SlideShare a Scribd company logo
単純パーセプトロンの基本のき


   TJO (@TJO_datasci)
と、その前に…



 元々パーセプトロンというのは…
  – ニューロン情報処理モデルだった




 実際に脳科学の世界では重要だった時代も
  – 小脳パーセプトロンモデル
  – Marr (1969), 伊藤正男(1972)


                              1
と、その前に…



でも今は…



    パーセプトロン   =   線形識別器の基礎




                             2
と、その前に…




    パーセプトロンが分からなきゃ、
    サポートベクターマシンも分からない!



    パーセプトロンが分かれば、
    サポートベクターマシンなんて余裕!

          今も流行中、(おそらく)史上最強の
          機械学習分類器!
                          3
本日のお題は…




          線形識別器の基本のき、
          パーセプトロンを理解しよう!




                           4
簡単な例から…




       【初心者向け】
   分かりやすいパーセプトロンの例




                     5
簡単な例から…








          6
簡単な例から…








      返値          重みベクトル         入力信号
 (「±の符号」が大事!)   (こいつが学習結果)   (これから識別したいもの)



                                         7
簡単な例から…








          8
簡単な例から…








          9
簡単な例から…








       返値       重みベクトル      入力信号
    (正なら非SPAM            (メールの単語頻度)
    負ならSPAM)


                                      10
簡単な例から…








          11
簡単な例から…








          12
簡単な例から…




          「会議」は非SPAM



          「目標」は非SPAM



          「お買い得」はSPAM




                       13
簡単な例から…








          14
簡単な例から…








          15
簡単な例から…








          16
簡単な例から…








          誤判定した時の入力信号の値




                          17
簡単な例から…








          18
簡単な例から…








          19
ここからは…




    【ガチで勉強したい人向け】
  いよいよガチなパーセプトロンのお話




                      20
「識別」とは何ぞや?




             こういう2集団を
             「識別」してみたい。




                          21
「識別」とは何ぞや?




   b



                 x > a, y > b
                 とかで「識別」できるじゃん?


             a

                                  22
「識別」とは何ぞや?




             まだまだ余裕。




                       23
「識別」とは何ぞや?




             これはさすがに無理…




                          24
「識別」とは何ぞや?




             単なる「区間」を決める「不等式
             などではもはや「識別」できない




                          25
理屈を見てみよう

           そこでこういうことを考える。




                            26
理屈を見てみよう

                                           各○&△にラベルy(k)を振る。

                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
            -1         -1                                                       1
                                 -1                             1                           1
                                                                        1
          -1           -1             -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1     -1              -1
     -1                                -1 -1 -1
                -1           -1
          -1



                                                                                                27
理屈を見てみよう








           28
理屈を見てみよう



                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
            -1         -1                                                       1
                                 -1                             1                           1
                                                                        1
          -1           -1             -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1     -1              -1
     -1                                -1 -1 -1
                -1           -1
          -1



                                                                                                29
理屈を見てみよう

                                           初期化してみた。

                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
            -1         -1                                                       1
                                 -1                             1                           1
                                                                        1
          -1           -1             -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1     -1              -1
     -1                                -1 -1 -1
                -1           -1
          -1



                                                                                                30
理屈を見てみよう




 これを「始点」にして、どんどんa,b,cを変えてい
  こう。



 じゃ、どうやってa,b,cを変えていこうか?




                              31
理屈を見てみよう

                                           各○&△のラベルy(k)を見て!

                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
            -1         -1                                                       1
                                 -1                             1                           1
                                                                        1
          -1           -1             -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1     -1              -1
     -1                                -1 -1 -1
                -1           -1
          -1



                                                                                                32
理屈を見てみよう

                                           おかしいのはどれ?

                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
            -1         -1                                                       1
                                 -1                             1                           1
                                                                        1
          -1           -1             -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1     -1              -1
     -1                                -1 -1 -1
                -1           -1
          -1



                                                                                                33
理屈を見てみよう



 紫の線で囲まれたところはどうなっていた?
  – ラベルt(k)とy+cの「符号」が一致してない

 その他のところはどうなっていた?
  – ラベルt(k)とy+cの「符号」が一致している

 つまり…
  – ラベルt(k)とf(x,y)の積の符号を見れば、
    何か良いことがあるのでは?


                               34
理屈を見てみよう








           35
理屈を見てみよう



                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
            -1         -1                                                       1
                                 -1                             1                           1
                                                                        1
          -1           -1             -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1     -1              -1
     -1                                -1 -1 -1
                -1           -1
          -1



                                                                                                36
理屈を見てみよう








           37
理屈を見てみよう








           38
理屈を見てみよう

                                                        「ズレ」を減らしていこう!

                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
            -1         -1                                                       1
                                 -1                             1                           1
                                                                        1
          -1           -1             -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1     -1              -1
     -1                                -1 -1 -1
                -1           -1
          -1



                                                                                                39
理屈を見てみよう

                                                        「ズレ」を減らしていこう!

                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
            -1         -1                                                       1
                                 -1                             1                           1
                                                                        1
          -1           -1             -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1     -1              -1
     -1                                -1 -1 -1
                -1           -1
          -1



                                                                                                40
理屈を見てみよう

                                                        「ズレ」を減らしていこう!

                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
            -1         -1                                                       1
                                 -1                             1                           1
                                                                        1
          -1           -1             -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1     -1              -1
     -1                                -1 -1 -1
                -1           -1
          -1



                                                                                                41
理屈を見てみよう








           42
理屈を見てみよう








           43
理屈を見てみよう








           44
理屈を見てみよう








           45
理屈を見てみよう








           46
理屈を見てみよう

                                       こんな感じで逐次更新される。

                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
               -1      -1                                                       1
                                 -1                             1                           1
                                                                        1
           -1            -1           -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1        -1           -1
     -1                                -1 -1 -1
                -1            -1
          -1



                                                                                                47
理屈を見てみよう

                                       こんな感じで逐次更新される。

                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
               -1      -1                                                       1
                                 -1                             1                           1
                                                                        1
           -1            -1           -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1        -1           -1
     -1                                -1 -1 -1
                -1            -1
          -1



                                                                                                48
理屈を見てみよう

                                       こんな感じで逐次更新される。

                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
               -1      -1                                                       1
                                 -1                             1                           1
                                                                        1
           -1            -1           -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1        -1           -1
     -1                                -1 -1 -1
                -1            -1
          -1



                                                                                                49
理屈を見てみよう








           50
理屈を見てみよう

                                       例えば値が5とかならこんな感じ。

                                                                            1       1
                                                        1       1
                                           1                        1                       1
                                                                        1           1
                                               1            1       1
                                                                            1
                                                    1
                                           1                1           1           1
           -1        -1                                                     1
               -1      -1                                                       1
                                 -1                             1                           1
                                                                        1
           -1            -1           -1                                        1       1
                                               -1
                -1          -1         -1           -1
      -1
          -1        -1           -1
     -1                                -1 -1 -1
                -1            -1
          -1



                                                                                                51
ということで…




それでは、Pythonで組んでみましょう!

          ブログ記事へ…




                        52

More Related Content

What's hot

大規模グラフ解析のための乱択スケッチ技法
大規模グラフ解析のための乱択スケッチ技法大規模グラフ解析のための乱択スケッチ技法
大規模グラフ解析のための乱択スケッチ技法
Takuya Akiba
 
深層ガウス過程とアクセントの潜在変数表現に基づく音声合成の検討
深層ガウス過程とアクセントの潜在変数表現に基づく音声合成の検討深層ガウス過程とアクセントの潜在変数表現に基づく音声合成の検討
深層ガウス過程とアクセントの潜在変数表現に基づく音声合成の検討
Tomoki Koriyama
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
Motokawa Tetsuya
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
Shiga University, RIKEN
 
双対性
双対性双対性
双対性
Yoichi Iwata
 
顕著性マップの推定手法
顕著性マップの推定手法顕著性マップの推定手法
顕著性マップの推定手法
Takao Yamanaka
 
「統計的学習理論」第1章
「統計的学習理論」第1章「統計的学習理論」第1章
「統計的学習理論」第1章
Kota Matsui
 
深層自己符号化器+混合ガウスモデルによる教師なし異常検知
深層自己符号化器+混合ガウスモデルによる教師なし異常検知深層自己符号化器+混合ガウスモデルによる教師なし異常検知
深層自己符号化器+混合ガウスモデルによる教師なし異常検知
Chihiro Kusunoki
 
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
Deep Learning JP
 
Prml 最尤推定からベイズ曲線フィッティング
Prml 最尤推定からベイズ曲線フィッティングPrml 最尤推定からベイズ曲線フィッティング
Prml 最尤推定からベイズ曲線フィッティング
takutori
 
4 データ間の距離と類似度
4 データ間の距離と類似度4 データ間の距離と類似度
4 データ間の距離と類似度
Seiichi Uchida
 
色々なダイクストラ高速化
色々なダイクストラ高速化色々なダイクストラ高速化
色々なダイクストラ高速化
yosupo
 
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models
Deep Learning JP
 
敵対的学習に対するラデマッハ複雑度
敵対的学習に対するラデマッハ複雑度敵対的学習に対するラデマッハ複雑度
敵対的学習に対するラデマッハ複雑度
Masa Kato
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
Arithmer Inc.
 
PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)
Yasunori Ozaki
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化
gree_tech
 
最適化超入門
最適化超入門最適化超入門
最適化超入門
Takami Sato
 

What's hot (20)

Rの高速化
Rの高速化Rの高速化
Rの高速化
 
大規模グラフ解析のための乱択スケッチ技法
大規模グラフ解析のための乱択スケッチ技法大規模グラフ解析のための乱択スケッチ技法
大規模グラフ解析のための乱択スケッチ技法
 
深層ガウス過程とアクセントの潜在変数表現に基づく音声合成の検討
深層ガウス過程とアクセントの潜在変数表現に基づく音声合成の検討深層ガウス過程とアクセントの潜在変数表現に基づく音声合成の検討
深層ガウス過程とアクセントの潜在変数表現に基づく音声合成の検討
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
 
計算量
計算量計算量
計算量
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
 
双対性
双対性双対性
双対性
 
顕著性マップの推定手法
顕著性マップの推定手法顕著性マップの推定手法
顕著性マップの推定手法
 
「統計的学習理論」第1章
「統計的学習理論」第1章「統計的学習理論」第1章
「統計的学習理論」第1章
 
深層自己符号化器+混合ガウスモデルによる教師なし異常検知
深層自己符号化器+混合ガウスモデルによる教師なし異常検知深層自己符号化器+混合ガウスモデルによる教師なし異常検知
深層自己符号化器+混合ガウスモデルによる教師なし異常検知
 
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 
Prml 最尤推定からベイズ曲線フィッティング
Prml 最尤推定からベイズ曲線フィッティングPrml 最尤推定からベイズ曲線フィッティング
Prml 最尤推定からベイズ曲線フィッティング
 
4 データ間の距離と類似度
4 データ間の距離と類似度4 データ間の距離と類似度
4 データ間の距離と類似度
 
色々なダイクストラ高速化
色々なダイクストラ高速化色々なダイクストラ高速化
色々なダイクストラ高速化
 
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models
 
敵対的学習に対するラデマッハ複雑度
敵対的学習に対するラデマッハ複雑度敵対的学習に対するラデマッハ複雑度
敵対的学習に対するラデマッハ複雑度
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
 
PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化
 
最適化超入門
最適化超入門最適化超入門
最適化超入門
 

Viewers also liked

バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
智之 村上
 
トピックモデルを用いた 潜在ファッション嗜好の推定
トピックモデルを用いた 潜在ファッション嗜好の推定トピックモデルを用いた 潜在ファッション嗜好の推定
トピックモデルを用いた 潜在ファッション嗜好の推定
Takashi Kaneda
 
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
Naoki Yanai
 
パターン認識 第10章 決定木
パターン認識 第10章 決定木 パターン認識 第10章 決定木
パターン認識 第10章 決定木
Miyoshi Yuya
 
今日から使える! みんなのクラスタリング超入門
今日から使える! みんなのクラスタリング超入門今日から使える! みんなのクラスタリング超入門
今日から使える! みんなのクラスタリング超入門
toilet_lunch
 
SVMについて
SVMについてSVMについて
SVMについて
mknh1122
 
機会学習ハッカソン:ランダムフォレスト
機会学習ハッカソン:ランダムフォレスト機会学習ハッカソン:ランダムフォレスト
機会学習ハッカソン:ランダムフォレスト
Teppei Baba
 
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
Koichi Hamada
 
ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33
horihorio
 
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tatsuya Tojima
 
一般向けのDeep Learning
一般向けのDeep Learning一般向けのDeep Learning
一般向けのDeep Learning
Preferred Networks
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks
Yuya Unno
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話
Ryota Kamoshida
 
Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識
Ken Morishita
 
scikit-learnを用いた機械学習チュートリアル
scikit-learnを用いた機械学習チュートリアルscikit-learnを用いた機械学習チュートリアル
scikit-learnを用いた機械学習チュートリアル
敦志 金谷
 
Rによるデータサイエンス13「樹木モデル」
Rによるデータサイエンス13「樹木モデル」Rによるデータサイエンス13「樹木モデル」
Rによるデータサイエンス13「樹木モデル」
Takeshi Mikami
 
Pythonで機械学習入門以前
Pythonで機械学習入門以前Pythonで機械学習入門以前
Pythonで機械学習入門以前
Kimikazu Kato
 
ルールベースから機械学習への道 公開用
ルールベースから機械学習への道 公開用ルールベースから機械学習への道 公開用
ルールベースから機械学習への道 公開用
nishio
 
30分でわかる『R』によるデータ分析|データアーティスト
30分でわかる『R』によるデータ分析|データアーティスト30分でわかる『R』によるデータ分析|データアーティスト
30分でわかる『R』によるデータ分析|データアーティスト
Satoru Yamamoto
 

Viewers also liked (20)

バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
 
トピックモデルを用いた 潜在ファッション嗜好の推定
トピックモデルを用いた 潜在ファッション嗜好の推定トピックモデルを用いた 潜在ファッション嗜好の推定
トピックモデルを用いた 潜在ファッション嗜好の推定
 
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
 
パターン認識 第10章 決定木
パターン認識 第10章 決定木 パターン認識 第10章 決定木
パターン認識 第10章 決定木
 
今日から使える! みんなのクラスタリング超入門
今日から使える! みんなのクラスタリング超入門今日から使える! みんなのクラスタリング超入門
今日から使える! みんなのクラスタリング超入門
 
決定木学習
決定木学習決定木学習
決定木学習
 
SVMについて
SVMについてSVMについて
SVMについて
 
機会学習ハッカソン:ランダムフォレスト
機会学習ハッカソン:ランダムフォレスト機会学習ハッカソン:ランダムフォレスト
機会学習ハッカソン:ランダムフォレスト
 
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
 
ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33
 
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
 
一般向けのDeep Learning
一般向けのDeep Learning一般向けのDeep Learning
一般向けのDeep Learning
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話
 
Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識
 
scikit-learnを用いた機械学習チュートリアル
scikit-learnを用いた機械学習チュートリアルscikit-learnを用いた機械学習チュートリアル
scikit-learnを用いた機械学習チュートリアル
 
Rによるデータサイエンス13「樹木モデル」
Rによるデータサイエンス13「樹木モデル」Rによるデータサイエンス13「樹木モデル」
Rによるデータサイエンス13「樹木モデル」
 
Pythonで機械学習入門以前
Pythonで機械学習入門以前Pythonで機械学習入門以前
Pythonで機械学習入門以前
 
ルールベースから機械学習への道 公開用
ルールベースから機械学習への道 公開用ルールベースから機械学習への道 公開用
ルールベースから機械学習への道 公開用
 
30分でわかる『R』によるデータ分析|データアーティスト
30分でわかる『R』によるデータ分析|データアーティスト30分でわかる『R』によるデータ分析|データアーティスト
30分でわかる『R』によるデータ分析|データアーティスト
 

More from Takashi J OZAKI

直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する
直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する
直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する
Takashi J OZAKI
 
Taste of Wine vs. Data Science
Taste of Wine vs. Data ScienceTaste of Wine vs. Data Science
Taste of Wine vs. Data Science
Takashi J OZAKI
 
Granger因果による 時系列データの因果推定(因果フェス2015)
Granger因果による時系列データの因果推定(因果フェス2015)Granger因果による時系列データの因果推定(因果フェス2015)
Granger因果による 時系列データの因果推定(因果フェス2015)
Takashi J OZAKI
 
Tech Lab Paak講演会 20150601
Tech Lab Paak講演会 20150601Tech Lab Paak講演会 20150601
Tech Lab Paak講演会 20150601
Takashi J OZAKI
 
なぜ統計学がビジネスの 意思決定において大事なのか?
なぜ統計学がビジネスの 意思決定において大事なのか?なぜ統計学がビジネスの 意思決定において大事なのか?
なぜ統計学がビジネスの 意思決定において大事なのか?
Takashi J OZAKI
 
Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014
Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014
Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014
Takashi J OZAKI
 
『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの
『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの
『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの
Takashi J OZAKI
 
Jc 20141003 tjo
Jc 20141003 tjoJc 20141003 tjo
Jc 20141003 tjo
Takashi J OZAKI
 
データ分析というお仕事のこれまでとこれから(HCMPL2014)
データ分析というお仕事のこれまでとこれから(HCMPL2014)データ分析というお仕事のこれまでとこれから(HCMPL2014)
データ分析というお仕事のこれまでとこれから(HCMPL2014)
Takashi J OZAKI
 
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
Takashi J OZAKI
 
Visualization of Supervised Learning with {arules} + {arulesViz}
Visualization of Supervised Learning with {arules} + {arulesViz}Visualization of Supervised Learning with {arules} + {arulesViz}
Visualization of Supervised Learning with {arules} + {arulesViz}
Takashi J OZAKI
 
Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」
Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」
Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」
Takashi J OZAKI
 
ビジネスの現場のデータ分析における理想と現実
ビジネスの現場のデータ分析における理想と現実ビジネスの現場のデータ分析における理想と現実
ビジネスの現場のデータ分析における理想と現実
Takashi J OZAKI
 
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
Takashi J OZAKI
 
Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~
Takashi J OZAKI
 
最新業界事情から見るデータサイエンティストの「実像」
最新業界事情から見るデータサイエンティストの「実像」最新業界事情から見るデータサイエンティストの「実像」
最新業界事情から見るデータサイエンティストの「実像」
Takashi J OZAKI
 
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
Takashi J OZAKI
 

More from Takashi J OZAKI (17)

直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する
直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する
直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する
 
Taste of Wine vs. Data Science
Taste of Wine vs. Data ScienceTaste of Wine vs. Data Science
Taste of Wine vs. Data Science
 
Granger因果による 時系列データの因果推定(因果フェス2015)
Granger因果による時系列データの因果推定(因果フェス2015)Granger因果による時系列データの因果推定(因果フェス2015)
Granger因果による 時系列データの因果推定(因果フェス2015)
 
Tech Lab Paak講演会 20150601
Tech Lab Paak講演会 20150601Tech Lab Paak講演会 20150601
Tech Lab Paak講演会 20150601
 
なぜ統計学がビジネスの 意思決定において大事なのか?
なぜ統計学がビジネスの 意思決定において大事なのか?なぜ統計学がビジネスの 意思決定において大事なのか?
なぜ統計学がビジネスの 意思決定において大事なのか?
 
Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014
Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014
Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014
 
『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの
『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの
『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの
 
Jc 20141003 tjo
Jc 20141003 tjoJc 20141003 tjo
Jc 20141003 tjo
 
データ分析というお仕事のこれまでとこれから(HCMPL2014)
データ分析というお仕事のこれまでとこれから(HCMPL2014)データ分析というお仕事のこれまでとこれから(HCMPL2014)
データ分析というお仕事のこれまでとこれから(HCMPL2014)
 
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
 
Visualization of Supervised Learning with {arules} + {arulesViz}
Visualization of Supervised Learning with {arules} + {arulesViz}Visualization of Supervised Learning with {arules} + {arulesViz}
Visualization of Supervised Learning with {arules} + {arulesViz}
 
Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」
Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」
Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」
 
ビジネスの現場のデータ分析における理想と現実
ビジネスの現場のデータ分析における理想と現実ビジネスの現場のデータ分析における理想と現実
ビジネスの現場のデータ分析における理想と現実
 
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
 
Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~
 
最新業界事情から見るデータサイエンティストの「実像」
最新業界事情から見るデータサイエンティストの「実像」最新業界事情から見るデータサイエンティストの「実像」
最新業界事情から見るデータサイエンティストの「実像」
 
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
 

Recently uploaded

"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
たけおか しょうぞう
 
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
chisatotakane
 
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
ARISE analytics
 
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
Sony - Neural Network Libraries
 
20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf
Ayachika Kitazaki
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
Sony - Neural Network Libraries
 
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
Toru Tamaki
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo Lab
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
Toru Tamaki
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo Lab
 
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログLoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
CRI Japan, Inc.
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
Natsutani Minoru
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo Lab
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
Takayuki Nakayama
 

Recently uploaded (14)

"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
 
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
 
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
 
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
 
20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
 
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
 
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログLoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
 

Simple perceptron by TJO