Contents
1.   簡単な自己紹介
2.   理論と現実の妥協点探し‐最適化問題と機械学習‐


        *パターン認識と機械学習入門*

         パターン認識と機械学習という
        人間の意思決定の基礎となるような
      学際的な理論の世界からの眺めを共有します
•

•
•
•


•
•
•
•
•
•

•
    
    

•

•
•
•
    
        
        


        

        

    
        

    
    
•

•


    


•
    
•
    •


        •
            •

        •
            •




    o

    o


    o

    o


    o
http://ja.wikipedia.org/wiki/
http://ja.wikipedia.org/wiki/
http://ja.wikipedia.org/wiki/
http://ja.wikipedia.org/wiki/








つまりあなたが
   アヒルと白鳥の
  雑多な集団の中から
白鳥を探し出したいのなら
•
•






    o

    o
http://mathworld.wolfram.com/TravelingSalesmanProblem.html
http://www.isgtw.org/feature/isgtw-feature-traveling-salesman-meets-distributed-computing
http://www.isgtw.org/feature/isgtw-feature-traveling-salesman-meets-distributed-computing
http://mathematica-bits.blogspot.jp/2011/01/listing-all-hamiltonian-cycles-of-graph.html
http://mathematica-bits.blogspot.jp/2011/01/listing-all-hamiltonian-cycles-of-graph.html
http://mathematica-bits.blogspot.jp/2011/01/listing-all-hamiltonian-cycles-of-graph.html










http://fsharpnews.blogspot.jp/2009/07/traveling-salesman-demo-from-fnet.html
http://fsharpnews.blogspot.jp/2009/07/traveling-salesman-demo-from-fnet.html
http://fsharpnews.blogspot.jp/2009/07/traveling-salesman-demo-from-fnet.html
http://fsharpnews.blogspot.jp/2009/07/traveling-salesman-demo-from-fnet.html
混沌としているようで
 もしかしたらコスト関数は
 最小化問題に悩むほど
複雑怪奇な姿ではないことが
 見えてくるかもしれません
それにしても
こんなつまらない話は
 「釈迦に説法」かもしれないから
  恥ずかしいしやめておこうと
思いとどまっても良さそうなものですが

Enjoy Uncertainty !
Reference
"Pattern Recognition and Machine Learning"
Christopher M. Bishop
Springer; 1st ed. 2006. Corr. 2nd printing edition (October 1,
2007)

"Truth and Probability"
Frank Plumpton Ramsey (1926)

"The physical basis of IMRT and inverse planning"
S Webb
British Journal of Radiology (2003) 76, 678-689
Wikipedia 渡辺慧
http://ja.wikipedia.org/wiki/%E6%B8%A1%E8%BE%BA%E6%85
%A7

『No Free Lunch Theorem—理想の**の探し方—』
矢吹太朗 伊庭斉志
http://www.unfindable.net/article/no_free_lunch/nfl.pdf

『量子アニーリング』
大関真之 西森秀稔 (2010)
http://www-adsys.sys.i.kyoto-u.ac.jp/mohzeki/QA.pdf

『統計的機械学習における量子アニーリング 情報統計力学の最前線
情報と揺らぎの制御の物理学を目指して』
佐藤一誠ら(2012)
http://www.slideshare.net/issei_sato/ss-12125104

パターン認識と機械学習入門