機械学習チュートリアル@Jubatus Casual Talks

Yuya Unno
Yuya Unno-- at Preferred Networks
機械学習チュートリアル
株式会社Preferred Infrastructure
海野  裕也 (@unnonouno)
2013/06/02
Jubatus Casual Talks #1
⾃自⼰己紹介
l  海野  裕也 (@unnonouno)
l  プリファードインフラストラクチャー
l  情報検索索、レコメンド
l  機械学習・データ解析研究開発
l  Jubatus
l  分散オンライン機械学習フレームワーク
l  専⾨門
l  ⾃自然⾔言語処理理
l  テキストマイニング
2
Googleトレンドの、このグラフは何でしょう?
3	
2011年年 2013年年
Googleトレンドの、このグラフは何でしょう?
4	
ビッグデータ
⼀一⽅方の分析技術系キーワードは・・・
データは貯めるけど分析できない・・・???
5
ところで、機械学習は・・・
6
概要
本チュートリアルではデータを解析して判断に活かすため
の技術、機械学習を説明します
l  機械学習ってどこで使われてるの?
l  機械学習が得意・不不得意な条件って?
l  機械学習って裏裏で何してるの?
7
注意
l  初めて機械学習を聞いた⼈人向けです
l  数式を使いません
l  分散の話はしません
l  ガチな⼈人は寝てて下さい
8
機械学習って何?
9
機械学習とは
l  経験(データ)によって賢くなるアルゴリズムの研究
l  データから知識識・ルールを⾃自動獲得する
l  データの適切切な表現⽅方法も獲得する
l  ⼈人⼯工知能の中で、⼈人が知識識やルールを
明⽰示的に与える⽅方法の限界から⽣生まれてきた
10
学習データ
分類モデル
例例1:スパム判定
l  メールがスパムが否かを⾃自動判定する
l  GoogleのGmailでもスパム判定は機械学習が使われてい
る
11	
スパム	
通常	
新着メール
例例2:商品推薦
l  過去の購買履履歴から類似ユーザーを探して、未購⼊入の商
品を推薦する
12	
購買履履歴
例例3:コンピュータ将棋・囲碁・チェス
13	
http://blog.livedoor.jp/yss_fpga/archives/53897129.html
詳細は鶴岡慶雅先生のチュートリアル 「自然言語処理とAI」	
l  ゲームごとに機械学習の応⽤用⼿手法が次々に進歩
l  機械の性能改善以上に⼿手法の改善が⽬目覚ましい
強い	
弱い
様々な分野に適⽤用可能
l  データから有⽤用な規則、ルール、知識識、判断基準を抽出
l  データがあるところならば、どこでも使える
l  様々な分野の問題に利利⽤用可能
14
レコメンデー
ションクラス
タリング
分類、識識別 市場予測 評判分析
情報抽出 ⽂文字認識識 ロボット 画像解析
遺伝⼦子分析
検索索ランキン
グ
⾦金金融 医療療診断
適用分野
⼈人に⽐比べて機械学習のここがいい!
l  ⼤大量量
l  ⼤大量量に処理理できる
l  機械を並べればいくらでもスケールする
l  ⾼高速
l  ⼈人間の反応速度度を超えることができる
l  ⾼高精度度
l  場合によっては⼈人間を凌凌駕するようになってきた
l  ⼈人と違って判断がブレない、疲れない
15
機械学習を活かすポイント
量量と速度度が圧倒的なポイント
l  量量
l  ⼤大量量のデータが有って⼈人⼿手で処理理できない
l  情報源が多様すぎて⼈人間では⼿手に負えない
l  速度度
l  ⼈人間よりも圧倒的に⾼高速に反応できる
l  反応速度度が重要な領領域で価値が出る
16	
いずれも⼀一般的に機械が
⼈人間より優っているポイント
機械学習が失敗するパターン
l  できない精度度を求める
l  サイコロの次の⽬目を当てることはできない
l  同じように、精度度の限界がある
l  ⼈人にとって簡単なタスクをやろうとする
l  少ない情報から推論論するのは⼈人間が得意
l  逆に⼤大量量の情報から判断する必要がある時は機械が得意
l  ボトルネックが別にある
l  アクションを取るのが⼈人だったり、⼈人が途中に介在する
l  量量と速度度のメリットをいかに活かすか
17
「機械にやらせるなら、ルールを書けばいいんじゃ
ないの?」
l  俗にルールベースと呼ばれる⽅方法
l  最初は精度度が悪いが頑張れば意外とどこまでも良良くなる
18	
「ゴルフ」 à スポーツ
「インテル」 à コンピュータ
「選挙」  à 政治
ルールに基づく判断の限界
l  ⼈人⼿手で書いたルールはすぐ複雑、膨⼤大になる
l  1万⾏行行のperlスクリプト
l  どこを変えたらいいかわからない
l  条件を追加したら何が起こるか・・・
l  複雑化したルールは引き継げなくなる
19	
「ゴルフ」and「VW」  à  ⾞車車
「インテル」and「⻑⾧長友」 à サッカー
「選挙」and「AKB」 à 芸能
ルールの管理理よりもデータの管理理を!
l  ルールは必ず管理理できなくなる
l  膨⼤大なルール
l  妥当性がわからない
l  この条件なんだっけ・・・?
l  ⼤大事なのはデータ!
l  データの正しさは⼈人間に判断できる
l  間違えたら間違えたデータを教えれば良良い
l  ルールは適⽤用できなくなるが、データは変わらない
l  「スイカ」が「⻄西⽠瓜」から「Suica」になる⽇日・・・
20
データ管理理の発想はテスト駆動開発に近い?
l  まずテストを⽤用意せよ、それを満たすルールを学習せよ
l  リファクタリング(ルールの書き換え)をしたくなって
もデータがあれば安⼼心
21	
⼊入⼒力力データ
期待される
結果
テスト⼊入⼒力力
期待される
結果
ルール
プログラム
まとめ:機械学習  vs ⼈人間  vs ルール
l  機械学習は速度度、量量、精度度、メンテナンス性のバランス
がとれている
l  ⼈人間に⽐比べて・・
l  量量と速度度に優る
l  疲れない、ぶれない、スケールする
l  ルールに⽐比べて
l  精度度に優る
l  メンテナンスできる、引き継げる、データの変化に強い
22
機械学習って何してるの?
23
機械学習の世界の分類
l  問題設定に基づく分類
l  教師有学習  / 教師無学習  / 半教師有学習 / 強化学習  など ..
l  戦うドメインの違い
l  特徴設計屋(各ドメイン毎に, NLP, Image, Bio, Music)
l  学習アルゴリズム屋(SVM, xx Bayes, CW, …)
l  理理論論屋(統計的学習理理論論、経験過程、Regret最⼩小化)
l  最適化実装屋
l  好みの違い
l  Bayesian / Frequentist / Connectionist
l  [Non-|Semi-]Parametric
24	
この⼆二つの問題設定だけは
知っておいてほしいので説明
教師有り学習
l  ⼊入⼒力力  x に対して期待される出⼒力力  y を教える
l  分析時には未知の  x に対応する  y を予測する
l  分類
l  y がカテゴリの場合
l  スパム判定、記事分類、属性推定、etc.
l  回帰
l  y が実数値の場合
l  電⼒力力消費予測、年年収予測、株価予測、etc.
25	
x y
教師無し学習
l  ⼊入⼒力力  x をたくさん与えると、⼊入⼒力力情報⾃自体の性質に関し
て何かしらの結果を返す
l  クラスタリング
l  与えられたデータをまとめあげる
l  異異常検知
l  ⼊入⼒力力データが異異常かどうかを判定する
26	
x
安易易に教師なし学習に⾶飛びつかない!
l  どのような分類基準になるか予測できない
l  結果の意味を解釈するのが難しい
27	
問:下の図形を2つのクラスタに分けなさい
教師有り学習と教師無し学習は⽬目的が違う
教師有り学習
l  ⼊入出⼒力力の対応関係を学んで、
未知の⼊入⼒力力に対して判断する
l  ⼊入⼒力力と出⼒力力を教える必要があ
る
l  ⼀一番シンプルな問題設定で汎
⽤用性が⾼高い
教師無し学習
l  データ集合⾃自体の特徴を学習
する
l  データをとにかく⼊入れれば、
すぐ動く
l  制御が難しく実⽤用上は⼤大変
l  教師あり学習の前処理理として
も使われる
28	
こっちだけ詳しく説明します
教師あり学習には推定と学習のフェーズが有る
推定するとき 学習するとき
29	
短髪
Tシャツ
チノパン
予想:男性
⻑⾧長髪
Tシャツ
チノパン
学習データ	
男性
次は当てよう
推定対象
線形分類器の推定は重み付き多数決のイメージ
l  ⼊入⼒力力データの特徴に応じて票を⼊入れていく
l  最多得票のカテゴリーに分類する
30	
特徴 男性 ⼥女女性
⻑⾧長髪 +3
短髪 +2
Tシャツ +1
ブラウス +2
ジーンズ +2
スカート +5
チノパン +3
短髪
Tシャツ
チノパン
予想:男性
推定対象	
内部に表がある
学習のステップ  1/3
l  どれが重要かわからないので、全ての重みを更更新する
l  結果的に、このデータは正しく予想できるようになる
31	
特徴 男性 ⼥女女性
⻑⾧長髪 0 à +1
短髪
Tシャツ 0 à +1
ブラウス
ジーンズ
スカート
チノパン 0 à +1
⻑⾧長髪
Tシャツ
チノパン
学習データ	
男性
初期値は全部0
学習のステップ  2/4
l  間違えるたびに正しく分類できるように更更新
32	
特徴 男性 ⼥女女性
⻑⾧長髪 +1 à 0
短髪
Tシャツ +1
ブラウス 0 à +1
ジーンズ
スカート 0 à +1
チノパン +1
⻑⾧長髪
ブラウス
スカート
学習データ	
⼥女女性
学習のステップ 3/4
l  何度度も更更新する
33	
特徴 男性 ⼥女女性
⻑⾧長髪 0 à +1
短髪
Tシャツ +1 à 0
ブラウス +1
ジーンズ
スカート +1 à +2
チノパン +1
⻑⾧長髪
Tシャツ
スカート
学習データ	
⼥女女性
学習のステップ 4/4
l  最終的にうまく分類できるところで落落ち着く
l  縦が数万〜~数百万になり、⼈人が全部調整するのは不不可能
34	
特徴 男性 ⼥女女性
⻑⾧長髪 +3
短髪 +2
Tシャツ +1
ブラウス +2
ジーンズ +2
スカート +5
チノパン +3
できた!
機械学習を更更に発展させる
l  より効率率率よく更更新する
l  オンライン学習
l  アンサンブル学習
l  より⼤大規模なデータを利利⽤用する
l  分散して学習
l  半教師有り学習
l  より複雑な特徴を利利⽤用する
l  深層学習
l  カーネル法
35	
Jubatusは、特にオンライ
ン学習と分散処理理に注⼒力力
まとめ:機械学習の仕組み
l  ⼀一⼝口に機械学習といっても⾊色々
l  ⼊入出⼒力力、設定、⽬目標、好き嫌い、様々
l  教師ありなし
l  あり:⼊入出⼒力力関係を学習する
l  なし:データの性質を学習する
l  線形分類器は重み付き多数決
36
機械学習の本領領が発揮されるのはこれから・・・
l  機械やモノ同⼠士が情報のやり取りを⾏行行う世界観がどんど
ん提唱されている
l  データに基づく意思決定ではなく、データに基づいて機
械がアクションを起こす必要がある
37
l  NTT  SIC*とPreferred  Infrastructureによる共同開発
l  2011年年10⽉月よりOSSで公開  http://jubat.us/
Jubatus
38
リアルタイム  
ストリーム 分散並列列 深い解析
*  NTT研究所  サイバーコミュニケーション研究所
  ソフトウェアイノベーションセンタ
「緩いモデル共有」による分散の仕組み
l  みんな個別に⾃自学⾃自習
l  たまに勉強会で情報交換
l  ⼀一⼈人で勉強するより効率率率がいいはず!
39	
学習器
オンライン学習
分散処理理
Jubatusの分散学習の仕組みはまた今度度!
40
ご清聴ありがとうございました
41
1 of 41

Recommended

機械学習 入門 by
機械学習 入門機械学習 入門
機械学習 入門Hayato Maki
18.4K views49 slides
一般向けのDeep Learning by
一般向けのDeep Learning一般向けのDeep Learning
一般向けのDeep LearningPreferred Networks
487.4K views28 slides
scikit-learnを用いた機械学習チュートリアル by
scikit-learnを用いた機械学習チュートリアルscikit-learnを用いた機械学習チュートリアル
scikit-learnを用いた機械学習チュートリアル敦志 金谷
212.9K views37 slides
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築 by
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tatsuya Tojima
248.7K views53 slides
ブレインパッドにおける機械学習プロジェクトの進め方 by
ブレインパッドにおける機械学習プロジェクトの進め方ブレインパッドにおける機械学習プロジェクトの進め方
ブレインパッドにおける機械学習プロジェクトの進め方BrainPad Inc.
14.5K views83 slides
失敗から学ぶ機械学習応用 by
失敗から学ぶ機械学習応用失敗から学ぶ機械学習応用
失敗から学ぶ機械学習応用Hiroyuki Masuda
51.3K views90 slides

More Related Content

What's hot

強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演) by
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)Shota Imai
2.3K views35 slides
BlackBox モデルの説明性・解釈性技術の実装 by
BlackBox モデルの説明性・解釈性技術の実装BlackBox モデルの説明性・解釈性技術の実装
BlackBox モデルの説明性・解釈性技術の実装Deep Learning Lab(ディープラーニング・ラボ)
22.5K views96 slides
ICML 2021 Workshop 深層学習の不確実性について by
ICML 2021 Workshop 深層学習の不確実性についてICML 2021 Workshop 深層学習の不確実性について
ICML 2021 Workshop 深層学習の不確実性についてtmtm otm
2.3K views56 slides
道具としての機械学習:直感的概要とその実際 by
道具としての機械学習:直感的概要とその実際道具としての機械学習:直感的概要とその実際
道具としての機械学習:直感的概要とその実際Ichigaku Takigawa
4.1K views95 slides
グラフニューラルネットワーク入門 by
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門ryosuke-kojima
51.3K views65 slides
不均衡データのクラス分類 by
不均衡データのクラス分類不均衡データのクラス分類
不均衡データのクラス分類Shintaro Fukushima
59K views34 slides

What's hot(20)

強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演) by Shota Imai
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
Shota Imai2.3K views
ICML 2021 Workshop 深層学習の不確実性について by tmtm otm
ICML 2021 Workshop 深層学習の不確実性についてICML 2021 Workshop 深層学習の不確実性について
ICML 2021 Workshop 深層学習の不確実性について
tmtm otm2.3K views
道具としての機械学習:直感的概要とその実際 by Ichigaku Takigawa
道具としての機械学習:直感的概要とその実際道具としての機械学習:直感的概要とその実際
道具としての機械学習:直感的概要とその実際
Ichigaku Takigawa4.1K views
グラフニューラルネットワーク入門 by ryosuke-kojima
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門
ryosuke-kojima51.3K views
Prophet入門【Python編】Facebookの時系列予測ツール by hoxo_m
Prophet入門【Python編】Facebookの時系列予測ツールProphet入門【Python編】Facebookの時系列予測ツール
Prophet入門【Python編】Facebookの時系列予測ツール
hoxo_m64.6K views
GAN(と強化学習との関係) by Masahiro Suzuki
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)
Masahiro Suzuki83K views
機械学習の未解決課題 by Hiroyuki Masuda
機械学習の未解決課題機械学習の未解決課題
機械学習の未解決課題
Hiroyuki Masuda3.7K views
強化学習と逆強化学習を組み合わせた模倣学習 by Eiji Uchibe
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習
Eiji Uchibe25.3K views
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat... by 西岡 賢一郎
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
西岡 賢一郎1.9K views
【メタサーベイ】基盤モデル / Foundation Models by cvpaper. challenge
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models
cvpaper. challenge16.4K views
グラフデータの機械学習における特徴表現の設計と学習 by Ichigaku Takigawa
グラフデータの機械学習における特徴表現の設計と学習グラフデータの機械学習における特徴表現の設計と学習
グラフデータの機械学習における特徴表現の設計と学習
Ichigaku Takigawa8.8K views
深層生成モデルと世界モデル(2020/11/20版) by Masahiro Suzuki
深層生成モデルと世界モデル(2020/11/20版)深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)
Masahiro Suzuki7.1K views
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an... by Deep Learning JP
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
Deep Learning JP4.7K views
KDD2021 論文読み会: Markdowns in e commerce fresh retail a counterfactual predict... by Haruka Matsuzaki
KDD2021 論文読み会: Markdowns in e commerce fresh retail  a counterfactual predict...KDD2021 論文読み会: Markdowns in e commerce fresh retail  a counterfactual predict...
KDD2021 論文読み会: Markdowns in e commerce fresh retail a counterfactual predict...
Haruka Matsuzaki285 views
Introduction to YOLO detection model by Takamitsu Oomasa
Introduction to YOLO detection modelIntroduction to YOLO detection model
Introduction to YOLO detection model
Takamitsu Oomasa62.2K views
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial) by RyuichiKanoh
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
RyuichiKanoh25.6K views
機械学習モデルの判断根拠の説明(Ver.2) by Satoshi Hara
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
Satoshi Hara47.8K views

Viewers also liked

機械学習によるデータ分析まわりのお話 by
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話Ryota Kamoshida
568.1K views75 slides
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで- by
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-Naoki Yanai
158.2K views28 slides
パターン認識 第10章 決定木 by
パターン認識 第10章 決定木 パターン認識 第10章 決定木
パターン認識 第10章 決定木 Miyoshi Yuya
140.4K views16 slides
今日から使える! みんなのクラスタリング超入門 by
今日から使える! みんなのクラスタリング超入門今日から使える! みんなのクラスタリング超入門
今日から使える! みんなのクラスタリング超入門toilet_lunch
170.3K views59 slides
バンディットアルゴリズム入門と実践 by
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践智之 村上
170.8K views106 slides
トピックモデルを用いた 潜在ファッション嗜好の推定 by
トピックモデルを用いた 潜在ファッション嗜好の推定トピックモデルを用いた 潜在ファッション嗜好の推定
トピックモデルを用いた 潜在ファッション嗜好の推定Takashi Kaneda
119.2K views28 slides

Viewers also liked(20)

機械学習によるデータ分析まわりのお話 by Ryota Kamoshida
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話
Ryota Kamoshida568.1K views
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで- by Naoki Yanai
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
Naoki Yanai158.2K views
パターン認識 第10章 決定木 by Miyoshi Yuya
パターン認識 第10章 決定木 パターン認識 第10章 決定木
パターン認識 第10章 決定木
Miyoshi Yuya140.4K views
今日から使える! みんなのクラスタリング超入門 by toilet_lunch
今日から使える! みんなのクラスタリング超入門今日から使える! みんなのクラスタリング超入門
今日から使える! みんなのクラスタリング超入門
toilet_lunch170.3K views
バンディットアルゴリズム入門と実践 by 智之 村上
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
智之 村上170.8K views
トピックモデルを用いた 潜在ファッション嗜好の推定 by Takashi Kaneda
トピックモデルを用いた 潜在ファッション嗜好の推定トピックモデルを用いた 潜在ファッション嗜好の推定
トピックモデルを用いた 潜在ファッション嗜好の推定
Takashi Kaneda119.2K views
SVMについて by mknh1122
SVMについてSVMについて
SVMについて
mknh1122276.7K views
機会学習ハッカソン:ランダムフォレスト by Teppei Baba
機会学習ハッカソン:ランダムフォレスト機会学習ハッカソン:ランダムフォレスト
機会学習ハッカソン:ランダムフォレスト
Teppei Baba156.9K views
Simple perceptron by TJO by Takashi J OZAKI
Simple perceptron by TJOSimple perceptron by TJO
Simple perceptron by TJO
Takashi J OZAKI207.9K views
ロジスティック回帰の考え方・使い方 - TokyoR #33 by horihorio
ロジスティック回帰の考え方・使い方 - TokyoR #33ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33
horihorio281.6K views
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京 by Koichi Hamada
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
Koichi Hamada289K views
Pythonとdeep learningで手書き文字認識 by Ken Morishita
Pythonとdeep learningで手書き文字認識Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識
Ken Morishita197.5K views
TensorFlow を使った 機械学習ことはじめ (GDG京都 機械学習勉強会) by 徹 上野山
TensorFlow を使った機械学習ことはじめ (GDG京都 機械学習勉強会)TensorFlow を使った機械学習ことはじめ (GDG京都 機械学習勉強会)
TensorFlow を使った 機械学習ことはじめ (GDG京都 機械学習勉強会)
徹 上野山319.6K views
機械学習概論 講義テキスト by Etsuji Nakai
機械学習概論 講義テキスト機械学習概論 講義テキスト
機械学習概論 講義テキスト
Etsuji Nakai133.5K views
Chainerチュートリアル -v1.5向け- ViEW2015 by Ryosuke Okuta
Chainerチュートリアル -v1.5向け- ViEW2015Chainerチュートリアル -v1.5向け- ViEW2015
Chainerチュートリアル -v1.5向け- ViEW2015
Ryosuke Okuta114.6K views
Deep Learningと画像認識   ~歴史・理論・実践~ by nlab_utokyo
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~
nlab_utokyo355.6K views
実戦投入する機械学習 by Takahiro Kubo
実戦投入する機械学習実戦投入する機械学習
実戦投入する機械学習
Takahiro Kubo85.9K views
ルールベースから機械学習への道 公開用 by nishio
ルールベースから機械学習への道 公開用ルールベースから機械学習への道 公開用
ルールベースから機械学習への道 公開用
nishio92.6K views

Similar to 機械学習チュートリアル@Jubatus Casual Talks

tut_pfi_2012 by
tut_pfi_2012tut_pfi_2012
tut_pfi_2012Preferred Networks
3.7K views71 slides
(道具としての)データサイエンティストのつかい方 by
(道具としての)データサイエンティストのつかい方(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方Shohei Hido
8.3K views43 slides
予測型戦略を知るための機械学習チュートリアル by
予測型戦略を知るための機械学習チュートリアル予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアルYuya Unno
23.7K views141 slides
Jubatusにおける大規模分散オンライン機械学習 by
Jubatusにおける大規模分散オンライン機械学習Jubatusにおける大規模分散オンライン機械学習
Jubatusにおける大規模分散オンライン機械学習Preferred Networks
14.4K views29 slides
機械学習CROSS 前半資料 by
機械学習CROSS 前半資料機械学習CROSS 前半資料
機械学習CROSS 前半資料Shohei Hido
18.7K views69 slides
Jubatusの紹介@第6回さくさくテキストマイニング by
Jubatusの紹介@第6回さくさくテキストマイニングJubatusの紹介@第6回さくさくテキストマイニング
Jubatusの紹介@第6回さくさくテキストマイニングYuya Unno
4.7K views27 slides

Similar to 機械学習チュートリアル@Jubatus Casual Talks(20)

(道具としての)データサイエンティストのつかい方 by Shohei Hido
(道具としての)データサイエンティストのつかい方(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方
Shohei Hido8.3K views
予測型戦略を知るための機械学習チュートリアル by Yuya Unno
予測型戦略を知るための機械学習チュートリアル予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル
Yuya Unno23.7K views
Jubatusにおける大規模分散オンライン機械学習 by Preferred Networks
Jubatusにおける大規模分散オンライン機械学習Jubatusにおける大規模分散オンライン機械学習
Jubatusにおける大規模分散オンライン機械学習
Preferred Networks14.4K views
機械学習CROSS 前半資料 by Shohei Hido
機械学習CROSS 前半資料機械学習CROSS 前半資料
機械学習CROSS 前半資料
Shohei Hido18.7K views
Jubatusの紹介@第6回さくさくテキストマイニング by Yuya Unno
Jubatusの紹介@第6回さくさくテキストマイニングJubatusの紹介@第6回さくさくテキストマイニング
Jubatusの紹介@第6回さくさくテキストマイニング
Yuya Unno4.7K views
順序データでもベイズモデリング by . .
順序データでもベイズモデリング順序データでもベイズモデリング
順序データでもベイズモデリング
. .12.7K views
Jubatusの特徴変換と線形分類器の仕組み by JubatusOfficial
Jubatusの特徴変換と線形分類器の仕組みJubatusの特徴変換と線形分類器の仕組み
Jubatusの特徴変換と線形分類器の仕組み
JubatusOfficial6.9K views
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平 by Preferred Networks
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Preferred Networks7.4K views
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction by Deep Learning JP
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
Deep Learning JP2.8K views
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17 by Yuya Unno
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Yuya Unno5.5K views
【論文紹介】How Powerful are Graph Neural Networks? by Masanao Ochi
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?
Masanao Ochi3.9K views
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太 by Preferred Networks
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
Preferred Networks4.4K views
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9 by Yuya Unno
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Yuya Unno13.7K views
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについて by Masahiro Suzuki
深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについて
Masahiro Suzuki5.1K views
深層学習フレームワークChainerの特徴 by Yuya Unno
深層学習フレームワークChainerの特徴深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴
Yuya Unno59.4K views
【論文調査】XAI技術の効能を ユーザ実験で評価する研究 by Satoshi Hara
【論文調査】XAI技術の効能を ユーザ実験で評価する研究【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
Satoshi Hara5.1K views
forestFloorパッケージを使ったrandomForestの感度分析 by Satoshi Kato
forestFloorパッケージを使ったrandomForestの感度分析forestFloorパッケージを使ったrandomForestの感度分析
forestFloorパッケージを使ったrandomForestの感度分析
Satoshi Kato10.6K views
データサイエンス概論第一=8 パターン認識と深層学習 by Seiichi Uchida
データサイエンス概論第一=8 パターン認識と深層学習データサイエンス概論第一=8 パターン認識と深層学習
データサイエンス概論第一=8 パターン認識と深層学習
Seiichi Uchida5.8K views

More from Yuya Unno

深層学習で切り拓くパーソナルロボットの未来 by
深層学習で切り拓くパーソナルロボットの未来深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来Yuya Unno
6K views69 slides
深層学習時代の 自然言語処理ビジネス by
深層学習時代の自然言語処理ビジネス深層学習時代の自然言語処理ビジネス
深層学習時代の 自然言語処理ビジネスYuya Unno
19.4K views22 slides
ベンチャー企業で言葉を扱うロボットの研究開発をする by
ベンチャー企業で言葉を扱うロボットの研究開発をするベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をするYuya Unno
7.4K views76 slides
PFNにおける セミナー活動 by
PFNにおけるセミナー活動PFNにおけるセミナー活動
PFNにおける セミナー活動Yuya Unno
4.8K views12 slides
深層学習フレームワーク Chainerとその進化 by
深層学習フレームワークChainerとその進化深層学習フレームワークChainerとその進化
深層学習フレームワーク Chainerとその進化Yuya Unno
3.9K views32 slides
進化するChainer by
進化するChainer進化するChainer
進化するChainerYuya Unno
6.7K views18 slides

More from Yuya Unno(20)

深層学習で切り拓くパーソナルロボットの未来 by Yuya Unno
深層学習で切り拓くパーソナルロボットの未来深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来
Yuya Unno6K views
深層学習時代の 自然言語処理ビジネス by Yuya Unno
深層学習時代の自然言語処理ビジネス深層学習時代の自然言語処理ビジネス
深層学習時代の 自然言語処理ビジネス
Yuya Unno19.4K views
ベンチャー企業で言葉を扱うロボットの研究開発をする by Yuya Unno
ベンチャー企業で言葉を扱うロボットの研究開発をするベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をする
Yuya Unno7.4K views
PFNにおける セミナー活動 by Yuya Unno
PFNにおけるセミナー活動PFNにおけるセミナー活動
PFNにおける セミナー活動
Yuya Unno4.8K views
深層学習フレームワーク Chainerとその進化 by Yuya Unno
深層学習フレームワークChainerとその進化深層学習フレームワークChainerとその進化
深層学習フレームワーク Chainerとその進化
Yuya Unno3.9K views
進化するChainer by Yuya Unno
進化するChainer進化するChainer
進化するChainer
Yuya Unno6.7K views
深層学習による機械とのコミュニケーション by Yuya Unno
深層学習による機械とのコミュニケーション深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーション
Yuya Unno12.7K views
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L... by Yuya Unno
最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...
Yuya Unno5.5K views
Chainer, Cupy入門 by Yuya Unno
Chainer, Cupy入門Chainer, Cupy入門
Chainer, Cupy入門
Yuya Unno68.1K views
Chainerのテスト環境とDockerでのCUDAの利用 by Yuya Unno
Chainerのテスト環境とDockerでのCUDAの利用Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用
Yuya Unno16.5K views
子供の言語獲得と機械の言語獲得 by Yuya Unno
子供の言語獲得と機械の言語獲得子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得
Yuya Unno35.7K views
NIP2015読み会「End-To-End Memory Networks」 by Yuya Unno
NIP2015読み会「End-To-End Memory Networks」NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」
Yuya Unno11.5K views
Chainer入門と最近の機能 by Yuya Unno
Chainer入門と最近の機能Chainer入門と最近の機能
Chainer入門と最近の機能
Yuya Unno110K views
Chainerの使い方と 自然言語処理への応用 by Yuya Unno
Chainerの使い方と自然言語処理への応用Chainerの使い方と自然言語処理への応用
Chainerの使い方と 自然言語処理への応用
Yuya Unno30.4K views
GPU上でのNLP向け深層学習の実装について by Yuya Unno
GPU上でのNLP向け深層学習の実装についてGPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装について
Yuya Unno31.1K views
言語と知識の深層学習@認知科学会サマースクール by Yuya Unno
言語と知識の深層学習@認知科学会サマースクール言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクール
Yuya Unno26.9K views
企業における自然言語処理技術利用の最先端 by Yuya Unno
企業における自然言語処理技術利用の最先端企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端
Yuya Unno15.9K views
「知識」のDeep Learning by Yuya Unno
「知識」のDeep Learning「知識」のDeep Learning
「知識」のDeep Learning
Yuya Unno24.6K views
自然言語処理@春の情報処理祭 by Yuya Unno
自然言語処理@春の情報処理祭自然言語処理@春の情報処理祭
自然言語処理@春の情報処理祭
Yuya Unno8.4K views
ピーFIの研究開発現場 by Yuya Unno
ピーFIの研究開発現場ピーFIの研究開発現場
ピーFIの研究開発現場
Yuya Unno8K views

機械学習チュートリアル@Jubatus Casual Talks