SlideShare a Scribd company logo
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Using Transformations of Variables to Improve Inference
A. Charpentier ( UQAM),
joint work with J.-D. Fermanian (CREST) E. Flachaire (AMSE) G. Geenens
(UNSW), A. Oulidi (UIO), D. Paindaveine (ULB), O. Scaillet (UNIGE)
Montréal, UQAM, November 2018
@freakonometrics freakonometrics freakonometrics.hypotheses.org 1
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Side Note
Most of the contents here is based on old results (revised, and continued)
Work on genealogical trees, Étude de la démographie française du XIXe siècle à
partir de données collaboratives de généalogie and Internal Migrations in France in
the Nineteenth Century with E. Gallic.
Children Grandchildren Great-grandchildren
0.00
0.126
0.252
0.378
0.503
Children Grandchildren Great-grandchildren
0.00
0.029
0.058
0.087
0.116
@freakonometrics freakonometrics freakonometrics.hypotheses.org 2
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Motivation
2005, The Estimation of Copulas: Theory and Practice
with J.-D. Fermanian and O. Scaillet
survey on non-parametric techniques
(kernel base) to visualize
the estimator of a copula density
0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
Idea : beta kernels and transformed kernels
More recently, mix those techniques in the univariate case
@freakonometrics freakonometrics freakonometrics.hypotheses.org 3
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Motivation
Consider some n-i.i.d. sample {(Xi, Yi)} with cu-
mulative distribution function FXY and joint den-
sity fXY . Let FX and FY denote the marginal dis-
tributions, and C the copula,
FXY (x, y) = C(FX(x), FY (y))
so that
fXY (x, y) = fX(x)fY (y)c(FX(x), FY (y))
We want a nonparametric estimate of c on [0, 1]2
. 1e+01 1e+03 1e+05
1e+011e+021e+031e+041e+05
@freakonometrics freakonometrics freakonometrics.hypotheses.org 4
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Notations
Define uniformized n-i.i.d. sample {(Ui, Vi)}
Ui = FX(Xi) and Vi = FY (Yi)
or uniformized n-i.i.d. pseudo-sample {( ˆUi, ˆVi)}
ˆUi =
n
n + 1
ˆFXn(Xi) and ˆVi =
n
n + 1
ˆFY n(Yi)
where ˆFXn and ˆFY n denote empirical c.d.f.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
@freakonometrics freakonometrics freakonometrics.hypotheses.org 5
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Standard Kernel Estimate
The standard kernel estimator for c, say ˆc∗
, at (u, v) ∈ I would be (see Wand &
Jones (1995))
ˆc∗
(u, v) =
1
n|HUV |1/2
n
i=1
K H
−1/2
UV
u − Ui
v − Vi
, (1)
where K : R2
→ R is a kernel function and HUV is a bandwidth matrix.
@freakonometrics freakonometrics freakonometrics.hypotheses.org 6
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Standard Kernel Estimate
However, this estimator is not consistent along
boundaries of [0, 1]2
E(ˆc∗
(u, v)) =
1
4
c(u, v) + O(h) at corners
E(ˆc∗
(u, v)) =
1
2
c(u, v) + O(h) on the borders
if K is symmetric and HUV symmetric.
Corrections have been proposed, e.g. mirror reflec-
tion Gijbels (1990) or the usage of boundary kernels
Chen (2007), but with mixed results.
Remark : the graph on the bottom is ˆc∗
on the
(first) diagonal. 0.0 0.2 0.4 0.6 0.8 1.0
01234567
@freakonometrics freakonometrics freakonometrics.hypotheses.org 7
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Mirror Kernel Estimate
Use an enlarged sample : instead of only {( ˆUi, ˆVi)},
add {(− ˆUi, ˆVi)}, {( ˆUi, − ˆVi)}, {(− ˆUi, − ˆVi)},
{( ˆUi, 2 − ˆVi)}, {(2 − ˆUi, ˆVi)},{(− ˆUi, 2 − ˆVi)},
{(2 − ˆUi, − ˆVi)} and {(2 − ˆUi, 2 − ˆVi)}.
See Gijbels & Mielniczuk (1990).
That estimator will be used as a benchmark in the
simulation study.
0.0 0.2 0.4 0.6 0.8 1.0
01234567
@freakonometrics freakonometrics freakonometrics.hypotheses.org 8
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Using Beta Kernels
Use a Kernel which is a product of beta kernels
Kxi
(u) ∝ x
u1
b
1,i [1 − x1,i]
u1
b · x
u2
b
2,i [1 − x2,i]
u2
b
for some b > 0, see Chen (1999).
for some observation xi in the lower left corner
0.0 0.2 0.4 0.6 0.8 1.0
01234567
@freakonometrics freakonometrics freakonometrics.hypotheses.org 9
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Using Beta Kernels
@freakonometrics freakonometrics freakonometrics.hypotheses.org 10
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Probit Transformation
See Devroye & Gyöfi (1985) and Marron & Ruppert
(1994).
Define normalized n-i.i.d. sample {(Si, Ti)}
Si = Φ−1
(Ui) and Ti = Φ−1
(Vi)
or normalized n-i.i.d. pseudo-sample {( ˆSi, ˆTi)}
ˆUi = Φ−1
( ˆUi) and ˆVi = Φ−1
( ˆVi)
where Φ−1
is the quantile function of N(0, 1)
(probit transformation). −3 −2 −1 0 1 2 3
−3−2−10123
@freakonometrics freakonometrics freakonometrics.hypotheses.org 11
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Probit Transformation
FST (x, y) = C(Φ(x), Φ(y))
so that
fST (x, y) = φ(x)φ(y)c(Φ(x), Φ(y))
Thus
c(u, v) =
fST (Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
.
So use
ˆc(τ)
(u, v) =
ˆfST (Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
−3 −2 −1 0 1 2 3
−3−2−10123
@freakonometrics freakonometrics freakonometrics.hypotheses.org 12
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
The naive estimator
Since we cannot use
ˆf∗
ST (s, t) =
1
n|HST |1/2
n
i=1
K H
−1/2
ST
s − Si
t − Ti
,
where K is a kernel function and HST is a band-
width matrix, use
ˆfST (s, t) =
1
n|HST |1/2
n
i=1
K H
−1/2
ST
s − ˆSi
t − ˆTi
.
and the copula density is
ˆc(τ)
(u, v) =
ˆfST (Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
0.0 0.2 0.4 0.6 0.8 1.0
01234567
@freakonometrics freakonometrics freakonometrics.hypotheses.org 13
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
The naive estimator
ˆc(τ)
(u, v) =
1
n|HST |1/2φ(Φ−1(u))φ(Φ−1(v))
n
i=1
K H
−1/2
ST
Φ−1
(u) − Φ−1
( ˆUi)
Φ−1(v) − Φ−1( ˆVi)
as suggested in C., Fermanian & Scaillet (2007) and Lopez-Paz . et al. (2013).
Note that Omelka . et al. (2009) obtained theoretical properties on the
convergence of ˆC(τ)
(u, v) (not c).
In Probit transformation for nonparametric kernel estimation of the copula density
with G. Geenens and D. Paindaveine, we extended that estimator.
See also kdecopula R package by T. Nagler
@freakonometrics freakonometrics freakonometrics.hypotheses.org 14
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Improved probit-transformation copula density estimators
When estimating a density from pseudo-sample, Loader (1996) and Hjort &
Jones (1996) define a local likelihood estimator
Around (s, t) ∈ R2
, use a polynomial approximation of order p for log fST
log fST (ˇs, ˇt) a1,0(s, t) + a1,1(s, t)(ˇs − s) + a1,2(s, t)(ˇt − t)
.
= Pa1
(ˇs − s, ˇt − t)
log fST (ˇs, ˇt) a2,0(s, t) + a2,1(s, t)(ˇs − s) + a2,2(s, t)(ˇt − t)
+ a2,3(s, t)(ˇs − s)2
+ a2,4(s, t)(ˇt − t)2
+ a2,5(s, t)(ˇs − s)(ˇt − t)
.
= Pa2
(ˇs − s, ˇt − t).
@freakonometrics freakonometrics freakonometrics.hypotheses.org 15
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Improved probit-transformation copula density estimators
Remark Vectors a1(s, t) = (a1,0(s, t), a1,1(s, t), a1,2(s, t)) and
a2(s, t)
.
= (a2,0(s, t), . . . , a2,5(s, t)) are then estimated by solving a weighted
maximum likelihood problem.
˜ap(s, t) = arg max
ap
n
i=1
K H
−1/2
ST
s − ˆSi
t − ˆTi
Pap
( ˆSi − s, ˆTi − t)
−n
R2
K H
−1/2
ST
s − ˇs
t − ˇt
exp Pap (ˇs − s, ˇt − t) dˇs dˇt ,
The estimate of fST at (s, t) is then ˜f
(p)
ST (s, t) = exp(˜ap,0(s, t)), for p = 1, 2.
The Improved probit-transformation kernel copula density estimators are
˜c(τ,p)
(u, v) =
˜f
(p)
ST (Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
@freakonometrics freakonometrics freakonometrics.hypotheses.org 16
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Improved probit-transformation
copula density estimators
For the local log-linear (p = 1) approximation
˜c(τ,1)
(u, v) =
exp(˜a1,0(Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
0.0 0.2 0.4 0.6 0.8 1.0
01234567
@freakonometrics freakonometrics freakonometrics.hypotheses.org 17
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Improved probit-transformation
copula density estimators
For the local log-quadratic (p = 2) approximation
˜c(τ,2)
(u, v) =
exp(˜a2,0(Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
0.0 0.2 0.4 0.6 0.8 1.0
01234567
@freakonometrics freakonometrics freakonometrics.hypotheses.org 18
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Asymptotic properties
A1. The sample {(Xi, Yi)} is a n- i.i.d. sample from the joint distribution FXY ,
an absolutely continuous distribution with marginals FX and FY strictly
increasing on their support ;
(uniqueness of the copula)
@freakonometrics freakonometrics freakonometrics.hypotheses.org 19
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Asymptotic properties
A2. The copula C of FXY is such that (∂C/∂u)(u, v) and (∂2
C/∂u2
)(u, v) exist
and are continuous on {(u, v) : u ∈ (0, 1), v ∈ [0, 1]}, and (∂C/∂v)(u, v) and
(∂2
C/∂v2
)(u, v) exist and are continuous on {(u, v) : u ∈ [0, 1], v ∈ (0, 1)}. In
addition, there are constants K1 and K2 such that



∂2
C
∂u2
(u, v) ≤
K1
u(1 − u)
for (u, v) ∈ (0, 1) × [0, 1];
∂2
C
∂v2
(u, v) ≤
K2
v(1 − v)
for (u, v) ∈ [0, 1] × (0, 1);
A3. The density c of C exists, is positive and admits continuous second-order
partial derivatives on the interior of the unit square I. In addition, there is a
constant K00 such that
c(u, v) ≤ K00 min
1
u(1 − u)
,
1
v(1 − v)
∀(u, v) ∈ (0, 1)2
.
see Segers (2012).
@freakonometrics freakonometrics freakonometrics.hypotheses.org 20
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Asymptotic properties
Assume that K(z1, z2) = φ(z1)φ(z2) and HST = h2
I with h ∼ n−a
for some
a ∈ (0, 1/4). Under Assumptions A1-A3, the ‘naive’ probit transformation kernel
copula density estimator at any (u, v) ∈ (0, 1)2
is such that
√
nh2 ˆc(τ)
(u, v) − c(u, v) − h2 b(u, v)
φ(Φ−1(u))φ(Φ−1(v))
L
−→ N 0, σ2
(u, v) ,
where b(u, v) =
1
2
∂2
c
∂u2
(u, v)φ2
(Φ−1
(u)) +
∂2
c
∂v2
(u, v)φ2
(Φ−1
(v))
− 3
∂c
∂u
(u, v)Φ−1
(u)φ(Φ−1
(u)) +
∂c
∂v
(u, v)Φ−1
(v)φ(Φ−1
(v))
+ c(u, v) {Φ−1
(u)}2
+ {Φ−1
(v)}2
− 2 (2)
and σ2
(u, v) =
c(u, v)
4πφ(Φ−1(u))φ(Φ−1(v))
.
@freakonometrics freakonometrics freakonometrics.hypotheses.org 21
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
The Amended version
The last unbounded term in b be easily adjusted.
ˆc(τam)
(u, v) =
ˆfST (Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
×
1
1 + 1
2 h2 ({Φ−1(u)}2 + {Φ−1(v)}2 − 2)
.
The asymptotic bias becomes proportional to
b(am)
(u, v) =
1
2
∂2
c
∂u2
(u, v)φ2
(Φ−1
(u)) +
∂2
c
∂v2
(u, v)φ2
(Φ−1
(v))
−3
∂c
∂u
(u, v)Φ−1
(u)φ(Φ−1
(u)) +
∂c
∂v
(u, v)Φ−1
(v)φ(Φ−1
(v)) .
@freakonometrics freakonometrics freakonometrics.hypotheses.org 22
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
A local log-linear probit-transformation kernel estimator
˜c∗(τ,1)
(u, v) = ˜f
∗(1)
ST (Φ−1
(u), Φ−1
(v))/ φ(Φ−1
(u))φ(Φ−1
(v))
Then
√
nh2 ˜c∗(τ,1)
(u, v) − c(u, v) − h2 b(1)
(u, v)
φ(Φ−1(u))φ(Φ−1(v))
L
−→ N 0, σ(1) 2
(u, v) ,
where b(1)
(u, v) =
1
2
∂2
c
∂u2
(u, v)φ2
(Φ−1
(u)) +
∂2
c
∂v2
(u, v)φ2
(Φ−1
(v))
−
1
c(u, v)
∂c
∂u
(u, v)
2
φ2
(Φ−1
(u)) +
∂c
∂v
(u, v)
2
φ2
(Φ−1
(v))
−
∂c
∂u
(u, v)Φ−1
(u)φ(Φ−1
(u)) +
∂c
∂v
(u, v)Φ−1
(v)φ(Φ−1
(v)) − 2c(u, v)
@freakonometrics freakonometrics freakonometrics.hypotheses.org 23
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Using a higher order polynomial approximation
Locally fitting a polynomial of a higher degree is known to reduce the asymptotic
bias of the estimator, here from order O(h2
) to order O(h4
), see Loader (1996) or
Hjort (1996), under sufficient smoothness conditions.
If fST admits continuous fourth-order partial derivatives and is positive at (s, t),
then
√
nh2 ˜f
∗(2)
ST (s, t) − fST (s, t) − h4
b
(2)
ST (s, t)
L
−→ N 0, σ
(2)
ST
2
(s, t) ,
where σ
(2)
ST
2
(s, t) =
5
2
fST (s, t)
4π
and
b
(2)
ST (s, t) = −
1
8
fST (s, t)
×
∂4
g
∂s4
+
∂4
g
∂t4
+ 4
∂3
g
∂s3
∂g
∂s
+
∂3
g
∂t3
∂g
∂t
+
∂3
g
∂s2∂t
∂g
∂t
+
∂3
g
∂s∂t2
∂g
∂s
+ 2
∂4
g
∂s2∂t2
(s, t),
with g(s, t) = log fST (s, t).
@freakonometrics freakonometrics freakonometrics.hypotheses.org 24
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Using a higher order polynomial approximation
A4. The copula density c(u, v) = (∂2
C/∂u∂v)(u, v) admits continuous
fourth-order partial derivatives on the interior of the unit square [0, 1]2
.
Then
√
nh2 ˜c∗(τ,2)
(u, v) − c(u, v) − h4 b(2)
(u, v)
φ(Φ−1(u))φ(Φ−1(v))
L
−→ N 0, σ(2) 2
(u, v)
where σ(2) 2
(u, v) =
5
2
c(u, v)
4πφ(Φ−1(u))φ(Φ−1(v))
@freakonometrics freakonometrics freakonometrics.hypotheses.org 25
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Improving Bandwidth choice
Consider the principal components decomposition of the (n × 2) matrix
[ˆS, ˆT ] = M.
Let W1 = (W11, W12)T
and W2 = (W21, W22)T
be the eigenvectors of MT
M. Set
Q
R
=


W11 W12
W21 W22

 S
T
= W
S
T
which is only a linear reparametrization of R2
, so
an estimate of fST can be readily obtained from an
estimate of the density of (Q, R)
Since { ˆQi} and { ˆRi} are empirically uncorrela-
ted, consider a diagonal bandwidth matrix HQR =
diag(h2
Q, h2
R).
−4 −2 0 2 4
−3−2−1012
@freakonometrics freakonometrics freakonometrics.hypotheses.org 26
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Improving Bandwidth choice
Use univariate procedures to select hQ and hR independently
Denote ˜f
(p)
Q and ˜f
(p)
R (p = 1, 2), the local log-polynomial estimators for the
densities
hQ can be selected via cross-validation (see Section 5.3.3 in Loader (1999))
hQ = arg min
h>0
∞
−∞
˜f
(p)
Q (q)
2
dq −
2
n
n
i=1
˜f
(p)
Q(−i)( ˆQi) ,
where ˜f
(p)
Q(−i) is the ‘leave-one-out’ version of ˜f
(p)
Q .
@freakonometrics freakonometrics freakonometrics.hypotheses.org 27
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Graphical Comparison (loss ALAE dataset)
c~(τ2)
Loss (X)
ALAE(Y)
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1.25
1.25
1.5
1.5
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1
1.25
1.25
1.5
1.5
2
2
4
c^
β
Loss (X)
ALAE(Y)
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1.25
1.25
1.5
1.5
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.25
0.25
0.25 0.25
0.5
0.5
0.75
0.75
0.75
1
1
1
1
1
1.25
1.25
1.25
1.25
1.25
1.5
1.5
2
2
2
4
c^
b
Loss (X)
ALAE(Y)
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1.25
1.25
1.5
1.5
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1.25
1.25
1.5
1.5
2
2
c^
p
Loss (X)
ALAE(Y)
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1.25
1.25
1.5
1.5
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.25
0.25
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1
1.25
1.25
1.25
1.25
1.5
1.5
1.5
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
c~(τ2)
Loss (X)
ALAE(Y)
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1
1.25
1.25
1.5
1.5
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
c^
β
Loss (X)
ALAE(Y)
0.25
0.25
0.25 0.25
0.5
0.5
0.75
0.75
0.75
1
1
1
1
1
1.25
1.25
1.25
1.25
1.25
1.5
1.5
1.5
2
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
c^
b
Loss (X)
ALAE(Y)
0.25
0.25
0.5
0.5
0.75
0.751
1
1.25
1.25
1.5
1.5
2
2
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
c^
p
Loss (X)
ALAE(Y)
0.25
0.25
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1
1.25
1.25
1.25
1.25
1.5
1.5
1.5
2
2
4
@freakonometrics freakonometrics freakonometrics.hypotheses.org 28
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Simulation Study
M = 1, 000 independent random samples {(Ui, Vi)}n
i=1 of sizes n = 200, n = 500
and n = 1000 were generated from each of the following copulas :
· the independence copula (i.e., Ui’s and Vi’s drawn independently) ;
· the Gaussian copula, with parameters ρ = 0.31, ρ = 0.59 and ρ = 0.81 ;
· the Student t-copula with 4 degrees of freedom, with parameters ρ = 0.31,
ρ = 0.59 and ρ = 0.81 ;
· the Frank copula, with parameter θ = 1.86, θ = 4.16 and θ = 7.93 ;
· the Gumbel copula, with parameter θ = 1.25, θ = 1.67 and θ = 2.5 ;
· the Clayton copula, with parameter θ = 0.5, θ = 1.67 and θ = 2.5.
(approximated) MISE relative to the MISE of the mirror-reflection estimator
(last column), n = 1000. Bold values show the minimum MISE for the
corresponding copula (non-significantly different values are highlighted as well).
@freakonometrics freakonometrics freakonometrics.hypotheses.org 29
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
n = 1000 ˆc(τ) ˆc(τam) ˜c(τ,1) ˜c(τ,2) ˆc
(β)
1 ˆc
(β)
2 ˆc
(B)
1 ˆc
(B)
2 ˆc
(p)
1 ˆc
(p)
2 ˆc
(p)
3
Indep 3.57 2.80 2.89 1.40 7.96 11.65 1.69 3.43 1.62 0.50 0.14
Gauss2 2.03 1.52 1.60 0.76 4.63 6.06 1.10 1.82 0.98 0.66 0.89
Gauss4 0.63 0.49 0.44 0.21 1.72 1.60 0.75 0.58 0.62 0.99 2.93
Gauss6 0.21 0.20 0.11 0.05 0.74 0.33 0.77 0.37 0.72 1.21 2.83
Std(4)2 0.61 0.56 0.50 0.40 1.57 1.80 0.78 0.67 0.75 1.01 1.88
Std(4)4 0.21 0.27 0.17 0.15 0.88 0.51 0.75 0.42 0.75 1.12 2.07
Std(4)6 0.09 0.17 0.08 0.09 0.70 0.19 0.82 0.47 0.90 1.17 1.90
Frank2 3.31 2.42 2.57 1.35 7.16 9.63 1.70 2.95 1.31 0.45 0.49
Frank4 2.35 1.45 1.51 0.99 4.42 4.89 1.49 1.65 0.60 0.72 6.14
Frank6 0.96 0.52 0.45 0.44 1.51 1.19 1.35 0.76 0.65 1.58 7.25
Gumbel2 0.65 0.62 0.56 0.43 1.77 1.97 0.82 0.75 0.83 1.03 1.52
Gumbel4 0.18 0.28 0.16 0.19 0.89 0.41 0.78 0.47 0.81 1.10 1.78
Gumbel6 0.09 0.21 0.10 0.15 0.78 0.29 0.85 0.58 0.94 1.12 1.63
Clayton2 0.63 0.60 0.51 0.34 1.78 1.99 0.78 0.70 0.79 1.04 1.79
Clayton4 0.11 0.26 0.10 0.15 0.79 0.27 0.83 0.56 0.90 1.10 1.50
Clayton6 0.11 0.28 0.08 0.15 0.82 0.35 0.88 0.67 0.96 1.09 1.36
@freakonometrics freakonometrics freakonometrics.hypotheses.org 30
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Probit Transform in the Univariate Case : the log transform
See Log-Transform Kernel Density Estimation of Income Distribution with E.
Flachaire
The Gaussian kernel estimator of a density is
fZ(z) =
1
n
n
i=1
ϕ(z; zi, h)
where ϕ(·; µ, σ) is the density of the normal distribution.
Use a Gaussian kernel estimation of the density using a
logarithmic transformation of data xi’s
fX(x) =
fZ(log(x))
x
=
1
n
n
i=1
h(x; log xi, h)
where h(·; µ, σ) is the density of the lognormal distribution.
@freakonometrics freakonometrics freakonometrics.hypotheses.org 31
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Probit Transform in the Univariate Case : the log transform
Recall that classically bias[fZ(z)] ∼
h2
2
fZ(z) and Var[fZ(z)] ∼
0.2821
nh
fZ(z)
Here, in the neighborhood of 0,
bias[fX(x)] ∼
h2
2
fX(x) + 3x · fX(x) + x2
· fX(x)
which is positive if fX(0) > 0, while
Var[fX(x)] ∼
0.2821
nhx
fX(x)
The log-transform kernel may perform
poorly when fX(0) > 0,
see Silverman (1986).
@freakonometrics freakonometrics freakonometrics.hypotheses.org 32
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Back on the Transformed Kernel
See Devroye & Györfi (1985), and Devroye & Lugosi (2001)
... use the transformed kernel the other way, R → [0, 1] → R
@freakonometrics freakonometrics freakonometrics.hypotheses.org 33
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Back on the Transformed Kernel
Interesting point, the optimal T should be F,
thus, T can be Fθ
@freakonometrics freakonometrics freakonometrics.hypotheses.org 34
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Heavy Tailed distribution
Let X denote a (heavy-tailed) random variable with tail index α ∈ (0, ∞), i.e.
P(X > x) = x−α
L1(x)
where L1 is some regularly varying function.
Let T denote a R → [0, 1] function, such that 1 − T is regularly varying at
infinity, with tail index β ∈ (0, ∞).
Define Q(x) = T−1
(1 − x−1
) the associated tail quantile function, then
Q(x) = x1/β
L2(1/x), where L2 is some regularly varying function (the de Bruyn
conjugate of the regular variation function associated with T). Assume here that
Q(x) = bx1/β
Let U = T(X). Then, as u → 1
P(U > u) ∼ (1 − u)α/β
.
@freakonometrics freakonometrics freakonometrics.hypotheses.org 35
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Heavy Tailed distribution
see C. & Oulidi (2010), α = 0.75−1
, T0.75−1 , T0.65−1
lighter
, T0.85−1
heavier
and Tˆα
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
@freakonometrics freakonometrics freakonometrics.hypotheses.org 36
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Heavy Tailed distribution
see C. & Oulidi (2007) Beta kernel quantile estimators of heavy-tailed loss
distributions, impact on quantile estimation ?
20 30 40 50 60 70 80
0.000.010.020.030.040.050.06
Density
@freakonometrics freakonometrics freakonometrics.hypotheses.org 37
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Heavy Tailed distribution
see C. & Oulidi (2007), impact on quantile estimation ? bias ? m.s.e. ?
@freakonometrics freakonometrics freakonometrics.hypotheses.org 38
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Bimodal distribution
Let X denote a bimodal distribution, obtained from a mixture
X ∼ FΘ



F0 if Θ = 0, (probability p0)
F1 if Θ = 1, (probability p1)
Idea : T(X) can be obtained as transformation of two distributions on [0, 1],
T(X) ∼ GΘ



G0 if Θ = 0, (probability p0)
G1 if Θ = 1, (probability p1)
→ standard for income observations...
@freakonometrics freakonometrics freakonometrics.hypotheses.org 39
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Which transformation ?
GB2 : t(y; a, b, p, q) =
|a|yap−1
bapB(p, q)[1 + (y/b)a]p+q
, for y > 0,
GB2
q→∞
~~
a=1

p=1
55
q=1
@@
GG
a→0
ÓÓ
a=1

p=1
%%
Beta2
q→∞
ww
SM
q→∞
xx
q=1
99
Dagum
p=1

Lognormal Gamma Weibull Champernowne
@freakonometrics freakonometrics freakonometrics.hypotheses.org 40
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Example, X ∼ Pareto
Pareto plot (log F(x) vs. log x), and histogram of {U1, · · · , Un}, Ui = Tˆθ(Xi)
log(x)
log(1−F(x))
1 5 10 50 100 500
5e−055e−045e−035e−025e−01
u=H(x)
densityg(u)
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.01.2
@freakonometrics freakonometrics freakonometrics.hypotheses.org 41
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Example, X ∼ Pareto
Estimation of the density g of U = Tθ
(X), and estimated c.d.f of X,
Fn(x) =
x
0
fn(y)dy where fn(y) = gn(Tˆθ(y)) · tˆθ(y)
u=H(x)
densityg(u)
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.01.2
Adaptative kernel
log(x)
log(1−F(x))
1 5 10 50 100 500
5e−055e−045e−035e−025e−01
@freakonometrics freakonometrics freakonometrics.hypotheses.org 42
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Beta kernel
g(u) =
n
i=1
1
n
· b u;
Ui
h
,
1 − Ui
h
u ∈ [0, 1].
with some possible boundary correction, as suggested in Chen (1999),
u
h
→ ρ(u, h) = 2h2
+ 2.5 − (4h4
+ 6h2
+ 2.25 − u2
− u/h)1/2
Problem : choice of the bandwidth h ? Standard loss function
L(h) = [gn(u) − g(u)]2
du = [gn(u)]2
du − 2 gn(u) · g(u)du
CV (h)
+ [g(u)]2
du
where
CV (h) = gn(u)du
2
−
2
n
n
i=1
g(−i)(Ui)
@freakonometrics freakonometrics freakonometrics.hypotheses.org 43
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Beta kernel
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.02.53.0
q q q qq q qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.02.53.0
q q q qq q qqqq qq qq qq q qq q qq qq q qq q qq q q
@freakonometrics freakonometrics freakonometrics.hypotheses.org 44
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Beta kernel
u=H(x)
densityg(u)
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.01.2
Beta mixtures (.1)
Beta mixtures (.05)
Beta mixtures (.02)
Beta mixtures (.01)
log(x)
log(1−F(x))
1 5 10 50 100 5001e−051e−041e−031e−021e−01
@freakonometrics freakonometrics freakonometrics.hypotheses.org 45
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Mixture of Beta distributions
g(u) =
k
j=1
πj · b u; αj, βj u ∈ [0, 1].
Problem : choice the number of components k (and estimation...). Use of
stochastic EM algorithm (or sort of) see Celeux  Diebolt (1985).
@freakonometrics freakonometrics freakonometrics.hypotheses.org 46
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Mixture of Beta distributions
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.02.53.0
q q q qq q qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.02.53.0
q q q qq q qqqq qq qq qq q qq q qq qq q qq q qq q q
@freakonometrics freakonometrics freakonometrics.hypotheses.org 47
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Mixture of Beta distributions
u=H(x)
densityg(u)
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.01.2
Beta mixtures
log(x)
log(1−F(x))
1 5 10 50 100 5001e−051e−041e−031e−021e−01
@freakonometrics freakonometrics freakonometrics.hypotheses.org 48
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Bernstein approximation
g(u) =
m
k=1
[mωk] · b (u; k, m − k) u ∈ [0, 1].
where ωk = G
k
m
− G
k − 1
m
.
@freakonometrics freakonometrics freakonometrics.hypotheses.org 49
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Bernstein approximation
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.02.53.0
q q q qq q qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.02.53.0
q q q qq q qqqq qq qq qq q qq q qq qq q qq q qq q q
@freakonometrics freakonometrics freakonometrics.hypotheses.org 50
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Bernstein approximation
u=H(x)
densityg(u)
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.01.2
Bernstein (100)
Bernstein (60)
Bernstein (40)
Bernstein (20)
Bernstein (10)
Bernstein (5)
log(x)
log(1−F(x))
1 5 10 50 100 5001e−051e−041e−031e−021e−01
@freakonometrics freakonometrics freakonometrics.hypotheses.org 51
Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference
Quantities of interest
Standard statistical quantities
• miae,
∞
0
fn(x) − f(x) dx
• mise,
∞
0
fn(x) − f(x)
2
dx
Inequality indices and risk measures, based on F(x) =
x
0
f(t)dt,
• Gini,
1
µ
∞
0
F(t)[1 − F(t)]dt
• Theil,
∞
0
t
µ
log
t
µ
f(t)dt
• VaR-quantile, x such that F(x) = P(X ≤ x) = α, i.e. F−1
(α)
• TVaR-expected shorfall, E[X|X  F−1
(α)]
where µ =
∞
0
[1 − F(x)]dx.
@freakonometrics freakonometrics freakonometrics.hypotheses.org 52

More Related Content

What's hot

Varese italie #2
Varese italie #2Varese italie #2
Varese italie #2
Arthur Charpentier
 
Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2
Arthur Charpentier
 
Slides econometrics-2018-graduate-2
Slides econometrics-2018-graduate-2Slides econometrics-2018-graduate-2
Slides econometrics-2018-graduate-2
Arthur Charpentier
 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
Arthur Charpentier
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
Arthur Charpentier
 
Side 2019 #3
Side 2019 #3Side 2019 #3
Side 2019 #3
Arthur Charpentier
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
Arthur Charpentier
 
Sildes buenos aires
Sildes buenos airesSildes buenos aires
Sildes buenos aires
Arthur Charpentier
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-webArthur Charpentier
 
Slides econ-lm
Slides econ-lmSlides econ-lm
Slides econ-lm
Arthur Charpentier
 
Side 2019 #6
Side 2019 #6Side 2019 #6
Side 2019 #6
Arthur Charpentier
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
Arthur Charpentier
 
Varese italie #2
Varese italie #2Varese italie #2
Varese italie #2
Arthur Charpentier
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
Arthur Charpentier
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
Arthur Charpentier
 
Hands-On Algorithms for Predictive Modeling
Hands-On Algorithms for Predictive ModelingHands-On Algorithms for Predictive Modeling
Hands-On Algorithms for Predictive Modeling
Arthur Charpentier
 
Slides barcelona Machine Learning
Slides barcelona Machine LearningSlides barcelona Machine Learning
Slides barcelona Machine Learning
Arthur Charpentier
 

What's hot (20)

Varese italie #2
Varese italie #2Varese italie #2
Varese italie #2
 
Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2
 
Slides econometrics-2018-graduate-2
Slides econometrics-2018-graduate-2Slides econometrics-2018-graduate-2
Slides econometrics-2018-graduate-2
 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
Side 2019 #3
Side 2019 #3Side 2019 #3
Side 2019 #3
 
Slides lln-risques
Slides lln-risquesSlides lln-risques
Slides lln-risques
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
 
Sildes buenos aires
Sildes buenos airesSildes buenos aires
Sildes buenos aires
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Slides econ-lm
Slides econ-lmSlides econ-lm
Slides econ-lm
 
Side 2019 #6
Side 2019 #6Side 2019 #6
Side 2019 #6
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Varese italie #2
Varese italie #2Varese italie #2
Varese italie #2
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Hands-On Algorithms for Predictive Modeling
Hands-On Algorithms for Predictive ModelingHands-On Algorithms for Predictive Modeling
Hands-On Algorithms for Predictive Modeling
 
Slides barcelona Machine Learning
Slides barcelona Machine LearningSlides barcelona Machine Learning
Slides barcelona Machine Learning
 

Similar to transformations and nonparametric inference

slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
Arthur Charpentier
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
Arthur Charpentier
 
Knowledge Representation, Inference and Reasoning
Knowledge Representation, Inference and ReasoningKnowledge Representation, Inference and Reasoning
Knowledge Representation, Inference and Reasoning
Sagacious IT Solution
 
Proba stats-r1-2017
Proba stats-r1-2017Proba stats-r1-2017
Proba stats-r1-2017
Arthur Charpentier
 
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
IJERA Editor
 
Ijetr021233
Ijetr021233Ijetr021233
FourierTransform detailed power point presentation
FourierTransform detailed power point presentationFourierTransform detailed power point presentation
FourierTransform detailed power point presentation
ssuseracb8ba
 
SMART Seminar Series: "A journey in the zoo of Turing patterns: the topology ...
SMART Seminar Series: "A journey in the zoo of Turing patterns: the topology ...SMART Seminar Series: "A journey in the zoo of Turing patterns: the topology ...
SMART Seminar Series: "A journey in the zoo of Turing patterns: the topology ...
SMART Infrastructure Facility
 
D023031047
D023031047D023031047
D023031047
inventionjournals
 
D023031047
D023031047D023031047
D023031047
inventionjournals
 
BAYSM'14, Wien, Austria
BAYSM'14, Wien, AustriaBAYSM'14, Wien, Austria
BAYSM'14, Wien, Austria
Christian Robert
 
Lecture 2-Filtering.pdf
Lecture 2-Filtering.pdfLecture 2-Filtering.pdf
Lecture 2-Filtering.pdf
TechEvents1
 

Similar to transformations and nonparametric inference (20)

slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
 
Slides smart-2015
Slides smart-2015Slides smart-2015
Slides smart-2015
 
Ft3 new
Ft3 newFt3 new
Ft3 new
 
Technical
TechnicalTechnical
Technical
 
Knowledge Representation, Inference and Reasoning
Knowledge Representation, Inference and ReasoningKnowledge Representation, Inference and Reasoning
Knowledge Representation, Inference and Reasoning
 
Proba stats-r1-2017
Proba stats-r1-2017Proba stats-r1-2017
Proba stats-r1-2017
 
Lesson 26
Lesson 26Lesson 26
Lesson 26
 
AI Lesson 26
AI Lesson 26AI Lesson 26
AI Lesson 26
 
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
 
Berlin
BerlinBerlin
Berlin
 
Ijetr021233
Ijetr021233Ijetr021233
Ijetr021233
 
FourierTransform detailed power point presentation
FourierTransform detailed power point presentationFourierTransform detailed power point presentation
FourierTransform detailed power point presentation
 
SMART Seminar Series: "A journey in the zoo of Turing patterns: the topology ...
SMART Seminar Series: "A journey in the zoo of Turing patterns: the topology ...SMART Seminar Series: "A journey in the zoo of Turing patterns: the topology ...
SMART Seminar Series: "A journey in the zoo of Turing patterns: the topology ...
 
D023031047
D023031047D023031047
D023031047
 
D023031047
D023031047D023031047
D023031047
 
UCB 2012-02-28
UCB 2012-02-28UCB 2012-02-28
UCB 2012-02-28
 
Slides laval stat avril 2011
Slides laval stat avril 2011Slides laval stat avril 2011
Slides laval stat avril 2011
 
BAYSM'14, Wien, Austria
BAYSM'14, Wien, AustriaBAYSM'14, Wien, Austria
BAYSM'14, Wien, Austria
 
Lecture 2-Filtering.pdf
Lecture 2-Filtering.pdfLecture 2-Filtering.pdf
Lecture 2-Filtering.pdf
 

More from Arthur Charpentier

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
Arthur Charpentier
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
Arthur Charpentier
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
Arthur Charpentier
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
Arthur Charpentier
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
Arthur Charpentier
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
Arthur Charpentier
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
Arthur Charpentier
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
Arthur Charpentier
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
Arthur Charpentier
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
Arthur Charpentier
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
Arthur Charpentier
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
Arthur Charpentier
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
Arthur Charpentier
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
Arthur Charpentier
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
Arthur Charpentier
 
Side 2019 #4
Side 2019 #4Side 2019 #4
Side 2019 #4
Arthur Charpentier
 
Pareto Models, Slides EQUINEQ
Pareto Models, Slides EQUINEQPareto Models, Slides EQUINEQ
Pareto Models, Slides EQUINEQ
Arthur Charpentier
 
Econ. Seminar Uqam
Econ. Seminar UqamEcon. Seminar Uqam
Econ. Seminar Uqam
Arthur Charpentier
 
Mutualisation et Segmentation
Mutualisation et SegmentationMutualisation et Segmentation
Mutualisation et Segmentation
Arthur Charpentier
 

More from Arthur Charpentier (19)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #4
Side 2019 #4Side 2019 #4
Side 2019 #4
 
Pareto Models, Slides EQUINEQ
Pareto Models, Slides EQUINEQPareto Models, Slides EQUINEQ
Pareto Models, Slides EQUINEQ
 
Econ. Seminar Uqam
Econ. Seminar UqamEcon. Seminar Uqam
Econ. Seminar Uqam
 
Mutualisation et Segmentation
Mutualisation et SegmentationMutualisation et Segmentation
Mutualisation et Segmentation
 

Recently uploaded

Adjusting OpenMP PageRank : SHORT REPORT / NOTES
Adjusting OpenMP PageRank : SHORT REPORT / NOTESAdjusting OpenMP PageRank : SHORT REPORT / NOTES
Adjusting OpenMP PageRank : SHORT REPORT / NOTES
Subhajit Sahu
 
06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...
06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...
06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...
Timothy Spann
 
原版制作(swinburne毕业证书)斯威本科技大学毕业证毕业完成信一模一样
原版制作(swinburne毕业证书)斯威本科技大学毕业证毕业完成信一模一样原版制作(swinburne毕业证书)斯威本科技大学毕业证毕业完成信一模一样
原版制作(swinburne毕业证书)斯威本科技大学毕业证毕业完成信一模一样
u86oixdj
 
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
axoqas
 
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
ahzuo
 
Adjusting primitives for graph : SHORT REPORT / NOTES
Adjusting primitives for graph : SHORT REPORT / NOTESAdjusting primitives for graph : SHORT REPORT / NOTES
Adjusting primitives for graph : SHORT REPORT / NOTES
Subhajit Sahu
 
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdfCh03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
haila53
 
Global Situational Awareness of A.I. and where its headed
Global Situational Awareness of A.I. and where its headedGlobal Situational Awareness of A.I. and where its headed
Global Situational Awareness of A.I. and where its headed
vikram sood
 
Data_and_Analytics_Essentials_Architect_an_Analytics_Platform.pptx
Data_and_Analytics_Essentials_Architect_an_Analytics_Platform.pptxData_and_Analytics_Essentials_Architect_an_Analytics_Platform.pptx
Data_and_Analytics_Essentials_Architect_an_Analytics_Platform.pptx
AnirbanRoy608946
 
Learn SQL from basic queries to Advance queries
Learn SQL from basic queries to Advance queriesLearn SQL from basic queries to Advance queries
Learn SQL from basic queries to Advance queries
manishkhaire30
 
一比一原版(Dalhousie毕业证书)达尔豪斯大学毕业证如何办理
一比一原版(Dalhousie毕业证书)达尔豪斯大学毕业证如何办理一比一原版(Dalhousie毕业证书)达尔豪斯大学毕业证如何办理
一比一原版(Dalhousie毕业证书)达尔豪斯大学毕业证如何办理
mzpolocfi
 
Nanandann Nilekani's ppt On India's .pdf
Nanandann Nilekani's ppt On India's .pdfNanandann Nilekani's ppt On India's .pdf
Nanandann Nilekani's ppt On India's .pdf
eddie19851
 
Levelwise PageRank with Loop-Based Dead End Handling Strategy : SHORT REPORT ...
Levelwise PageRank with Loop-Based Dead End Handling Strategy : SHORT REPORT ...Levelwise PageRank with Loop-Based Dead End Handling Strategy : SHORT REPORT ...
Levelwise PageRank with Loop-Based Dead End Handling Strategy : SHORT REPORT ...
Subhajit Sahu
 
办(uts毕业证书)悉尼科技大学毕业证学历证书原版一模一样
办(uts毕业证书)悉尼科技大学毕业证学历证书原版一模一样办(uts毕业证书)悉尼科技大学毕业证学历证书原版一模一样
办(uts毕业证书)悉尼科技大学毕业证学历证书原版一模一样
apvysm8
 
Machine learning and optimization techniques for electrical drives.pptx
Machine learning and optimization techniques for electrical drives.pptxMachine learning and optimization techniques for electrical drives.pptx
Machine learning and optimization techniques for electrical drives.pptx
balafet
 
Everything you wanted to know about LIHTC
Everything you wanted to know about LIHTCEverything you wanted to know about LIHTC
Everything you wanted to know about LIHTC
Roger Valdez
 
一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理
一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理
一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理
g4dpvqap0
 
The affect of service quality and online reviews on customer loyalty in the E...
The affect of service quality and online reviews on customer loyalty in the E...The affect of service quality and online reviews on customer loyalty in the E...
The affect of service quality and online reviews on customer loyalty in the E...
jerlynmaetalle
 
一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理
一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理
一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理
ahzuo
 
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Subhajit Sahu
 

Recently uploaded (20)

Adjusting OpenMP PageRank : SHORT REPORT / NOTES
Adjusting OpenMP PageRank : SHORT REPORT / NOTESAdjusting OpenMP PageRank : SHORT REPORT / NOTES
Adjusting OpenMP PageRank : SHORT REPORT / NOTES
 
06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...
06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...
06-04-2024 - NYC Tech Week - Discussion on Vector Databases, Unstructured Dat...
 
原版制作(swinburne毕业证书)斯威本科技大学毕业证毕业完成信一模一样
原版制作(swinburne毕业证书)斯威本科技大学毕业证毕业完成信一模一样原版制作(swinburne毕业证书)斯威本科技大学毕业证毕业完成信一模一样
原版制作(swinburne毕业证书)斯威本科技大学毕业证毕业完成信一模一样
 
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
 
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
 
Adjusting primitives for graph : SHORT REPORT / NOTES
Adjusting primitives for graph : SHORT REPORT / NOTESAdjusting primitives for graph : SHORT REPORT / NOTES
Adjusting primitives for graph : SHORT REPORT / NOTES
 
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdfCh03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
 
Global Situational Awareness of A.I. and where its headed
Global Situational Awareness of A.I. and where its headedGlobal Situational Awareness of A.I. and where its headed
Global Situational Awareness of A.I. and where its headed
 
Data_and_Analytics_Essentials_Architect_an_Analytics_Platform.pptx
Data_and_Analytics_Essentials_Architect_an_Analytics_Platform.pptxData_and_Analytics_Essentials_Architect_an_Analytics_Platform.pptx
Data_and_Analytics_Essentials_Architect_an_Analytics_Platform.pptx
 
Learn SQL from basic queries to Advance queries
Learn SQL from basic queries to Advance queriesLearn SQL from basic queries to Advance queries
Learn SQL from basic queries to Advance queries
 
一比一原版(Dalhousie毕业证书)达尔豪斯大学毕业证如何办理
一比一原版(Dalhousie毕业证书)达尔豪斯大学毕业证如何办理一比一原版(Dalhousie毕业证书)达尔豪斯大学毕业证如何办理
一比一原版(Dalhousie毕业证书)达尔豪斯大学毕业证如何办理
 
Nanandann Nilekani's ppt On India's .pdf
Nanandann Nilekani's ppt On India's .pdfNanandann Nilekani's ppt On India's .pdf
Nanandann Nilekani's ppt On India's .pdf
 
Levelwise PageRank with Loop-Based Dead End Handling Strategy : SHORT REPORT ...
Levelwise PageRank with Loop-Based Dead End Handling Strategy : SHORT REPORT ...Levelwise PageRank with Loop-Based Dead End Handling Strategy : SHORT REPORT ...
Levelwise PageRank with Loop-Based Dead End Handling Strategy : SHORT REPORT ...
 
办(uts毕业证书)悉尼科技大学毕业证学历证书原版一模一样
办(uts毕业证书)悉尼科技大学毕业证学历证书原版一模一样办(uts毕业证书)悉尼科技大学毕业证学历证书原版一模一样
办(uts毕业证书)悉尼科技大学毕业证学历证书原版一模一样
 
Machine learning and optimization techniques for electrical drives.pptx
Machine learning and optimization techniques for electrical drives.pptxMachine learning and optimization techniques for electrical drives.pptx
Machine learning and optimization techniques for electrical drives.pptx
 
Everything you wanted to know about LIHTC
Everything you wanted to know about LIHTCEverything you wanted to know about LIHTC
Everything you wanted to know about LIHTC
 
一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理
一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理
一比一原版(爱大毕业证书)爱丁堡大学毕业证如何办理
 
The affect of service quality and online reviews on customer loyalty in the E...
The affect of service quality and online reviews on customer loyalty in the E...The affect of service quality and online reviews on customer loyalty in the E...
The affect of service quality and online reviews on customer loyalty in the E...
 
一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理
一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理
一比一原版(UIUC毕业证)伊利诺伊大学|厄巴纳-香槟分校毕业证如何办理
 
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
 

transformations and nonparametric inference

  • 1. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Using Transformations of Variables to Improve Inference A. Charpentier ( UQAM), joint work with J.-D. Fermanian (CREST) E. Flachaire (AMSE) G. Geenens (UNSW), A. Oulidi (UIO), D. Paindaveine (ULB), O. Scaillet (UNIGE) Montréal, UQAM, November 2018 @freakonometrics freakonometrics freakonometrics.hypotheses.org 1
  • 2. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Side Note Most of the contents here is based on old results (revised, and continued) Work on genealogical trees, Étude de la démographie française du XIXe siècle à partir de données collaboratives de généalogie and Internal Migrations in France in the Nineteenth Century with E. Gallic. Children Grandchildren Great-grandchildren 0.00 0.126 0.252 0.378 0.503 Children Grandchildren Great-grandchildren 0.00 0.029 0.058 0.087 0.116 @freakonometrics freakonometrics freakonometrics.hypotheses.org 2
  • 3. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Motivation 2005, The Estimation of Copulas: Theory and Practice with J.-D. Fermanian and O. Scaillet survey on non-parametric techniques (kernel base) to visualize the estimator of a copula density 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 Idea : beta kernels and transformed kernels More recently, mix those techniques in the univariate case @freakonometrics freakonometrics freakonometrics.hypotheses.org 3
  • 4. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Motivation Consider some n-i.i.d. sample {(Xi, Yi)} with cu- mulative distribution function FXY and joint den- sity fXY . Let FX and FY denote the marginal dis- tributions, and C the copula, FXY (x, y) = C(FX(x), FY (y)) so that fXY (x, y) = fX(x)fY (y)c(FX(x), FY (y)) We want a nonparametric estimate of c on [0, 1]2 . 1e+01 1e+03 1e+05 1e+011e+021e+031e+041e+05 @freakonometrics freakonometrics freakonometrics.hypotheses.org 4
  • 5. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Notations Define uniformized n-i.i.d. sample {(Ui, Vi)} Ui = FX(Xi) and Vi = FY (Yi) or uniformized n-i.i.d. pseudo-sample {( ˆUi, ˆVi)} ˆUi = n n + 1 ˆFXn(Xi) and ˆVi = n n + 1 ˆFY n(Yi) where ˆFXn and ˆFY n denote empirical c.d.f. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 @freakonometrics freakonometrics freakonometrics.hypotheses.org 5
  • 6. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Standard Kernel Estimate The standard kernel estimator for c, say ˆc∗ , at (u, v) ∈ I would be (see Wand & Jones (1995)) ˆc∗ (u, v) = 1 n|HUV |1/2 n i=1 K H −1/2 UV u − Ui v − Vi , (1) where K : R2 → R is a kernel function and HUV is a bandwidth matrix. @freakonometrics freakonometrics freakonometrics.hypotheses.org 6
  • 7. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Standard Kernel Estimate However, this estimator is not consistent along boundaries of [0, 1]2 E(ˆc∗ (u, v)) = 1 4 c(u, v) + O(h) at corners E(ˆc∗ (u, v)) = 1 2 c(u, v) + O(h) on the borders if K is symmetric and HUV symmetric. Corrections have been proposed, e.g. mirror reflec- tion Gijbels (1990) or the usage of boundary kernels Chen (2007), but with mixed results. Remark : the graph on the bottom is ˆc∗ on the (first) diagonal. 0.0 0.2 0.4 0.6 0.8 1.0 01234567 @freakonometrics freakonometrics freakonometrics.hypotheses.org 7 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6
  • 8. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Mirror Kernel Estimate Use an enlarged sample : instead of only {( ˆUi, ˆVi)}, add {(− ˆUi, ˆVi)}, {( ˆUi, − ˆVi)}, {(− ˆUi, − ˆVi)}, {( ˆUi, 2 − ˆVi)}, {(2 − ˆUi, ˆVi)},{(− ˆUi, 2 − ˆVi)}, {(2 − ˆUi, − ˆVi)} and {(2 − ˆUi, 2 − ˆVi)}. See Gijbels & Mielniczuk (1990). That estimator will be used as a benchmark in the simulation study. 0.0 0.2 0.4 0.6 0.8 1.0 01234567 @freakonometrics freakonometrics freakonometrics.hypotheses.org 8 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6
  • 9. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Using Beta Kernels Use a Kernel which is a product of beta kernels Kxi (u) ∝ x u1 b 1,i [1 − x1,i] u1 b · x u2 b 2,i [1 − x2,i] u2 b for some b > 0, see Chen (1999). for some observation xi in the lower left corner 0.0 0.2 0.4 0.6 0.8 1.0 01234567 @freakonometrics freakonometrics freakonometrics.hypotheses.org 9 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6
  • 10. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Using Beta Kernels @freakonometrics freakonometrics freakonometrics.hypotheses.org 10
  • 11. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Probit Transformation See Devroye & Gyöfi (1985) and Marron & Ruppert (1994). Define normalized n-i.i.d. sample {(Si, Ti)} Si = Φ−1 (Ui) and Ti = Φ−1 (Vi) or normalized n-i.i.d. pseudo-sample {( ˆSi, ˆTi)} ˆUi = Φ−1 ( ˆUi) and ˆVi = Φ−1 ( ˆVi) where Φ−1 is the quantile function of N(0, 1) (probit transformation). −3 −2 −1 0 1 2 3 −3−2−10123 @freakonometrics freakonometrics freakonometrics.hypotheses.org 11
  • 12. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Probit Transformation FST (x, y) = C(Φ(x), Φ(y)) so that fST (x, y) = φ(x)φ(y)c(Φ(x), Φ(y)) Thus c(u, v) = fST (Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) . So use ˆc(τ) (u, v) = ˆfST (Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) −3 −2 −1 0 1 2 3 −3−2−10123 @freakonometrics freakonometrics freakonometrics.hypotheses.org 12
  • 13. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference The naive estimator Since we cannot use ˆf∗ ST (s, t) = 1 n|HST |1/2 n i=1 K H −1/2 ST s − Si t − Ti , where K is a kernel function and HST is a band- width matrix, use ˆfST (s, t) = 1 n|HST |1/2 n i=1 K H −1/2 ST s − ˆSi t − ˆTi . and the copula density is ˆc(τ) (u, v) = ˆfST (Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) 0.0 0.2 0.4 0.6 0.8 1.0 01234567 @freakonometrics freakonometrics freakonometrics.hypotheses.org 13 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6
  • 14. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference The naive estimator ˆc(τ) (u, v) = 1 n|HST |1/2φ(Φ−1(u))φ(Φ−1(v)) n i=1 K H −1/2 ST Φ−1 (u) − Φ−1 ( ˆUi) Φ−1(v) − Φ−1( ˆVi) as suggested in C., Fermanian & Scaillet (2007) and Lopez-Paz . et al. (2013). Note that Omelka . et al. (2009) obtained theoretical properties on the convergence of ˆC(τ) (u, v) (not c). In Probit transformation for nonparametric kernel estimation of the copula density with G. Geenens and D. Paindaveine, we extended that estimator. See also kdecopula R package by T. Nagler @freakonometrics freakonometrics freakonometrics.hypotheses.org 14
  • 15. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Improved probit-transformation copula density estimators When estimating a density from pseudo-sample, Loader (1996) and Hjort & Jones (1996) define a local likelihood estimator Around (s, t) ∈ R2 , use a polynomial approximation of order p for log fST log fST (ˇs, ˇt) a1,0(s, t) + a1,1(s, t)(ˇs − s) + a1,2(s, t)(ˇt − t) . = Pa1 (ˇs − s, ˇt − t) log fST (ˇs, ˇt) a2,0(s, t) + a2,1(s, t)(ˇs − s) + a2,2(s, t)(ˇt − t) + a2,3(s, t)(ˇs − s)2 + a2,4(s, t)(ˇt − t)2 + a2,5(s, t)(ˇs − s)(ˇt − t) . = Pa2 (ˇs − s, ˇt − t). @freakonometrics freakonometrics freakonometrics.hypotheses.org 15
  • 16. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Improved probit-transformation copula density estimators Remark Vectors a1(s, t) = (a1,0(s, t), a1,1(s, t), a1,2(s, t)) and a2(s, t) . = (a2,0(s, t), . . . , a2,5(s, t)) are then estimated by solving a weighted maximum likelihood problem. ˜ap(s, t) = arg max ap n i=1 K H −1/2 ST s − ˆSi t − ˆTi Pap ( ˆSi − s, ˆTi − t) −n R2 K H −1/2 ST s − ˇs t − ˇt exp Pap (ˇs − s, ˇt − t) dˇs dˇt , The estimate of fST at (s, t) is then ˜f (p) ST (s, t) = exp(˜ap,0(s, t)), for p = 1, 2. The Improved probit-transformation kernel copula density estimators are ˜c(τ,p) (u, v) = ˜f (p) ST (Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) @freakonometrics freakonometrics freakonometrics.hypotheses.org 16
  • 17. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Improved probit-transformation copula density estimators For the local log-linear (p = 1) approximation ˜c(τ,1) (u, v) = exp(˜a1,0(Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) 0.0 0.2 0.4 0.6 0.8 1.0 01234567 @freakonometrics freakonometrics freakonometrics.hypotheses.org 17 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6
  • 18. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Improved probit-transformation copula density estimators For the local log-quadratic (p = 2) approximation ˜c(τ,2) (u, v) = exp(˜a2,0(Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) 0.0 0.2 0.4 0.6 0.8 1.0 01234567 @freakonometrics freakonometrics freakonometrics.hypotheses.org 18 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6
  • 19. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Asymptotic properties A1. The sample {(Xi, Yi)} is a n- i.i.d. sample from the joint distribution FXY , an absolutely continuous distribution with marginals FX and FY strictly increasing on their support ; (uniqueness of the copula) @freakonometrics freakonometrics freakonometrics.hypotheses.org 19
  • 20. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Asymptotic properties A2. The copula C of FXY is such that (∂C/∂u)(u, v) and (∂2 C/∂u2 )(u, v) exist and are continuous on {(u, v) : u ∈ (0, 1), v ∈ [0, 1]}, and (∂C/∂v)(u, v) and (∂2 C/∂v2 )(u, v) exist and are continuous on {(u, v) : u ∈ [0, 1], v ∈ (0, 1)}. In addition, there are constants K1 and K2 such that    ∂2 C ∂u2 (u, v) ≤ K1 u(1 − u) for (u, v) ∈ (0, 1) × [0, 1]; ∂2 C ∂v2 (u, v) ≤ K2 v(1 − v) for (u, v) ∈ [0, 1] × (0, 1); A3. The density c of C exists, is positive and admits continuous second-order partial derivatives on the interior of the unit square I. In addition, there is a constant K00 such that c(u, v) ≤ K00 min 1 u(1 − u) , 1 v(1 − v) ∀(u, v) ∈ (0, 1)2 . see Segers (2012). @freakonometrics freakonometrics freakonometrics.hypotheses.org 20
  • 21. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Asymptotic properties Assume that K(z1, z2) = φ(z1)φ(z2) and HST = h2 I with h ∼ n−a for some a ∈ (0, 1/4). Under Assumptions A1-A3, the ‘naive’ probit transformation kernel copula density estimator at any (u, v) ∈ (0, 1)2 is such that √ nh2 ˆc(τ) (u, v) − c(u, v) − h2 b(u, v) φ(Φ−1(u))φ(Φ−1(v)) L −→ N 0, σ2 (u, v) , where b(u, v) = 1 2 ∂2 c ∂u2 (u, v)φ2 (Φ−1 (u)) + ∂2 c ∂v2 (u, v)φ2 (Φ−1 (v)) − 3 ∂c ∂u (u, v)Φ−1 (u)φ(Φ−1 (u)) + ∂c ∂v (u, v)Φ−1 (v)φ(Φ−1 (v)) + c(u, v) {Φ−1 (u)}2 + {Φ−1 (v)}2 − 2 (2) and σ2 (u, v) = c(u, v) 4πφ(Φ−1(u))φ(Φ−1(v)) . @freakonometrics freakonometrics freakonometrics.hypotheses.org 21
  • 22. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference The Amended version The last unbounded term in b be easily adjusted. ˆc(τam) (u, v) = ˆfST (Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) × 1 1 + 1 2 h2 ({Φ−1(u)}2 + {Φ−1(v)}2 − 2) . The asymptotic bias becomes proportional to b(am) (u, v) = 1 2 ∂2 c ∂u2 (u, v)φ2 (Φ−1 (u)) + ∂2 c ∂v2 (u, v)φ2 (Φ−1 (v)) −3 ∂c ∂u (u, v)Φ−1 (u)φ(Φ−1 (u)) + ∂c ∂v (u, v)Φ−1 (v)φ(Φ−1 (v)) . @freakonometrics freakonometrics freakonometrics.hypotheses.org 22
  • 23. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference A local log-linear probit-transformation kernel estimator ˜c∗(τ,1) (u, v) = ˜f ∗(1) ST (Φ−1 (u), Φ−1 (v))/ φ(Φ−1 (u))φ(Φ−1 (v)) Then √ nh2 ˜c∗(τ,1) (u, v) − c(u, v) − h2 b(1) (u, v) φ(Φ−1(u))φ(Φ−1(v)) L −→ N 0, σ(1) 2 (u, v) , where b(1) (u, v) = 1 2 ∂2 c ∂u2 (u, v)φ2 (Φ−1 (u)) + ∂2 c ∂v2 (u, v)φ2 (Φ−1 (v)) − 1 c(u, v) ∂c ∂u (u, v) 2 φ2 (Φ−1 (u)) + ∂c ∂v (u, v) 2 φ2 (Φ−1 (v)) − ∂c ∂u (u, v)Φ−1 (u)φ(Φ−1 (u)) + ∂c ∂v (u, v)Φ−1 (v)φ(Φ−1 (v)) − 2c(u, v) @freakonometrics freakonometrics freakonometrics.hypotheses.org 23
  • 24. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Using a higher order polynomial approximation Locally fitting a polynomial of a higher degree is known to reduce the asymptotic bias of the estimator, here from order O(h2 ) to order O(h4 ), see Loader (1996) or Hjort (1996), under sufficient smoothness conditions. If fST admits continuous fourth-order partial derivatives and is positive at (s, t), then √ nh2 ˜f ∗(2) ST (s, t) − fST (s, t) − h4 b (2) ST (s, t) L −→ N 0, σ (2) ST 2 (s, t) , where σ (2) ST 2 (s, t) = 5 2 fST (s, t) 4π and b (2) ST (s, t) = − 1 8 fST (s, t) × ∂4 g ∂s4 + ∂4 g ∂t4 + 4 ∂3 g ∂s3 ∂g ∂s + ∂3 g ∂t3 ∂g ∂t + ∂3 g ∂s2∂t ∂g ∂t + ∂3 g ∂s∂t2 ∂g ∂s + 2 ∂4 g ∂s2∂t2 (s, t), with g(s, t) = log fST (s, t). @freakonometrics freakonometrics freakonometrics.hypotheses.org 24
  • 25. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Using a higher order polynomial approximation A4. The copula density c(u, v) = (∂2 C/∂u∂v)(u, v) admits continuous fourth-order partial derivatives on the interior of the unit square [0, 1]2 . Then √ nh2 ˜c∗(τ,2) (u, v) − c(u, v) − h4 b(2) (u, v) φ(Φ−1(u))φ(Φ−1(v)) L −→ N 0, σ(2) 2 (u, v) where σ(2) 2 (u, v) = 5 2 c(u, v) 4πφ(Φ−1(u))φ(Φ−1(v)) @freakonometrics freakonometrics freakonometrics.hypotheses.org 25
  • 26. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Improving Bandwidth choice Consider the principal components decomposition of the (n × 2) matrix [ˆS, ˆT ] = M. Let W1 = (W11, W12)T and W2 = (W21, W22)T be the eigenvectors of MT M. Set Q R =   W11 W12 W21 W22   S T = W S T which is only a linear reparametrization of R2 , so an estimate of fST can be readily obtained from an estimate of the density of (Q, R) Since { ˆQi} and { ˆRi} are empirically uncorrela- ted, consider a diagonal bandwidth matrix HQR = diag(h2 Q, h2 R). −4 −2 0 2 4 −3−2−1012 @freakonometrics freakonometrics freakonometrics.hypotheses.org 26
  • 27. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Improving Bandwidth choice Use univariate procedures to select hQ and hR independently Denote ˜f (p) Q and ˜f (p) R (p = 1, 2), the local log-polynomial estimators for the densities hQ can be selected via cross-validation (see Section 5.3.3 in Loader (1999)) hQ = arg min h>0 ∞ −∞ ˜f (p) Q (q) 2 dq − 2 n n i=1 ˜f (p) Q(−i)( ˆQi) , where ˜f (p) Q(−i) is the ‘leave-one-out’ version of ˜f (p) Q . @freakonometrics freakonometrics freakonometrics.hypotheses.org 27
  • 28. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Graphical Comparison (loss ALAE dataset) c~(τ2) Loss (X) ALAE(Y) 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1.25 1.25 1.5 1.5 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1 1.25 1.25 1.5 1.5 2 2 4 c^ β Loss (X) ALAE(Y) 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1.25 1.25 1.5 1.5 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.25 0.25 0.25 0.25 0.5 0.5 0.75 0.75 0.75 1 1 1 1 1 1.25 1.25 1.25 1.25 1.25 1.5 1.5 2 2 2 4 c^ b Loss (X) ALAE(Y) 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1.25 1.25 1.5 1.5 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1.25 1.25 1.5 1.5 2 2 c^ p Loss (X) ALAE(Y) 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1.25 1.25 1.5 1.5 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.25 0.25 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1 1.25 1.25 1.25 1.25 1.5 1.5 1.5 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 c~(τ2) Loss (X) ALAE(Y) 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1 1.25 1.25 1.5 1.5 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 c^ β Loss (X) ALAE(Y) 0.25 0.25 0.25 0.25 0.5 0.5 0.75 0.75 0.75 1 1 1 1 1 1.25 1.25 1.25 1.25 1.25 1.5 1.5 1.5 2 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 c^ b Loss (X) ALAE(Y) 0.25 0.25 0.5 0.5 0.75 0.751 1 1.25 1.25 1.5 1.5 2 2 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 c^ p Loss (X) ALAE(Y) 0.25 0.25 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1 1.25 1.25 1.25 1.25 1.5 1.5 1.5 2 2 4 @freakonometrics freakonometrics freakonometrics.hypotheses.org 28
  • 29. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Simulation Study M = 1, 000 independent random samples {(Ui, Vi)}n i=1 of sizes n = 200, n = 500 and n = 1000 were generated from each of the following copulas : · the independence copula (i.e., Ui’s and Vi’s drawn independently) ; · the Gaussian copula, with parameters ρ = 0.31, ρ = 0.59 and ρ = 0.81 ; · the Student t-copula with 4 degrees of freedom, with parameters ρ = 0.31, ρ = 0.59 and ρ = 0.81 ; · the Frank copula, with parameter θ = 1.86, θ = 4.16 and θ = 7.93 ; · the Gumbel copula, with parameter θ = 1.25, θ = 1.67 and θ = 2.5 ; · the Clayton copula, with parameter θ = 0.5, θ = 1.67 and θ = 2.5. (approximated) MISE relative to the MISE of the mirror-reflection estimator (last column), n = 1000. Bold values show the minimum MISE for the corresponding copula (non-significantly different values are highlighted as well). @freakonometrics freakonometrics freakonometrics.hypotheses.org 29
  • 30. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference n = 1000 ˆc(τ) ˆc(τam) ˜c(τ,1) ˜c(τ,2) ˆc (β) 1 ˆc (β) 2 ˆc (B) 1 ˆc (B) 2 ˆc (p) 1 ˆc (p) 2 ˆc (p) 3 Indep 3.57 2.80 2.89 1.40 7.96 11.65 1.69 3.43 1.62 0.50 0.14 Gauss2 2.03 1.52 1.60 0.76 4.63 6.06 1.10 1.82 0.98 0.66 0.89 Gauss4 0.63 0.49 0.44 0.21 1.72 1.60 0.75 0.58 0.62 0.99 2.93 Gauss6 0.21 0.20 0.11 0.05 0.74 0.33 0.77 0.37 0.72 1.21 2.83 Std(4)2 0.61 0.56 0.50 0.40 1.57 1.80 0.78 0.67 0.75 1.01 1.88 Std(4)4 0.21 0.27 0.17 0.15 0.88 0.51 0.75 0.42 0.75 1.12 2.07 Std(4)6 0.09 0.17 0.08 0.09 0.70 0.19 0.82 0.47 0.90 1.17 1.90 Frank2 3.31 2.42 2.57 1.35 7.16 9.63 1.70 2.95 1.31 0.45 0.49 Frank4 2.35 1.45 1.51 0.99 4.42 4.89 1.49 1.65 0.60 0.72 6.14 Frank6 0.96 0.52 0.45 0.44 1.51 1.19 1.35 0.76 0.65 1.58 7.25 Gumbel2 0.65 0.62 0.56 0.43 1.77 1.97 0.82 0.75 0.83 1.03 1.52 Gumbel4 0.18 0.28 0.16 0.19 0.89 0.41 0.78 0.47 0.81 1.10 1.78 Gumbel6 0.09 0.21 0.10 0.15 0.78 0.29 0.85 0.58 0.94 1.12 1.63 Clayton2 0.63 0.60 0.51 0.34 1.78 1.99 0.78 0.70 0.79 1.04 1.79 Clayton4 0.11 0.26 0.10 0.15 0.79 0.27 0.83 0.56 0.90 1.10 1.50 Clayton6 0.11 0.28 0.08 0.15 0.82 0.35 0.88 0.67 0.96 1.09 1.36 @freakonometrics freakonometrics freakonometrics.hypotheses.org 30
  • 31. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Probit Transform in the Univariate Case : the log transform See Log-Transform Kernel Density Estimation of Income Distribution with E. Flachaire The Gaussian kernel estimator of a density is fZ(z) = 1 n n i=1 ϕ(z; zi, h) where ϕ(·; µ, σ) is the density of the normal distribution. Use a Gaussian kernel estimation of the density using a logarithmic transformation of data xi’s fX(x) = fZ(log(x)) x = 1 n n i=1 h(x; log xi, h) where h(·; µ, σ) is the density of the lognormal distribution. @freakonometrics freakonometrics freakonometrics.hypotheses.org 31
  • 32. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Probit Transform in the Univariate Case : the log transform Recall that classically bias[fZ(z)] ∼ h2 2 fZ(z) and Var[fZ(z)] ∼ 0.2821 nh fZ(z) Here, in the neighborhood of 0, bias[fX(x)] ∼ h2 2 fX(x) + 3x · fX(x) + x2 · fX(x) which is positive if fX(0) > 0, while Var[fX(x)] ∼ 0.2821 nhx fX(x) The log-transform kernel may perform poorly when fX(0) > 0, see Silverman (1986). @freakonometrics freakonometrics freakonometrics.hypotheses.org 32
  • 33. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Back on the Transformed Kernel See Devroye & Györfi (1985), and Devroye & Lugosi (2001) ... use the transformed kernel the other way, R → [0, 1] → R @freakonometrics freakonometrics freakonometrics.hypotheses.org 33
  • 34. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Back on the Transformed Kernel Interesting point, the optimal T should be F, thus, T can be Fθ @freakonometrics freakonometrics freakonometrics.hypotheses.org 34
  • 35. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Heavy Tailed distribution Let X denote a (heavy-tailed) random variable with tail index α ∈ (0, ∞), i.e. P(X > x) = x−α L1(x) where L1 is some regularly varying function. Let T denote a R → [0, 1] function, such that 1 − T is regularly varying at infinity, with tail index β ∈ (0, ∞). Define Q(x) = T−1 (1 − x−1 ) the associated tail quantile function, then Q(x) = x1/β L2(1/x), where L2 is some regularly varying function (the de Bruyn conjugate of the regular variation function associated with T). Assume here that Q(x) = bx1/β Let U = T(X). Then, as u → 1 P(U > u) ∼ (1 − u)α/β . @freakonometrics freakonometrics freakonometrics.hypotheses.org 35
  • 36. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Heavy Tailed distribution see C. & Oulidi (2010), α = 0.75−1 , T0.75−1 , T0.65−1 lighter , T0.85−1 heavier and Tˆα Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 @freakonometrics freakonometrics freakonometrics.hypotheses.org 36
  • 37. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Heavy Tailed distribution see C. & Oulidi (2007) Beta kernel quantile estimators of heavy-tailed loss distributions, impact on quantile estimation ? 20 30 40 50 60 70 80 0.000.010.020.030.040.050.06 Density @freakonometrics freakonometrics freakonometrics.hypotheses.org 37
  • 38. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Heavy Tailed distribution see C. & Oulidi (2007), impact on quantile estimation ? bias ? m.s.e. ? @freakonometrics freakonometrics freakonometrics.hypotheses.org 38
  • 39. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Bimodal distribution Let X denote a bimodal distribution, obtained from a mixture X ∼ FΘ    F0 if Θ = 0, (probability p0) F1 if Θ = 1, (probability p1) Idea : T(X) can be obtained as transformation of two distributions on [0, 1], T(X) ∼ GΘ    G0 if Θ = 0, (probability p0) G1 if Θ = 1, (probability p1) → standard for income observations... @freakonometrics freakonometrics freakonometrics.hypotheses.org 39
  • 40. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Which transformation ? GB2 : t(y; a, b, p, q) = |a|yap−1 bapB(p, q)[1 + (y/b)a]p+q , for y > 0, GB2 q→∞ ~~ a=1 p=1 55 q=1 @@ GG a→0 ÓÓ a=1 p=1 %% Beta2 q→∞ ww SM q→∞ xx q=1 99 Dagum p=1 Lognormal Gamma Weibull Champernowne @freakonometrics freakonometrics freakonometrics.hypotheses.org 40
  • 41. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Example, X ∼ Pareto Pareto plot (log F(x) vs. log x), and histogram of {U1, · · · , Un}, Ui = Tˆθ(Xi) log(x) log(1−F(x)) 1 5 10 50 100 500 5e−055e−045e−035e−025e−01 u=H(x) densityg(u) 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.01.2 @freakonometrics freakonometrics freakonometrics.hypotheses.org 41
  • 42. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Example, X ∼ Pareto Estimation of the density g of U = Tθ (X), and estimated c.d.f of X, Fn(x) = x 0 fn(y)dy where fn(y) = gn(Tˆθ(y)) · tˆθ(y) u=H(x) densityg(u) 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.01.2 Adaptative kernel log(x) log(1−F(x)) 1 5 10 50 100 500 5e−055e−045e−035e−025e−01 @freakonometrics freakonometrics freakonometrics.hypotheses.org 42
  • 43. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Beta kernel g(u) = n i=1 1 n · b u; Ui h , 1 − Ui h u ∈ [0, 1]. with some possible boundary correction, as suggested in Chen (1999), u h → ρ(u, h) = 2h2 + 2.5 − (4h4 + 6h2 + 2.25 − u2 − u/h)1/2 Problem : choice of the bandwidth h ? Standard loss function L(h) = [gn(u) − g(u)]2 du = [gn(u)]2 du − 2 gn(u) · g(u)du CV (h) + [g(u)]2 du where CV (h) = gn(u)du 2 − 2 n n i=1 g(−i)(Ui) @freakonometrics freakonometrics freakonometrics.hypotheses.org 43
  • 44. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Beta kernel qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.02.53.0 q q q qq q qq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.02.53.0 q q q qq q qqqq qq qq qq q qq q qq qq q qq q qq q q @freakonometrics freakonometrics freakonometrics.hypotheses.org 44
  • 45. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Beta kernel u=H(x) densityg(u) 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.01.2 Beta mixtures (.1) Beta mixtures (.05) Beta mixtures (.02) Beta mixtures (.01) log(x) log(1−F(x)) 1 5 10 50 100 5001e−051e−041e−031e−021e−01 @freakonometrics freakonometrics freakonometrics.hypotheses.org 45
  • 46. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Mixture of Beta distributions g(u) = k j=1 πj · b u; αj, βj u ∈ [0, 1]. Problem : choice the number of components k (and estimation...). Use of stochastic EM algorithm (or sort of) see Celeux Diebolt (1985). @freakonometrics freakonometrics freakonometrics.hypotheses.org 46
  • 47. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Mixture of Beta distributions qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.02.53.0 q q q qq q qq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.02.53.0 q q q qq q qqqq qq qq qq q qq q qq qq q qq q qq q q @freakonometrics freakonometrics freakonometrics.hypotheses.org 47
  • 48. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Mixture of Beta distributions u=H(x) densityg(u) 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.01.2 Beta mixtures log(x) log(1−F(x)) 1 5 10 50 100 5001e−051e−041e−031e−021e−01 @freakonometrics freakonometrics freakonometrics.hypotheses.org 48
  • 49. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Bernstein approximation g(u) = m k=1 [mωk] · b (u; k, m − k) u ∈ [0, 1]. where ωk = G k m − G k − 1 m . @freakonometrics freakonometrics freakonometrics.hypotheses.org 49
  • 50. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Bernstein approximation qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.02.53.0 q q q qq q qq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.02.53.0 q q q qq q qqqq qq qq qq q qq q qq qq q qq q qq q q @freakonometrics freakonometrics freakonometrics.hypotheses.org 50
  • 51. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Bernstein approximation u=H(x) densityg(u) 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.01.2 Bernstein (100) Bernstein (60) Bernstein (40) Bernstein (20) Bernstein (10) Bernstein (5) log(x) log(1−F(x)) 1 5 10 50 100 5001e−051e−041e−031e−021e−01 @freakonometrics freakonometrics freakonometrics.hypotheses.org 51
  • 52. Arthur CHARPENTIER - Using Transformations of Variables to Improve Inference Quantities of interest Standard statistical quantities • miae, ∞ 0 fn(x) − f(x) dx • mise, ∞ 0 fn(x) − f(x) 2 dx Inequality indices and risk measures, based on F(x) = x 0 f(t)dt, • Gini, 1 µ ∞ 0 F(t)[1 − F(t)]dt • Theil, ∞ 0 t µ log t µ f(t)dt • VaR-quantile, x such that F(x) = P(X ≤ x) = α, i.e. F−1 (α) • TVaR-expected shorfall, E[X|X F−1 (α)] where µ = ∞ 0 [1 − F(x)]dx. @freakonometrics freakonometrics freakonometrics.hypotheses.org 52