SlideShare a Scribd company logo
1
Low-Noise Amplifier
2
RF Receiver
BPF1 BPF2LNA
LO
Mixer BPF3 IF Amp
Demodulator
Antenna
RF front end
3
Low-Noise Amplifier
• First gain stage in receiver
– Amplify weak signal
• Significant impact on noise performance
– Dominate input-referred noise of front end
• Impedance matching
– Efficient power transfer
– Better noise performance
– Stable circuit
LNA
subsequent
LNAfrontend
G
NF
NFNF
1

4
LNA Design Consideration
• Noise performance
• Power transfer
• Impedance matching
• Power consumption
• Bandwidth
• Stability
• Linearity
5
Noise Figure
• Definition
• As a function of device
G: Power gain of the device
outout
inin
out
in
NS
NS
SNR
SNR
NF 
source
sourcedevice
NG
NGN
NF



6
NF of Cascaded Stages
• Overall NF dominated by NF1
[1] F. Friis, “Noise Figure of Radio Receivers,”
Proc. IRE, Vol. 32, pp.419-422, July 1944.
Sin/Nin
G1, N1,
NF1
Gi, Ni,
NFi
GK, NK,
NFK
Sout/Nout
12121
3
1
2
1
111
11







K
K
...GGG
NF
...
GG
NF
G
NF
NFNF
7
Simple Model of Noise in MOSFET
fWLC
k
fV
ox
g )(2
• Flicker noise
– Dominant at low frequency
• Thermal noise
– g: empirical constant
2/3 for long channel
much larger for short channel
– PMOS has less thermal noise
• Input-inferred noise
md gkTfI g4)(2

Vg
Id
Vi
fWLC
k
g
kTfV
oxm
i 
g
4)(2
8
Noise Approximation
Thermal noise
1/f noise
Band of interest
Frequency
Noise spectral
density
Thermal noise
dominant
9
Power Transfer and Impedance Matching
L
LLss
s
del R
jXRjXR
V
P
2


s
ss
XXRRL
R
VV
PP
LsLs
4
*
0,max  
• Power delivered to load
• Maxim available power
Rs
Vs
jXs jXL
RL
I V
• Impedance matching
– Load and source impedances conjugate pair
– Real part matched to 50 ohm
10
Available Power
Equal power on load
and source resistors
11
Reflection Coefficient
*
**
max
4
))((
4
aa
R
IZVIZV
R
VV
P
s
ss
s
ss



s
s
R
IZV
a
2


*
***
max
4
))((
bb
R
ZIVIZV
PPP
s
ss
delref 


Rs
Vs
jXs jXL
RL
I V
s
s
R
IZV
b
2
*


sL
sL
ZZ
ZZ
a
b



*
2
)( **
LL
del
ZZII
P


LIZV 
12
Reflection Coefficient
No reflection
Maximum power transfer
13
S-Parameters
• Parameters for two-port system analysis
• Suitable for distributive elements
• Inputs and outputs expressed in powers
– Transmission coefficients
– Reflection coefficients
14
S-Parameters
2221212
2121111
aSaSb
aSaSb


a1
b1
b2
a2
S11
S12
S22
S21
15
S-Parameters
• S11 – input reflection coefficient with
the output matched
• S21 – forward transmission gain or
loss
• S12 – reverse transmission or
isolation
• S22 – output reflection coefficient with
the input matched012
2
22
012
1
12
021
2
21
021
1
11








a
a
a
a
a
b
S
a
b
S
a
b
S
a
b
S
16
S-Parameters
SZ1 Z2
Vs1 Vs2
I1
V1
I2
V2
0222
*
222
22
01
2
222
*
111
12
02
1
111
*
222
21
0111
*
111
11
11
22
)Re(
)Re(
)Re(
)Re(














ss
ss
VV
VV
ZIV
ZIV
S
Z
Z
ZIV
ZIV
S
Z
Z
ZIV
ZIV
S
ZIV
ZIV
S
17
Stability Condition
• Necessary condition
where
• Stable iff
where
1
||2
||||||1
2112
22
11
2
22



SS
SS
K S
21122211 SSSSS 
1|| 2
 LLS
2
||||
||
2
22
2
11
2112
SS
SSL


18
A First LNA Example
• Assume
– No flicker noise
– ro = infinity
– Cgd = 0
– Reasonable for appropriate
bandwidth
• Effective transconductance
Rs
Vs
Vs
Rs 4kTRs
Vgs
gmVgs 4kTggm
ins
inm
s
o
meff
ZR
Zg
V
i
G



io
19
Power Gain
• Voltage input
• Current output
2
22
2
22
2
2
*
*
1
)(1
1)(1
)(1
||

















s
T
gss
m
gss
m
gss
gsm
ins
inm
meff
ss
oo
RCR
g
CRj
g
CjR
Cjg
ZR
Zg
G
VV
ii
G





20
Noise Figure Calculation
• Power ratio @ output
– Device noise + input-induced noise
– Input-induced noise
2
2
222
22
2
)/(
1
)1(1
)(1
4
4
1
gsm
ms
ms
gss
ms
gss
m
s
m
in
indevice
Cg
gR
gR
CR
gR
CR
g
kTR
gkT
NG
NGN
NF

g
g

g

g







gs
m
T
C
g

21
Unity Current Gain Frequency
Device ioutiin
 
 
 
 
1
ω
ω



Tin
Tout
i
in
out
i
i
i
A
i
i
A
T


0dB
fT
Ai
ffrequency
22
Small-Signal Model of MOSFET
• Cgs
• Cgd
• rds
• Cdb
• Rg: Gate resistance
• ri: Channel charging
resistance
V’gs
gmV’gs
Cgd
i1 i2
ri
Cgs
i1
i2
Cdb
rds
Rg
V1 V2
V1
V2
23
T Calculation
gdgsiggsiggdgs
gdgsigdgs
V
CCrRsCsrRCCs
CCrsCCs
V
I
Y 2
2
01
1
11
)(1
)(
2




V’gs
gmV’gs
Cgd
i1 i2
ri
Cgs
Cdb
rds
Rg
V1
V’gs
gmV’gs
Cgd
i1 i2
ri
Cgs
Rg
V1
gdgsiggsiggdgs
gdgsigdgsim
V
CCrRsCsrRCCs
CCrssCCsrg
V
I
Y 2
2
01
2
21
)(1
)1(
2




24
T of NMOS and PMOS
• 0.25um CMOS Process*
[2] Tajinder Manku, “Microwave CMOS - Device Physics and Design,”
IEEE J. Solid-State Circuits, vol. 34, pp. 277 - 285, March 1999.
  m
gdgs
m
T g
CC
g



1
)(
)(
21
11

T
T
jY
jY


Set:
Solve for T
25
Noise Performance
• Low frequency
– Rsgm >> g ~ 1
– gm >> 1/50 @ Rs = 50 ohm
– Power consuming
• CMOS technology
– gm/ID lower than other tech
– T lower than other tech
2
2
1
T
ms
ms
gR
gR
NF


g
g

26
Review of First Example
• No impedance matching
– Capacitive input impedance
– Output not matched
• Power transfer
– S11=(1-sRCgs)/(1+sRCgs)
– S21=2Rgm/(1+sRCgs), R=Rs=RL
• Power consumption
– High power for NF
– High power for S21
27
Impedance Matching for LNA
• Resistive termination
• Series-shunt feedback
• Common-gate connection
• Inductor degeneration
28
Resistive Termination
2
/1/1 gsIs
m
CjRR
g
G


• Current-current power gain
• Noise figure
Rs
Vs Is Rs
4kT/Rs
Vgs
gmVgs
io
RI RI
4kT/RI
4kTggm
2
2
2
11
1
T
sm
Ism
s
I
s
Rg
RRg
R
R
R
NF


g
g







29
Comparison with Previous Example
• Previous example
• Resistive-termination
2
22
11
T
sm
I
s
smI
s
Rg
R
R
RgR
R
NF


g
g







2
2
1
T
ms
ms
gR
gR
NF


g
g

Introduced by input
resistance Signal attenuated
30
Summary - Resistive Termination
• Noise performance
– Low-frequency approximation
– Input matched Rs = RI = R
• Broadband input match
• Attenuate signal
• Introduce noise due to RI
• NF > 3 dB (best case)
Rg
NF
m
g4
2
31
Series-Shunt Feedback
• Broadband matching
• Could be noisy
Rs
Vs
Ra
RF
RL
Vgs gmVgs
RF
iout
Ra
Cgs
Rs
Vs
RL
gsLFaaLm
gsaamLF
in
CRRRsRRg
CsRRgRR
R
)()(1
)1)((



))((1
)(
))((1
))(1(
asgsm
saFsFags
asgsm
sFam
out
RRsCg
RRRRRRsC
RRsCg
RRRg
R






32
Common-Gate Structure
Rs
RL
Vs
Rs 4kTRs
Vgs
gmVgs
RL
4kTggm
Vs
Rs 4kTRs
Vgs gmVgs
RL
4kTggm
gm
gsssm
m
s
out
eff
CsRRg
g
V
I
G




1
33
Input Impedance of CG Structure
• Input impedance
Yin=gm+sCgs
• Input-impedance matching
– Low frequency approximation
– Direct without passive components
1/gm=Rs=50 ohm
34
Noise Performance of CG Structure
 
2
2
2222
222
2
41
)1(1
)()1(
4
4
1
T
gsssm
ms
gsssm
m
s
m
in
indevice
CRRg
gR
CRRg
g
kTR
gkT
NG
NGN
NF


gg

g

g







222
2
2
)()1( gsssm
m
eff
CRRg
g
GG


Signal attenuated
35
Power Transfer of CG Structure
• Rs = RL = R = 50 ohm
• S11=0, S21=1 @ Low frequency
gss
gss
gsssm
gsssm
sin
sin
CsR
CsR
CsRRg
CsRRg
ZZ
ZZ
S









2
1
1*
11
gs
gsssm
mL
effL
sC
CsRRg
gR
GRS




2
2
1
2
221
36
Summary – CG Structure
• Noise performance
– No extra resistive noise source
– Independent of power consumption
• Impedance matching
– Broadband input matching
– No passive components
• Power consumption
– gm=1/50
• Power transfer
– Independent of power consumption
37
Inductor Degeneration Structure
Rs
Vs
Ls
Lg
Vgs gmVgs
iout
Cgs
Rs
Vs
Lg
Ls
Zin
Vin
iin











gs
sm
gs
sgin
s
gs
inmin
gs
ingin
sgsmin
gs
inginin
C
Lg
sC
LLsI
sL
sC
IgI
sC
IsLI
sLVgI
sC
IsLIV
1
)(
)
1
(
1
)(
1
Zin
38
Input Matching for ID Structure
• Zin=Rs
– IM{Zin}=0
– RE{Zin}=Rs
gs
sm
gs
sgin
C
Lg
sC
LLsZ 
1
)(
gssg CLL )(
12
0


s
gs
sm
R
C
Lg

Vgs gmVgs
iout
Cgs
Rs
Vs
LgLs
Zin
gmLs/Cgs
39
Effective Transconductance
Vgs gmVgs
iout
Cgs
Rs
Vs
LgLs
Zin
gmLs/Cgs
)()(1
)(
2
sggssmgss
m
ins
gsm
s
out
eff
LLCsLgCRs
g
ZR
sCg
V
I
G




40
Noise Factor of ID Structure
• Calculate NF at 0
22
22
2
)(1
)(
4
4
1
0
smgss
ms
smgss
m
s
m
in
indevice
LgCR
gR
LgCR
g
kTR
gkT
NG
NGN
NF







g

g

2222
2
2
)()](1[ smgsssggs
m
eff
LgCRLLC
g
GG



= 0 @ 0
41
Input Quality Factor of ID Structure
CRRII
CII
powerLost
powerStored
Q

 1
*
*


Cgs
Rs
Vs
LgLs
gmLs/Cgs
C
R
V
L
gsssmgss
gssmsgs
in
CRLgCR
CLgRCCR
Q


2
1
)(
1
)/(
11





I
42
Noise Factor of ID Structure
2
22
1
1
)(1
0
inms
smgss
ms
QgR
LgCR
gR
NF
g

g




)(
1
smgss
in
LgCR
Q



• Increase power transfer
gmLs/Cgs = Rs
• Decrease NF
gmLs/Cgs = 0
• Conflict between
– Power transfer
– Noise performance
43
Further Discussion on NF
sg
s
sggsms
sm
smgss
ms
LL
L
LLCgR
Lg
LgCR
gR
NF






g
g

g

4
1
)(
1)(4
1
)(1
2
22
0
• Frequency @ 0
2 ~= 1/Cgs/(Lg+Ls)
• Input impedance
matched to Rs
RsCgs=gmLs
• Suitable for hand
calculation and design
• Large Lg and small Ls
Tss RL 
gsgs CLL 2
01 
44
Power Transfer of ID Structure
• Rs = RL = R = 50 ohm
• @
)()(1
)(1
)(1
)(1
2
2
2
2*
11
sggsgsssm
sggs
gsssmsggs
gsssmsggs
sin
sin
LLCsCRLgs
LLCs
CsRLsgLLCs
CsRLsgLLCs
ZZ
ZZ
S









)()(1
2
2 221
sggssmgss
Lm
Leff
LLCsLgCRs
Rg
RGS


)(
1
smgss
in
LgCR
Q


gssg CLL )(
12
0


s
LT
inLm
smgss
Lm
R
R
jQRgj
LgCRj
Rg
SS
00
2111 2
)(
2
;0






45
Computing Av without S-Para
Rs
Vs
Ls
Lg
)(
2/1
22
;2
:matchimputandresonanceAt
0
00
0
oos
T
s
o
v
sTssgssmo
gsinmgsmossin
sin
YYR
j
V
V
A
RjVRCjVgI
CjIgVgIRVI
RZ









46
Power Consumption
DDTgs
ox
DDD VVV
L
WC
VIP 2
)(
2


WLCC oxgs
3
2
)( Tgsoxm VV
L
W
Cg  
 2
22
2
3
Tgsox
gs
m
VV
L
W
C
C
Lg
 
 gs
sm
s
C
Lg
R 
s
gss
m
L
CR
g 
)/1(3
1
)(3
1
3
)(333
32
0
222
2
0
22
2
0
2
22
2
2222
sgs
DDs
sg
DDT
DDgs
T
sg
DD
s
s
DDgs
s
s
DD
gs
m
LLL
VRL
LL
VL
VC
L
P
LL
V
L
RL
VC
L
RL
V
C
Lg
P
















47
Power Consumption
)/1(
1
32
0
22
sgs
s
LLL
RL
P



• Technology constant
– L: minimum feature size
– : mobility, avoid mobility saturation region
• Standard specification
– Rs: source impedance
– 0: carrier frequency
• Circuit parameter
– Lg, Ls: gate and source degeneration inductance
sg
s
LL
L
NF


g

4
1
0
48
Summary of ID Structure
• Noise performance
– No resistive noise source
– Large Lg
• Impedance matching
– Matched at carrier frequency
– Applicable to wideband application, S11<-10dB
• Power transfer
– Narrowband
– Increase with gm
• Power consumption
– Large Lg
49
Cascode
• Isolation to improve S12
@ high frequency
– Small range at Vd1
– Reduced feedback effect
of Cgd
• Improve noise
performance
Rs
Vs
Ls
Lg
Vbias
LL
M2
M1
Vd1
Vo
50
Rs
Vs
Ls
Lg
LL
M1
Vo
Vgs gmVgsCgs
Rs
Vs
Lg
Ls LL
Vo
51
LNA Design Example (1)
Rs
Vs
Ls
Lg
Ld
M2
M1
Lvdd
Vbias
M4
Lb1
Cb1
Tm
Cm
M3
Lgnd
Lout
Input
bias Off-chip
matching
[3] D. Shaeffer and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-
State Circuits, vol. 32, pp. 745 – 759, May 1997.
Lb2
Cb2 Vout
Output
bias
Vdd
52
LNA Design Example (1)
Rs
Vs
Ls
Lg
Ld
M2
M1
Lvdd
Vbias
M4
Lb1
Cb1
Tm
Cm
M3
Lgnd
Lout
[3] D. Shaeffer and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-
State Circuits, vol. 32, pp. 745 – 759, May 1997.
Unwanted
parasitics
Supply
filtering
53
Circuit Details
• Two-stage cascoded structure in 0.6 m
• First stage
– W1 = 403 m determined from NF
– Ls accurate value, bondwire inductance
– Ld = 7nH, resonating with cap at drain of M2
• Second
– 4.6 dB gain
– W3 = 200 m
54
55
LNA Design Example (2)
[4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State
Circuits, vol. 31, pp 1939 – 1944, Dec. 1996.
Cs
M2
M1
M3
Off-chip
matching
Ns
RB
VRF
CB
IREF
IB1
VB1M4
M5
M7
M6
Vout1
RX
CX
NL
Off-chip
matching
NF = 1 + K/gm
gm = gm1 + gm2
56
Simplified view
57
LNA Design Example (2)
[4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State
Circuits, vol. 31, pp 1939 – 1944, Dec. 1996.
Cs
M2
M1
M3
Bias
feedback
Ns
RB
VRF
CB
IREF
IB1
VB1M4
M5
M7
M6
Vout1
RX
CX
NL
M8
58
LNA Design Example (2)
[4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State
Circuits, vol. 31, pp 1939 – 1944, Dec. 1996.
Cs
M2
M1
M3
Bias
feedback
Ns
RB
VRF
CB
IREF
IB1
VB1M4
M5
M7
M6
Vout1
RX
CX
NL
M8
59
LNA Design Example (2)
[4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State
Circuits, vol. 31, pp 1939 – 1944, Dec. 1996.
Cs
M2
M1
M3
Bias
feedback
Ns
RB
VRF
CB
IREF
IB1
VB1M4
M5
M7
M6
Vout1
RX
CX
NL
M8
VA
DC output = VB1
60
61
LNA Design Example (3)
• Objective is to design tunable RF LNA that
would:
– Operate over very wide frequency range with very fine
selectivity
– Achieve a good noise performance
– Have a good linearity performance
– Consume minimum power
62
LNA Architecture
• The cascode architecture
provides a good input –
output isolation
• Transistor M2 isolates the
Miller capacitance
• Input Impedance is obtained
using the source
degeneration inductor Ls
• Gate inductor Lg sets the
resonant frequency
• The tuning granularity is
achieved by the output
matching network
VDD
LS
LG
M1
M2
LD
R2
R1
M3
Output to
Mixer
Input to LNA
Matching
Network
63
Matching Network
• The output matching tuning
network is composed of a
varactor and an inductor.
• The LC network is used to
convert the load impedance
into the input impedance of
the subsequent stage.
• A well designed matching
network allows for a
maximum power transfer to
the load.
• By varying the DC voltage
applied to the varactor, the
output frequency is tuned to
a different frequency.
64
Simulation Results - S11
• The input return loss
S11 is less than – 10dB
at a frequency range
between 1.4 GHz and
2GHz
Input return loss
65
Simulation results - NF
• The noise figure is 1.8
dB at 1.4 GHz and rises
to 3.4 dB at 2 GHz.
Noise Figure
66
Simulation Results - S22
S22 at 1.7725 GHzS22 at 1.77 GHz
• By controlling the voltage applied to the varactor the output frequency
is tuned by 2.5 MHz.
• The output return loss at 1.77 GHz is – 44.73 dB and the output return
loss at 1.7725 GHz – 45.69 dB.
67
Simulation Results - S22
S22 at 1.9975 GHzS22 at 2 GHz
• The output return loss at 2 GHz is – 26.47 dB and the output return
loss at 1.9975 GHz – 26.6 dB.
68
Simulation Results - S21
• The overall gain of
the LNA is 12 dB
S21 at 1.4025 GHz
69
Simulation Results - Linearity
-1dB compression pointIIP3
• The third order input intercept is –3.16 dBm
• -1 dB compression point ( the output level at which the actual gain
departs from the theoretical gain) is –12 dBm
70
From an earlier slide:
fWLC
k
fV
ox
g )(2
• Flicker noise
– Dominant at low frequency
• Thermal noise
– g: empirical constant
2/3 for long channel
much larger for short channel
– PMOS has less thermal noise
• Input-inferred noise
md gkTfI g4)(2

Vg
Id
Vi
fWLC
k
g
kTfV
oxm
i 
g
4)(2
Not accurate for low voltage short channel devices
71
Modifications
g is called excess noise factor
= 2/3 in long channel
= 2 to 3 (or higher!) in short
channel NMOS (less in PMOS)

gg m
dod
g
kTgkTfI 44)(2

Thermonoise
72
gdo vs gm in short channel
73
gdo vs gm in short channel
74
Fliker noise
• Traps at channel/oxide interface randomly
capture/release carriers
– Parameterized by Kf and n
• Provided by fab (note n ≈ 1)
• Currently: Kf of PMOS << Kf of NMOS due to buried channel
– To minimize: want large area (high WL)
f
K
f
K
fI
fWLC
k
fV
f
n
f
d
ox
g


)(
)(
2
2
75
Induced Gate Noise
• Fluctuating channel potential couples
capacitively into the gate terminal, causing a
noise gate current
– d is gate noise coefficient
• Typically assumed to be 2g
– Correlated to drain noise!
2
2
5
4 










d
T
dong gkTi
76
Input impedance
Set to be real and equal to source resistance:
real
gs
m
gs
gin
C
Lg
sC
LLssZ
deg
deg
1
)()( 
gsg CLL )(
1
deg
2
0

 s
gs
m
R
C
Lg

deg
77
Output noise current
 )14(21)( 222
 QcgkTfI dddod g
Noise scaling factor:
 )14(21
4
1 22
 Qc dd 
Where for 0.18 process
c=-j0.55, g=3, d=6, gdo=2gm,
d = 0.32
g
d

5do
m
d
g
g

s
g
gss R
LL
CR
Q
2
)(
2
1 deg0
0




78
Noise factor
Noise factor scaling coefficient:
 22
)14(21
2
dd
m
do
nf Qc
g
g
Q
K 
g







 22
)14(21
2
1 dd
m
do
T
o
Qc
g
g
Q
F 
g















4
2
1)(41 022
00
Q
CR
gRNG
NGN
NF
T
gss
msin
indevice g



g
 









Compare:
79
Noise factor scaling coefficient versus Q
80
Example
• Assume Rs = 50 Ohms, Q = 2, fo = 1.8 GHz, ft = 47.8 GHz
• From
gss CR
Q
02
1


fF
eQR
C
s
gs 442
)2(98.12)50(2
1
2
1
0


nH
e
R
g
CR
L
T
s
m
gss
17.0
98.472
50
deg 

nHL
C
L
CLL gs
g
gsg
5.17
1
)(
1
deg2
0deg
2
0 




81
Have We Chosen the Correct Bias Point?
IIP3 is also a function of Q
82
If we choose Vgs=1V
• Idens = 175 A/m
• From Cgs = 442 fF, W=274m
• Ibias = IdensW = 48 mA, too large!
• Solution 1: lower Idens => lower power,
lower fT, lower IIP3
• Solution 2: lower W => lower power, lower
Cgs, higher Q, higher NF
83
Lower current density to 100
Need to verify that IIP3 still OK (once we know Q)
84
We now need to re-plot the Noise Factor scaling coefficient
- Also plot over a wider range of Q
Lower current density to 100
43.0
5
2
68.0
5
68.0
15.1
78.0


d

do
m
d
do
m
g
g
g
g
GHz8.422
9.2
78.0
 
fF
mS
C
g
gs
m
T
 22
)14(21
2
1
1 dd
m
do
T
o
Qc
Qg
g
F g















85
86
Recall
We previously chose Q = 2, let’s now choose Q = 6
- Cuts power dissipation by a factor of 3!
- New value of W is one third the old one
m
m
W 

91
3
274

87
• Rs = 50 Ohms, Q = 6, fo = 1.8 GHz, ft =
42.8 GHz
• Ibias = IdensW =100A/m*91m=9.1mA
• Power = 9.1 * 1.8 = 16.4 mW
• Noise factor scaling coeff = 10
• Noise factor = 1+ wo/wt * 10
= 1+ 1.8G/42.8G *10 = 1.42
• Noise figure = 10*log(1.42) = 1.52 dB
• Cgs=442/3=147fF
• Ldeg=Rs/wt=0.19nH
• Lg=1/(wo^2Cgs) –Ldeg = 53 nH
88
Other architectures of LNAs
•Add output load to achieve voltage gain
•In practice, use cascode to boost gain
•Added benefit of removing Cgd effect
89
Differential LNA
Value of Ldeg is now much better controlled
Much less sensitivity to noise from other circuits
But: Twice the power as the single-ended version
Requires differential input at the chip
90
LNA Employing Current Re-Use
•PMOS is biased using a current mirror
•NMOS current adjusted to match the PMOS current
•Note: not clear how the matching network is achieving a 50 Ohm match
Perhaps parasitic bondwire inductance is degenerating the PMOS or
NMOS transistors?
91
Combining inductive
degeneration and current reuse
Current reuse to save power
Larger area due to two degeneration
inductor if implemented on chip
NF: 2dB, Power gain: 17.5dB, IIP3: -
6dBm, Id: 8mA from 2.7V power supply
Can have differential version
F. Gatta, E. Sacchi, et al, “A 2-dB Noise Figure 900MHz Differential CMOS LNA,”
IEEE JSSC, Vol. 36, No. 10, Oct. 2001 pp. 1444-1452
92
At DC, M1 and M2 are in cascode
At AC, M1 and M2 are in cascade
S of M2 is AC shorted
Gm of M1 and M2 are multiplied.
Same biasing current in M1 & M2
LIANG-HUI LI AND HUEY-RU CHUANG, MICROWAVE JOURNAL® from the February 2004 issue.
93
bao
bmb
amamama
iii
vgi
vgvgvgi



3
3
3
3
2
21
•IM3 components in the drain
current of the main transistor has
the required information of its
nonlinearity
•Auxiliary circuit is used to tune the
magnitude and phase of IM3
components
•Addition of main and auxiliary
transistor currents results in
negligible IM3 components at
output
Sivakumar Ganesan, Edgar Sánchez-sinencio, And Jose Silva-martinez
IEEE Transactions On Microwave Theory And Techniques, Vol. 54, No. 12, December 2006
94
MOS in weak inversion has speed problem
MOS transistor in weak inversion acts like bipolar
Bipolar available in TSMC 0.18 technology (not a parasitic BJT)
Why not using that bipolar transistor to improve linearity ?
95
Inter-stage Inductor gain boost
Inter-stage inductor with
parasitic capacitance form
impedance match network between
input stage and cascoded stage
boost gain lower noise figure.
Input match condition will be
affected
96
Folded cascode
Low supply voltage
Ld reduces or eliminates
Effect of Cgd1
Good fT
97
Design Procedure for Inductive
Source Degenerated LNA
Noise factor equations:
 22
)14(21
2
1
1 dd
m
do
T
o
Qc
Qg
g
F g















 22
)14(21
2
1
dd
m
do
nf Qc
Qg
g
K g 






98
Targeted Specifications
• Frequency 2.4 GHz ISM Band
• Noise Figure 1.6 dB
• IIP3 -8 dBm
• Voltage gain 20 dB
• Power < 10mA from 1.8V
99
Step 1: Know your process
• A 0.18um CMOS Process
• Process related
– tox = 4.1e-9 m
– e = 3.9*(8.85e-12) F/m
–  = 3.274e-2 m^2/V.s
– Vth = 0.52 V
• Noise related
–  = gm/gdo
– d/g ~ 2
– g ~ 3
– c = -j0.55
100
Step 2: Obtain design guide plots
101
Insights:
• gdo increases all the way with current
density Iden
• gm saturates when Iden larger than
120A/m
– Velocity saturation, mobility degradation ----
short channel effects
– Low gm/current efficiency
– High linearity
•  deviates from long channel value (1)
with large Iden
102
Obtain design guide plots
103
Insights:
• fT increases with Vod when Vod is small and
saturates after Vod > 0.3V --- short channel
effects
• Cgs/W increases slowly after Vod > 0.2V
• fT begins to degrade when Vod > 0.8V
– gm saturates
– Cgs increases
• Should keep Vod ~0.2 to 0.4 V
104
Obtain design guide plots
3-D plot for visual
inspection
2-D plots for
design reference
knf vs input Q and current density
105
Design trade-offs
• For fixed Iden, increasing Q will reduce the
size of transistor thus reduce total power --
-- noise figure will become larger
• For fixed Q, reducing Iden will reduce
power, but will increase noise factor
• For large Iden, there is an optimal Q for
minimum noise factor, but power may be
too high
106
Obtain design guide plots
Linearity plots :IIP3 vs. gate overdrive and transistor size
107
Insights:
• MOS transistor IIP3 only, when embedded into
actual circuit:
– Input Q will degrade IIP3
– Non-linear memory effect will degrade IIP3
– Output non-linearity will degrade IIP3
• IIP3 is a very weak function of device size
• Generally, large overdrive means large IIP3
– But the relationship between IIP3 and gate overdrive
is not monotonic
– There is a local maxima around 0.1V overdrive
108
Step 4: Estimate fT
Small current budget ( < 10mA )
does not allow large gate over drive :
Vod ~ 0.2 V ~ 0.4 V
fT ~ 40 ~ 44 GHz
109
Step 4: Determine Iden, Q and
Calculate Device Size
Select Iden = 70 A/m, =>Vod~0.23V
Gm/W~0.4
110
If Q = 4, IIP3 will have enough margin:
Estimated IIP3:
IIP3(from curve) – 20log(Q) = 8-12 = -4dBm
Specs require: -8 dBm
111
Q=4 and Iden = 70A/m meet the
noise factor requirement
112
Gm=0.4*128 ~ 50 mS fT = gm/(Cgs*2pi) = 48 GHz
113
Step 6: Simulation Verification
Large deviation
114
115
Comparison between targeted
specs and simulation results
Parameter Target Simulated
Noise Figure 1.6 dB 0.8 dB
Drain Current < 10mA 8 mA
Voltage gain 20 dB 21 dB
IIP3 -8 dBm -6.4 dBm
P1dB -20dbm
S11 -17 dB
Power supply 1.8 V 1.8 V

More Related Content

What's hot

RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
Simen Li
 
Working of Microwave Tubes and Semiconductor Devices, Unit 2 DECE - C18 SBTET
Working of Microwave Tubes  and  Semiconductor Devices, Unit 2 DECE - C18 SBTETWorking of Microwave Tubes  and  Semiconductor Devices, Unit 2 DECE - C18 SBTET
Working of Microwave Tubes and Semiconductor Devices, Unit 2 DECE - C18 SBTET
janakiravi
 
Power dissipation cmos
Power dissipation cmosPower dissipation cmos
Power dissipation cmos
Rajesh Tiwary
 
Charged pump plls
Charged pump pllsCharged pump plls
7.Active Filters using Opamp
7.Active Filters using Opamp7.Active Filters using Opamp
7.Active Filters using Opamp
INDIAN NAVY
 
PHASE LOCK LOOPs
PHASE LOCK LOOPsPHASE LOCK LOOPs
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Simen Li
 
Rf power amplifier design
Rf power amplifier designRf power amplifier design
Rf power amplifier design
venkateshp100
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
Simen Li
 
3.2 modulation formats bpsk, qpsk, oqpsk,
3.2 modulation formats   bpsk, qpsk, oqpsk,3.2 modulation formats   bpsk, qpsk, oqpsk,
3.2 modulation formats bpsk, qpsk, oqpsk,
JAIGANESH SEKAR
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
Sudhanshu Janwadkar
 
Modulation techniques
Modulation techniquesModulation techniques
Modulation techniques
Sathish Kumar
 
Fan-in and Fan-out.ppt
Fan-in and Fan-out.pptFan-in and Fan-out.ppt
Fan-in and Fan-out.ppt
vsnishok
 
Band pass filter
Band pass filterBand pass filter
Band pass filter
Bangulkhanbaloch
 
Low power vlsi design ppt
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design ppt
Anil Yadav
 
Comparator
ComparatorComparator
Comparator
Ramen Dutta
 
Optical Detector PIN photodiode
Optical Detector PIN photodiodeOptical Detector PIN photodiode
Optical Detector PIN photodiode
Dhruv Upadhaya
 
Ditial to Analog Converter
Ditial to Analog ConverterDitial to Analog Converter
Ditial to Analog Converter
Gauravsinh Parmar
 
Active filters
Active filtersActive filters
Active filters
Touqeer Jumani
 
Pulse amplitude modulation & demodulation
Pulse amplitude modulation & demodulationPulse amplitude modulation & demodulation
Pulse amplitude modulation & demodulation
Vishal kakade
 

What's hot (20)

RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
Working of Microwave Tubes and Semiconductor Devices, Unit 2 DECE - C18 SBTET
Working of Microwave Tubes  and  Semiconductor Devices, Unit 2 DECE - C18 SBTETWorking of Microwave Tubes  and  Semiconductor Devices, Unit 2 DECE - C18 SBTET
Working of Microwave Tubes and Semiconductor Devices, Unit 2 DECE - C18 SBTET
 
Power dissipation cmos
Power dissipation cmosPower dissipation cmos
Power dissipation cmos
 
Charged pump plls
Charged pump pllsCharged pump plls
Charged pump plls
 
7.Active Filters using Opamp
7.Active Filters using Opamp7.Active Filters using Opamp
7.Active Filters using Opamp
 
PHASE LOCK LOOPs
PHASE LOCK LOOPsPHASE LOCK LOOPs
PHASE LOCK LOOPs
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 
Rf power amplifier design
Rf power amplifier designRf power amplifier design
Rf power amplifier design
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
3.2 modulation formats bpsk, qpsk, oqpsk,
3.2 modulation formats   bpsk, qpsk, oqpsk,3.2 modulation formats   bpsk, qpsk, oqpsk,
3.2 modulation formats bpsk, qpsk, oqpsk,
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 
Modulation techniques
Modulation techniquesModulation techniques
Modulation techniques
 
Fan-in and Fan-out.ppt
Fan-in and Fan-out.pptFan-in and Fan-out.ppt
Fan-in and Fan-out.ppt
 
Band pass filter
Band pass filterBand pass filter
Band pass filter
 
Low power vlsi design ppt
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design ppt
 
Comparator
ComparatorComparator
Comparator
 
Optical Detector PIN photodiode
Optical Detector PIN photodiodeOptical Detector PIN photodiode
Optical Detector PIN photodiode
 
Ditial to Analog Converter
Ditial to Analog ConverterDitial to Analog Converter
Ditial to Analog Converter
 
Active filters
Active filtersActive filters
Active filters
 
Pulse amplitude modulation & demodulation
Pulse amplitude modulation & demodulationPulse amplitude modulation & demodulation
Pulse amplitude modulation & demodulation
 

Similar to Low noise amplifier

14 FM_Generation.pdf
14 FM_Generation.pdf14 FM_Generation.pdf
14 FM_Generation.pdf
Mohamedshabana38
 
Unit iii
Unit iiiUnit iii
Introduction to Memory Effects
Introduction to Memory EffectsIntroduction to Memory Effects
Introduction to Memory Effects
Sohail Khanifar
 
6-Digital filters (FIR).ppt
6-Digital filters (FIR).ppt6-Digital filters (FIR).ppt
6-Digital filters (FIR).ppt
HarshGajjar24
 
1-Digital filters (FIR).pdf
1-Digital filters (FIR).pdf1-Digital filters (FIR).pdf
1-Digital filters (FIR).pdf
snehasingh75493
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
Simen Li
 
DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt
DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.pptDIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt
DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt
debeshidutta2
 
Digital filters (FIR).ppt
Digital filters (FIR).pptDigital filters (FIR).ppt
Digital filters (FIR).ppt
DevipriyaS21
 
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptQuadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Stefan Oprea
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Final
imranbashir
 
Soluciones de EMC para los retos de la Nueva Directiva
Soluciones de EMC para los retos de la Nueva DirectivaSoluciones de EMC para los retos de la Nueva Directiva
Soluciones de EMC para los retos de la Nueva Directiva
TECNALIA Research & Innovation
 
Noise from stray light in interferometric GWs detectors
Noise from stray light in interferometric GWs detectorsNoise from stray light in interferometric GWs detectors
Noise from stray light in interferometric GWs detectors
Jose Gonzalez
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Simen Li
 
bode plot.pptx
bode plot.pptxbode plot.pptx
bode plot.pptx
SivaSankar306103
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
SHIV DUTT
 
NoiseFigure.ppt
NoiseFigure.pptNoiseFigure.ppt
NoiseFigure.ppt
HasanFarahneh1
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
Simen Li
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] Linearity
Simen Li
 
Lecture 4_Noise.pptx
Lecture 4_Noise.pptxLecture 4_Noise.pptx
Lecture 4_Noise.pptx
MDSHARIFULISLAM34498
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET Final
Alan Elbanhawy
 

Similar to Low noise amplifier (20)

14 FM_Generation.pdf
14 FM_Generation.pdf14 FM_Generation.pdf
14 FM_Generation.pdf
 
Unit iii
Unit iiiUnit iii
Unit iii
 
Introduction to Memory Effects
Introduction to Memory EffectsIntroduction to Memory Effects
Introduction to Memory Effects
 
6-Digital filters (FIR).ppt
6-Digital filters (FIR).ppt6-Digital filters (FIR).ppt
6-Digital filters (FIR).ppt
 
1-Digital filters (FIR).pdf
1-Digital filters (FIR).pdf1-Digital filters (FIR).pdf
1-Digital filters (FIR).pdf
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
 
DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt
DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.pptDIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt
DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt
 
Digital filters (FIR).ppt
Digital filters (FIR).pptDigital filters (FIR).ppt
Digital filters (FIR).ppt
 
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptQuadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.ppt
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Final
 
Soluciones de EMC para los retos de la Nueva Directiva
Soluciones de EMC para los retos de la Nueva DirectivaSoluciones de EMC para los retos de la Nueva Directiva
Soluciones de EMC para los retos de la Nueva Directiva
 
Noise from stray light in interferometric GWs detectors
Noise from stray light in interferometric GWs detectorsNoise from stray light in interferometric GWs detectors
Noise from stray light in interferometric GWs detectors
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
bode plot.pptx
bode plot.pptxbode plot.pptx
bode plot.pptx
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
 
NoiseFigure.ppt
NoiseFigure.pptNoiseFigure.ppt
NoiseFigure.ppt
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] Linearity
 
Lecture 4_Noise.pptx
Lecture 4_Noise.pptxLecture 4_Noise.pptx
Lecture 4_Noise.pptx
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET Final
 

Recently uploaded

Zener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and ApplicationsZener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and Applications
Shiny Christobel
 
Power Electronics- AC -AC Converters.pptx
Power Electronics- AC -AC Converters.pptxPower Electronics- AC -AC Converters.pptx
Power Electronics- AC -AC Converters.pptx
Poornima D
 
FULL STACK PROGRAMMING - Both Front End and Back End
FULL STACK PROGRAMMING - Both Front End and Back EndFULL STACK PROGRAMMING - Both Front End and Back End
FULL STACK PROGRAMMING - Both Front End and Back End
PreethaV16
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
Divyanshu
 
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
DharmaBanothu
 
Impartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 StandardImpartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 Standard
MuhammadJazib15
 
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
OKORIE1
 
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
MadhavJungKarki
 
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
sydezfe
 
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdfAsymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
felixwold
 
OOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming languageOOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming language
PreethaV16
 
Levelised Cost of Hydrogen (LCOH) Calculator Manual
Levelised Cost of Hydrogen  (LCOH) Calculator ManualLevelised Cost of Hydrogen  (LCOH) Calculator Manual
Levelised Cost of Hydrogen (LCOH) Calculator Manual
Massimo Talia
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
Atif Razi
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
upoux
 
Bituminous road construction project based learning report
Bituminous road construction project based learning reportBituminous road construction project based learning report
Bituminous road construction project based learning report
CE19KaushlendraKumar
 
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Transcat
 
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
PriyankaKilaniya
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
nedcocy
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
21UME003TUSHARDEB
 

Recently uploaded (20)

Zener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and ApplicationsZener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and Applications
 
Power Electronics- AC -AC Converters.pptx
Power Electronics- AC -AC Converters.pptxPower Electronics- AC -AC Converters.pptx
Power Electronics- AC -AC Converters.pptx
 
FULL STACK PROGRAMMING - Both Front End and Back End
FULL STACK PROGRAMMING - Both Front End and Back EndFULL STACK PROGRAMMING - Both Front End and Back End
FULL STACK PROGRAMMING - Both Front End and Back End
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
 
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
 
Impartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 StandardImpartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 Standard
 
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
 
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
 
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
 
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdfAsymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
 
OOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming languageOOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming language
 
Levelised Cost of Hydrogen (LCOH) Calculator Manual
Levelised Cost of Hydrogen  (LCOH) Calculator ManualLevelised Cost of Hydrogen  (LCOH) Calculator Manual
Levelised Cost of Hydrogen (LCOH) Calculator Manual
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
 
Bituminous road construction project based learning report
Bituminous road construction project based learning reportBituminous road construction project based learning report
Bituminous road construction project based learning report
 
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
 
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
 

Low noise amplifier

  • 2. 2 RF Receiver BPF1 BPF2LNA LO Mixer BPF3 IF Amp Demodulator Antenna RF front end
  • 3. 3 Low-Noise Amplifier • First gain stage in receiver – Amplify weak signal • Significant impact on noise performance – Dominate input-referred noise of front end • Impedance matching – Efficient power transfer – Better noise performance – Stable circuit LNA subsequent LNAfrontend G NF NFNF 1 
  • 4. 4 LNA Design Consideration • Noise performance • Power transfer • Impedance matching • Power consumption • Bandwidth • Stability • Linearity
  • 5. 5 Noise Figure • Definition • As a function of device G: Power gain of the device outout inin out in NS NS SNR SNR NF  source sourcedevice NG NGN NF   
  • 6. 6 NF of Cascaded Stages • Overall NF dominated by NF1 [1] F. Friis, “Noise Figure of Radio Receivers,” Proc. IRE, Vol. 32, pp.419-422, July 1944. Sin/Nin G1, N1, NF1 Gi, Ni, NFi GK, NK, NFK Sout/Nout 12121 3 1 2 1 111 11        K K ...GGG NF ... GG NF G NF NFNF
  • 7. 7 Simple Model of Noise in MOSFET fWLC k fV ox g )(2 • Flicker noise – Dominant at low frequency • Thermal noise – g: empirical constant 2/3 for long channel much larger for short channel – PMOS has less thermal noise • Input-inferred noise md gkTfI g4)(2  Vg Id Vi fWLC k g kTfV oxm i  g 4)(2
  • 8. 8 Noise Approximation Thermal noise 1/f noise Band of interest Frequency Noise spectral density Thermal noise dominant
  • 9. 9 Power Transfer and Impedance Matching L LLss s del R jXRjXR V P 2   s ss XXRRL R VV PP LsLs 4 * 0,max   • Power delivered to load • Maxim available power Rs Vs jXs jXL RL I V • Impedance matching – Load and source impedances conjugate pair – Real part matched to 50 ohm
  • 10. 10 Available Power Equal power on load and source resistors
  • 13. 13 S-Parameters • Parameters for two-port system analysis • Suitable for distributive elements • Inputs and outputs expressed in powers – Transmission coefficients – Reflection coefficients
  • 15. 15 S-Parameters • S11 – input reflection coefficient with the output matched • S21 – forward transmission gain or loss • S12 – reverse transmission or isolation • S22 – output reflection coefficient with the input matched012 2 22 012 1 12 021 2 21 021 1 11         a a a a a b S a b S a b S a b S
  • 17. 17 Stability Condition • Necessary condition where • Stable iff where 1 ||2 ||||||1 2112 22 11 2 22    SS SS K S 21122211 SSSSS  1|| 2  LLS 2 |||| || 2 22 2 11 2112 SS SSL  
  • 18. 18 A First LNA Example • Assume – No flicker noise – ro = infinity – Cgd = 0 – Reasonable for appropriate bandwidth • Effective transconductance Rs Vs Vs Rs 4kTRs Vgs gmVgs 4kTggm ins inm s o meff ZR Zg V i G    io
  • 19. 19 Power Gain • Voltage input • Current output 2 22 2 22 2 2 * * 1 )(1 1)(1 )(1 ||                  s T gss m gss m gss gsm ins inm meff ss oo RCR g CRj g CjR Cjg ZR Zg G VV ii G     
  • 20. 20 Noise Figure Calculation • Power ratio @ output – Device noise + input-induced noise – Input-induced noise 2 2 222 22 2 )/( 1 )1(1 )(1 4 4 1 gsm ms ms gss ms gss m s m in indevice Cg gR gR CR gR CR g kTR gkT NG NGN NF  g g  g  g        gs m T C g 
  • 21. 21 Unity Current Gain Frequency Device ioutiin         1 ω ω    Tin Tout i in out i i i A i i A T   0dB fT Ai ffrequency
  • 22. 22 Small-Signal Model of MOSFET • Cgs • Cgd • rds • Cdb • Rg: Gate resistance • ri: Channel charging resistance V’gs gmV’gs Cgd i1 i2 ri Cgs i1 i2 Cdb rds Rg V1 V2 V1 V2
  • 23. 23 T Calculation gdgsiggsiggdgs gdgsigdgs V CCrRsCsrRCCs CCrsCCs V I Y 2 2 01 1 11 )(1 )( 2     V’gs gmV’gs Cgd i1 i2 ri Cgs Cdb rds Rg V1 V’gs gmV’gs Cgd i1 i2 ri Cgs Rg V1 gdgsiggsiggdgs gdgsigdgsim V CCrRsCsrRCCs CCrssCCsrg V I Y 2 2 01 2 21 )(1 )1( 2    
  • 24. 24 T of NMOS and PMOS • 0.25um CMOS Process* [2] Tajinder Manku, “Microwave CMOS - Device Physics and Design,” IEEE J. Solid-State Circuits, vol. 34, pp. 277 - 285, March 1999.   m gdgs m T g CC g    1 )( )( 21 11  T T jY jY   Set: Solve for T
  • 25. 25 Noise Performance • Low frequency – Rsgm >> g ~ 1 – gm >> 1/50 @ Rs = 50 ohm – Power consuming • CMOS technology – gm/ID lower than other tech – T lower than other tech 2 2 1 T ms ms gR gR NF   g g 
  • 26. 26 Review of First Example • No impedance matching – Capacitive input impedance – Output not matched • Power transfer – S11=(1-sRCgs)/(1+sRCgs) – S21=2Rgm/(1+sRCgs), R=Rs=RL • Power consumption – High power for NF – High power for S21
  • 27. 27 Impedance Matching for LNA • Resistive termination • Series-shunt feedback • Common-gate connection • Inductor degeneration
  • 28. 28 Resistive Termination 2 /1/1 gsIs m CjRR g G   • Current-current power gain • Noise figure Rs Vs Is Rs 4kT/Rs Vgs gmVgs io RI RI 4kT/RI 4kTggm 2 2 2 11 1 T sm Ism s I s Rg RRg R R R NF   g g       
  • 29. 29 Comparison with Previous Example • Previous example • Resistive-termination 2 22 11 T sm I s smI s Rg R R RgR R NF   g g        2 2 1 T ms ms gR gR NF   g g  Introduced by input resistance Signal attenuated
  • 30. 30 Summary - Resistive Termination • Noise performance – Low-frequency approximation – Input matched Rs = RI = R • Broadband input match • Attenuate signal • Introduce noise due to RI • NF > 3 dB (best case) Rg NF m g4 2
  • 31. 31 Series-Shunt Feedback • Broadband matching • Could be noisy Rs Vs Ra RF RL Vgs gmVgs RF iout Ra Cgs Rs Vs RL gsLFaaLm gsaamLF in CRRRsRRg CsRRgRR R )()(1 )1)((    ))((1 )( ))((1 ))(1( asgsm saFsFags asgsm sFam out RRsCg RRRRRRsC RRsCg RRRg R      
  • 32. 32 Common-Gate Structure Rs RL Vs Rs 4kTRs Vgs gmVgs RL 4kTggm Vs Rs 4kTRs Vgs gmVgs RL 4kTggm gm gsssm m s out eff CsRRg g V I G     1
  • 33. 33 Input Impedance of CG Structure • Input impedance Yin=gm+sCgs • Input-impedance matching – Low frequency approximation – Direct without passive components 1/gm=Rs=50 ohm
  • 34. 34 Noise Performance of CG Structure   2 2 2222 222 2 41 )1(1 )()1( 4 4 1 T gsssm ms gsssm m s m in indevice CRRg gR CRRg g kTR gkT NG NGN NF   gg  g  g        222 2 2 )()1( gsssm m eff CRRg g GG   Signal attenuated
  • 35. 35 Power Transfer of CG Structure • Rs = RL = R = 50 ohm • S11=0, S21=1 @ Low frequency gss gss gsssm gsssm sin sin CsR CsR CsRRg CsRRg ZZ ZZ S          2 1 1* 11 gs gsssm mL effL sC CsRRg gR GRS     2 2 1 2 221
  • 36. 36 Summary – CG Structure • Noise performance – No extra resistive noise source – Independent of power consumption • Impedance matching – Broadband input matching – No passive components • Power consumption – gm=1/50 • Power transfer – Independent of power consumption
  • 37. 37 Inductor Degeneration Structure Rs Vs Ls Lg Vgs gmVgs iout Cgs Rs Vs Lg Ls Zin Vin iin            gs sm gs sgin s gs inmin gs ingin sgsmin gs inginin C Lg sC LLsI sL sC IgI sC IsLI sLVgI sC IsLIV 1 )( ) 1 ( 1 )( 1 Zin
  • 38. 38 Input Matching for ID Structure • Zin=Rs – IM{Zin}=0 – RE{Zin}=Rs gs sm gs sgin C Lg sC LLsZ  1 )( gssg CLL )( 12 0   s gs sm R C Lg  Vgs gmVgs iout Cgs Rs Vs LgLs Zin gmLs/Cgs
  • 40. 40 Noise Factor of ID Structure • Calculate NF at 0 22 22 2 )(1 )( 4 4 1 0 smgss ms smgss m s m in indevice LgCR gR LgCR g kTR gkT NG NGN NF        g  g  2222 2 2 )()](1[ smgsssggs m eff LgCRLLC g GG    = 0 @ 0
  • 41. 41 Input Quality Factor of ID Structure CRRII CII powerLost powerStored Q   1 * *   Cgs Rs Vs LgLs gmLs/Cgs C R V L gsssmgss gssmsgs in CRLgCR CLgRCCR Q   2 1 )( 1 )/( 11      I
  • 42. 42 Noise Factor of ID Structure 2 22 1 1 )(1 0 inms smgss ms QgR LgCR gR NF g  g     )( 1 smgss in LgCR Q    • Increase power transfer gmLs/Cgs = Rs • Decrease NF gmLs/Cgs = 0 • Conflict between – Power transfer – Noise performance
  • 43. 43 Further Discussion on NF sg s sggsms sm smgss ms LL L LLCgR Lg LgCR gR NF       g g  g  4 1 )( 1)(4 1 )(1 2 22 0 • Frequency @ 0 2 ~= 1/Cgs/(Lg+Ls) • Input impedance matched to Rs RsCgs=gmLs • Suitable for hand calculation and design • Large Lg and small Ls Tss RL  gsgs CLL 2 01 
  • 44. 44 Power Transfer of ID Structure • Rs = RL = R = 50 ohm • @ )()(1 )(1 )(1 )(1 2 2 2 2* 11 sggsgsssm sggs gsssmsggs gsssmsggs sin sin LLCsCRLgs LLCs CsRLsgLLCs CsRLsgLLCs ZZ ZZ S          )()(1 2 2 221 sggssmgss Lm Leff LLCsLgCRs Rg RGS   )( 1 smgss in LgCR Q   gssg CLL )( 12 0   s LT inLm smgss Lm R R jQRgj LgCRj Rg SS 00 2111 2 )( 2 ;0      
  • 45. 45 Computing Av without S-Para Rs Vs Ls Lg )( 2/1 22 ;2 :matchimputandresonanceAt 0 00 0 oos T s o v sTssgssmo gsinmgsmossin sin YYR j V V A RjVRCjVgI CjIgVgIRVI RZ         
  • 46. 46 Power Consumption DDTgs ox DDD VVV L WC VIP 2 )( 2   WLCC oxgs 3 2 )( Tgsoxm VV L W Cg    2 22 2 3 Tgsox gs m VV L W C C Lg    gs sm s C Lg R  s gss m L CR g  )/1(3 1 )(3 1 3 )(333 32 0 222 2 0 22 2 0 2 22 2 2222 sgs DDs sg DDT DDgs T sg DD s s DDgs s s DD gs m LLL VRL LL VL VC L P LL V L RL VC L RL V C Lg P                
  • 47. 47 Power Consumption )/1( 1 32 0 22 sgs s LLL RL P    • Technology constant – L: minimum feature size – : mobility, avoid mobility saturation region • Standard specification – Rs: source impedance – 0: carrier frequency • Circuit parameter – Lg, Ls: gate and source degeneration inductance sg s LL L NF   g  4 1 0
  • 48. 48 Summary of ID Structure • Noise performance – No resistive noise source – Large Lg • Impedance matching – Matched at carrier frequency – Applicable to wideband application, S11<-10dB • Power transfer – Narrowband – Increase with gm • Power consumption – Large Lg
  • 49. 49 Cascode • Isolation to improve S12 @ high frequency – Small range at Vd1 – Reduced feedback effect of Cgd • Improve noise performance Rs Vs Ls Lg Vbias LL M2 M1 Vd1 Vo
  • 51. 51 LNA Design Example (1) Rs Vs Ls Lg Ld M2 M1 Lvdd Vbias M4 Lb1 Cb1 Tm Cm M3 Lgnd Lout Input bias Off-chip matching [3] D. Shaeffer and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid- State Circuits, vol. 32, pp. 745 – 759, May 1997. Lb2 Cb2 Vout Output bias Vdd
  • 52. 52 LNA Design Example (1) Rs Vs Ls Lg Ld M2 M1 Lvdd Vbias M4 Lb1 Cb1 Tm Cm M3 Lgnd Lout [3] D. Shaeffer and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid- State Circuits, vol. 32, pp. 745 – 759, May 1997. Unwanted parasitics Supply filtering
  • 53. 53 Circuit Details • Two-stage cascoded structure in 0.6 m • First stage – W1 = 403 m determined from NF – Ls accurate value, bondwire inductance – Ld = 7nH, resonating with cap at drain of M2 • Second – 4.6 dB gain – W3 = 200 m
  • 54. 54
  • 55. 55 LNA Design Example (2) [4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State Circuits, vol. 31, pp 1939 – 1944, Dec. 1996. Cs M2 M1 M3 Off-chip matching Ns RB VRF CB IREF IB1 VB1M4 M5 M7 M6 Vout1 RX CX NL Off-chip matching NF = 1 + K/gm gm = gm1 + gm2
  • 57. 57 LNA Design Example (2) [4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State Circuits, vol. 31, pp 1939 – 1944, Dec. 1996. Cs M2 M1 M3 Bias feedback Ns RB VRF CB IREF IB1 VB1M4 M5 M7 M6 Vout1 RX CX NL M8
  • 58. 58 LNA Design Example (2) [4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State Circuits, vol. 31, pp 1939 – 1944, Dec. 1996. Cs M2 M1 M3 Bias feedback Ns RB VRF CB IREF IB1 VB1M4 M5 M7 M6 Vout1 RX CX NL M8
  • 59. 59 LNA Design Example (2) [4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State Circuits, vol. 31, pp 1939 – 1944, Dec. 1996. Cs M2 M1 M3 Bias feedback Ns RB VRF CB IREF IB1 VB1M4 M5 M7 M6 Vout1 RX CX NL M8 VA DC output = VB1
  • 60. 60
  • 61. 61 LNA Design Example (3) • Objective is to design tunable RF LNA that would: – Operate over very wide frequency range with very fine selectivity – Achieve a good noise performance – Have a good linearity performance – Consume minimum power
  • 62. 62 LNA Architecture • The cascode architecture provides a good input – output isolation • Transistor M2 isolates the Miller capacitance • Input Impedance is obtained using the source degeneration inductor Ls • Gate inductor Lg sets the resonant frequency • The tuning granularity is achieved by the output matching network VDD LS LG M1 M2 LD R2 R1 M3 Output to Mixer Input to LNA Matching Network
  • 63. 63 Matching Network • The output matching tuning network is composed of a varactor and an inductor. • The LC network is used to convert the load impedance into the input impedance of the subsequent stage. • A well designed matching network allows for a maximum power transfer to the load. • By varying the DC voltage applied to the varactor, the output frequency is tuned to a different frequency.
  • 64. 64 Simulation Results - S11 • The input return loss S11 is less than – 10dB at a frequency range between 1.4 GHz and 2GHz Input return loss
  • 65. 65 Simulation results - NF • The noise figure is 1.8 dB at 1.4 GHz and rises to 3.4 dB at 2 GHz. Noise Figure
  • 66. 66 Simulation Results - S22 S22 at 1.7725 GHzS22 at 1.77 GHz • By controlling the voltage applied to the varactor the output frequency is tuned by 2.5 MHz. • The output return loss at 1.77 GHz is – 44.73 dB and the output return loss at 1.7725 GHz – 45.69 dB.
  • 67. 67 Simulation Results - S22 S22 at 1.9975 GHzS22 at 2 GHz • The output return loss at 2 GHz is – 26.47 dB and the output return loss at 1.9975 GHz – 26.6 dB.
  • 68. 68 Simulation Results - S21 • The overall gain of the LNA is 12 dB S21 at 1.4025 GHz
  • 69. 69 Simulation Results - Linearity -1dB compression pointIIP3 • The third order input intercept is –3.16 dBm • -1 dB compression point ( the output level at which the actual gain departs from the theoretical gain) is –12 dBm
  • 70. 70 From an earlier slide: fWLC k fV ox g )(2 • Flicker noise – Dominant at low frequency • Thermal noise – g: empirical constant 2/3 for long channel much larger for short channel – PMOS has less thermal noise • Input-inferred noise md gkTfI g4)(2  Vg Id Vi fWLC k g kTfV oxm i  g 4)(2 Not accurate for low voltage short channel devices
  • 71. 71 Modifications g is called excess noise factor = 2/3 in long channel = 2 to 3 (or higher!) in short channel NMOS (less in PMOS)  gg m dod g kTgkTfI 44)(2  Thermonoise
  • 72. 72 gdo vs gm in short channel
  • 73. 73 gdo vs gm in short channel
  • 74. 74 Fliker noise • Traps at channel/oxide interface randomly capture/release carriers – Parameterized by Kf and n • Provided by fab (note n ≈ 1) • Currently: Kf of PMOS << Kf of NMOS due to buried channel – To minimize: want large area (high WL) f K f K fI fWLC k fV f n f d ox g   )( )( 2 2
  • 75. 75 Induced Gate Noise • Fluctuating channel potential couples capacitively into the gate terminal, causing a noise gate current – d is gate noise coefficient • Typically assumed to be 2g – Correlated to drain noise! 2 2 5 4            d T dong gkTi
  • 76. 76 Input impedance Set to be real and equal to source resistance: real gs m gs gin C Lg sC LLssZ deg deg 1 )()(  gsg CLL )( 1 deg 2 0   s gs m R C Lg  deg
  • 77. 77 Output noise current  )14(21)( 222  QcgkTfI dddod g Noise scaling factor:  )14(21 4 1 22  Qc dd  Where for 0.18 process c=-j0.55, g=3, d=6, gdo=2gm, d = 0.32 g d  5do m d g g  s g gss R LL CR Q 2 )( 2 1 deg0 0    
  • 78. 78 Noise factor Noise factor scaling coefficient:  22 )14(21 2 dd m do nf Qc g g Q K  g         22 )14(21 2 1 dd m do T o Qc g g Q F  g                4 2 1)(41 022 00 Q CR gRNG NGN NF T gss msin indevice g    g            Compare:
  • 79. 79 Noise factor scaling coefficient versus Q
  • 80. 80 Example • Assume Rs = 50 Ohms, Q = 2, fo = 1.8 GHz, ft = 47.8 GHz • From gss CR Q 02 1   fF eQR C s gs 442 )2(98.12)50(2 1 2 1 0   nH e R g CR L T s m gss 17.0 98.472 50 deg   nHL C L CLL gs g gsg 5.17 1 )( 1 deg2 0deg 2 0     
  • 81. 81 Have We Chosen the Correct Bias Point? IIP3 is also a function of Q
  • 82. 82 If we choose Vgs=1V • Idens = 175 A/m • From Cgs = 442 fF, W=274m • Ibias = IdensW = 48 mA, too large! • Solution 1: lower Idens => lower power, lower fT, lower IIP3 • Solution 2: lower W => lower power, lower Cgs, higher Q, higher NF
  • 83. 83 Lower current density to 100 Need to verify that IIP3 still OK (once we know Q)
  • 84. 84 We now need to re-plot the Noise Factor scaling coefficient - Also plot over a wider range of Q Lower current density to 100 43.0 5 2 68.0 5 68.0 15.1 78.0   d  do m d do m g g g g GHz8.422 9.2 78.0   fF mS C g gs m T  22 )14(21 2 1 1 dd m do T o Qc Qg g F g               
  • 85. 85
  • 86. 86 Recall We previously chose Q = 2, let’s now choose Q = 6 - Cuts power dissipation by a factor of 3! - New value of W is one third the old one m m W   91 3 274 
  • 87. 87 • Rs = 50 Ohms, Q = 6, fo = 1.8 GHz, ft = 42.8 GHz • Ibias = IdensW =100A/m*91m=9.1mA • Power = 9.1 * 1.8 = 16.4 mW • Noise factor scaling coeff = 10 • Noise factor = 1+ wo/wt * 10 = 1+ 1.8G/42.8G *10 = 1.42 • Noise figure = 10*log(1.42) = 1.52 dB • Cgs=442/3=147fF • Ldeg=Rs/wt=0.19nH • Lg=1/(wo^2Cgs) –Ldeg = 53 nH
  • 88. 88 Other architectures of LNAs •Add output load to achieve voltage gain •In practice, use cascode to boost gain •Added benefit of removing Cgd effect
  • 89. 89 Differential LNA Value of Ldeg is now much better controlled Much less sensitivity to noise from other circuits But: Twice the power as the single-ended version Requires differential input at the chip
  • 90. 90 LNA Employing Current Re-Use •PMOS is biased using a current mirror •NMOS current adjusted to match the PMOS current •Note: not clear how the matching network is achieving a 50 Ohm match Perhaps parasitic bondwire inductance is degenerating the PMOS or NMOS transistors?
  • 91. 91 Combining inductive degeneration and current reuse Current reuse to save power Larger area due to two degeneration inductor if implemented on chip NF: 2dB, Power gain: 17.5dB, IIP3: - 6dBm, Id: 8mA from 2.7V power supply Can have differential version F. Gatta, E. Sacchi, et al, “A 2-dB Noise Figure 900MHz Differential CMOS LNA,” IEEE JSSC, Vol. 36, No. 10, Oct. 2001 pp. 1444-1452
  • 92. 92 At DC, M1 and M2 are in cascode At AC, M1 and M2 are in cascade S of M2 is AC shorted Gm of M1 and M2 are multiplied. Same biasing current in M1 & M2 LIANG-HUI LI AND HUEY-RU CHUANG, MICROWAVE JOURNAL® from the February 2004 issue.
  • 93. 93 bao bmb amamama iii vgi vgvgvgi    3 3 3 3 2 21 •IM3 components in the drain current of the main transistor has the required information of its nonlinearity •Auxiliary circuit is used to tune the magnitude and phase of IM3 components •Addition of main and auxiliary transistor currents results in negligible IM3 components at output Sivakumar Ganesan, Edgar Sánchez-sinencio, And Jose Silva-martinez IEEE Transactions On Microwave Theory And Techniques, Vol. 54, No. 12, December 2006
  • 94. 94 MOS in weak inversion has speed problem MOS transistor in weak inversion acts like bipolar Bipolar available in TSMC 0.18 technology (not a parasitic BJT) Why not using that bipolar transistor to improve linearity ?
  • 95. 95 Inter-stage Inductor gain boost Inter-stage inductor with parasitic capacitance form impedance match network between input stage and cascoded stage boost gain lower noise figure. Input match condition will be affected
  • 96. 96 Folded cascode Low supply voltage Ld reduces or eliminates Effect of Cgd1 Good fT
  • 97. 97 Design Procedure for Inductive Source Degenerated LNA Noise factor equations:  22 )14(21 2 1 1 dd m do T o Qc Qg g F g                 22 )14(21 2 1 dd m do nf Qc Qg g K g       
  • 98. 98 Targeted Specifications • Frequency 2.4 GHz ISM Band • Noise Figure 1.6 dB • IIP3 -8 dBm • Voltage gain 20 dB • Power < 10mA from 1.8V
  • 99. 99 Step 1: Know your process • A 0.18um CMOS Process • Process related – tox = 4.1e-9 m – e = 3.9*(8.85e-12) F/m –  = 3.274e-2 m^2/V.s – Vth = 0.52 V • Noise related –  = gm/gdo – d/g ~ 2 – g ~ 3 – c = -j0.55
  • 100. 100 Step 2: Obtain design guide plots
  • 101. 101 Insights: • gdo increases all the way with current density Iden • gm saturates when Iden larger than 120A/m – Velocity saturation, mobility degradation ---- short channel effects – Low gm/current efficiency – High linearity •  deviates from long channel value (1) with large Iden
  • 103. 103 Insights: • fT increases with Vod when Vod is small and saturates after Vod > 0.3V --- short channel effects • Cgs/W increases slowly after Vod > 0.2V • fT begins to degrade when Vod > 0.8V – gm saturates – Cgs increases • Should keep Vod ~0.2 to 0.4 V
  • 104. 104 Obtain design guide plots 3-D plot for visual inspection 2-D plots for design reference knf vs input Q and current density
  • 105. 105 Design trade-offs • For fixed Iden, increasing Q will reduce the size of transistor thus reduce total power -- -- noise figure will become larger • For fixed Q, reducing Iden will reduce power, but will increase noise factor • For large Iden, there is an optimal Q for minimum noise factor, but power may be too high
  • 106. 106 Obtain design guide plots Linearity plots :IIP3 vs. gate overdrive and transistor size
  • 107. 107 Insights: • MOS transistor IIP3 only, when embedded into actual circuit: – Input Q will degrade IIP3 – Non-linear memory effect will degrade IIP3 – Output non-linearity will degrade IIP3 • IIP3 is a very weak function of device size • Generally, large overdrive means large IIP3 – But the relationship between IIP3 and gate overdrive is not monotonic – There is a local maxima around 0.1V overdrive
  • 108. 108 Step 4: Estimate fT Small current budget ( < 10mA ) does not allow large gate over drive : Vod ~ 0.2 V ~ 0.4 V fT ~ 40 ~ 44 GHz
  • 109. 109 Step 4: Determine Iden, Q and Calculate Device Size Select Iden = 70 A/m, =>Vod~0.23V Gm/W~0.4
  • 110. 110 If Q = 4, IIP3 will have enough margin: Estimated IIP3: IIP3(from curve) – 20log(Q) = 8-12 = -4dBm Specs require: -8 dBm
  • 111. 111 Q=4 and Iden = 70A/m meet the noise factor requirement
  • 112. 112 Gm=0.4*128 ~ 50 mS fT = gm/(Cgs*2pi) = 48 GHz
  • 113. 113 Step 6: Simulation Verification Large deviation
  • 114. 114
  • 115. 115 Comparison between targeted specs and simulation results Parameter Target Simulated Noise Figure 1.6 dB 0.8 dB Drain Current < 10mA 8 mA Voltage gain 20 dB 21 dB IIP3 -8 dBm -6.4 dBm P1dB -20dbm S11 -17 dB Power supply 1.8 V 1.8 V