This document discusses sampling and sampling distributions. It begins by explaining why sampling is preferable to a census in terms of time, cost and practicality. It then defines the sampling frame as the listing of items that make up the population. Different types of samples are described, including probability and non-probability samples. Probability samples include simple random, systematic, stratified, and cluster samples. Key aspects of each type are defined. The document also discusses sampling distributions and how the distribution of sample statistics such as means and proportions can be approximated as normal even if the population is not normal, due to the central limit theorem. It provides examples of how to calculate probabilities and intervals for sampling distributions.