COVID-19 pandemic control:
balancing detection policy and lockdown
intervention under ICU sustainability
Arthur Charpentier, UQAM
(with Romuald Elie, Mathieu Laurière & Viet Chi Tran)
https://www.medrxiv.org/content/10.1101/2020.05.13.20100842v2
Septembre 2Q20 - modcov19
Analyse coût-efficacité de stratégies de contrôle épidémique
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 1 / 18
Valeur de la vie (introduction)
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 2 / 18
SIR model with controls & constraints
S I R
β γ
dSt
dt
= −βStIt,
dIt
dt
= βStIt − γIt, and
dRt
dt
= γIt.
Important quantity: R0 =
β
γ
(reproductive ratio).
lockdown: S → (1 − δ)S
asymptomatic: I → (I+, I−) and R → (R+, R−)
more categories: H, ICU and D
testing/detection: I−→I+ and R−→R+
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 3 / 18
The SIDUHR+/−
model
S I−
R−
I+
H
R+
U D
(1 − δ)β
λ1
γHR
γUR
γHU γUD
γIR
γIH
γIR
γIH
λ2
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 4 / 18
The SIDUHR+/−
model



dSt = −(1 − δt)βtI−Stdt, Susceptible
dI−
t = (1 − δt)βI−
t Stdt − λ1
t I−
t dt − (γIR + γIH)I−
t dt, Infected –
dI+
t = λ1
t I−
t dt − (γIR + γIH)I+
t dt, Infected +
dR−
t = γIRI−
t dt − λ2
t R−
t dt, Recovered –
dR+
t = γIRI+
t dt + λ2
t R−
t dt + γHRHtdt + γUR(Ut)Utdt, Recovered +
dHt = γIH I−
t + I+
t dt − (γHR + γHU)Htdt, Hospitalized
dUt = γHUHtdt − (γUR(Ut) + γUD(Ut))Utdt, ICU
dDt = γUD(Ut)Utdt, Dead
R0 =
(1 − δ0)β
λ1
0 + γIR + γIH
and Rt =
(1 − δt)βSt
λ1
t + (γIR + γIH)
.
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 5 / 18
Controls and constraints
Controls
δ: lower social contacts
lockdown / quarantine / masks
λ1: virologic tests, type-1 (short term)
identify I− (→ I+)
λ2: antibody tests, type-2 (long term)
identify R− (→ R+)
Constraints
"flatten the curve" : ICU sustainability, Ut ≤ u
Objective
min
(δt ),(λt )
wC Csanitary + wE Cecon + wT Ctest
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 6 / 18
The objective function



Qt = R−
t + I−
t + St (suceptible to be) quarantined/lockdowned
Wt = (1 − δt)Qt + R+
t work force
N1
t = λ1
t Qt + γIHI−
t virologic tests, type-1 (short term)
N2
t = λ2
t Qt antibody tests, type-2 (long term)



Csanitary = E Dτ =
∞
0
e−αt
dDt
Cecon = E
τ
0
(1 − Wt)2
dt =
∞
0
e−αt
(1 − Wt)2
dt
Cprevalence = E
τ
0
|N1
t |2
dt =
∞
0
e−αt
|N1
t |2
dt
Cimmunity = E
τ
0
|N2
t |2
dt =
∞
0
e−αt
|N2
t |2
dt
Computational issue: ∞ = 700 days
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 7 / 18
With optimal (δ∗
t ) (Fig. 3)
0 100 200 300 400 500 600 700
time (in days)
0.0
0.2
0.4
0.6
0.8
1.0
S S
S (no control)
0 200 400 600
time (in days)
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
I
I
I (no control)
0 100 200 300 400 500 600 700
time (in days)
0.0
0.2
0.4
0.6
0.8
R
R
R (no control)
0 200 400 600
time (in days)
0.0000
0.0001
0.0002
0.0003
0.0004
U
U
U (no control)
Umax
0 200 400 600
time (in days)
0.000
0.002
0.004
0.006
0.008
0.010
D D
D (no control)
0 200 400 600
time (in days)
0.0
0.5
1.0
1.5
2.0
2.5
3.0 (no control)
0 100 200 300 400 500 600 700
time (in days)
0.2
0.4
0.6
0.8
1.0
W
W
W (nocontrol)
0 200 400 600
time (in days)
0
100
200
300
400
500
cumulatedeconomiccost
econ. cost
econ. cost (no control)
0 100 200 300 400 500 600 700
time (in days)
0.0
0.2
0.4
0.6
0.8
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 8 / 18
Optimal (δ∗
t ) with increase of ICU (Fig. 4)
0 200 400 600
time (in days)
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
S S (benchmark)
S (increased capacity)
0 200 400 600
time (in days)
0.000
0.005
0.010
0.015
0.020
I
I (benchmark)
I (increased capacity)
0 100 200 300 400 500 600 700
time (in days)
0.0
0.2
0.4
0.6
R
R (benchmark)
R (increased capacity)
0 200 400 600
time (in days)
0.00000
0.00005
0.00010
0.00015
0.00020
0.00025
0.00030
U
U (benchmark)
U (increased capacity)
Umax
Umax (increased capacity)
0 200 400 600
time (in days)
0.00000
0.00025
0.00050
0.00075
0.00100
0.00125
0.00150
0.00175
D
D (benchmark)
D (increased capacity)
0 200 400 600
time (in days)
0.5
1.0
1.5
2.0
2.5
(benchmark)
(increased capacity)
0 100 200 300 400 500 600 700
time (in days)
0.2
0.4
0.6
0.8
1.0
W
W (benchmark)
W (increased capacity)
0 200 400 600
time (in days)
0
100
200
300
400
500
cumulatedeconomiccost
econ. cost (benchmark)
econ. cost (increased capacity)
0 200 400 600
time (in days)
0.0
0.2
0.4
0.6
0.8 (benchmark)
(increased capacity)
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 9 / 18
Impact of (λ1
t ) (constant, Fig. 10, B5)
0 200 400 600
time (in days)
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
S S ( 1 =0)
S ( 1 =1.10 2)
S ( 1 =5.10 2)
S ( 1 =1.10 1)
0 200 400 600
time (in days)
0.000
0.005
0.010
0.015
0.020
I
I ( 1 =0)
I ( 1 =1.10 2)
I ( 1 =5.10 2)
I ( 1 =1.10 1)
0 100 200 300 400 500 600 700
time (in days)
0.0
0.2
0.4
0.6
R
R ( 1 =0)
R ( 1 =1.10 2)
R ( 1 =5.10 2)
R ( 1 =1.10 1)
0 200 400 600
time (in days)
0.00000
0.00005
0.00010
0.00015
0.00020
U
U ( 1 =0)
U ( 1 =1.10 2)
U ( 1 =5.10 2)
U ( 1 =1.10 1)
Umax
0 200 400 600
time (in days)
0.00000
0.00025
0.00050
0.00075
0.00100
0.00125
0.00150
0.00175
D
D ( 1 =0)
D ( 1 =1.10 2)
D ( 1 =5.10 2)
D ( 1 =1.10 1)
0 200 400 600
time (in days)
0.5
1.0
1.5
2.0
2.5
( 1 =0)
( 1 =1.10 2)
( 1 =5.10 2)
( 1 =1.10 1)
0 100 200 300 400 500 600 700
time (in days)
0.2
0.4
0.6
0.8
1.0
W
W ( 1 =0)
W ( 1 =1.10 2)
W ( 1 =5.10 2)
W ( 1 =1.10 1)
0 200 400 600
time (in days)
0
100
200
300
400
500
cumulatedeconomiccost
econ. cost ( 1 =0)
econ. cost ( 1 =1.10 2)
econ. cost ( 1 =5.10 2)
econ. cost ( 1 =1.10 1)
0 200 400 600
time (in days)
0.0
0.2
0.4
0.6
0.8 ( 1 =0)
( 1 =1.10 2)
( 1 =5.10 2)
( 1 =1.10 1)
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 10 / 18
Impact of (λ1∗
t ) (Fig. 12, B7)
0 200 400 600
time (in days)
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
S
S ( opt)
S ( and 1 opt)
0 200 400 600
time (in days)
0.000
0.005
0.010
0.015
0.020
I
I ( opt)
I ( and 1 opt)
0 200 400 600
time (in days)
0.0
0.1
0.2
0.3
0.4
0.5
1
1 ( opt)
1 ( and 1 opt)
0 200 400 600
time (in days)
0.00000
0.00005
0.00010
0.00015
0.00020
U
U ( opt)
U ( and 1 opt)
Umax
0 200 400 600
time (in days)
0.00000
0.00025
0.00050
0.00075
0.00100
0.00125
0.00150
0.00175
D D ( opt)
D ( and 1 opt)
0 200 400 600
time (in days)
0.5
1.0
1.5
2.0
2.5
3.0 ( opt)
( and 1 opt)
0 100 200 300 400 500 600 700
time (in days)
0.2
0.4
0.6
0.8
1.0
W
W ( opt)
W ( and 1 opt)
0 200 400 600
time (in days)
0
100
200
300
400
500
cumulatedeconomiccost
econ. cost ( opt)
econ. cost ( and 1 opt)
0 200 400 600
time (in days)
0.0
0.2
0.4
0.6
0.8 ( opt)
( and 1 opt)
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 11 / 18
Impact of (λ2∗
t ) (Fig. 16, B11)
0 200 400 600
time (in days)
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
S
S ( opt)
S ( , 1 and 2 opt)
0 200 400 600
time (in days)
0.000
0.005
0.010
0.015
0.020
I
I ( opt)
I ( , 1 and 2 opt)
0 100 200 300 400 500 600 700
time (in days)
0.0
0.2
0.4
0.6
R
R ( opt)
R ( , 1 and 2 opt)
0 200 400 600
time (in days)
0.00000
0.00005
0.00010
0.00015
0.00020
U
U ( opt)
U ( , 1 and 2 opt)
Umax
0 200 400 600
time (in days)
0.00000
0.00025
0.00050
0.00075
0.00100
0.00125
0.00150
0.00175
D D ( opt)
D ( , 1 and 2 opt)
0 200 400 600
time (in days)
0.5
1.0
1.5
2.0
2.5
3.0 ( opt)
( , 1 and 2 opt)
0 200 400 600
time (in days)
0.0
0.2
0.4
0.6
0.8 ( opt)
( , 1 and 2 opt)
0 200 400 600
time (in days)
0.0
0.1
0.2
0.3
0.4
1
1 ( opt)
1 ( , 1 and 2 opt)
0 200 400 600
time (in days)
0.000
0.005
0.010
0.015
0.020
2
2 ( opt)
2 ( , 1 and 2 opt)
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 12 / 18
Taking in account ages
Susceptibles S = (Sc, Sa, Ss), with children, adults and seniors,
d
dt


Sc,t
Sa,t
Ss,t

 = −


Sc,t
Sa,t
Sa,t

 ·


βc,c βc,a βc,s
βa,c βa,a βa,s
βs,c βs,a βs,s




Ic,t
Ia,t
Ia,t

 ,
i.e.
d
dt
St = −St · BIt
for some 3 × 3 WAIFW (Who Acquires Infection From Whom)
matrix,
d
dt
It = St · BIt − γIt and
d
dt
Rt = γIt
(to be extended in our larger model)
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 13 / 18
Taking in account ages
Sc I−
c R−
c
Sa I−
a R−
a
Ss I−
s R−
s
I+
c
I+
a
I+
s
γc,R
γa,R
γs,R
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 14 / 18
To go further...
Evolution of dI+
t (dI+∗
t ?) over time, in France
Can we use publicly available data to calibrate models ?
"when a measure becomes a target, it ceases to be a good measure"
(Goodhart’s law)
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 15 / 18
Sensitivity in I0 (Fig. 6, B1)
0 200 400 600
time (in days)
0.4
0.6
0.8
1.0
S S (I0 =1.e 3)
S (I0 =5.e 3)
S (I0 =25.e 3)
0 200 400 600
time (in days)
0.000
0.005
0.010
0.015
0.020
0.025
I
I (I0 =1.e 3)
I (I0 =5.e 3)
I (I0 =25.e 3)
0 100 200 300 400 500 600 700
time (in days)
0.0
0.2
0.4
0.6
R
R (I0 =1.e 3)
R (I0 =5.e 3)
R (I0 =25.e 3)
0 200 400 600
time (in days)
0.00000
0.00005
0.00010
0.00015
0.00020
U
U (I0 =1.e 3)
U (I0 =5.e 3)
U (I0 =25.e 3)
Umax
0 200 400 600
time (in days)
0.00000
0.00025
0.00050
0.00075
0.00100
0.00125
0.00150
0.00175
D
D (I0 =1.e 3)
D (I0 =5.e 3)
D (I0 =25.e 3)
0 200 400 600
time (in days)
0.5
1.0
1.5
2.0
2.5
3.0
(I0 =1.e 3)
(I0 =5.e 3)
(I0 =25.e 3)
0 100 200 300 400 500 600 700
time (in days)
0.2
0.4
0.6
0.8
1.0
W
W (I0 =1.e 3)
W (I0 =5.e 3)
W (I0 =25.e 3)
0 200 400 600
time (in days)
0
100
200
300
400
500
cumulatedeconomiccost
econ. cost (I0 =1.e 3)
econ. cost (I0 =5.e 3)
econ. cost (I0 =25.e 3)
0 200 400 600
time (in days)
0.0
0.2
0.4
0.6
0.8
(I0 =1.e 3)
(I0 =5.e 3)
(I0 =25.e 3)
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 16 / 18
Sensitivity in R0 (Fig. 7, B2)
0 200 400 600
time (in days)
0.4
0.6
0.8
1.0
S S ( 0 =3.0)
S ( 0 =3.3)
S ( 0 =3.6)
0 200 400 600
time (in days)
0.000
0.005
0.010
0.015
0.020
I
I ( 0 =3.0)
I ( 0 =3.3)
I ( 0 =3.6)
0 100 200 300 400 500 600 700
time (in days)
0.0
0.2
0.4
0.6
R
R ( 0 =3.0)
R ( 0 =3.3)
R ( 0 =3.6)
0 200 400 600
time (in days)
0.00000
0.00005
0.00010
0.00015
0.00020
U
U ( 0 =3.0)
U ( 0 =3.3)
U ( 0 =3.6)
Umax
0 200 400 600
time (in days)
0.00000
0.00025
0.00050
0.00075
0.00100
0.00125
0.00150
0.00175
D
D ( 0 =3.0)
D ( 0 =3.3)
D ( 0 =3.6)
0 200 400 600
time (in days)
0.5
1.0
1.5
2.0
2.5
3.0 ( 0 =3.0)
( 0 =3.3)
( 0 =3.6)
0 100 200 300 400 500 600 700
time (in days)
0.2
0.4
0.6
0.8
1.0
W
W ( 0 =3.0)
W ( 0 =3.3)
W ( 0 =3.6)
0 200 400 600
time (in days)
0
100
200
300
400
500
600
cumulatedeconomiccost
econ. cost ( 0 =3.0)
econ. cost ( 0 =3.3)
econ. cost ( 0 =3.6)
0 200 400 600
time (in days)
0.0
0.2
0.4
0.6
0.8 ( 0 =3.0)
( 0 =3.3)
( 0 =3.6)
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 17 / 18
Sensitivity in α (Fig. 9, B4)
0 200 400 600
time (in days)
0.4
0.6
0.8
1.0
S S ( =0)
S ( =1/500)
S ( =1/250)
S ( =1/100)
0 200 400 600
time (in days)
0.000
0.005
0.010
0.015
0.020
I
I ( =0)
I ( =1/500)
I ( =1/250)
I ( =1/100)
0 100 200 300 400 500 600 700
time (in days)
0.0
0.2
0.4
0.6
R
R ( =0)
R ( =1/500)
R ( =1/250)
R ( =1/100)
0 200 400 600
time (in days)
0.00000
0.00005
0.00010
0.00015
0.00020
U
U ( =0)
U ( =1/500)
U ( =1/250)
U ( =1/100)
Umax
0 200 400 600
time (in days)
0.00000
0.00025
0.00050
0.00075
0.00100
0.00125
0.00150
0.00175
D
D ( =0)
D ( =1/500)
D ( =1/250)
D ( =1/100)
0 200 400 600
time (in days)
0.5
1.0
1.5
2.0
2.5
( =0)
( =1/500)
( =1/250)
( =1/100)
0 100 200 300 400 500 600 700
time (in days)
0.2
0.4
0.6
0.8
1.0
W
W ( =0)
W ( =1/500)
W ( =1/250)
W ( =1/100)
0 200 400 600
time (in days)
0
100
200
300
400
500
600
cumulatedeconomiccost
econ. cost ( =0)
econ. cost ( =1/500)
econ. cost ( =1/250)
econ. cost ( =1/100)
0 200 400 600
time (in days)
0.0
0.2
0.4
0.6
0.8 ( =0)
( =1/500)
( =1/250)
( =1/100)
@freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 18 / 18

Control epidemics

  • 1.
    COVID-19 pandemic control: balancingdetection policy and lockdown intervention under ICU sustainability Arthur Charpentier, UQAM (with Romuald Elie, Mathieu Laurière & Viet Chi Tran) https://www.medrxiv.org/content/10.1101/2020.05.13.20100842v2 Septembre 2Q20 - modcov19 Analyse coût-efficacité de stratégies de contrôle épidémique @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 1 / 18
  • 2.
    Valeur de lavie (introduction) @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 2 / 18
  • 3.
    SIR model withcontrols & constraints S I R β γ dSt dt = −βStIt, dIt dt = βStIt − γIt, and dRt dt = γIt. Important quantity: R0 = β γ (reproductive ratio). lockdown: S → (1 − δ)S asymptomatic: I → (I+, I−) and R → (R+, R−) more categories: H, ICU and D testing/detection: I−→I+ and R−→R+ @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 3 / 18
  • 4.
    The SIDUHR+/− model S I− R− I+ H R+ UD (1 − δ)β λ1 γHR γUR γHU γUD γIR γIH γIR γIH λ2 @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 4 / 18
  • 5.
    The SIDUHR+/− model    dSt =−(1 − δt)βtI−Stdt, Susceptible dI− t = (1 − δt)βI− t Stdt − λ1 t I− t dt − (γIR + γIH)I− t dt, Infected – dI+ t = λ1 t I− t dt − (γIR + γIH)I+ t dt, Infected + dR− t = γIRI− t dt − λ2 t R− t dt, Recovered – dR+ t = γIRI+ t dt + λ2 t R− t dt + γHRHtdt + γUR(Ut)Utdt, Recovered + dHt = γIH I− t + I+ t dt − (γHR + γHU)Htdt, Hospitalized dUt = γHUHtdt − (γUR(Ut) + γUD(Ut))Utdt, ICU dDt = γUD(Ut)Utdt, Dead R0 = (1 − δ0)β λ1 0 + γIR + γIH and Rt = (1 − δt)βSt λ1 t + (γIR + γIH) . @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 5 / 18
  • 6.
    Controls and constraints Controls δ:lower social contacts lockdown / quarantine / masks λ1: virologic tests, type-1 (short term) identify I− (→ I+) λ2: antibody tests, type-2 (long term) identify R− (→ R+) Constraints "flatten the curve" : ICU sustainability, Ut ≤ u Objective min (δt ),(λt ) wC Csanitary + wE Cecon + wT Ctest @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 6 / 18
  • 7.
    The objective function    Qt= R− t + I− t + St (suceptible to be) quarantined/lockdowned Wt = (1 − δt)Qt + R+ t work force N1 t = λ1 t Qt + γIHI− t virologic tests, type-1 (short term) N2 t = λ2 t Qt antibody tests, type-2 (long term)    Csanitary = E Dτ = ∞ 0 e−αt dDt Cecon = E τ 0 (1 − Wt)2 dt = ∞ 0 e−αt (1 − Wt)2 dt Cprevalence = E τ 0 |N1 t |2 dt = ∞ 0 e−αt |N1 t |2 dt Cimmunity = E τ 0 |N2 t |2 dt = ∞ 0 e−αt |N2 t |2 dt Computational issue: ∞ = 700 days @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 7 / 18
  • 8.
    With optimal (δ∗ t) (Fig. 3) 0 100 200 300 400 500 600 700 time (in days) 0.0 0.2 0.4 0.6 0.8 1.0 S S S (no control) 0 200 400 600 time (in days) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 I I I (no control) 0 100 200 300 400 500 600 700 time (in days) 0.0 0.2 0.4 0.6 0.8 R R R (no control) 0 200 400 600 time (in days) 0.0000 0.0001 0.0002 0.0003 0.0004 U U U (no control) Umax 0 200 400 600 time (in days) 0.000 0.002 0.004 0.006 0.008 0.010 D D D (no control) 0 200 400 600 time (in days) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 (no control) 0 100 200 300 400 500 600 700 time (in days) 0.2 0.4 0.6 0.8 1.0 W W W (nocontrol) 0 200 400 600 time (in days) 0 100 200 300 400 500 cumulatedeconomiccost econ. cost econ. cost (no control) 0 100 200 300 400 500 600 700 time (in days) 0.0 0.2 0.4 0.6 0.8 @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 8 / 18
  • 9.
    Optimal (δ∗ t )with increase of ICU (Fig. 4) 0 200 400 600 time (in days) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 S S (benchmark) S (increased capacity) 0 200 400 600 time (in days) 0.000 0.005 0.010 0.015 0.020 I I (benchmark) I (increased capacity) 0 100 200 300 400 500 600 700 time (in days) 0.0 0.2 0.4 0.6 R R (benchmark) R (increased capacity) 0 200 400 600 time (in days) 0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 U U (benchmark) U (increased capacity) Umax Umax (increased capacity) 0 200 400 600 time (in days) 0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175 D D (benchmark) D (increased capacity) 0 200 400 600 time (in days) 0.5 1.0 1.5 2.0 2.5 (benchmark) (increased capacity) 0 100 200 300 400 500 600 700 time (in days) 0.2 0.4 0.6 0.8 1.0 W W (benchmark) W (increased capacity) 0 200 400 600 time (in days) 0 100 200 300 400 500 cumulatedeconomiccost econ. cost (benchmark) econ. cost (increased capacity) 0 200 400 600 time (in days) 0.0 0.2 0.4 0.6 0.8 (benchmark) (increased capacity) @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 9 / 18
  • 10.
    Impact of (λ1 t) (constant, Fig. 10, B5) 0 200 400 600 time (in days) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 S S ( 1 =0) S ( 1 =1.10 2) S ( 1 =5.10 2) S ( 1 =1.10 1) 0 200 400 600 time (in days) 0.000 0.005 0.010 0.015 0.020 I I ( 1 =0) I ( 1 =1.10 2) I ( 1 =5.10 2) I ( 1 =1.10 1) 0 100 200 300 400 500 600 700 time (in days) 0.0 0.2 0.4 0.6 R R ( 1 =0) R ( 1 =1.10 2) R ( 1 =5.10 2) R ( 1 =1.10 1) 0 200 400 600 time (in days) 0.00000 0.00005 0.00010 0.00015 0.00020 U U ( 1 =0) U ( 1 =1.10 2) U ( 1 =5.10 2) U ( 1 =1.10 1) Umax 0 200 400 600 time (in days) 0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175 D D ( 1 =0) D ( 1 =1.10 2) D ( 1 =5.10 2) D ( 1 =1.10 1) 0 200 400 600 time (in days) 0.5 1.0 1.5 2.0 2.5 ( 1 =0) ( 1 =1.10 2) ( 1 =5.10 2) ( 1 =1.10 1) 0 100 200 300 400 500 600 700 time (in days) 0.2 0.4 0.6 0.8 1.0 W W ( 1 =0) W ( 1 =1.10 2) W ( 1 =5.10 2) W ( 1 =1.10 1) 0 200 400 600 time (in days) 0 100 200 300 400 500 cumulatedeconomiccost econ. cost ( 1 =0) econ. cost ( 1 =1.10 2) econ. cost ( 1 =5.10 2) econ. cost ( 1 =1.10 1) 0 200 400 600 time (in days) 0.0 0.2 0.4 0.6 0.8 ( 1 =0) ( 1 =1.10 2) ( 1 =5.10 2) ( 1 =1.10 1) @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 10 / 18
  • 11.
    Impact of (λ1∗ t) (Fig. 12, B7) 0 200 400 600 time (in days) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 S S ( opt) S ( and 1 opt) 0 200 400 600 time (in days) 0.000 0.005 0.010 0.015 0.020 I I ( opt) I ( and 1 opt) 0 200 400 600 time (in days) 0.0 0.1 0.2 0.3 0.4 0.5 1 1 ( opt) 1 ( and 1 opt) 0 200 400 600 time (in days) 0.00000 0.00005 0.00010 0.00015 0.00020 U U ( opt) U ( and 1 opt) Umax 0 200 400 600 time (in days) 0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175 D D ( opt) D ( and 1 opt) 0 200 400 600 time (in days) 0.5 1.0 1.5 2.0 2.5 3.0 ( opt) ( and 1 opt) 0 100 200 300 400 500 600 700 time (in days) 0.2 0.4 0.6 0.8 1.0 W W ( opt) W ( and 1 opt) 0 200 400 600 time (in days) 0 100 200 300 400 500 cumulatedeconomiccost econ. cost ( opt) econ. cost ( and 1 opt) 0 200 400 600 time (in days) 0.0 0.2 0.4 0.6 0.8 ( opt) ( and 1 opt) @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 11 / 18
  • 12.
    Impact of (λ2∗ t) (Fig. 16, B11) 0 200 400 600 time (in days) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 S S ( opt) S ( , 1 and 2 opt) 0 200 400 600 time (in days) 0.000 0.005 0.010 0.015 0.020 I I ( opt) I ( , 1 and 2 opt) 0 100 200 300 400 500 600 700 time (in days) 0.0 0.2 0.4 0.6 R R ( opt) R ( , 1 and 2 opt) 0 200 400 600 time (in days) 0.00000 0.00005 0.00010 0.00015 0.00020 U U ( opt) U ( , 1 and 2 opt) Umax 0 200 400 600 time (in days) 0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175 D D ( opt) D ( , 1 and 2 opt) 0 200 400 600 time (in days) 0.5 1.0 1.5 2.0 2.5 3.0 ( opt) ( , 1 and 2 opt) 0 200 400 600 time (in days) 0.0 0.2 0.4 0.6 0.8 ( opt) ( , 1 and 2 opt) 0 200 400 600 time (in days) 0.0 0.1 0.2 0.3 0.4 1 1 ( opt) 1 ( , 1 and 2 opt) 0 200 400 600 time (in days) 0.000 0.005 0.010 0.015 0.020 2 2 ( opt) 2 ( , 1 and 2 opt) @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 12 / 18
  • 13.
    Taking in accountages Susceptibles S = (Sc, Sa, Ss), with children, adults and seniors, d dt   Sc,t Sa,t Ss,t   = −   Sc,t Sa,t Sa,t   ·   βc,c βc,a βc,s βa,c βa,a βa,s βs,c βs,a βs,s     Ic,t Ia,t Ia,t   , i.e. d dt St = −St · BIt for some 3 × 3 WAIFW (Who Acquires Infection From Whom) matrix, d dt It = St · BIt − γIt and d dt Rt = γIt (to be extended in our larger model) @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 13 / 18
  • 14.
    Taking in accountages Sc I− c R− c Sa I− a R− a Ss I− s R− s I+ c I+ a I+ s γc,R γa,R γs,R @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 14 / 18
  • 15.
    To go further... Evolutionof dI+ t (dI+∗ t ?) over time, in France Can we use publicly available data to calibrate models ? "when a measure becomes a target, it ceases to be a good measure" (Goodhart’s law) @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 15 / 18
  • 16.
    Sensitivity in I0(Fig. 6, B1) 0 200 400 600 time (in days) 0.4 0.6 0.8 1.0 S S (I0 =1.e 3) S (I0 =5.e 3) S (I0 =25.e 3) 0 200 400 600 time (in days) 0.000 0.005 0.010 0.015 0.020 0.025 I I (I0 =1.e 3) I (I0 =5.e 3) I (I0 =25.e 3) 0 100 200 300 400 500 600 700 time (in days) 0.0 0.2 0.4 0.6 R R (I0 =1.e 3) R (I0 =5.e 3) R (I0 =25.e 3) 0 200 400 600 time (in days) 0.00000 0.00005 0.00010 0.00015 0.00020 U U (I0 =1.e 3) U (I0 =5.e 3) U (I0 =25.e 3) Umax 0 200 400 600 time (in days) 0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175 D D (I0 =1.e 3) D (I0 =5.e 3) D (I0 =25.e 3) 0 200 400 600 time (in days) 0.5 1.0 1.5 2.0 2.5 3.0 (I0 =1.e 3) (I0 =5.e 3) (I0 =25.e 3) 0 100 200 300 400 500 600 700 time (in days) 0.2 0.4 0.6 0.8 1.0 W W (I0 =1.e 3) W (I0 =5.e 3) W (I0 =25.e 3) 0 200 400 600 time (in days) 0 100 200 300 400 500 cumulatedeconomiccost econ. cost (I0 =1.e 3) econ. cost (I0 =5.e 3) econ. cost (I0 =25.e 3) 0 200 400 600 time (in days) 0.0 0.2 0.4 0.6 0.8 (I0 =1.e 3) (I0 =5.e 3) (I0 =25.e 3) @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 16 / 18
  • 17.
    Sensitivity in R0(Fig. 7, B2) 0 200 400 600 time (in days) 0.4 0.6 0.8 1.0 S S ( 0 =3.0) S ( 0 =3.3) S ( 0 =3.6) 0 200 400 600 time (in days) 0.000 0.005 0.010 0.015 0.020 I I ( 0 =3.0) I ( 0 =3.3) I ( 0 =3.6) 0 100 200 300 400 500 600 700 time (in days) 0.0 0.2 0.4 0.6 R R ( 0 =3.0) R ( 0 =3.3) R ( 0 =3.6) 0 200 400 600 time (in days) 0.00000 0.00005 0.00010 0.00015 0.00020 U U ( 0 =3.0) U ( 0 =3.3) U ( 0 =3.6) Umax 0 200 400 600 time (in days) 0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175 D D ( 0 =3.0) D ( 0 =3.3) D ( 0 =3.6) 0 200 400 600 time (in days) 0.5 1.0 1.5 2.0 2.5 3.0 ( 0 =3.0) ( 0 =3.3) ( 0 =3.6) 0 100 200 300 400 500 600 700 time (in days) 0.2 0.4 0.6 0.8 1.0 W W ( 0 =3.0) W ( 0 =3.3) W ( 0 =3.6) 0 200 400 600 time (in days) 0 100 200 300 400 500 600 cumulatedeconomiccost econ. cost ( 0 =3.0) econ. cost ( 0 =3.3) econ. cost ( 0 =3.6) 0 200 400 600 time (in days) 0.0 0.2 0.4 0.6 0.8 ( 0 =3.0) ( 0 =3.3) ( 0 =3.6) @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 17 / 18
  • 18.
    Sensitivity in α(Fig. 9, B4) 0 200 400 600 time (in days) 0.4 0.6 0.8 1.0 S S ( =0) S ( =1/500) S ( =1/250) S ( =1/100) 0 200 400 600 time (in days) 0.000 0.005 0.010 0.015 0.020 I I ( =0) I ( =1/500) I ( =1/250) I ( =1/100) 0 100 200 300 400 500 600 700 time (in days) 0.0 0.2 0.4 0.6 R R ( =0) R ( =1/500) R ( =1/250) R ( =1/100) 0 200 400 600 time (in days) 0.00000 0.00005 0.00010 0.00015 0.00020 U U ( =0) U ( =1/500) U ( =1/250) U ( =1/100) Umax 0 200 400 600 time (in days) 0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175 D D ( =0) D ( =1/500) D ( =1/250) D ( =1/100) 0 200 400 600 time (in days) 0.5 1.0 1.5 2.0 2.5 ( =0) ( =1/500) ( =1/250) ( =1/100) 0 100 200 300 400 500 600 700 time (in days) 0.2 0.4 0.6 0.8 1.0 W W ( =0) W ( =1/500) W ( =1/250) W ( =1/100) 0 200 400 600 time (in days) 0 100 200 300 400 500 600 cumulatedeconomiccost econ. cost ( =0) econ. cost ( =1/500) econ. cost ( =1/250) econ. cost ( =1/100) 0 200 400 600 time (in days) 0.0 0.2 0.4 0.6 0.8 ( =0) ( =1/500) ( =1/250) ( =1/100) @freakonometrics freakonometrics https://doi.org/10.1101/2020.05.13.20100842 18 / 18