SlideShare a Scribd company logo
scikit-learnを用いた!
機械学習チュートリアル
金谷 敦志!
2014-03-13
"1
自己紹介
金谷 敦志 (Twitter: @todogzm)!
株式会社ラクス

北米市場向けWebサービス

Rigniteの開発に従事
"2
自己紹介
Python歴は1年半!
テキスト分類にPythonを使用!
recurly-client-pythonのPython 2/3対応!
Check.iO Level 10!
http://www.checkio.org/user/todogzm/
"3
目次
scikit-learnについて!
機械学習チュートリアル!
scikit-learnを用いたテキスト分類
"4
scikit-learnについて
"5
機械学習ライブラリscikit-learn
http://scikit-learn.org/!
Pythonで作られた機械学習ライブラリ!
豊富な分類器と(ほぼ)統一化されたAPI!
検証作業を支える機能!
Numpy, Scipyを使用した高速な演算
"6
インストール要件
Python 2.6以上 (3.3でも使える)!
必要なライブラリ!
NumPy (>=1.3)!
SciPy (>=0.7)!
matplotlib (可視化したい場合)!
See http://scikit-learn.org/stable/install.html!
実際の使い方はあとで!
"7
機械学習チュートリアル
"8
機械学習とは
定義!
Wikipediaの機械学習より

”明示的にプログラムしなくても学習する

能力をコンピューターに与える研究分野”!
データから知識・ルールを自動確保
"9
身の回りにある機械学習の事例
スパム判定: メールがスパムか否かを判定!
リコメンド:「この商品を買った人はこんな
商品も買っています」!
画像認識: Picasaの顔認識機能など
"10
機械学習が得意とする問題
大量のデータを使って、未知のデータを分類!
!
※少量データなら人間が頑張った方が早い!
「九条グループ代表・九条麗子」からの10億円支援が

私の迷惑メールの中で話題に!!
九条麗子という単語があればスパム、というパターンを作成!
でもパターンが増えてきたら…?
"11
機械学習の分類
教師付き!
正解データが与えられている!
未知のデータに対する予測を行う!
教師なし!
正解データが与えられていない!
未知のデータから規則性を発見する
"12
今日の話題は
こっち
機械学習を実際に使うには
学習問題を数理的に捉える!
入力の数理的な表現の決定!
出力の表現方法の決定!
教師付き学習か教師なし学習か?!
学習方法に合わせた分類器の選定
"13
入力の数理的な表現
入力内容から特徴となる要素を
取り出し特徴ベクトルを作る!
特徴とは? →解きたい問題次第!
例:8x8の数値画像!
64次元のベクトルとして表現!
黒が0、白を15とした16段階
"14
[0, 0, 5, 13, 9, 1, 0, 0,
0, 0, 13, 15, 10, 15, 5, 0,
0, 3, 15, 2, 0, 11, 8, 0,
0, 4, 12, 0, 0, 8, 8, 0,
0, 5, 8, 0, 0, 9, 8, 0,
0, 4, 11, 0, 1, 12, 7, 0,
0, 2, 14, 5, 10, 12, 0, 0,
0, 0, 6, 13, 10, 0, 0, 0]
入力の数理的な表現
教師付き学習の場合!
入力と、それに対する出力(正解)のペアをた
くさん用意する!
たくさん:多ければ多いほうが望ましいが
1000以上は欲しい
"15
出力の表現
期待する結果を洗い出し、数値化する!
数値は意味がある場合と単なるラベリングの場
合がある!
数値画像の例であれば、0∼9!
ラベルの例

みかん → 1, りんご → 2, バナナ → 3, …
"16
分類器の選定
予測したい (教師付き学習)!
サポートベクターマシン (バッチ学習)!
パーセプトロン (逐次学習)!
発見したい (教師なし学習)!
k最近傍法
"17
scikit-learnの分類器選定チートシート
"18
サポートベクターマシン
SVMやサポートベクトルマ
シンとも呼ばれる!
基本的には2値の分類器!
2つのパターンを分ける際
に、各データ点との距離が
最大となる識別面を計算
(マージン最大化)
"19
サポートベクターマシン
未知のデータについては、
識別面のどちら側にあるか
で分類する!
!
右の図は線形分類できる例!
できない場合には、条件を
緩める
"20
黒丸
白丸
scikit-learnを用いた

テキスト分類
"21
例題:感情解析
ある意見がポジティブかネガティブかを予測!
英語のデータセットがいくつかある!
今回はこの中からpolarity dataset v2.0 を使用
(Positive, Negativeそれぞれ1000件)!
https://www.cs.cornell.edu/people/pabo/
movie-review-data/
"22
出力と分類器は良いが入力は…
入力の数理的な表現の決定

→ 自然文をどう扱うか?!
出力の表現方法の決定

→ Pos を+1, Negを-1!
教師付き学習か教師なし学習か?

→ 教師付き学習の分類器をいくつか試す
"23
入力の表現
単語を出現回数で数え
上げる。順序は無視
(Bag of Wordsモデル)!
(Pos) I’m really
loving this film.!
(Neg) I hate this film
because the film
really …
"24
文章 #1! #2
I 1
I'm 1
because 1
film 1 2
hate 1
loving 1
really 1 1
the 1
this 1 1
教師付き学習の場合
学習用のデータにつ
いて、与える入力に
対する出力も合わせ
て教える!
機械学習は、各ラベ
ルに現れる単語の出
現確率を考慮して学
習する
"25
文章 Pos #1 Neg #2
I 1
I'm 1
because 1
film 1 2
hate 1
loving 1
really 1 1
the 1
this 1 1
その他考慮すべき点
1単語か複数単語か!
ストップワードを含めるか含めないか!
トリミングするかしないか(日本語は?)!
Bag of Wordsで本当にいいの?!
単語の重み付けは出現回数かtf*idfモデルか!
ラベルに一度も含まれていない単語の扱い!
etc…
"26
特定の文書集合によ
く現れる単語を重要
視するモデル
入力部の実装
text_listには学習用テキストのリストが入る!
TfidfVectorizerにより、テキストをtf*idfモデル化!
1単語または2単語を用いてベクトル化!
英語をストップワードに追加
"27
from sklearn.feature_extraction.text import TfidfVectorizer
!
text_list = [(テキストのリスト)]
!
vectorizer = TfidfVectorizer(
ngram_range=(1, 2), stop_words='english')
X = vectorizer.fit_transform(text_list)
SVMによる学習
入力のリストと期待される結果のリストを渡し、fit()メ
ソッドで学習する!
分類器には線形SVMを使用!
他の分類器にするにはLinearSVCを他に変える
"28
from sklearn import svm
!
answer_list = [(text_listの各データに対するラベル)]
!
svc = svm.LinearSVC() # 線形SVM
svc.fit(X, answer_list) # 学習
未知のデータへの予測
未知のデータを学習時と同じようにモデル化する!
学習済みの分類器に未知のデータを渡す!
結果は期待する出力を数値化した値

今回の例では、Pos → +1, Neg → -1
"29
text_list = vectorizer.transform([(テキスト)])
!
result_list = svc.predict(text_list)
精度がわからない
交差検定!
学習用データをいくつかに分けて、一部を学習用、残りを性能
評価用に使用!
cross_val_scoreに分類器、学習用モデルと期待する結果を渡せ
ば3回評価した結果を返す!
複数パラメータを組み合わせて検証するグリッドサーチも便利
"30
from numpy import array
!
svc = svm.LinearSVC()
scores = cross_validation.cross_val_score(svc, X, array(y))
分類器の評価が遅い
計算時間や精度に影響を及ぼす 「次元の呪い」!
1単語のみ → 単語数4万!
1単語と2単語 → 53万! (10倍以上)!
潜在的意味解析による次元圧縮!
同じような意味の単語を同じものとして扱う
"31
from sklearn.decomposition import TruncatedSVD
!
X = vectorizer.fit_transform(text_list)
lsa = TruncatedSVD(1000) # 1000次元まで削減
X_lsa = lsa.fit_transform(X)
他の分類器も使いたい
今回の例はテキスト分類!
分類器選定チートシートでオススメされた
Naive Bayesも交差検定したい
"32
from sklearn.naive_bayes import GaussianNB
!
gnb = GaussianNB()
scores = cross_validation.cross_val_score(
gnb, X.toarray(), array(y))
# Xそのままはダメとな…
SVMとNaive Bayesの精度比較
"33
方式 SVM SVM
Naive
Bayes
単語数 1~2単語 1単語 1~2単語
次元削減 なし(53万) 1000次元 なし
重み付け tf*idf tf*idf tf*idf
正解率 82% 80% 72%
分類器選定チートシートに従いNaive Bayesも評価した結果…
まとめ
"34
機械学習のまとめ
データから知識・ルールを確保するための計算方法!
教師付き学習(予測)と教師なし学習(発見)!
入力と求めたい出力から、教師付き/なしが決まり、合わ
せて分類器も決まる!
教師付き学習の分類器にはサポートベクターマシンを始め
として色々ある!
scikit-learnには機械学習に取り掛かりやすい環境がある
"35
今回扱っていない内容
分類器の詳細な説明!
教師なし学習の例!
実際に機械学習を行う上で直面する問題!
教師用データの集め方!
計算機リソースの問題(CPUやメモリ使用量)!
etc…
"36
参考文献・Web資料
書籍!
はじめてのパターン認識 (平井有三著)!
Web資料!
機械学習チュートリアル@Jubatas Casual Talks!
拡がる 機械学習の応用 (東京大学 鹿島久嗣)!
pythonの機械学習ライブラリscikit-learnの紹介
"37

More Related Content

What's hot

機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
Kota Matsui
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話
Ryota Kamoshida
 
5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnet5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnetNagi Teramo
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
Motokawa Tetsuya
 
ユーザーサイド情報検索システム
ユーザーサイド情報検索システムユーザーサイド情報検索システム
ユーザーサイド情報検索システム
joisino
 
劣モジュラ最適化と機械学習1章
劣モジュラ最適化と機械学習1章劣モジュラ最適化と機械学習1章
劣モジュラ最適化と機械学習1章
Hakky St
 
大規模な組合せ最適化問題に対する発見的解法
大規模な組合せ最適化問題に対する発見的解法大規模な組合せ最適化問題に対する発見的解法
大規模な組合せ最適化問題に対する発見的解法
Shunji Umetani
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門Shuyo Nakatani
 
木と電話と選挙(causalTree)
木と電話と選挙(causalTree)木と電話と選挙(causalTree)
木と電話と選挙(causalTree)
Shota Yasui
 
相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心takehikoihayashi
 
数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理
Taiji Suzuki
 
質的変数の相関・因子分析
質的変数の相関・因子分析質的変数の相関・因子分析
質的変数の相関・因子分析
Mitsuo Shimohata
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
Ken'ichi Matsui
 
階層的クラスタリング入門の入門
階層的クラスタリング入門の入門階層的クラスタリング入門の入門
階層的クラスタリング入門の入門
Mas Kot
 
方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用
Ryo Iwaki
 
“機械学習の説明”の信頼性
“機械学習の説明”の信頼性“機械学習の説明”の信頼性
“機械学習の説明”の信頼性
Satoshi Hara
 
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
Kenyu Uehara
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
hoxo_m
 
ブラックボックス最適化とその応用
ブラックボックス最適化とその応用ブラックボックス最適化とその応用
ブラックボックス最適化とその応用
gree_tech
 
機械学習と主成分分析
機械学習と主成分分析機械学習と主成分分析
機械学習と主成分分析
Katsuhiro Morishita
 

What's hot (20)

機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話
 
5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnet5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnet
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
 
ユーザーサイド情報検索システム
ユーザーサイド情報検索システムユーザーサイド情報検索システム
ユーザーサイド情報検索システム
 
劣モジュラ最適化と機械学習1章
劣モジュラ最適化と機械学習1章劣モジュラ最適化と機械学習1章
劣モジュラ最適化と機械学習1章
 
大規模な組合せ最適化問題に対する発見的解法
大規模な組合せ最適化問題に対する発見的解法大規模な組合せ最適化問題に対する発見的解法
大規模な組合せ最適化問題に対する発見的解法
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
 
木と電話と選挙(causalTree)
木と電話と選挙(causalTree)木と電話と選挙(causalTree)
木と電話と選挙(causalTree)
 
相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心
 
数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理
 
質的変数の相関・因子分析
質的変数の相関・因子分析質的変数の相関・因子分析
質的変数の相関・因子分析
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
 
階層的クラスタリング入門の入門
階層的クラスタリング入門の入門階層的クラスタリング入門の入門
階層的クラスタリング入門の入門
 
方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用
 
“機械学習の説明”の信頼性
“機械学習の説明”の信頼性“機械学習の説明”の信頼性
“機械学習の説明”の信頼性
 
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
 
ブラックボックス最適化とその応用
ブラックボックス最適化とその応用ブラックボックス最適化とその応用
ブラックボックス最適化とその応用
 
機械学習と主成分分析
機械学習と主成分分析機械学習と主成分分析
機械学習と主成分分析
 

Viewers also liked

Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識
Ken Morishita
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual TalksYuya Unno
 
Chainerチュートリアル -v1.5向け- ViEW2015
Chainerチュートリアル -v1.5向け- ViEW2015Chainerチュートリアル -v1.5向け- ViEW2015
Chainerチュートリアル -v1.5向け- ViEW2015
Ryosuke Okuta
 
TensorFlow を使った 機械学習ことはじめ (GDG京都 機械学習勉強会)
TensorFlow を使った機械学習ことはじめ (GDG京都 機械学習勉強会)TensorFlow を使った機械学習ことはじめ (GDG京都 機械学習勉強会)
TensorFlow を使った 機械学習ことはじめ (GDG京都 機械学習勉強会)
徹 上野山
 
機械学習概論 講義テキスト
機械学習概論 講義テキスト機械学習概論 講義テキスト
機械学習概論 講義テキスト
Etsuji Nakai
 
Deep Learningと画像認識   ~歴史・理論・実践~
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~
nlab_utokyo
 
10分でわかるPythonの開発環境
10分でわかるPythonの開発環境10分でわかるPythonの開発環境
10分でわかるPythonの開発環境
Hisao Soyama
 
「Python言語」はじめの一歩 / First step of Python
「Python言語」はじめの一歩 / First step of Python「Python言語」はじめの一歩 / First step of Python
「Python言語」はじめの一歩 / First step of Python
Takanori Suzuki
 
python-twitterを用いたTwitterデータ収集
python-twitterを用いたTwitterデータ収集python-twitterを用いたTwitterデータ収集
python-twitterを用いたTwitterデータ収集Hikaru Takemura
 
PythonとRによるデータ分析環境の構築と機械学習によるデータ認識
PythonとRによるデータ分析環境の構築と機械学習によるデータ認識PythonとRによるデータ分析環境の構築と機械学習によるデータ認識
PythonとRによるデータ分析環境の構築と機械学習によるデータ認識
Katsuhiro Morishita
 
PythonによるWebスクレイピング入門
PythonによるWebスクレイピング入門PythonによるWebスクレイピング入門
PythonによるWebスクレイピング入門
Hironori Sekine
 
野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp
野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp
野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp
Shinichi Nakagawa
 
Python 機械学習プログラミング データ分析ライブラリー解説編
Python 機械学習プログラミング データ分析ライブラリー解説編Python 機械学習プログラミング データ分析ライブラリー解説編
Python 機械学習プログラミング データ分析ライブラリー解説編
Etsuji Nakai
 
Python東海Vol.5 IPythonをマスターしよう
Python東海Vol.5 IPythonをマスターしようPython東海Vol.5 IPythonをマスターしよう
Python東海Vol.5 IPythonをマスターしよう
Hiroshi Funai
 
RとPythonによるデータ解析入門
RとPythonによるデータ解析入門RとPythonによるデータ解析入門
RとPythonによるデータ解析入門Atsushi Hayakawa
 
Pythonで簡単ネットワーク分析
Pythonで簡単ネットワーク分析Pythonで簡単ネットワーク分析
Pythonで簡単ネットワーク分析
antibayesian 俺がS式だ
 
Scikit learnで学ぶ機械学習入門
Scikit learnで学ぶ機械学習入門Scikit learnで学ぶ機械学習入門
Scikit learnで学ぶ機械学習入門
Takami Sato
 
Gensim
GensimGensim
Gensim
saireya _
 
一般向けのDeep Learning
一般向けのDeep Learning一般向けのDeep Learning
一般向けのDeep Learning
Preferred Networks
 
SVMについて
SVMについてSVMについて
SVMについて
mknh1122
 

Viewers also liked (20)

Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks
 
Chainerチュートリアル -v1.5向け- ViEW2015
Chainerチュートリアル -v1.5向け- ViEW2015Chainerチュートリアル -v1.5向け- ViEW2015
Chainerチュートリアル -v1.5向け- ViEW2015
 
TensorFlow を使った 機械学習ことはじめ (GDG京都 機械学習勉強会)
TensorFlow を使った機械学習ことはじめ (GDG京都 機械学習勉強会)TensorFlow を使った機械学習ことはじめ (GDG京都 機械学習勉強会)
TensorFlow を使った 機械学習ことはじめ (GDG京都 機械学習勉強会)
 
機械学習概論 講義テキスト
機械学習概論 講義テキスト機械学習概論 講義テキスト
機械学習概論 講義テキスト
 
Deep Learningと画像認識   ~歴史・理論・実践~
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~
 
10分でわかるPythonの開発環境
10分でわかるPythonの開発環境10分でわかるPythonの開発環境
10分でわかるPythonの開発環境
 
「Python言語」はじめの一歩 / First step of Python
「Python言語」はじめの一歩 / First step of Python「Python言語」はじめの一歩 / First step of Python
「Python言語」はじめの一歩 / First step of Python
 
python-twitterを用いたTwitterデータ収集
python-twitterを用いたTwitterデータ収集python-twitterを用いたTwitterデータ収集
python-twitterを用いたTwitterデータ収集
 
PythonとRによるデータ分析環境の構築と機械学習によるデータ認識
PythonとRによるデータ分析環境の構築と機械学習によるデータ認識PythonとRによるデータ分析環境の構築と機械学習によるデータ認識
PythonとRによるデータ分析環境の構築と機械学習によるデータ認識
 
PythonによるWebスクレイピング入門
PythonによるWebスクレイピング入門PythonによるWebスクレイピング入門
PythonによるWebスクレイピング入門
 
野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp
野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp
野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp
 
Python 機械学習プログラミング データ分析ライブラリー解説編
Python 機械学習プログラミング データ分析ライブラリー解説編Python 機械学習プログラミング データ分析ライブラリー解説編
Python 機械学習プログラミング データ分析ライブラリー解説編
 
Python東海Vol.5 IPythonをマスターしよう
Python東海Vol.5 IPythonをマスターしようPython東海Vol.5 IPythonをマスターしよう
Python東海Vol.5 IPythonをマスターしよう
 
RとPythonによるデータ解析入門
RとPythonによるデータ解析入門RとPythonによるデータ解析入門
RとPythonによるデータ解析入門
 
Pythonで簡単ネットワーク分析
Pythonで簡単ネットワーク分析Pythonで簡単ネットワーク分析
Pythonで簡単ネットワーク分析
 
Scikit learnで学ぶ機械学習入門
Scikit learnで学ぶ機械学習入門Scikit learnで学ぶ機械学習入門
Scikit learnで学ぶ機械学習入門
 
Gensim
GensimGensim
Gensim
 
一般向けのDeep Learning
一般向けのDeep Learning一般向けのDeep Learning
一般向けのDeep Learning
 
SVMについて
SVMについてSVMについて
SVMについて
 

Similar to scikit-learnを用いた機械学習チュートリアル

GBDC 勉強会 #1 Python を用いたツール作成工数の最小化
GBDC 勉強会 #1 Python を用いたツール作成工数の最小化GBDC 勉強会 #1 Python を用いたツール作成工数の最小化
GBDC 勉強会 #1 Python を用いたツール作成工数の最小化
Yutaka Kato
 
ゼロから学ぶPython勉強会
ゼロから学ぶPython勉強会ゼロから学ぶPython勉強会
ゼロから学ぶPython勉強会
sekikazu
 
Oktavia全文検索エンジン - SphinxCon JP 2014
Oktavia全文検索エンジン - SphinxCon JP 2014Oktavia全文検索エンジン - SphinxCon JP 2014
Oktavia全文検索エンジン - SphinxCon JP 2014
Yoshiki Shibukawa
 
cs-10. Python の基礎(オブジェクト,メソッド,引数,文字列)
cs-10. Python の基礎(オブジェクト,メソッド,引数,文字列) cs-10. Python の基礎(オブジェクト,メソッド,引数,文字列)
cs-10. Python の基礎(オブジェクト,メソッド,引数,文字列)
kunihikokaneko1
 
Introduction Pycon2010
Introduction Pycon2010Introduction Pycon2010
Introduction Pycon2010
(shibao)芝尾 (kouichiro)幸一郎
 
Python for Beginners ( #PyLadiesKyoto Meetup )
Python for Beginners ( #PyLadiesKyoto Meetup )Python for Beginners ( #PyLadiesKyoto Meetup )
Python for Beginners ( #PyLadiesKyoto Meetup )
Ai Makabi
 
Pythonで機械学習をやってみる(bizpy 1/19 2022)
Pythonで機械学習をやってみる(bizpy 1/19 2022)Pythonで機械学習をやってみる(bizpy 1/19 2022)
Pythonで機械学習をやってみる(bizpy 1/19 2022)
Hirofumi Watanabe
 
入門書を読み終わったらなにしよう? 〜Python と WebAPI の使い方から学ぶ次の一歩〜 / next-step-python-programing
入門書を読み終わったらなにしよう? 〜Python と WebAPI の使い方から学ぶ次の一歩〜 / next-step-python-programing入門書を読み終わったらなにしよう? 〜Python と WebAPI の使い方から学ぶ次の一歩〜 / next-step-python-programing
入門書を読み終わったらなにしよう? 〜Python と WebAPI の使い方から学ぶ次の一歩〜 / next-step-python-programing
Kei IWASAKI
 
Stapy#22 LT
Stapy#22 LTStapy#22 LT
Stapy#22 LT
NaoY-2501
 
Mishimasyk10 iwatobipen
Mishimasyk10 iwatobipenMishimasyk10 iwatobipen
Mishimasyk10 iwatobipen
Takayuki Serizawa
 
210728 mpy
210728 mpy210728 mpy
210728 mpy
Takuya Nishimoto
 
Python パッケージの影響を歴史から理解してみよう!
Python パッケージの影響を歴史から理解してみよう!Python パッケージの影響を歴史から理解してみよう!
Python パッケージの影響を歴史から理解してみよう!
Kir Chou
 
Python札幌 2012/06/17
Python札幌 2012/06/17Python札幌 2012/06/17
Python札幌 2012/06/17Shinya Okano
 
PredictionIOのPython対応計画
PredictionIOのPython対応計画PredictionIOのPython対応計画
PredictionIOのPython対応計画
Shinsuke Sugaya
 
鳥取python勉強会 第2回
鳥取python勉強会 第2回鳥取python勉強会 第2回
鳥取python勉強会 第2回
Yuji Oyamada
 
鳥取python勉強会 第1回
鳥取python勉強会 第1回鳥取python勉強会 第1回
鳥取python勉強会 第1回
Yuji Oyamada
 
[第2版]Python機械学習プログラミング 第9章
[第2版]Python機械学習プログラミング 第9章[第2版]Python機械学習プログラミング 第9章
[第2版]Python機械学習プログラミング 第9章
Haruki Eguchi
 
Why python
Why pythonWhy python
Why python
TeppeiAkada1
 
Why python
Why pythonWhy python
Why python
TeppeiAkada1
 

Similar to scikit-learnを用いた機械学習チュートリアル (20)

GBDC 勉強会 #1 Python を用いたツール作成工数の最小化
GBDC 勉強会 #1 Python を用いたツール作成工数の最小化GBDC 勉強会 #1 Python を用いたツール作成工数の最小化
GBDC 勉強会 #1 Python を用いたツール作成工数の最小化
 
ゼロから学ぶPython勉強会
ゼロから学ぶPython勉強会ゼロから学ぶPython勉強会
ゼロから学ぶPython勉強会
 
Oktavia全文検索エンジン - SphinxCon JP 2014
Oktavia全文検索エンジン - SphinxCon JP 2014Oktavia全文検索エンジン - SphinxCon JP 2014
Oktavia全文検索エンジン - SphinxCon JP 2014
 
cs-10. Python の基礎(オブジェクト,メソッド,引数,文字列)
cs-10. Python の基礎(オブジェクト,メソッド,引数,文字列) cs-10. Python の基礎(オブジェクト,メソッド,引数,文字列)
cs-10. Python の基礎(オブジェクト,メソッド,引数,文字列)
 
Introduction Pycon2010
Introduction Pycon2010Introduction Pycon2010
Introduction Pycon2010
 
Python for Beginners ( #PyLadiesKyoto Meetup )
Python for Beginners ( #PyLadiesKyoto Meetup )Python for Beginners ( #PyLadiesKyoto Meetup )
Python for Beginners ( #PyLadiesKyoto Meetup )
 
Why python
Why pythonWhy python
Why python
 
Pythonで機械学習をやってみる(bizpy 1/19 2022)
Pythonで機械学習をやってみる(bizpy 1/19 2022)Pythonで機械学習をやってみる(bizpy 1/19 2022)
Pythonで機械学習をやってみる(bizpy 1/19 2022)
 
入門書を読み終わったらなにしよう? 〜Python と WebAPI の使い方から学ぶ次の一歩〜 / next-step-python-programing
入門書を読み終わったらなにしよう? 〜Python と WebAPI の使い方から学ぶ次の一歩〜 / next-step-python-programing入門書を読み終わったらなにしよう? 〜Python と WebAPI の使い方から学ぶ次の一歩〜 / next-step-python-programing
入門書を読み終わったらなにしよう? 〜Python と WebAPI の使い方から学ぶ次の一歩〜 / next-step-python-programing
 
Stapy#22 LT
Stapy#22 LTStapy#22 LT
Stapy#22 LT
 
Mishimasyk10 iwatobipen
Mishimasyk10 iwatobipenMishimasyk10 iwatobipen
Mishimasyk10 iwatobipen
 
210728 mpy
210728 mpy210728 mpy
210728 mpy
 
Python パッケージの影響を歴史から理解してみよう!
Python パッケージの影響を歴史から理解してみよう!Python パッケージの影響を歴史から理解してみよう!
Python パッケージの影響を歴史から理解してみよう!
 
Python札幌 2012/06/17
Python札幌 2012/06/17Python札幌 2012/06/17
Python札幌 2012/06/17
 
PredictionIOのPython対応計画
PredictionIOのPython対応計画PredictionIOのPython対応計画
PredictionIOのPython対応計画
 
鳥取python勉強会 第2回
鳥取python勉強会 第2回鳥取python勉強会 第2回
鳥取python勉強会 第2回
 
鳥取python勉強会 第1回
鳥取python勉強会 第1回鳥取python勉強会 第1回
鳥取python勉強会 第1回
 
[第2版]Python機械学習プログラミング 第9章
[第2版]Python機械学習プログラミング 第9章[第2版]Python機械学習プログラミング 第9章
[第2版]Python機械学習プログラミング 第9章
 
Why python
Why pythonWhy python
Why python
 
Why python
Why pythonWhy python
Why python
 

Recently uploaded

ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
sugiuralab
 
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
ARISE analytics
 
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
Osaka University
 
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
Osaka University
 
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobodyロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
azuma satoshi
 
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
嶋 是一 (Yoshikazu SHIMA)
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
tazaki1
 
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
Yuki Miyazaki
 
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMMハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
osamut
 
iMacwoSu_Gong_de_barabaranishitaHua_.pptx
iMacwoSu_Gong_de_barabaranishitaHua_.pptxiMacwoSu_Gong_de_barabaranishitaHua_.pptx
iMacwoSu_Gong_de_barabaranishitaHua_.pptx
kitamisetagayaxxx
 

Recently uploaded (10)

ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
 
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
 
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
 
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
 
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobodyロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
 
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
 
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
 
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMMハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
 
iMacwoSu_Gong_de_barabaranishitaHua_.pptx
iMacwoSu_Gong_de_barabaranishitaHua_.pptxiMacwoSu_Gong_de_barabaranishitaHua_.pptx
iMacwoSu_Gong_de_barabaranishitaHua_.pptx
 

scikit-learnを用いた機械学習チュートリアル