) Jawab : c KUMPULAN SOAL INDIKATOR 13 UN 2011 Menentukan sudut antara dua vektor. a = 6 , ( a – b ).( a + b ) 6. Diketahui =0, dan a . ( a – b ) = 3. Besar sudut antara vektor a dan b adalah …. π π 2π a. c. e. 3 6 3 1. Diberikan vektor-vektor a = 4i – 2j + 2k dan b = i + j + 2k. Besar sudut yang dibentuk vektor a dan b sama dengan … a. 30º c. 60º e. 120º b. 45º d. 90º     2. Diketahui vektor a =6 i −3 j −3 k ,     b = 2 i − j +3 k dan     c = − i − 2 j +3 k . Besar sudut antara 5    vektor a dan b + c adalah .... a. 300 c. 600 e. 1500 0 0 b. 45 d. 90     3. Diketahui vektor a = i − 2 j + 2 k dan     b = −i + j . Besar sudut antara vektor a  dan b adalah .... a. 300 c. 600 e. 1350 0 0 b. 45 d. 120 4. Diketahui balok ABCD EFGH dengan AB = 2 cm, BC = 3 cm, dan AE = 4 cm. Jika AC wakil vektor u dan wakil DH adalah vektor v, maka sudut antara vektor u dan v adalah … a. 0° c. 45° e. 90° b. 30° d. 60° b = 9 , a = 2 , 5. Diketahui a + = 5 . Besar sudut antara vektor a b dan vektor b adalah …. a. 450 c. 1200 e. 1500 0 0 b. 60 d. 135 b. π d. π 4 2 7. Diketahui titik A(5, 1, 3), B(2, –1, –1), dan C(4, 2, –4). Besar sudut ABC = … a. π c. π e. 0 3 b. π 2 d. π 6 8. Diketahui segitiga ABC dengan A(2, 1, 2), B(6, 1, 2), dan C(6, 5, 2). Jika u mewakili AB dan v mewakili AC , maka sudut yang dibentuk oleh vector u dan v adalah … a. 30° c. 60° e. 120 b. 45° d. 90° 9. Diketahui a = 3i – 2j + k dan b =2i – j + 4k. Jika a dan b membentuk sudut θ, maka nilai sin θ = .... a. 5 7 b. 2 7 c. 6 5 12 d. 6 7 6 e. 6 7 6 10. Diketahui a = i + 2j – 3k dan b = 2i + 2j – k, jika a dan b membentuk sudut θ, maka tan θ = ... . 211 INFORMASI PENDIDIKAN http://ibnufajar75.blogspot.com
  • 10. LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com a. 1 3 b. 3 14 5 5 c. 14 d. 14 1 5 e. 1 14 − 2    12. Diberikan vektor a =  p  dengan p ∈    2 2 1   Real dan vektor b =  1  . Jika a dan b    2 5 14 11. Diketahui vektor a = 6xi + 2xj – 8k, b = –4i + 8j + 10k dan c = –2i + 3j – 5k. Jika vektor a tegak lurus b maka vektor a – c = … a. –58i – 20j –3k d. –62i – 23j –3k b. –58i – 23j –3k e. –62i – 23j –3k c. –62i – 20j –3k membentuk sudut 60º, maka kosinus sudut antara vektor a dan a + b adalah … 2 a. 12 7 c. 5 7 e. 7 7 4 4 b. 5 2 7 5 d. 14 7 13. Jika vektor a = xi – 4j + 8k tegak lurus vektor b = 2xi + 2xj – 3k, maka nilai x yang memenuhi adalah … a. –2 atau 6 c. –4 atau 3 e. 2 atau 6 b. –3 atau 4 d. –6 atau 2 KUMPULAN SOAL INDIKATOR 14 UN 2011 Menentukan panjang proyeksi atau vektor proyeksi. 1. Jika w adalah hasil proyeksi orthogonal dari vektor v = 2     − 3 4    terhadap vektor u =  − 1   2   − 1   , maka w = … 212 INFORMASI PENDIDIKAN http://ibnufajar75.blogspot.com
  • 11. LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com a. 1     − 1 3    c.  0   1   2   1  2   a. 1  3    −1 1  3   − 1  2    −1 1  2   − b. 1  3    −1 e.  − 2   4   − 2   b. 2. 0     − 1  − 2   6. b. –(2 1 1) 6 5 j+ b. 3 5 i – 2     − 4 2    c. 4 (2 1 1) 3 d. ( 4 3 1  1   1  3    −1 12 5 6 5 k j+ d. 12 5 k e. 27 45 9 55 (5i – 2j + 4k) (5i – 2j + 4k) c. 9 (5i – 2j + 4k) 5 7. Diketahui titik A(2,7,8), B(–1,1,–1) dan C(0,3,2). Jika AB wakil vektor u dan BC wakil vektor v, maka proyeksi orthogonal vektor u pada v adalah … a. –3i – 6j – 9k d. –9i – 18j – 27k b. i + 2j + 3k e. 3i + 6j + 9k 1 2 c. 3 i + 3 j + k 8. Diketahui segitiga ABC dengan titik A(2, –1, – 3), B(–1, 1, –11), dan C(4, –3, –2). Proyeksi vektor AB pada AC adalah … a. –12i + 12j – 6k d. –6i – 4j + 16k b. –6i + 4j – 16k e. 12i – 12j + 6k c. –4i + 4j – 2k 9. Diketahui segitiga ABC dengan titik A(–2, 3, 1), B(1, –1, 0), dan C(–1, 1, 0). Proyeksi vektor AB terhadap AC adalah … a. 2i – 4j + 2k d. i – 2j – k b. 2i – 4j – 2k e. i + 2j – k c. 2i + 4j – 2k 10. Diketahui segitiga ABC dengan koordinat A(2, –1, –1), B(–1, 4, –2), dan C(5, 0, –3). Proyeksi vektor AB pada AC adalah … Proyeksi vektor ortogonal v = (1 3 3) pada u = (4 2 2) adalah … a. – 4 (2 1 1) 3 d. − e. Diketahui koordinat A(–4, 2, 3), B(7, 8, –1), dan C(1, 0, 7). Jika AB wakil vector u, AC wakil vektor v, maka proyeksi u pada v adalah … a. 3i – d. 1  1   c. 1  3    −1 e. (2 1 1) 1 1) Diketahui vector a = 4i – 2j + 2k dan vector b = 2i – 6j + 4k. Proyeksi vector orthogonal vector a pada vector b adalah … a. i – j + k d. 2i – j + k b. i – 3j + 2k e. 6i – 8j + 6k c. i – 4j + 4k 4. Diketahui vector a = 2i – 4j – 6k dan vector b = 2i – 2j + 4k. Proyeksi vector orthogonal vector a pada vector b adalah … a. –4i + 8j + 12k d. –i + 2j + 3k b. –4i + 4j – 8k e. –i + j – 2k c. –2i + 2j – 4k 5. Diketahui vektor a =i −2 j +k dan vektor b =i + j −k . Proyeksi ortogonal vektor a pada b adalah … 3. a. 1 (3i + j – 2k) 4 3 d. − 14 (3i + j – 2k) 3 b. 14 (3i + j – 2k) 3 e. − 7 (3i + j – 2k) 1 c. − 7 (3i + j – 2k) 2 11. Panjang proyeksi vektor a =− i +8 j +4k pada vektor b = pj +4k adalah 8. Maka nilai p adalah .... a. – 4 c. 3 e. 6 b. – 3 d. 4 12. Jika vektor a = –3i – j + xk dan vector 213 INFORMASI PENDIDIKAN http://ibnufajar75.blogspot.com
  • 12. LATIH UN Prog. IPA Edisi 2011 http://www.soalmatematik.com b = 3i – 2j + 6k. Jika panjang proyeksi vektor a pada b adalah 5, maka nilai x = … a. –7 c. 5 e. 7 b. –6 d. 6 13. Diketahui p = 6i + 7j – 6k dan q = xi + j + 4k. Jika panjang proyeksi q pada p adalah 2, maka x adalah … a. 5 6 b. 3 2 c. 13 2 d. e. 53 6 43 6 214 INFORMASI PENDIDIKAN http://ibnufajar75.blogspot.com