SlideShare a Scribd company logo
POWER GENERATOR BY
WIND TURBINE
SUBMITTED TO:
MS. KHAN
SUBMITTED BY:
JAM ABDULSATTAR
What is wind turbine/wind mill
 Wind turbine is a device that converts kinetic energy into
mechanical energy
 If the mechanical energy is used to produce electricity, the
device may be called a wind turbine
 If the mechanical energy is used to drive machinery, such as
for grinding grain the device is called a
wind mill.
Wind Turbine
Why Did we take this project
of wind turbine?
 IT’S VERY CHEAP.
 WIND POWER CONSUMES NO FUEL. SO IT IS VERY RELIABLE.
MORE EFFICIENT.
 SUITABLE FOR KARACHI CLIMATE.
 COMPARED TO THE ENVIRONMENTAL IMPACT OF
TRADITIONAL ENERGY SOURCES, THE ENVIRONMENTAL
IMPACT OF WIND POWER IS RELATIVELY MINOR IN TERMS OF
POLLUTION.
 WIND TURBINES CAN CARRY ON GENERATING ELECTRICITY
FOR 20-25 YEARS. OVER THEIR LIFETIME THEY WILL BE
RUNNING CONTINUOUSLY FOR AS MUCH AS 120,000 HOURS
Wind turbine contains:
 DC MOTOR
 BLADES
 TOWER OR STRUCTURE
1. DC Motor
 A DC MOTOR IS A MACHINE WHICH CONVERTS ELECTRICAL
ENERGY INTO MECHANICAL ENERGY.
Construction of DC motor
DC MOTOR CONSISTS OF THE FOUR IMPORTANT PARTS.
 ARMATURE: A RECTANGULAR COIL WHICH IS MADE OF
INSULATED COPPER WIRE WHICH IS WOUND ON THE SOFT IRON
CORE THIS IS ARMATURE.
 FIELD WINDING: THE FIELD WINDINGS ARE ATTACHED TO
INSIDE OF THE YOKE AND TO FORM TWO POLES FITTING
CLOSELY TO THE ARMATURE.
 COMMUTATER AND BRUSHES: COMMOTATOR IS USED TO
REVERSE THE DIRECTION OF CURRENT. PRESS SLIGHTLY AGAINST
THE TWO SPLIT RINGS AND THE SPLIT RING ROTATE BETWEEN THE
BRUSHES. THE CARBON BRUSHES CONNECTED TO THE DC
SUPPLY.
Internal structure:
 THE YOKE (OR CASING): IT COVERS THE WHOLE MACHINE
AND PROVIDES THE MECHANICAL SUPPORT TO THE POLES
WORKING PRINCIPLE OF DC MOTOR
when A current coil conductor is placed inside of the
magnet field .when the current is passed through the
conductor a field is produced around it. And the
direction of this magnetic field can be determined by
the right hand rule .because of the current flows
through the segments of the loop is in different
direction it means that that are opposite to each
other as shown in the figure .The segment on one side
pushes the upward while the segment on the other
side pushes the down word. it mean that both sides of
the armature experience the force which is in equal in
magnitude but in opposite in direction and its known
as couples forces these combined forces create the
twisting action or torque.
The direction of Forces
HERE THE DIRECTION OF COUPLE FORCES CAN BE FOUND WITH
HELP OF FLAMING LEFT HAND RULE .WHICH STATED THAT IF WE
POINT OUT THE INDEX FINGER IN THE DIRECTION OF MAGNETIC
FIELD AND THE MIDDLE FINGER IS IN THE DIRECTION OF CURRENT
THE THUMB WILL SHOWS THE DIRECTION OF MAGNETIC FORCE. AS
SHOWN IN THE FIGURE BELOW.
Why we use Dc motor not
AC motor?
Due to below reasons we use DC motor:
 High starting torque.
 Speed control over a wide range, both below and
above normal speed
 Quick starting, stopping
Blades:
 ON THE BASIS OF BLADES THERE ARE TWO TYPES OF
WIND TURBINES.
 VERTICAL AXIS WIND TURBINE (VAWT)
 HORIZONTAL AXIS WIND TURBINE (HAWT)
(1) VAWT
 IN VAWT GENERATOR IS MOUNTED AT THE BASE OF
THE TOWER AND THE BLADES ARE WRAPPED
AROUND THE SHAFT VERTICALY.
(2)HAWT
 In HAWT, blades are on the top, spinning in the air,
wrapped horizontality on the shaft and are most
commonly seen.
Calculation of Wind Power
•Power in the wind
– Effect of swept area, A
– Effect of wind speed, V
– Effect of air density,  R
Swept Area: A = πR2 Area
of the circle swept by the
rotor (m2).
Power in the Wind = ½ρAV3
Many Different Rotors…
Number of Blades – One
 Rotor must move more
rapidly to capture same
amount of wind
 Blades easier to install
because entire rotor can
be assembled on ground
 Captures 10% less energy
than two blade design
Number of Blades - Two
 Advantages &
disadvantages similar to one
blade
 Need teetering hub and or
shock absorbers
 Capture 5% less energy than
three blade designs
Number of Blades - Three
 Balance of gyroscopic
forces
 Slower rotation
 120 Angel apart from each
other
 10% more Energy than Two
blades rotor
Blade Composition
Metal
 Steel
 Heavy & expensive
 Aluminum
 Lighter-weight and easy to work
with
 Expensive
Blade
Construction
Fiberglass
 Lightweight, strong,
and inexpensive,
 Variety of
manufacturing
processes
 Cloth over frame
 Pultrusion
 Filament winding to
produce spars
 Most modern large
turbines use fiberglass
Tip-Speed Ratio
Tip-speed ratio is the ratio of the
speed of the rotating blade tip
to the speed of the free stream
wind.
There is an optimum angle of
attack which creates the
highest lift to drag ratio.
Because angle of attack is
dependant on wind speed,
there is an optimum tip-speed
ratio
ΩR
V
TSR =
Where,
Ω = rotational speed in radians /sec
R = Rotor Radius
V = Wind “Free Stream” Velocity
ΩR
R
TOWER
The Structure or Tower consists of
 Rotor
 Blades
 Hub
 Low-speed shaft
 Bearings
 Gearbox
 Generator
 Main frame
 Electrical connections
 Cooling systems
 Assembly and installation
 Foundation/support structure
DRAWINGS IN AUTOCAD
3 Feet
7.5Feet
2Feet
Blades
Gear Box
Base
Generator
Rotor
Hub
Angle=120
Bearing
Tower
1:2
Measurements
 Rotor Diameter =50 inches
 Blades length=24 inches
 Hub Diameter =12inches
 Ball Bearings Diameter=3inches
 Gearbox 1:2
 Tail Length=2.5Feet
 Base Length=2 Feet
 Tower Length=7.5Feet
 Tower Diameter=3.5inches
Assembly and installation
Length of Tower
and Wind Speed
 Speed of Wind increases exponentially as the
height of tower increases. From this graph, one
can see that at low heights, the wind speed
increases significantly at first, but at higher heights
the rate of increase is much less.
Energy In the Wind
Ew = (Ws
3 *(1.2252/2)*As) /1000
Ew= Energy in the Wind
Ws= Wind Speed (mph)
As= Swept Area of Blades
Tip Speed Ratio
TPR=W*r/Vw
TPR=Tip Speed Ratio
r=Radius
W=Rotational Velocity(Rad/S)
Vw=Wind Speed
APPLICATIONS:
 IT CAN BE USED TO PROVIDE ELECTRICITY TO
SECURITY AND CCTV CAMERAS
 ALSO TO POWER STREETLIGHTS AND TRAFFIC
MANAGEMENT SYSTEMS
 IT IS USED TO DRIVE SAILBOATS
 IT IS USED TO LIGHTING UP THE SMALL VILLAGES
AND URBAN AREAS HOME
 IT IS USED IN INDUSTRIES DUE TO ITS LOW COSTS
 BY USING IT WE CAN AVOID CONVERTING POWER
FROM AC TO DC OR DC TO AC. EVERY TIME THE
POWER IS CONVERTED, YOU WILL LOSE 25% TO 30%
OF THE POWER
ANY
Q?
THANK YOU!

More Related Content

What's hot

Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...
Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...
Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...
Sarmad Adnan
 
wind energy Seminar
 wind energy Seminar wind energy Seminar
wind energy Seminarashine288
 
Wind Power
Wind PowerWind Power
Wind Power
Bhavesh Solanki
 
Wind Energy ppt
Wind Energy pptWind Energy ppt
Wind Energy ppt
tabi5
 
Wind turbine power, energy
Wind turbine power, energyWind turbine power, energy
Wind turbine power, energy
Gomathy Sengottaiyan
 
Wind turbine (bhaw nath jha)
Wind turbine (bhaw nath jha)Wind turbine (bhaw nath jha)
Wind turbine (bhaw nath jha)Bhawnath Jha
 
Betz speed limit and tip speed ratio
Betz speed limit and tip speed ratioBetz speed limit and tip speed ratio
Betz speed limit and tip speed ratio
SonuKumarBairwa
 
Control of wind turbines
Control of wind turbinesControl of wind turbines
Control of wind turbines
kybik-rybik
 
Wind farm grid issues
Wind farm grid issuesWind farm grid issues
Wind farm grid issues
Rohil Kumar
 
Wind energy
Wind energyWind energy
Wind energy
sstms1
 
Cogeneration
CogenerationCogeneration
Cogeneration
Nishkam Dhiman
 
Wind power
Wind powerWind power
Wind power
Sajida Shah
 
Gas turbine power plants
Gas turbine power plantsGas turbine power plants
Gas turbine power plants
Nishkam Dhiman
 
Hybrid wind-solar Power generation system
Hybrid wind-solar Power generation systemHybrid wind-solar Power generation system
Hybrid wind-solar Power generation system
Shivam Joshi
 
EPG - Unit 04 - Wind Power Plant
EPG - Unit 04 - Wind Power PlantEPG - Unit 04 - Wind Power Plant
EPG - Unit 04 - Wind Power Plant
PremanandDesai
 
Hybrid power generation by and solar –wind
Hybrid power generation by and solar –windHybrid power generation by and solar –wind
Hybrid power generation by and solar –wind
Uday Wankar
 
Aerodynamics of windturbines
Aerodynamics of windturbinesAerodynamics of windturbines
Aerodynamics of windturbines
Gururaja Murthy.D
 
Cogeneration Concept
Cogeneration ConceptCogeneration Concept
Cogeneration Concept
Pruthiraj Swain
 
Wind Energy
Wind EnergyWind Energy
Wind Energy
HarshSingla29
 

What's hot (20)

Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...
Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...
Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...
 
wind energy Seminar
 wind energy Seminar wind energy Seminar
wind energy Seminar
 
Wind energy
Wind energyWind energy
Wind energy
 
Wind Power
Wind PowerWind Power
Wind Power
 
Wind Energy ppt
Wind Energy pptWind Energy ppt
Wind Energy ppt
 
Wind turbine power, energy
Wind turbine power, energyWind turbine power, energy
Wind turbine power, energy
 
Wind turbine (bhaw nath jha)
Wind turbine (bhaw nath jha)Wind turbine (bhaw nath jha)
Wind turbine (bhaw nath jha)
 
Betz speed limit and tip speed ratio
Betz speed limit and tip speed ratioBetz speed limit and tip speed ratio
Betz speed limit and tip speed ratio
 
Control of wind turbines
Control of wind turbinesControl of wind turbines
Control of wind turbines
 
Wind farm grid issues
Wind farm grid issuesWind farm grid issues
Wind farm grid issues
 
Wind energy
Wind energyWind energy
Wind energy
 
Cogeneration
CogenerationCogeneration
Cogeneration
 
Wind power
Wind powerWind power
Wind power
 
Gas turbine power plants
Gas turbine power plantsGas turbine power plants
Gas turbine power plants
 
Hybrid wind-solar Power generation system
Hybrid wind-solar Power generation systemHybrid wind-solar Power generation system
Hybrid wind-solar Power generation system
 
EPG - Unit 04 - Wind Power Plant
EPG - Unit 04 - Wind Power PlantEPG - Unit 04 - Wind Power Plant
EPG - Unit 04 - Wind Power Plant
 
Hybrid power generation by and solar –wind
Hybrid power generation by and solar –windHybrid power generation by and solar –wind
Hybrid power generation by and solar –wind
 
Aerodynamics of windturbines
Aerodynamics of windturbinesAerodynamics of windturbines
Aerodynamics of windturbines
 
Cogeneration Concept
Cogeneration ConceptCogeneration Concept
Cogeneration Concept
 
Wind Energy
Wind EnergyWind Energy
Wind Energy
 

Viewers also liked

Wind Power Point Presentation
Wind Power Point PresentationWind Power Point Presentation
Wind Power Point PresentationKurt Kublbeck
 
Wind Energy
Wind EnergyWind Energy
Wind Energy
kushagra21
 
Vertical wind mill
Vertical wind millVertical wind mill
Windmill
WindmillWindmill
Windmill
abhisek das
 
Wind mill power generation
Wind mill power generationWind mill power generation
Wind mill power generation
Mohitkumar Sharma
 
Typmarvn_Vertical and Herizontal Axis Wind Turbine
Typmarvn_Vertical and Herizontal Axis Wind TurbineTypmarvn_Vertical and Herizontal Axis Wind Turbine
Typmarvn_Vertical and Herizontal Axis Wind Turbine
Thai Minh Dan
 
Wind Turbine
Wind TurbineWind Turbine
Wind Turbine
Muhammad Haris
 
VERTICAL AXIS WIND TURBINE
VERTICAL AXIS WIND TURBINEVERTICAL AXIS WIND TURBINE
VERTICAL AXIS WIND TURBINE
Suchit Moon
 
vertical axis wind turbine
vertical axis wind turbinevertical axis wind turbine
vertical axis wind turbine
iviral1992
 
Wind Energy Power Point Presentation
Wind Energy Power Point PresentationWind Energy Power Point Presentation
Wind Energy Power Point Presentation
rclassic
 
Hydro power-plant
Hydro power-plantHydro power-plant
Hydro power-plant
pranavn007
 
Solar tree ppt
Solar tree pptSolar tree ppt
Solar tree ppt
dreamervikas
 
Renewable Energy - Intro ppt
Renewable Energy - Intro pptRenewable Energy - Intro ppt
Renewable Energy - Intro ppt
Saurabh Mehta
 
Project on Solar Energy
Project on Solar EnergyProject on Solar Energy
Project on Solar Energy
gagneeshkaur
 
Renewable Energy Sources
Renewable Energy SourcesRenewable Energy Sources
Renewable Energy Sources
Stoyan Dimitrov
 

Viewers also liked (20)

Wind Power Point Presentation
Wind Power Point PresentationWind Power Point Presentation
Wind Power Point Presentation
 
Wind Mill
Wind MillWind Mill
Wind Mill
 
Wind Energy
Wind EnergyWind Energy
Wind Energy
 
Review 4
Review 4Review 4
Review 4
 
Vertical wind mill
Vertical wind millVertical wind mill
Vertical wind mill
 
Windmill
WindmillWindmill
Windmill
 
Wind mill power generation
Wind mill power generationWind mill power generation
Wind mill power generation
 
Typmarvn_Vertical and Herizontal Axis Wind Turbine
Typmarvn_Vertical and Herizontal Axis Wind TurbineTypmarvn_Vertical and Herizontal Axis Wind Turbine
Typmarvn_Vertical and Herizontal Axis Wind Turbine
 
Wind Turbine
Wind TurbineWind Turbine
Wind Turbine
 
Wind Turbine
Wind TurbineWind Turbine
Wind Turbine
 
VERTICAL AXIS WIND TURBINE
VERTICAL AXIS WIND TURBINEVERTICAL AXIS WIND TURBINE
VERTICAL AXIS WIND TURBINE
 
vertical axis wind turbine
vertical axis wind turbinevertical axis wind turbine
vertical axis wind turbine
 
Wind Power
Wind PowerWind Power
Wind Power
 
Wind Energy Power Point Presentation
Wind Energy Power Point PresentationWind Energy Power Point Presentation
Wind Energy Power Point Presentation
 
Hydro power-plant
Hydro power-plantHydro power-plant
Hydro power-plant
 
Solar tree ppt
Solar tree pptSolar tree ppt
Solar tree ppt
 
Renewable Energy - Intro ppt
Renewable Energy - Intro pptRenewable Energy - Intro ppt
Renewable Energy - Intro ppt
 
Project on Solar Energy
Project on Solar EnergyProject on Solar Energy
Project on Solar Energy
 
Solar Energy
Solar EnergySolar Energy
Solar Energy
 
Renewable Energy Sources
Renewable Energy SourcesRenewable Energy Sources
Renewable Energy Sources
 

Similar to Wind turbine

Study About Wind turbines
Study About Wind turbinesStudy About Wind turbines
Study About Wind turbines
Elia Tohmé
 
LECTURE No 6 wind.pptx
LECTURE No 6 wind.pptxLECTURE No 6 wind.pptx
LECTURE No 6 wind.pptx
Saqibullah12
 
Wind
WindWind
Project Report on 'Modulation of Vertical Axis Wind Turbine'
Project Report on 'Modulation of Vertical Axis Wind Turbine'Project Report on 'Modulation of Vertical Axis Wind Turbine'
Project Report on 'Modulation of Vertical Axis Wind Turbine'Gurpreet Singh Chhabda
 
EEE 483[Wind Energy ,use of wind energy].pdf
EEE 483[Wind Energy ,use of wind energy].pdfEEE 483[Wind Energy ,use of wind energy].pdf
EEE 483[Wind Energy ,use of wind energy].pdf
SanjoySana2
 
Wind turbine
Wind turbineWind turbine
Wind turbine
Roohul Amin
 
Power Generation through the Wind Energy Using Convergent Nozzle
Power Generation through the Wind Energy Using Convergent NozzlePower Generation through the Wind Energy Using Convergent Nozzle
Power Generation through the Wind Energy Using Convergent Nozzle
theijes
 
Wind Power.pdf
Wind Power.pdfWind Power.pdf
Wind Power.pdf
EktaDebnath3
 
Wind energy
Wind energyWind energy
Wind energyVirenhk
 
windmill-170118193104-converted (1).pptx
windmill-170118193104-converted (1).pptxwindmill-170118193104-converted (1).pptx
windmill-170118193104-converted (1).pptx
Amit113624
 
Wind turbines
Wind turbinesWind turbines
Wind turbines
Dushyanth Reddy
 
Design of PVC Bladed Horizontal Axis Wind Turbine for Low Wind Speed Region
Design of PVC Bladed Horizontal Axis Wind Turbine for Low Wind Speed RegionDesign of PVC Bladed Horizontal Axis Wind Turbine for Low Wind Speed Region
Design of PVC Bladed Horizontal Axis Wind Turbine for Low Wind Speed Region
IJERA Editor
 
Wind energy
Wind energyWind energy
Wind energy
Salwa Elsayed
 
CFD Analysis of a Three Bladed H-Rotor of Vertical Axis Wind Turbine
CFD Analysis of a Three Bladed H-Rotor of   Vertical Axis Wind Turbine CFD Analysis of a Three Bladed H-Rotor of   Vertical Axis Wind Turbine
CFD Analysis of a Three Bladed H-Rotor of Vertical Axis Wind Turbine
IRJET Journal
 
IRJET- Parametric Study of Turbine Mounted on Train for Electricity Generatio...
IRJET- Parametric Study of Turbine Mounted on Train for Electricity Generatio...IRJET- Parametric Study of Turbine Mounted on Train for Electricity Generatio...
IRJET- Parametric Study of Turbine Mounted on Train for Electricity Generatio...
IRJET Journal
 
windmill-141214032720-conversion-gate01.pdf
windmill-141214032720-conversion-gate01.pdfwindmill-141214032720-conversion-gate01.pdf
windmill-141214032720-conversion-gate01.pdf
727821TUEE020DHARUNK
 
Learn wind energy
Learn wind energyLearn wind energy
Learn wind energy
H Janardan Prabhu
 
Wind Power & Wind Turbine
Wind Power & Wind TurbineWind Power & Wind Turbine
Wind Power & Wind Turbine
Ridwanul Hoque
 

Similar to Wind turbine (20)

Study About Wind turbines
Study About Wind turbinesStudy About Wind turbines
Study About Wind turbines
 
LECTURE No 6 wind.pptx
LECTURE No 6 wind.pptxLECTURE No 6 wind.pptx
LECTURE No 6 wind.pptx
 
Wind
WindWind
Wind
 
Project Report on 'Modulation of Vertical Axis Wind Turbine'
Project Report on 'Modulation of Vertical Axis Wind Turbine'Project Report on 'Modulation of Vertical Axis Wind Turbine'
Project Report on 'Modulation of Vertical Axis Wind Turbine'
 
EEE 483[Wind Energy ,use of wind energy].pdf
EEE 483[Wind Energy ,use of wind energy].pdfEEE 483[Wind Energy ,use of wind energy].pdf
EEE 483[Wind Energy ,use of wind energy].pdf
 
wind power
 wind power wind power
wind power
 
Wind turbine
Wind turbineWind turbine
Wind turbine
 
Power Generation through the Wind Energy Using Convergent Nozzle
Power Generation through the Wind Energy Using Convergent NozzlePower Generation through the Wind Energy Using Convergent Nozzle
Power Generation through the Wind Energy Using Convergent Nozzle
 
Wind Power.pdf
Wind Power.pdfWind Power.pdf
Wind Power.pdf
 
Wind energy
Wind energyWind energy
Wind energy
 
windmill-170118193104-converted (1).pptx
windmill-170118193104-converted (1).pptxwindmill-170118193104-converted (1).pptx
windmill-170118193104-converted (1).pptx
 
Wind nptl1
Wind nptl1Wind nptl1
Wind nptl1
 
Wind turbines
Wind turbinesWind turbines
Wind turbines
 
Design of PVC Bladed Horizontal Axis Wind Turbine for Low Wind Speed Region
Design of PVC Bladed Horizontal Axis Wind Turbine for Low Wind Speed RegionDesign of PVC Bladed Horizontal Axis Wind Turbine for Low Wind Speed Region
Design of PVC Bladed Horizontal Axis Wind Turbine for Low Wind Speed Region
 
Wind energy
Wind energyWind energy
Wind energy
 
CFD Analysis of a Three Bladed H-Rotor of Vertical Axis Wind Turbine
CFD Analysis of a Three Bladed H-Rotor of   Vertical Axis Wind Turbine CFD Analysis of a Three Bladed H-Rotor of   Vertical Axis Wind Turbine
CFD Analysis of a Three Bladed H-Rotor of Vertical Axis Wind Turbine
 
IRJET- Parametric Study of Turbine Mounted on Train for Electricity Generatio...
IRJET- Parametric Study of Turbine Mounted on Train for Electricity Generatio...IRJET- Parametric Study of Turbine Mounted on Train for Electricity Generatio...
IRJET- Parametric Study of Turbine Mounted on Train for Electricity Generatio...
 
windmill-141214032720-conversion-gate01.pdf
windmill-141214032720-conversion-gate01.pdfwindmill-141214032720-conversion-gate01.pdf
windmill-141214032720-conversion-gate01.pdf
 
Learn wind energy
Learn wind energyLearn wind energy
Learn wind energy
 
Wind Power & Wind Turbine
Wind Power & Wind TurbineWind Power & Wind Turbine
Wind Power & Wind Turbine
 

Recently uploaded

Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 

Recently uploaded (20)

Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 

Wind turbine

  • 1. POWER GENERATOR BY WIND TURBINE SUBMITTED TO: MS. KHAN SUBMITTED BY: JAM ABDULSATTAR
  • 2. What is wind turbine/wind mill  Wind turbine is a device that converts kinetic energy into mechanical energy  If the mechanical energy is used to produce electricity, the device may be called a wind turbine  If the mechanical energy is used to drive machinery, such as for grinding grain the device is called a wind mill.
  • 4. Why Did we take this project of wind turbine?  IT’S VERY CHEAP.  WIND POWER CONSUMES NO FUEL. SO IT IS VERY RELIABLE. MORE EFFICIENT.  SUITABLE FOR KARACHI CLIMATE.  COMPARED TO THE ENVIRONMENTAL IMPACT OF TRADITIONAL ENERGY SOURCES, THE ENVIRONMENTAL IMPACT OF WIND POWER IS RELATIVELY MINOR IN TERMS OF POLLUTION.  WIND TURBINES CAN CARRY ON GENERATING ELECTRICITY FOR 20-25 YEARS. OVER THEIR LIFETIME THEY WILL BE RUNNING CONTINUOUSLY FOR AS MUCH AS 120,000 HOURS
  • 5. Wind turbine contains:  DC MOTOR  BLADES  TOWER OR STRUCTURE
  • 6. 1. DC Motor  A DC MOTOR IS A MACHINE WHICH CONVERTS ELECTRICAL ENERGY INTO MECHANICAL ENERGY.
  • 7. Construction of DC motor DC MOTOR CONSISTS OF THE FOUR IMPORTANT PARTS.  ARMATURE: A RECTANGULAR COIL WHICH IS MADE OF INSULATED COPPER WIRE WHICH IS WOUND ON THE SOFT IRON CORE THIS IS ARMATURE.  FIELD WINDING: THE FIELD WINDINGS ARE ATTACHED TO INSIDE OF THE YOKE AND TO FORM TWO POLES FITTING CLOSELY TO THE ARMATURE.  COMMUTATER AND BRUSHES: COMMOTATOR IS USED TO REVERSE THE DIRECTION OF CURRENT. PRESS SLIGHTLY AGAINST THE TWO SPLIT RINGS AND THE SPLIT RING ROTATE BETWEEN THE BRUSHES. THE CARBON BRUSHES CONNECTED TO THE DC SUPPLY.
  • 8. Internal structure:  THE YOKE (OR CASING): IT COVERS THE WHOLE MACHINE AND PROVIDES THE MECHANICAL SUPPORT TO THE POLES
  • 9. WORKING PRINCIPLE OF DC MOTOR when A current coil conductor is placed inside of the magnet field .when the current is passed through the conductor a field is produced around it. And the direction of this magnetic field can be determined by the right hand rule .because of the current flows through the segments of the loop is in different direction it means that that are opposite to each other as shown in the figure .The segment on one side pushes the upward while the segment on the other side pushes the down word. it mean that both sides of the armature experience the force which is in equal in magnitude but in opposite in direction and its known as couples forces these combined forces create the twisting action or torque.
  • 10. The direction of Forces HERE THE DIRECTION OF COUPLE FORCES CAN BE FOUND WITH HELP OF FLAMING LEFT HAND RULE .WHICH STATED THAT IF WE POINT OUT THE INDEX FINGER IN THE DIRECTION OF MAGNETIC FIELD AND THE MIDDLE FINGER IS IN THE DIRECTION OF CURRENT THE THUMB WILL SHOWS THE DIRECTION OF MAGNETIC FORCE. AS SHOWN IN THE FIGURE BELOW.
  • 11. Why we use Dc motor not AC motor? Due to below reasons we use DC motor:  High starting torque.  Speed control over a wide range, both below and above normal speed  Quick starting, stopping
  • 12. Blades:  ON THE BASIS OF BLADES THERE ARE TWO TYPES OF WIND TURBINES.  VERTICAL AXIS WIND TURBINE (VAWT)  HORIZONTAL AXIS WIND TURBINE (HAWT)
  • 13. (1) VAWT  IN VAWT GENERATOR IS MOUNTED AT THE BASE OF THE TOWER AND THE BLADES ARE WRAPPED AROUND THE SHAFT VERTICALY.
  • 14. (2)HAWT  In HAWT, blades are on the top, spinning in the air, wrapped horizontality on the shaft and are most commonly seen.
  • 15. Calculation of Wind Power •Power in the wind – Effect of swept area, A – Effect of wind speed, V – Effect of air density,  R Swept Area: A = πR2 Area of the circle swept by the rotor (m2). Power in the Wind = ½ρAV3
  • 17. Number of Blades – One  Rotor must move more rapidly to capture same amount of wind  Blades easier to install because entire rotor can be assembled on ground  Captures 10% less energy than two blade design
  • 18. Number of Blades - Two  Advantages & disadvantages similar to one blade  Need teetering hub and or shock absorbers  Capture 5% less energy than three blade designs
  • 19. Number of Blades - Three  Balance of gyroscopic forces  Slower rotation  120 Angel apart from each other  10% more Energy than Two blades rotor
  • 20. Blade Composition Metal  Steel  Heavy & expensive  Aluminum  Lighter-weight and easy to work with  Expensive
  • 21. Blade Construction Fiberglass  Lightweight, strong, and inexpensive,  Variety of manufacturing processes  Cloth over frame  Pultrusion  Filament winding to produce spars  Most modern large turbines use fiberglass
  • 22. Tip-Speed Ratio Tip-speed ratio is the ratio of the speed of the rotating blade tip to the speed of the free stream wind. There is an optimum angle of attack which creates the highest lift to drag ratio. Because angle of attack is dependant on wind speed, there is an optimum tip-speed ratio ΩR V TSR = Where, Ω = rotational speed in radians /sec R = Rotor Radius V = Wind “Free Stream” Velocity ΩR R
  • 23. TOWER The Structure or Tower consists of  Rotor  Blades  Hub  Low-speed shaft  Bearings  Gearbox  Generator  Main frame  Electrical connections  Cooling systems  Assembly and installation  Foundation/support structure
  • 24. DRAWINGS IN AUTOCAD 3 Feet 7.5Feet 2Feet Blades Gear Box Base Generator Rotor Hub Angle=120 Bearing Tower 1:2
  • 25. Measurements  Rotor Diameter =50 inches  Blades length=24 inches  Hub Diameter =12inches  Ball Bearings Diameter=3inches  Gearbox 1:2  Tail Length=2.5Feet  Base Length=2 Feet  Tower Length=7.5Feet  Tower Diameter=3.5inches
  • 27. Length of Tower and Wind Speed  Speed of Wind increases exponentially as the height of tower increases. From this graph, one can see that at low heights, the wind speed increases significantly at first, but at higher heights the rate of increase is much less.
  • 28. Energy In the Wind Ew = (Ws 3 *(1.2252/2)*As) /1000 Ew= Energy in the Wind Ws= Wind Speed (mph) As= Swept Area of Blades
  • 29. Tip Speed Ratio TPR=W*r/Vw TPR=Tip Speed Ratio r=Radius W=Rotational Velocity(Rad/S) Vw=Wind Speed
  • 30. APPLICATIONS:  IT CAN BE USED TO PROVIDE ELECTRICITY TO SECURITY AND CCTV CAMERAS  ALSO TO POWER STREETLIGHTS AND TRAFFIC MANAGEMENT SYSTEMS  IT IS USED TO DRIVE SAILBOATS  IT IS USED TO LIGHTING UP THE SMALL VILLAGES AND URBAN AREAS HOME  IT IS USED IN INDUSTRIES DUE TO ITS LOW COSTS  BY USING IT WE CAN AVOID CONVERTING POWER FROM AC TO DC OR DC TO AC. EVERY TIME THE POWER IS CONVERTED, YOU WILL LOSE 25% TO 30% OF THE POWER