SlideShare a Scribd company logo
PUBLIC
JEFFREY HO
RF APPLICATIONS ENGINEER
RF POWER GROUP, NXP SEMICONDUCTORS
SEPTEMBER, 20, 2016
ELECTRONIC DESIGN INNOVATION CONFERENCE (EDI CON)
TECHNIQUES AND CHALLENGES IN DESIGNING WIDEBAND
POWER AMPLIFIERS USING GAN AND LDMOS
PUBLIC11
Agenda
GaN and LDMOS Parametric Comparison
• Device Technology Benefits
• System Level Tradeoffs
GaN Advantages
• Bandwidth, Efficiency, Power Density
Wideband PA Design and Challenges
• Wideband Techniques
• Thermal, Linearity, Ruggedness
GaN and LDMOS Wideband PA Applications
• Nonlinear Model Simulation
• CW and Pulsed Performance
NXP Power Product Portfolio
Conclusion
PUBLIC2
GaN and LDMOS Technology
• GaN-on-SiC 50V technology provides higher
efficiency, power density and more gain in a
small package.
• GaN devices are capable of best in-class
solutions for broadband applications.
• GaN’s high output impedance and low Cds
capacitance enables broadband design.
Bandwidth limitation on the input match.
• For identical power level, GaN transistors
have smaller parasitic capacitance, which
makes the wideband matching easier than
LDMOS transistors.
GaN LDMOS
• LDMOS is still demonstrating high power and
efficiency in cellular and broadcast narrow-
band applications.
• 50V LDMOS are primarily used for
frequencies < 1.5 GHz. 28V LDMOS can
provide compelling performance up to 4 GHz.
• LDMOS transistor’s large peripheries imply
large Cgs/Cds capacitances which limit the
bandwidth.
PUBLIC3
GaN and LDMOS: Parametric Comparisons
Typical Parameters
LDMOS (28V)
LDMOS
(50V)
GaN
(50V)
GaN
Advantage
Fmax (GHz) 22 15 30
High frequency operation 
2.5GHz and above
Power Density (W/mm) 0.8 2 5-10
Higher Power density 
smaller device footprint
Efficiency @ P1dB (%) 60 < 55 70
Higher efficiency 
2.5 GHz and above
Bandwidth (MHz) 100-400 100-500 500-2500 One device covers multi-bands
Cds (pf/W)
Output Capacitance
0.23 ½ smaller ¼ smaller
Smaller device capacitance 
broadband operationCgs (pf/W)
Input Capacitance
0.94 ½ smaller ½ smaller
PUBLIC4
Leveraging the Benefits of GaN and LDMOS
• Differentiating performance exceeding
LDMOS above 2.5 GHz
• Enables 5G at higher frequencies
• Broadband design
• High efficiency at high frequencies
• Comparable thermal package as LDMOS
• Compact PA design (more power in smaller
package, smaller matching circuitry)
• Wideband CW and Pulse PA applications:
− 200-2600 MHz at 100 W
− S-band 2.7-3.5 GHz at 700 W
GaN Benefits LDMOS Benefits
• Competitive performance to 2.7 GHz
• Cost effective PA solutions
• Mature process technology
• High ruggedness up to 65:1 VSWR
• Consistent thermal behavior
• Broadband VHF/UHF below 1 GHz
• Highest power up to 1.5 GHz
• Narrow-band PA applications:
− Cellular bands up to 2.7 GHz
− Avionics and L-band 1.2-1.4 GHz up to 1.5 kW
− S-band 2.7-3.1 GHz at 300 W
PUBLIC5
Material Characteristics Drive System Level Tradeoffs
Material Properties Device Operates Improved Device FOM System Advantage
Increased BW
Smaller # of Die
Per System
Lower Total
Energy Usage
Higher System
Frequency
Smaller Package
Cheaper Package
Relaxed System
Cooling
Power Density
Power Gain
Efficiency
Output Impedance
High ft
High fmax
Smaller Die Size
More Power/Die
High
Breakdown
Field
High Electron
Velocity
High Thermal
Conductivity
High Voltage
High Current
High Temperature
High Frequency
PUBLIC6
Gain Compression Comparison – P1dB, P3dB
LDMOS: Hard Gain Compression
1.2dB delta between P-1dB and P-3dB
LDMOS 32V @ 1.96 GHz
GaN: Soft Gain Compression
1.8dB delta between P-1dB and P3-dB
GaN 50V @ 2.50 GHz
36
38
40
42
44
46
48
50
52
54
56
58
20 22 24 26 28 30 32 34 36 38
Pout(dBm)
Pin (dBm)
MMRF5014HR5 - Max Pout Load - 2.5 GHz - 50 V
Actual
Ideal
P-1dB = 50.2 dBm = 105 W
P-3dB = 52 dBm = 160.9 W
PUBLIC7
GaN Advantage: Wider Bandwidth in S-Band
MMRF5300N - 50V GaN
60 W Pulsed Power
Wideband over 2.7 – 3.5 GHz
Flat Gain 14.6-14.9 dB
Efficiency > 50%
MRF7S35120H - 32V LDMOS
120 W Pulsed Power
Broadband over 3.1 – 3.5 GHz
Gain 12-13 dB
Efficiency > 40%
-20
-10
0
10
20
30
40
50
60
13
13.5
14
14.5
15
15.5
16
16.5
17
2700 2800 2900 3000 3100 3200 3300 3400 3500
IRL(dB)DrainEfficiency(%)
PowerGain(dB)
Frequency (MHz)
PMRF5300N Performance at 60W Pulsed
Vdd=50V, Idq=60mA, Vgs=-3V, 300us Pulse Width, 20% Duty Cycle
Power Gain
Drain Efficency
IRL
PUBLIC8
GaN Advantage: Higher Efficiency
GaN provides high efficiency at peak power, and 6dB power back-off
efficiency across wide bandwidth
Power drive-up gain response is less sensitive to bias current variation.
Flat gain response can achieve over a wide power dynamic range
GaN is well suited for high efficiency amplifiers, such as classes D/E
modes and switch-mode PA’s, where transistor operates like a switch
GaN on SiC technology is continuously improving linearized efficiency for
Doherty PA operation at 7-8 dB peak power back-off
PUBLIC9
GaN Advantage: High Efficiency and Output Power
PAE and Output Power vs. Frequency for NXP GaN and LDMOS devices
High Efficiency Beyond 2.5 GHz High Power Beyond 3.5 GHz
PUBLIC10
Wideband PA Design Techniques
1. Multi-sections LC matching networks
2. Multi-sections quarter-wave line transformers
Consider Factors:
1. Power level
2. Package
3. PCB size
4. Phase shift
5. Broadband matching
Lower Q Matching
PUBLIC11
Wideband PA Design Techniques
• Broadband impedance transformer < 1 GHz
− Coaxial 4:1 transformer with ferrite beads can extend frequency range from 50 to 1000 MHz
Zcoax= Z1 * Z2 = 12.5 * 50 = 25 ohm
PUBLIC12
Wideband PA Design Techniques
• Multi-sections transmission lines – broadband matching over 400-3000 MHz
PUBLIC13
Wideband PA Design Techniques
1 2 3
Reactive Matching
makes gain adjustment
across wideband by
mismatching at the input,
but results in higher input
VSWR.
L-R Lossy Matching
absorbs gain to achieve
flat gain across wide band.
Reduce low frequency
gain.
R-C Feedback
improves the input and
output match to achieve
broadband matching.
Improve circuit stability by
reducing gain at low
frequency.
Bandwidth Enhancement Techniques:
PUBLIC14
Wideband PA Design Challenges
• At high power density, GaN is in the high end
of its operating junction temperature
• GaN on SiC can reduce thermal resistance in
air cavity ceramic and plastic-molded
packages
• GaN die design to spread heat sources evenly
and use highly conductive copper flange
packages
GaN Thermal Challenges GaN Linearity Challenges
• GaN drain lags result in poor linearity, which
results in a slow drain current response to fast
change in drain amplitude swing
• GaN is being optimized for better DPD
correction for switching signals in TDD based
systems
PUBLIC15
Wideband PA Design Challenges
• 50V LDMOS is designed for high breakdown
voltage and can survive 65:1 VSWR and >3
dB input overdrive
• 50V GaN is designed for high ruggedness
20:1 VSWR
Device Ruggedness Device Reliability
• Use Mean-Time-To-Failure (MTTF) product
calculators to determine device
electromigration failure rate for a given set of
operating conditions, junction-case
temperature (Tj-c) and thermal resistance
• MTTF vs. Tj-c is calculated for CW conditions
and pulse applications
PUBLIC16
GAN AND LDMOS
WIDEBAND PA APPLICATIONS
SINGLE-ENDED VS. PUSH-PULL AMPLIFIERS
PUBLIC17
MMRF5014H GaN Wideband PA Application
• 50 V GaN on SiC Wideband Transistor
• 100 W CW, 12 dB min Gain, 40% min
Efficiency covers 450-2500 MHz
• Single-ended Compact
Wideband Amplifier
• Full CW & Pulse Operation
• Housed in NI-360 air-cavity
ceramic package
• Thermal Resistance = 0.86 °C/W *
* Refer to App Note AN1955
PUBLIC18
MMRF5014H GaN 450-2500 MHz Wideband Design
• Broadband design using multi-section
transmission lines methodology with
MMRF5014H non-linear device model
• Load and source impedances generated from
load pull techniques to develop broadband
matching networks
• ADS harmonic balance simulation to optimize
power gain and efficiency
• Design Goals:
− 100 W across 450-2500 MHz
− CW Gain >12 dB
− Efficiency >40 %
MMRF5014H Source and Load
Impedance
Freq (MHz)
Zsource
(ohm)
Zload (ohm)
500 1.3+j3.9 5.9+j3.5
1000 1.0+j0.3 5.5+j2.9
1500 0.8-j0.5 3.4+j2.0
2000 1.2-j2.0 4.7+j0.3
2500 2.7-j3.8 3.7+j1.4
PUBLIC19
MMRF5014H GaN Wideband Circuit Simulation – 450-2500 MHz
Input Matching Circuit
Output Matching Circuit
NXP can provide ADS device model to enable nonlinear circuit simulation
PUBLIC20
MMRF5014H GaN Wideband Circuit Simulation Results
800 MHz 800 MHz 800 MHz
PUBLIC21
MMRF5014H GaN 450 – 2500 MHz CW Measurement
20
30
40
50
60
70
80
4
6
8
10
12
14
16
20 30 40 50 60 70 80 90 100 110
Efficiency(%)
Gain(dB)
Output Power (W)
MMRF5014H CW Power Drive-up
500 MHz Gain 1000 MHz Gain 1500 MHz Gain 2000 MHz Gain 2500 MHz Gain
500 MHz Eff 1000 MHz Eff 1500 MHz Eff 2000 MHz Eff 2500 MHz Eff
VDD = 50 V
IDQ = 300 mA
Device shows no gain expansion at selected bias current
PUBLIC22
MMRF5014H GaN 450 – 2500 MHz CW Measurement
0
10
20
30
40
50
60
70
80
8
10
12
14
16
18
20
22
24
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
Efficiency(%)
Gain(dB)
Frequency (MHz)
MMRF5014H 450-2500 MHz CW at 100 W
100 W Gain 10 W Gain 100 W Eff
VDD = 50 V
IDQ = 300 mA
PUBLIC23
MMRF5014H GaN 450 – 2500 MHz Pulse Measurement
0
10
20
30
40
50
60
70
80
8
10
12
14
16
18
20
22
24
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
PulseEfficiency(%)
Gain(dB)
Frequency (MHz)
MMRF5014H 500-2500MHz Pulse at 100 W
200usec pulse width, 20% duty cycle
100 W Gain 100 W Pulse Eff
VDD = 50 V
IDQ = 300 mA
Higher gain due to non-thermal heating effects in pulse operation
PUBLIC24
MMRF1305HR5 LDMOS Broadband PA
• 50 V Wideband LDMOS Transistor
• 100 W PEP, 14 dB min Gain, 30%
min Efficiency
• Push-pull Amplifier covers 400-1000
MHz
• Broadband Coaxial transformer
design
• Housed in a NI-780H air-cavity
ceramic package
• Low Thermal Resistance = 0.38
°C/W *
* Refer to App Note AN1955
PUBLIC25
MMRF1305HR5 LDMOS 400-1000 MHz Broadband Design
• Broadband design using two-section
impedance transformer with
MMRF1305HR5 nonlinear device model
• ADS load pull and source pull techniques
to obtain maximum power impedances
between 400 MHz to 1 GHz
• ADS harmonic balance simulation to
optimize power gain and efficiency
• Design Goals:
− 100 W across 400-1000 MHz
− CW Gain >14 dB
− Efficiency >30 %
MMRF1305H Source and Load Impedance
(Simulated in balanced configuration)
Freq (MHz) Zsource (ohm) Zload (ohm)
400 4.21-j0.85 6.63+j0.27
500 3.82-j1.05 6.82+j0.18
600 3.44-j0.97 6.98+j0.01
700 3.23-j0.75 7.09-j0.25
800 3.21-j0.55 7.11-j0.55
900 3.31-j0.49 7.00-j0.88
1000 3.50-j0.60 6.80-j1.16
PUBLIC26
MMRF1305H LDMOS Broadband Circuit Simulation
400-1000 MHz
Output Matching Circuit
NXP can provide ADS or AWR MWO device models to enable nonlinear circuit simulation
Balun
Balun
Input Matching Circuit
4:1 Impedance
Transformer
PUBLIC27
MMRF1305H LDMOS Broadband Circuit Simulation Results
PUBLIC28
MMRF1305H LDMOS 400 – 1000 MHz CW Measurement
10
20
30
40
50
60
70
80
4
6
8
10
12
14
16
18
10 20 30 40 50 60 70 80 90 100 110 120 130
Efficiency(%)
Gain(dB)
Output Power (W)
MMRF1305H 400-1000 MHz CW Power Drive-up
400 MHz Gain 700 MHz Gain 1000 MHz Gain
400 MHz Eff 700 MHz Eff 1000 MHz Eff
VDD = 50 V
IDQ = 400 mA
Device exhibits gain expansion at low drive power and specified bias current
PUBLIC29
10
15
20
25
30
35
40
45
50
55
60
10
12
14
16
18
20
22
24
26
28
30
400 450 500 550 600 650 700 750 800 850 900 950 1000
DrainEff(%)
Gain(dB)
Frequency (MHz)
MMRF1305H 400-1000MHz CW at 100 W
100 W Gain 10 W Gain 100 W Eff
VDD = 50 V
IDQ = 400 mA
MMRF1305H LDMOS 400 – 1000 MHz CW Measurement
PUBLIC30
MMRF1305H LDMOS 400 – 1000 MHz Pulse Measurement
10
15
20
25
30
35
40
45
50
55
60
10
12
14
16
18
20
22
24
26
28
30
400 450 500 550 600 650 700 750 800 850 900 950 1000
DrainEff(%)
Gain(dB)
Frequency (MHz)
MMRF1305H 400-1000MHz Pulse at 100 W
200usec pulse width, 20% duty cycle
100 W Gain 100 W Eff
VDD = 50 V
IDQ = 400 mA
Higher gain due to non-thermal heating effects in pulse operation
PUBLIC31
GaN and LDMOS Wideband Application Comparison
Parameters
GaN
MMRF5014H
LDMOS
MMRF1305H
Circuit Topology Single-ended Push-pull
Bandwidth @ 100 W 450-2500 MHz 400-1000 MHz
Gain @ 100 W 12-14 dB 13-17.5 dB
Efficiency @ 100 W
> 39 % > 32 %
P3dB 160 W 140 W
PUBLIC32
LDMOS Power Product Portfolio
• 1
1.8 MHz 500 MHz 915 MHz 1400 MHz 2900 MHz 3500 MHz
10W
100W
1kW
1200 MHz
S-BandRadar2700-3100
Industrial
FM/VHF
Broadcast
Aerospace
UHF Broadcast
Industrial
Aerospace
2450 MHz
1.5kW MRF1K50N
To 500MHz, 1500W CW
Cellular ICs
28V class AB
Cellular3400-3600
Cellular1800-2050
Cellular2100-2200
L-BandRadar
IFF
50V LDMOS
28/32V LDMOS
Cellular2300-2700
ISM2500
Aerospace
Industrial500W
Frequency (MHz)
PeakPower(W)
PUBLIC33
GaN Power Product Portfolio – Compliments LDMOS to Address
High Frequency, High Power Applications
Frequency (MHz)
1000
400
100
10
2
PeakPower(W)
PUBLIC3434
Conclusion
• Benefits have been presented for GaN and
LDMOS technologies. Including device
parameters with performance trade-offs, design
challenges, and wideband PA applications.
• GaN devices have great potential for high-power
cellular and defense aerospace markets in
wideband, multi-band PA applications
• NXP provides full product support for
GaN and LDMOS product solutions
Techniques and Challenges in Designing Wideband Power Amplifiers Using GaN and LDMOS

More Related Content

What's hot

Gallium Nitride (GaN)
Gallium Nitride (GaN)Gallium Nitride (GaN)
Gallium Nitride (GaN)
Gridlogics
 
High efficiency power amplifiers
High efficiency power amplifiersHigh efficiency power amplifiers
High efficiency power amplifiers
Abhishek Kadam
 
Basics of RF
Basics of RFBasics of RF
Ultra Wideband Technology
Ultra Wideband TechnologyUltra Wideband Technology
Ultra Wideband Technology
Hai Dinh Tuan
 
Introduction to modern receiver
Introduction to modern receiverIntroduction to modern receiver
Introduction to modern receiver
criterion123
 
Rf power amplifier design
Rf power amplifier designRf power amplifier design
Rf power amplifier design
venkateshp100
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
SHIV DUTT
 
Antenna Basics
Antenna BasicsAntenna Basics
Antenna Basics
Md Mustafizur Rahman
 
Satellite Downlink Budget Analysis
Satellite Downlink Budget AnalysisSatellite Downlink Budget Analysis
Satellite Downlink Budget Analysis
Partho Choudhury
 
HFSS.ppt
HFSS.pptHFSS.ppt
HFSS.ppt
MahendarG4
 
Rf fundamentals
Rf fundamentalsRf fundamentals
Rf fundamentals
Sura Satish Babu
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Simen Li
 
Diplexer duplexer
Diplexer duplexerDiplexer duplexer
Diplexer duplexer
Pei-Che Chang
 
Antenna presentation PPT
Antenna presentation PPTAntenna presentation PPT
Antenna presentation PPT
Sachin Kadam
 
Link budget satalite for calculation system
Link budget satalite for calculation systemLink budget satalite for calculation system
Link budget satalite for calculation system
University of Technology
 
Bandwidth optimization
Bandwidth optimizationBandwidth optimization
Bandwidth optimization
Jeetendra Ahirwar
 
Understanding RF Fundamentals and the Radio Design of Wireless Networks
Understanding RF Fundamentals and the Radio Design of Wireless NetworksUnderstanding RF Fundamentals and the Radio Design of Wireless Networks
Understanding RF Fundamentals and the Radio Design of Wireless Networks
Cisco Mobility
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
Ritul Sonania
 
RF circuit design using ADS
RF circuit design using ADSRF circuit design using ADS
RF circuit design using ADS
ankit_master
 
GSM Link Budget
GSM Link BudgetGSM Link Budget
GSM Link Budget
Naveen Jakhar, I.T.S
 

What's hot (20)

Gallium Nitride (GaN)
Gallium Nitride (GaN)Gallium Nitride (GaN)
Gallium Nitride (GaN)
 
High efficiency power amplifiers
High efficiency power amplifiersHigh efficiency power amplifiers
High efficiency power amplifiers
 
Basics of RF
Basics of RFBasics of RF
Basics of RF
 
Ultra Wideband Technology
Ultra Wideband TechnologyUltra Wideband Technology
Ultra Wideband Technology
 
Introduction to modern receiver
Introduction to modern receiverIntroduction to modern receiver
Introduction to modern receiver
 
Rf power amplifier design
Rf power amplifier designRf power amplifier design
Rf power amplifier design
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
 
Antenna Basics
Antenna BasicsAntenna Basics
Antenna Basics
 
Satellite Downlink Budget Analysis
Satellite Downlink Budget AnalysisSatellite Downlink Budget Analysis
Satellite Downlink Budget Analysis
 
HFSS.ppt
HFSS.pptHFSS.ppt
HFSS.ppt
 
Rf fundamentals
Rf fundamentalsRf fundamentals
Rf fundamentals
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
Diplexer duplexer
Diplexer duplexerDiplexer duplexer
Diplexer duplexer
 
Antenna presentation PPT
Antenna presentation PPTAntenna presentation PPT
Antenna presentation PPT
 
Link budget satalite for calculation system
Link budget satalite for calculation systemLink budget satalite for calculation system
Link budget satalite for calculation system
 
Bandwidth optimization
Bandwidth optimizationBandwidth optimization
Bandwidth optimization
 
Understanding RF Fundamentals and the Radio Design of Wireless Networks
Understanding RF Fundamentals and the Radio Design of Wireless NetworksUnderstanding RF Fundamentals and the Radio Design of Wireless Networks
Understanding RF Fundamentals and the Radio Design of Wireless Networks
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
 
RF circuit design using ADS
RF circuit design using ADSRF circuit design using ADS
RF circuit design using ADS
 
GSM Link Budget
GSM Link BudgetGSM Link Budget
GSM Link Budget
 

Viewers also liked

Präsentation
PräsentationPräsentation
Präsentation
Sarah Hinterreiter
 
NXP presentation at Secure Identifications 2016
NXP presentation at Secure Identifications 2016NXP presentation at Secure Identifications 2016
NXP presentation at Secure Identifications 2016
Ihar Bayarenka
 
NXP Company Presentation
NXP Company PresentationNXP Company Presentation
NXP Company Presentation
chileungchan
 
NXP presentation at PLUS-Forum 2016
NXP presentation at PLUS-Forum 2016NXP presentation at PLUS-Forum 2016
NXP presentation at PLUS-Forum 2016
Ihar Bayarenka
 
New Opportunities for Industry Growth (NXP)
New Opportunities for Industry Growth (NXP)New Opportunities for Industry Growth (NXP)
New Opportunities for Industry Growth (NXP)
COMPUTEX TAIPEI
 
Airfast 3 RF Power Transistors Advance Cellular Infrastructure for Smart Cities
Airfast 3 RF Power Transistors Advance Cellular Infrastructure for Smart CitiesAirfast 3 RF Power Transistors Advance Cellular Infrastructure for Smart Cities
Airfast 3 RF Power Transistors Advance Cellular Infrastructure for Smart Cities
NXPSemiconductors
 
1 mosfet 1 basics
1 mosfet 1 basics1 mosfet 1 basics
1 mosfet 1 basics
Sandeep Yandamuri
 
RF Power Amplifier Solutions for 5G
RF Power Amplifier Solutions for 5GRF Power Amplifier Solutions for 5G
RF Power Amplifier Solutions for 5G
NXPSemiconductors
 
rectifiers
rectifiersrectifiers
rectifiers
Saurabh Rana
 
Power electronics note
Power electronics notePower electronics note
Power electronics note
ravalgautu
 
Presentation on half and full wave ractifier.ppt
Presentation on half and full wave ractifier.pptPresentation on half and full wave ractifier.ppt
Presentation on half and full wave ractifier.ppt
Kawsar Ahmed
 
NXP-Freescale Merger Investor Presentation
NXP-Freescale Merger Investor PresentationNXP-Freescale Merger Investor Presentation
NXP-Freescale Merger Investor Presentation
Gary Lerude
 
Metal Oxide Semiconductor Fet (Mosfet)
Metal Oxide Semiconductor Fet (Mosfet)Metal Oxide Semiconductor Fet (Mosfet)
Metal Oxide Semiconductor Fet (Mosfet)
stooty s
 
Fashion sketchbook
Fashion sketchbookFashion sketchbook
Fashion sketchbook
Luka279
 
Tesla Marketing Plan
Tesla Marketing PlanTesla Marketing Plan
Tesla Marketing Plan
dpayne05
 
What Makes Great Infographics
What Makes Great InfographicsWhat Makes Great Infographics
What Makes Great Infographics
SlideShare
 
Masters of SlideShare
Masters of SlideShareMasters of SlideShare
Masters of SlideShare
Kapost
 
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to SlideshareSTOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
Empowered Presentations
 
You Suck At PowerPoint!
You Suck At PowerPoint!You Suck At PowerPoint!
You Suck At PowerPoint!
Jesse Desjardins - @jessedee
 
10 Ways to Win at SlideShare SEO & Presentation Optimization
10 Ways to Win at SlideShare SEO & Presentation Optimization10 Ways to Win at SlideShare SEO & Presentation Optimization
10 Ways to Win at SlideShare SEO & Presentation Optimization
Oneupweb
 

Viewers also liked (20)

Präsentation
PräsentationPräsentation
Präsentation
 
NXP presentation at Secure Identifications 2016
NXP presentation at Secure Identifications 2016NXP presentation at Secure Identifications 2016
NXP presentation at Secure Identifications 2016
 
NXP Company Presentation
NXP Company PresentationNXP Company Presentation
NXP Company Presentation
 
NXP presentation at PLUS-Forum 2016
NXP presentation at PLUS-Forum 2016NXP presentation at PLUS-Forum 2016
NXP presentation at PLUS-Forum 2016
 
New Opportunities for Industry Growth (NXP)
New Opportunities for Industry Growth (NXP)New Opportunities for Industry Growth (NXP)
New Opportunities for Industry Growth (NXP)
 
Airfast 3 RF Power Transistors Advance Cellular Infrastructure for Smart Cities
Airfast 3 RF Power Transistors Advance Cellular Infrastructure for Smart CitiesAirfast 3 RF Power Transistors Advance Cellular Infrastructure for Smart Cities
Airfast 3 RF Power Transistors Advance Cellular Infrastructure for Smart Cities
 
1 mosfet 1 basics
1 mosfet 1 basics1 mosfet 1 basics
1 mosfet 1 basics
 
RF Power Amplifier Solutions for 5G
RF Power Amplifier Solutions for 5GRF Power Amplifier Solutions for 5G
RF Power Amplifier Solutions for 5G
 
rectifiers
rectifiersrectifiers
rectifiers
 
Power electronics note
Power electronics notePower electronics note
Power electronics note
 
Presentation on half and full wave ractifier.ppt
Presentation on half and full wave ractifier.pptPresentation on half and full wave ractifier.ppt
Presentation on half and full wave ractifier.ppt
 
NXP-Freescale Merger Investor Presentation
NXP-Freescale Merger Investor PresentationNXP-Freescale Merger Investor Presentation
NXP-Freescale Merger Investor Presentation
 
Metal Oxide Semiconductor Fet (Mosfet)
Metal Oxide Semiconductor Fet (Mosfet)Metal Oxide Semiconductor Fet (Mosfet)
Metal Oxide Semiconductor Fet (Mosfet)
 
Fashion sketchbook
Fashion sketchbookFashion sketchbook
Fashion sketchbook
 
Tesla Marketing Plan
Tesla Marketing PlanTesla Marketing Plan
Tesla Marketing Plan
 
What Makes Great Infographics
What Makes Great InfographicsWhat Makes Great Infographics
What Makes Great Infographics
 
Masters of SlideShare
Masters of SlideShareMasters of SlideShare
Masters of SlideShare
 
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to SlideshareSTOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
 
You Suck At PowerPoint!
You Suck At PowerPoint!You Suck At PowerPoint!
You Suck At PowerPoint!
 
10 Ways to Win at SlideShare SEO & Presentation Optimization
10 Ways to Win at SlideShare SEO & Presentation Optimization10 Ways to Win at SlideShare SEO & Presentation Optimization
10 Ways to Win at SlideShare SEO & Presentation Optimization
 

Similar to Techniques and Challenges in Designing Wideband Power Amplifiers Using GaN and LDMOS

Deliberant - Apc series-product-overview1
Deliberant - Apc series-product-overview1Deliberant - Apc series-product-overview1
Deliberant - Apc series-product-overview1
Telcomms
 
IRJET - 5G Architecture using GAN based Digital Transmitter in VLSI Desig...
IRJET -  	  5G Architecture using GAN based Digital Transmitter in VLSI Desig...IRJET -  	  5G Architecture using GAN based Digital Transmitter in VLSI Desig...
IRJET - 5G Architecture using GAN based Digital Transmitter in VLSI Desig...
IRJET Journal
 
Product list 0116
Product list 0116   Product list 0116
Product list 0116
Go-NPS
 
4---glynn-and-devlin---an-x-band-gan-pa-mmic-for-p.pdf
4---glynn-and-devlin---an-x-band-gan-pa-mmic-for-p.pdf4---glynn-and-devlin---an-x-band-gan-pa-mmic-for-p.pdf
4---glynn-and-devlin---an-x-band-gan-pa-mmic-for-p.pdf
RRaja Einstein
 
High Efficiency LDMOS Technology for UMTS base stations_journal
High Efficiency LDMOS Technology for UMTS base stations_journalHigh Efficiency LDMOS Technology for UMTS base stations_journal
High Efficiency LDMOS Technology for UMTS base stations_journal
Steven Theeuwen
 
Teledyne raul germano_sspi_maio_2015
Teledyne raul germano_sspi_maio_2015Teledyne raul germano_sspi_maio_2015
Teledyne raul germano_sspi_maio_2015
SSPI Brasil
 
EUF-IND-T3931 (1).pdf
EUF-IND-T3931 (1).pdfEUF-IND-T3931 (1).pdf
EUF-IND-T3931 (1).pdf
sumathi muniswamy
 
IMS2016_Workshop_SK 03232016
IMS2016_Workshop_SK 03232016IMS2016_Workshop_SK 03232016
IMS2016_Workshop_SK 03232016
Sushil Kumar
 
RF Power Management Attach Training Module
RF Power Management Attach Training ModuleRF Power Management Attach Training Module
RF Power Management Attach Training Module
Analog Devices, Inc.
 
RF Power Management Attach
RF Power Management AttachRF Power Management Attach
RF Power Management Attach
Amanda Tucker
 
Silicon Photonics for Extreme Computing - Challenges and Opportunities
Silicon Photonics for Extreme Computing - Challenges and OpportunitiesSilicon Photonics for Extreme Computing - Challenges and Opportunities
Silicon Photonics for Extreme Computing - Challenges and Opportunities
inside-BigData.com
 
3-WE3_ExtendingTheReachOfVCSEL_Rev5
3-WE3_ExtendingTheReachOfVCSEL_Rev53-WE3_ExtendingTheReachOfVCSEL_Rev5
3-WE3_ExtendingTheReachOfVCSEL_Rev5
Waruna Fernando
 
High_Voltage_RF_LDMOS_Technology_for_Broadcast_Applications_pub
High_Voltage_RF_LDMOS_Technology_for_Broadcast_Applications_pubHigh_Voltage_RF_LDMOS_Technology_for_Broadcast_Applications_pub
High_Voltage_RF_LDMOS_Technology_for_Broadcast_Applications_pub
Steven Theeuwen
 
42jssc07-pfeiffer-proof
42jssc07-pfeiffer-proof42jssc07-pfeiffer-proof
42jssc07-pfeiffer-proof
David Goren
 
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power AmplifiersChallenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
criterion123
 
Choosing the Right Access Point Antenna
Choosing the Right Access Point AntennaChoosing the Right Access Point Antenna
Choosing the Right Access Point Antenna
Mimosa Networks
 
Multi-Funtion Phased Array Radar
Multi-Funtion Phased Array RadarMulti-Funtion Phased Array Radar
Multi-Funtion Phased Array Radar
Mistral Solutions
 
2500_2150
2500_21502500_2150
Wideband power amplifier based on Wilkinson power divider for s-band satellit...
Wideband power amplifier based on Wilkinson power divider for s-band satellit...Wideband power amplifier based on Wilkinson power divider for s-band satellit...
Wideband power amplifier based on Wilkinson power divider for s-band satellit...
journalBEEI
 
Cma5000a osa
Cma5000a   osaCma5000a   osa
Cma5000a osa
onlinestuden
 

Similar to Techniques and Challenges in Designing Wideband Power Amplifiers Using GaN and LDMOS (20)

Deliberant - Apc series-product-overview1
Deliberant - Apc series-product-overview1Deliberant - Apc series-product-overview1
Deliberant - Apc series-product-overview1
 
IRJET - 5G Architecture using GAN based Digital Transmitter in VLSI Desig...
IRJET -  	  5G Architecture using GAN based Digital Transmitter in VLSI Desig...IRJET -  	  5G Architecture using GAN based Digital Transmitter in VLSI Desig...
IRJET - 5G Architecture using GAN based Digital Transmitter in VLSI Desig...
 
Product list 0116
Product list 0116   Product list 0116
Product list 0116
 
4---glynn-and-devlin---an-x-band-gan-pa-mmic-for-p.pdf
4---glynn-and-devlin---an-x-band-gan-pa-mmic-for-p.pdf4---glynn-and-devlin---an-x-band-gan-pa-mmic-for-p.pdf
4---glynn-and-devlin---an-x-band-gan-pa-mmic-for-p.pdf
 
High Efficiency LDMOS Technology for UMTS base stations_journal
High Efficiency LDMOS Technology for UMTS base stations_journalHigh Efficiency LDMOS Technology for UMTS base stations_journal
High Efficiency LDMOS Technology for UMTS base stations_journal
 
Teledyne raul germano_sspi_maio_2015
Teledyne raul germano_sspi_maio_2015Teledyne raul germano_sspi_maio_2015
Teledyne raul germano_sspi_maio_2015
 
EUF-IND-T3931 (1).pdf
EUF-IND-T3931 (1).pdfEUF-IND-T3931 (1).pdf
EUF-IND-T3931 (1).pdf
 
IMS2016_Workshop_SK 03232016
IMS2016_Workshop_SK 03232016IMS2016_Workshop_SK 03232016
IMS2016_Workshop_SK 03232016
 
RF Power Management Attach Training Module
RF Power Management Attach Training ModuleRF Power Management Attach Training Module
RF Power Management Attach Training Module
 
RF Power Management Attach
RF Power Management AttachRF Power Management Attach
RF Power Management Attach
 
Silicon Photonics for Extreme Computing - Challenges and Opportunities
Silicon Photonics for Extreme Computing - Challenges and OpportunitiesSilicon Photonics for Extreme Computing - Challenges and Opportunities
Silicon Photonics for Extreme Computing - Challenges and Opportunities
 
3-WE3_ExtendingTheReachOfVCSEL_Rev5
3-WE3_ExtendingTheReachOfVCSEL_Rev53-WE3_ExtendingTheReachOfVCSEL_Rev5
3-WE3_ExtendingTheReachOfVCSEL_Rev5
 
High_Voltage_RF_LDMOS_Technology_for_Broadcast_Applications_pub
High_Voltage_RF_LDMOS_Technology_for_Broadcast_Applications_pubHigh_Voltage_RF_LDMOS_Technology_for_Broadcast_Applications_pub
High_Voltage_RF_LDMOS_Technology_for_Broadcast_Applications_pub
 
42jssc07-pfeiffer-proof
42jssc07-pfeiffer-proof42jssc07-pfeiffer-proof
42jssc07-pfeiffer-proof
 
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power AmplifiersChallenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
 
Choosing the Right Access Point Antenna
Choosing the Right Access Point AntennaChoosing the Right Access Point Antenna
Choosing the Right Access Point Antenna
 
Multi-Funtion Phased Array Radar
Multi-Funtion Phased Array RadarMulti-Funtion Phased Array Radar
Multi-Funtion Phased Array Radar
 
2500_2150
2500_21502500_2150
2500_2150
 
Wideband power amplifier based on Wilkinson power divider for s-band satellit...
Wideband power amplifier based on Wilkinson power divider for s-band satellit...Wideband power amplifier based on Wilkinson power divider for s-band satellit...
Wideband power amplifier based on Wilkinson power divider for s-band satellit...
 
Cma5000a osa
Cma5000a   osaCma5000a   osa
Cma5000a osa
 

Recently uploaded

UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
DianaGray10
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
panagenda
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Paige Cruz
 
Infrastructure Challenges in Scaling RAG with Custom AI models
Infrastructure Challenges in Scaling RAG with Custom AI modelsInfrastructure Challenges in Scaling RAG with Custom AI models
Infrastructure Challenges in Scaling RAG with Custom AI models
Zilliz
 
Building Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and MilvusBuilding Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and Milvus
Zilliz
 
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
Edge AI and Vision Alliance
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
Kari Kakkonen
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Malak Abu Hammad
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc
 
RESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for studentsRESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for students
KAMESHS29
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Safe Software
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
SOFTTECHHUB
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
Matthew Sinclair
 
GraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracyGraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracy
Tomaz Bratanic
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
mikeeftimakis1
 
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
名前 です男
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
Zilliz
 
“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”
Claudio Di Ciccio
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
Adtran
 

Recently uploaded (20)

UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
 
Infrastructure Challenges in Scaling RAG with Custom AI models
Infrastructure Challenges in Scaling RAG with Custom AI modelsInfrastructure Challenges in Scaling RAG with Custom AI models
Infrastructure Challenges in Scaling RAG with Custom AI models
 
Building Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and MilvusBuilding Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and Milvus
 
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
 
RESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for studentsRESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for students
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
 
GraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracyGraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracy
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
 
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
 
“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
 

Techniques and Challenges in Designing Wideband Power Amplifiers Using GaN and LDMOS

  • 1. PUBLIC JEFFREY HO RF APPLICATIONS ENGINEER RF POWER GROUP, NXP SEMICONDUCTORS SEPTEMBER, 20, 2016 ELECTRONIC DESIGN INNOVATION CONFERENCE (EDI CON) TECHNIQUES AND CHALLENGES IN DESIGNING WIDEBAND POWER AMPLIFIERS USING GAN AND LDMOS
  • 2. PUBLIC11 Agenda GaN and LDMOS Parametric Comparison • Device Technology Benefits • System Level Tradeoffs GaN Advantages • Bandwidth, Efficiency, Power Density Wideband PA Design and Challenges • Wideband Techniques • Thermal, Linearity, Ruggedness GaN and LDMOS Wideband PA Applications • Nonlinear Model Simulation • CW and Pulsed Performance NXP Power Product Portfolio Conclusion
  • 3. PUBLIC2 GaN and LDMOS Technology • GaN-on-SiC 50V technology provides higher efficiency, power density and more gain in a small package. • GaN devices are capable of best in-class solutions for broadband applications. • GaN’s high output impedance and low Cds capacitance enables broadband design. Bandwidth limitation on the input match. • For identical power level, GaN transistors have smaller parasitic capacitance, which makes the wideband matching easier than LDMOS transistors. GaN LDMOS • LDMOS is still demonstrating high power and efficiency in cellular and broadcast narrow- band applications. • 50V LDMOS are primarily used for frequencies < 1.5 GHz. 28V LDMOS can provide compelling performance up to 4 GHz. • LDMOS transistor’s large peripheries imply large Cgs/Cds capacitances which limit the bandwidth.
  • 4. PUBLIC3 GaN and LDMOS: Parametric Comparisons Typical Parameters LDMOS (28V) LDMOS (50V) GaN (50V) GaN Advantage Fmax (GHz) 22 15 30 High frequency operation  2.5GHz and above Power Density (W/mm) 0.8 2 5-10 Higher Power density  smaller device footprint Efficiency @ P1dB (%) 60 < 55 70 Higher efficiency  2.5 GHz and above Bandwidth (MHz) 100-400 100-500 500-2500 One device covers multi-bands Cds (pf/W) Output Capacitance 0.23 ½ smaller ¼ smaller Smaller device capacitance  broadband operationCgs (pf/W) Input Capacitance 0.94 ½ smaller ½ smaller
  • 5. PUBLIC4 Leveraging the Benefits of GaN and LDMOS • Differentiating performance exceeding LDMOS above 2.5 GHz • Enables 5G at higher frequencies • Broadband design • High efficiency at high frequencies • Comparable thermal package as LDMOS • Compact PA design (more power in smaller package, smaller matching circuitry) • Wideband CW and Pulse PA applications: − 200-2600 MHz at 100 W − S-band 2.7-3.5 GHz at 700 W GaN Benefits LDMOS Benefits • Competitive performance to 2.7 GHz • Cost effective PA solutions • Mature process technology • High ruggedness up to 65:1 VSWR • Consistent thermal behavior • Broadband VHF/UHF below 1 GHz • Highest power up to 1.5 GHz • Narrow-band PA applications: − Cellular bands up to 2.7 GHz − Avionics and L-band 1.2-1.4 GHz up to 1.5 kW − S-band 2.7-3.1 GHz at 300 W
  • 6. PUBLIC5 Material Characteristics Drive System Level Tradeoffs Material Properties Device Operates Improved Device FOM System Advantage Increased BW Smaller # of Die Per System Lower Total Energy Usage Higher System Frequency Smaller Package Cheaper Package Relaxed System Cooling Power Density Power Gain Efficiency Output Impedance High ft High fmax Smaller Die Size More Power/Die High Breakdown Field High Electron Velocity High Thermal Conductivity High Voltage High Current High Temperature High Frequency
  • 7. PUBLIC6 Gain Compression Comparison – P1dB, P3dB LDMOS: Hard Gain Compression 1.2dB delta between P-1dB and P-3dB LDMOS 32V @ 1.96 GHz GaN: Soft Gain Compression 1.8dB delta between P-1dB and P3-dB GaN 50V @ 2.50 GHz 36 38 40 42 44 46 48 50 52 54 56 58 20 22 24 26 28 30 32 34 36 38 Pout(dBm) Pin (dBm) MMRF5014HR5 - Max Pout Load - 2.5 GHz - 50 V Actual Ideal P-1dB = 50.2 dBm = 105 W P-3dB = 52 dBm = 160.9 W
  • 8. PUBLIC7 GaN Advantage: Wider Bandwidth in S-Band MMRF5300N - 50V GaN 60 W Pulsed Power Wideband over 2.7 – 3.5 GHz Flat Gain 14.6-14.9 dB Efficiency > 50% MRF7S35120H - 32V LDMOS 120 W Pulsed Power Broadband over 3.1 – 3.5 GHz Gain 12-13 dB Efficiency > 40% -20 -10 0 10 20 30 40 50 60 13 13.5 14 14.5 15 15.5 16 16.5 17 2700 2800 2900 3000 3100 3200 3300 3400 3500 IRL(dB)DrainEfficiency(%) PowerGain(dB) Frequency (MHz) PMRF5300N Performance at 60W Pulsed Vdd=50V, Idq=60mA, Vgs=-3V, 300us Pulse Width, 20% Duty Cycle Power Gain Drain Efficency IRL
  • 9. PUBLIC8 GaN Advantage: Higher Efficiency GaN provides high efficiency at peak power, and 6dB power back-off efficiency across wide bandwidth Power drive-up gain response is less sensitive to bias current variation. Flat gain response can achieve over a wide power dynamic range GaN is well suited for high efficiency amplifiers, such as classes D/E modes and switch-mode PA’s, where transistor operates like a switch GaN on SiC technology is continuously improving linearized efficiency for Doherty PA operation at 7-8 dB peak power back-off
  • 10. PUBLIC9 GaN Advantage: High Efficiency and Output Power PAE and Output Power vs. Frequency for NXP GaN and LDMOS devices High Efficiency Beyond 2.5 GHz High Power Beyond 3.5 GHz
  • 11. PUBLIC10 Wideband PA Design Techniques 1. Multi-sections LC matching networks 2. Multi-sections quarter-wave line transformers Consider Factors: 1. Power level 2. Package 3. PCB size 4. Phase shift 5. Broadband matching Lower Q Matching
  • 12. PUBLIC11 Wideband PA Design Techniques • Broadband impedance transformer < 1 GHz − Coaxial 4:1 transformer with ferrite beads can extend frequency range from 50 to 1000 MHz Zcoax= Z1 * Z2 = 12.5 * 50 = 25 ohm
  • 13. PUBLIC12 Wideband PA Design Techniques • Multi-sections transmission lines – broadband matching over 400-3000 MHz
  • 14. PUBLIC13 Wideband PA Design Techniques 1 2 3 Reactive Matching makes gain adjustment across wideband by mismatching at the input, but results in higher input VSWR. L-R Lossy Matching absorbs gain to achieve flat gain across wide band. Reduce low frequency gain. R-C Feedback improves the input and output match to achieve broadband matching. Improve circuit stability by reducing gain at low frequency. Bandwidth Enhancement Techniques:
  • 15. PUBLIC14 Wideband PA Design Challenges • At high power density, GaN is in the high end of its operating junction temperature • GaN on SiC can reduce thermal resistance in air cavity ceramic and plastic-molded packages • GaN die design to spread heat sources evenly and use highly conductive copper flange packages GaN Thermal Challenges GaN Linearity Challenges • GaN drain lags result in poor linearity, which results in a slow drain current response to fast change in drain amplitude swing • GaN is being optimized for better DPD correction for switching signals in TDD based systems
  • 16. PUBLIC15 Wideband PA Design Challenges • 50V LDMOS is designed for high breakdown voltage and can survive 65:1 VSWR and >3 dB input overdrive • 50V GaN is designed for high ruggedness 20:1 VSWR Device Ruggedness Device Reliability • Use Mean-Time-To-Failure (MTTF) product calculators to determine device electromigration failure rate for a given set of operating conditions, junction-case temperature (Tj-c) and thermal resistance • MTTF vs. Tj-c is calculated for CW conditions and pulse applications
  • 17. PUBLIC16 GAN AND LDMOS WIDEBAND PA APPLICATIONS SINGLE-ENDED VS. PUSH-PULL AMPLIFIERS
  • 18. PUBLIC17 MMRF5014H GaN Wideband PA Application • 50 V GaN on SiC Wideband Transistor • 100 W CW, 12 dB min Gain, 40% min Efficiency covers 450-2500 MHz • Single-ended Compact Wideband Amplifier • Full CW & Pulse Operation • Housed in NI-360 air-cavity ceramic package • Thermal Resistance = 0.86 °C/W * * Refer to App Note AN1955
  • 19. PUBLIC18 MMRF5014H GaN 450-2500 MHz Wideband Design • Broadband design using multi-section transmission lines methodology with MMRF5014H non-linear device model • Load and source impedances generated from load pull techniques to develop broadband matching networks • ADS harmonic balance simulation to optimize power gain and efficiency • Design Goals: − 100 W across 450-2500 MHz − CW Gain >12 dB − Efficiency >40 % MMRF5014H Source and Load Impedance Freq (MHz) Zsource (ohm) Zload (ohm) 500 1.3+j3.9 5.9+j3.5 1000 1.0+j0.3 5.5+j2.9 1500 0.8-j0.5 3.4+j2.0 2000 1.2-j2.0 4.7+j0.3 2500 2.7-j3.8 3.7+j1.4
  • 20. PUBLIC19 MMRF5014H GaN Wideband Circuit Simulation – 450-2500 MHz Input Matching Circuit Output Matching Circuit NXP can provide ADS device model to enable nonlinear circuit simulation
  • 21. PUBLIC20 MMRF5014H GaN Wideband Circuit Simulation Results 800 MHz 800 MHz 800 MHz
  • 22. PUBLIC21 MMRF5014H GaN 450 – 2500 MHz CW Measurement 20 30 40 50 60 70 80 4 6 8 10 12 14 16 20 30 40 50 60 70 80 90 100 110 Efficiency(%) Gain(dB) Output Power (W) MMRF5014H CW Power Drive-up 500 MHz Gain 1000 MHz Gain 1500 MHz Gain 2000 MHz Gain 2500 MHz Gain 500 MHz Eff 1000 MHz Eff 1500 MHz Eff 2000 MHz Eff 2500 MHz Eff VDD = 50 V IDQ = 300 mA Device shows no gain expansion at selected bias current
  • 23. PUBLIC22 MMRF5014H GaN 450 – 2500 MHz CW Measurement 0 10 20 30 40 50 60 70 80 8 10 12 14 16 18 20 22 24 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 Efficiency(%) Gain(dB) Frequency (MHz) MMRF5014H 450-2500 MHz CW at 100 W 100 W Gain 10 W Gain 100 W Eff VDD = 50 V IDQ = 300 mA
  • 24. PUBLIC23 MMRF5014H GaN 450 – 2500 MHz Pulse Measurement 0 10 20 30 40 50 60 70 80 8 10 12 14 16 18 20 22 24 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 PulseEfficiency(%) Gain(dB) Frequency (MHz) MMRF5014H 500-2500MHz Pulse at 100 W 200usec pulse width, 20% duty cycle 100 W Gain 100 W Pulse Eff VDD = 50 V IDQ = 300 mA Higher gain due to non-thermal heating effects in pulse operation
  • 25. PUBLIC24 MMRF1305HR5 LDMOS Broadband PA • 50 V Wideband LDMOS Transistor • 100 W PEP, 14 dB min Gain, 30% min Efficiency • Push-pull Amplifier covers 400-1000 MHz • Broadband Coaxial transformer design • Housed in a NI-780H air-cavity ceramic package • Low Thermal Resistance = 0.38 °C/W * * Refer to App Note AN1955
  • 26. PUBLIC25 MMRF1305HR5 LDMOS 400-1000 MHz Broadband Design • Broadband design using two-section impedance transformer with MMRF1305HR5 nonlinear device model • ADS load pull and source pull techniques to obtain maximum power impedances between 400 MHz to 1 GHz • ADS harmonic balance simulation to optimize power gain and efficiency • Design Goals: − 100 W across 400-1000 MHz − CW Gain >14 dB − Efficiency >30 % MMRF1305H Source and Load Impedance (Simulated in balanced configuration) Freq (MHz) Zsource (ohm) Zload (ohm) 400 4.21-j0.85 6.63+j0.27 500 3.82-j1.05 6.82+j0.18 600 3.44-j0.97 6.98+j0.01 700 3.23-j0.75 7.09-j0.25 800 3.21-j0.55 7.11-j0.55 900 3.31-j0.49 7.00-j0.88 1000 3.50-j0.60 6.80-j1.16
  • 27. PUBLIC26 MMRF1305H LDMOS Broadband Circuit Simulation 400-1000 MHz Output Matching Circuit NXP can provide ADS or AWR MWO device models to enable nonlinear circuit simulation Balun Balun Input Matching Circuit 4:1 Impedance Transformer
  • 28. PUBLIC27 MMRF1305H LDMOS Broadband Circuit Simulation Results
  • 29. PUBLIC28 MMRF1305H LDMOS 400 – 1000 MHz CW Measurement 10 20 30 40 50 60 70 80 4 6 8 10 12 14 16 18 10 20 30 40 50 60 70 80 90 100 110 120 130 Efficiency(%) Gain(dB) Output Power (W) MMRF1305H 400-1000 MHz CW Power Drive-up 400 MHz Gain 700 MHz Gain 1000 MHz Gain 400 MHz Eff 700 MHz Eff 1000 MHz Eff VDD = 50 V IDQ = 400 mA Device exhibits gain expansion at low drive power and specified bias current
  • 30. PUBLIC29 10 15 20 25 30 35 40 45 50 55 60 10 12 14 16 18 20 22 24 26 28 30 400 450 500 550 600 650 700 750 800 850 900 950 1000 DrainEff(%) Gain(dB) Frequency (MHz) MMRF1305H 400-1000MHz CW at 100 W 100 W Gain 10 W Gain 100 W Eff VDD = 50 V IDQ = 400 mA MMRF1305H LDMOS 400 – 1000 MHz CW Measurement
  • 31. PUBLIC30 MMRF1305H LDMOS 400 – 1000 MHz Pulse Measurement 10 15 20 25 30 35 40 45 50 55 60 10 12 14 16 18 20 22 24 26 28 30 400 450 500 550 600 650 700 750 800 850 900 950 1000 DrainEff(%) Gain(dB) Frequency (MHz) MMRF1305H 400-1000MHz Pulse at 100 W 200usec pulse width, 20% duty cycle 100 W Gain 100 W Eff VDD = 50 V IDQ = 400 mA Higher gain due to non-thermal heating effects in pulse operation
  • 32. PUBLIC31 GaN and LDMOS Wideband Application Comparison Parameters GaN MMRF5014H LDMOS MMRF1305H Circuit Topology Single-ended Push-pull Bandwidth @ 100 W 450-2500 MHz 400-1000 MHz Gain @ 100 W 12-14 dB 13-17.5 dB Efficiency @ 100 W > 39 % > 32 % P3dB 160 W 140 W
  • 33. PUBLIC32 LDMOS Power Product Portfolio • 1 1.8 MHz 500 MHz 915 MHz 1400 MHz 2900 MHz 3500 MHz 10W 100W 1kW 1200 MHz S-BandRadar2700-3100 Industrial FM/VHF Broadcast Aerospace UHF Broadcast Industrial Aerospace 2450 MHz 1.5kW MRF1K50N To 500MHz, 1500W CW Cellular ICs 28V class AB Cellular3400-3600 Cellular1800-2050 Cellular2100-2200 L-BandRadar IFF 50V LDMOS 28/32V LDMOS Cellular2300-2700 ISM2500 Aerospace Industrial500W Frequency (MHz) PeakPower(W)
  • 34. PUBLIC33 GaN Power Product Portfolio – Compliments LDMOS to Address High Frequency, High Power Applications Frequency (MHz) 1000 400 100 10 2 PeakPower(W)
  • 35. PUBLIC3434 Conclusion • Benefits have been presented for GaN and LDMOS technologies. Including device parameters with performance trade-offs, design challenges, and wideband PA applications. • GaN devices have great potential for high-power cellular and defense aerospace markets in wideband, multi-band PA applications • NXP provides full product support for GaN and LDMOS product solutions