SlideShare a Scribd company logo
1 of 83
Download to read offline
Extra Section
                   Synthetic Division



Fo r us e w it h li nea r fact ors
Warm-up
          Divide.
(3x + 2x − x + 3) ÷ (x − 3)
   3     2
Warm-up
                        Divide.
           (3x + 2x − x + 3) ÷ (x − 3)
                 3    2




x − 3 3x + 2x − x + 3
       3     2
Warm-up
                         Divide.
              (3x + 2x − x + 3) ÷ (x − 3)
                   3    2

          2
     3x
x − 3 3x + 2x − x + 3
          3    2
Warm-up
                         Divide.
              (3x + 2x − x + 3) ÷ (x − 3)
                   3    2

          2
     3x
x − 3 3x + 2x − x + 3
          3    2

   −(3x − 9x )
          3    2
Warm-up
                              Divide.
               (3x + 2x − x + 3) ÷ (x − 3)
                        3    2

          2
     3x
x − 3 3x + 2x − x + 3
          3     2

   −(3x − 9x )
          3     2


              11x − x
                    2
Warm-up
                           Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3    2

     3x +11x
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2
Warm-up
                           Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3    2

     3x +11x
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x +32
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x +32
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
              −(32x − 96)
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x +32
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
              −(32x − 96)
                                 99
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x +32
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2
                                  3x + 11x + 32, R : 99
                                      2

           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
              −(32x − 96)
                                 99
Rational Roots Theorem
Rational Roots Theorem

  Let p be all factors of the leading
coefficient and q be all factors of the
 constant in any polynomial. Then
 p/q gives all possible roots of the
             polynomial.
Synthetic Division
Synthetic Division


Another way to divide polynomials, without the
use of variables
Synthetic Division


Another way to divide polynomials, without the
use of variables

Only works if you’re dividing by a linear factor
Synthetic Division


Another way to divide polynomials, without the
use of variables

Only works if you’re dividing by a linear factor

Allows for us to test whether a possible root is an
actual zero
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
Example 1
Determine whether 1 is a root of
         4x − 3x + x + 5
           6    4   2




   1 4 0 −3 0 1 0 5

     4
Example 1
Determine whether 1 is a root of
         4x − 3x + x + 5
           6    4   2




   1 4 0 −3 0 1 0 5

     4
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4
     4
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4
     4 4
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4
     4 4
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4
     4 4  1
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1
     4 4  1
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1
     4 4  1 1
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1
     4 4  1 1
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1
     4 4  1 1 2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2
     4 4  1 1 2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2
     4 4  1 1 2 2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2 2
     4 4  1 1 2 2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2 2
     4 4  1 1 2 2 7
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2 2
     4 4  1 1 2 2 7
Example 1
  Determine whether 1 is a root of
         4x − 3x + x + 5
             6       4       2




      1 4 0 −3 0 1 0 5
          4 4 1 1 2 2
        4 4  1 1 2 2 7


4x + 4x + x + x + 2x + 2, R : 7
  5      4       3       2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3      2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3      2

                              5
                 4x − 5 → x − 4
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5

                   4
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                      5
                   4
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                      5
                   4   -2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5
                      5 −2
                   4   -2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                   5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5
                      5 −2
                              27
                   4   -2 −   2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                   5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5 135
                      5 −2 − 8
                              27
                   4   -2 −   2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                   5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5 135
                      5 −2 − 8
                              27       95
                   4   -2 −   2
                                   −   8
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                     5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5 135
                      5 −2 − 8
                                27       95
                   4   -2 −     2
                                     −   8

                           27                 95
           4x − 2x −
              2
                           2
                                ,R:−          8
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3      2
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3      2


                3x − 2 → x −   2
                               3
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3        2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6

                   6
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6
                       4
                   6
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6
                       4
                   6       -12
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6
                       4 -8
                   6       -12
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −    2
                                   3

               2
               3   6 −16 17 −6
                       4 -8
                   6       -12 9
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −    2
                                   3

               2
               3   6 −16 17 −6
                       4 -8 6
                   6       -12 9
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −    2
                                   3

               2
               3   6 −16 17 −6
                       4 -8 6
                   6       -12 9       0
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3            2


                    3x − 2 → x −    2
                                    3

                2
                3   6 −16 17 −6
                        4 -8 6
                    6       -12 9       0
               6x − 12x + 9, R : 0
                    2
Factoring a Quadratic
Factoring a Quadratic

Multiply a and c
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b

Replace b with these two values
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b

Replace b with these two values

Group first 2 and last 2 terms
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b

Replace b with these two values

Group first 2 and last 2 terms

Factor out the GCF of each
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b

Replace b with these two values

Group first 2 and last 2 terms

Factor out the GCF of each

Factors: (Stuff inside)(Stuff outside)
Example 4
                Factor.
a. 2x + x − 6
     2
                          b. 4x − 19x + 12
                               2
Example 4
                Factor.
a. 2x + x − 6
     2
                          b. 4x − 19x + 12
                               2


 2i−6
Example 4
                Factor.
a. 2x + x − 6
     2
                          b. 4x − 19x + 12
                               2


 2i−6 = −12
Example 4
                Factor.
a. 2x + x − 6
     2
                          b. 4x − 19x + 12
                               2


 2i−6 = −12
   = 4(−3)
Example 4
                   Factor.
a. 2x + x − 6
      2
                             b. 4x − 19x + 12
                                  2


 2i−6 = −12
    = 4(−3)
2x + 4x − 3x − 6
  2
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12
      = 4(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12
      = 4(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12
      = 4(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12                       4i12 = 48
      = 4(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12                       4i12 = 48
      = 4(−3)                       = (−16)(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12                       4i12 = 48
      = 4(−3)                         = (−16)(−3)
  2x + 4x − 3x − 6
    2
                                  4x − 16x − 3x + 12
                                    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12                        4i12 = 48
      = 4(−3)                         = (−16)(−3)
  2x + 4x − 3x − 6
    2
                                  4x − 16x − 3x + 12
                                    2



(2x + 4x) + (−3x − 6)
   2
                              (4x − 16x) + (−3x + 12)
                                  2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                    b. 4x − 19x + 12
                                         2


    2i−6 = −12                          4i12 = 48
      = 4(−3)                          = (−16)(−3)
  2x + 4x − 3x − 6
    2
                                   4x − 16x − 3x + 12
                                     2



(2x + 4x) + (−3x − 6)
   2
                              (4x − 16x) + (−3x + 12)
                                    2


2x(x + 2) − 3(x + 2)              4x(x − 4) − 3(x − 4)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                    b. 4x − 19x + 12
                                         2


    2i−6 = −12                          4i12 = 48
      = 4(−3)                          = (−16)(−3)
  2x + 4x − 3x − 6
    2
                                   4x − 16x − 3x + 12
                                     2



(2x + 4x) + (−3x − 6)
   2
                              (4x − 16x) + (−3x + 12)
                                    2


2x(x + 2) − 3(x + 2)              4x(x − 4) − 3(x − 4)
  (x + 2)(2x − 3)                   (x − 4)(4x − 3)
Homework
Homework


 Worksheet!

More Related Content

What's hot

Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functionsdionesioable
 
Polynomials and factoring
Polynomials and factoringPolynomials and factoring
Polynomials and factoringShilpi Singh
 
3.2 factoring polynomials
3.2   factoring polynomials3.2   factoring polynomials
3.2 factoring polynomialsNuch Pawida
 
Mat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curvesMat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curvesGlenSchlee
 
Polynomial function
Polynomial functionPolynomial function
Polynomial functionmaricel mas
 
11 applications of factoring
11 applications of factoring11 applications of factoring
11 applications of factoringelem-alg-sample
 
Long division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremJohn Rome Aranas
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomialsPaco Marcos
 
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...magnesium121
 
Factoring Polynomials to find its zeros
Factoring Polynomials to find its zerosFactoring Polynomials to find its zeros
Factoring Polynomials to find its zerosDaisy933462
 
Punnett squares presentation teachership academy
Punnett squares presentation teachership academyPunnett squares presentation teachership academy
Punnett squares presentation teachership academyBeth819
 
Synthetic Division
Synthetic DivisionSynthetic Division
Synthetic Divisionscnbmitchell
 
Operations on Polynomials
Operations on PolynomialsOperations on Polynomials
Operations on PolynomialsJeramy Donovan
 

What's hot (20)

Factoring
FactoringFactoring
Factoring
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functions
 
Polynomials and factoring
Polynomials and factoringPolynomials and factoring
Polynomials and factoring
 
3.2 factoring polynomials
3.2   factoring polynomials3.2   factoring polynomials
3.2 factoring polynomials
 
Mat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curvesMat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curves
 
Polynomial function
Polynomial functionPolynomial function
Polynomial function
 
11 applications of factoring
11 applications of factoring11 applications of factoring
11 applications of factoring
 
Long division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theorem
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...
 
Factoring Polynomials to find its zeros
Factoring Polynomials to find its zerosFactoring Polynomials to find its zeros
Factoring Polynomials to find its zeros
 
Polynomial equations
Polynomial equationsPolynomial equations
Polynomial equations
 
0303 ch 3 day 3
0303 ch 3 day 30303 ch 3 day 3
0303 ch 3 day 3
 
1050 text-bop
1050 text-bop1050 text-bop
1050 text-bop
 
Punnett squares presentation teachership academy
Punnett squares presentation teachership academyPunnett squares presentation teachership academy
Punnett squares presentation teachership academy
 
Synthetic Division
Synthetic DivisionSynthetic Division
Synthetic Division
 
9-5 Notes
9-5 Notes9-5 Notes
9-5 Notes
 
Operations on Polynomials
Operations on PolynomialsOperations on Polynomials
Operations on Polynomials
 
Operations on Polynomials
Operations on PolynomialsOperations on Polynomials
Operations on Polynomials
 
Polynomials
PolynomialsPolynomials
Polynomials
 

Similar to Synthetic Division

Notes 12.1 identifying, adding & subtracting polynomials
Notes 12.1   identifying, adding & subtracting polynomialsNotes 12.1   identifying, adding & subtracting polynomials
Notes 12.1 identifying, adding & subtracting polynomialsLori Rapp
 
Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Matthew Leingang
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating LimitsMatthew Leingang
 
AA Section 8-8
AA Section 8-8AA Section 8-8
AA Section 8-8Jimbo Lamb
 
Algebra 2 Section 1-7
Algebra 2 Section 1-7Algebra 2 Section 1-7
Algebra 2 Section 1-7Jimbo Lamb
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational formLily Maryati
 
Calculo Thomas (Solutions).pdf
Calculo Thomas  (Solutions).pdfCalculo Thomas  (Solutions).pdf
Calculo Thomas (Solutions).pdfadriano65054
 
AA Section 8-7
AA Section 8-7AA Section 8-7
AA Section 8-7Jimbo Lamb
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at InfinityMatthew Leingang
 
AA Section 7-2/7-3
AA Section 7-2/7-3AA Section 7-2/7-3
AA Section 7-2/7-3Jimbo Lamb
 
AA Section 5-3
AA Section 5-3AA Section 5-3
AA Section 5-3Jimbo Lamb
 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6Jimbo Lamb
 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressionsking_danickus
 
Implicit Differentiation, Part 2
Implicit Differentiation, Part 2Implicit Differentiation, Part 2
Implicit Differentiation, Part 2Pablo Antuna
 

Similar to Synthetic Division (20)

9-9 Notes
9-9 Notes9-9 Notes
9-9 Notes
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
 
Expand brackets 3
Expand brackets 3Expand brackets 3
Expand brackets 3
 
Notes 12.1 identifying, adding & subtracting polynomials
Notes 12.1   identifying, adding & subtracting polynomialsNotes 12.1   identifying, adding & subtracting polynomials
Notes 12.1 identifying, adding & subtracting polynomials
 
Lesson 15: The Chain Rule
Lesson 15: The Chain RuleLesson 15: The Chain Rule
Lesson 15: The Chain Rule
 
Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
AA Section 8-8
AA Section 8-8AA Section 8-8
AA Section 8-8
 
Algebra 2 Section 1-7
Algebra 2 Section 1-7Algebra 2 Section 1-7
Algebra 2 Section 1-7
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
Calculo Thomas (Solutions).pdf
Calculo Thomas  (Solutions).pdfCalculo Thomas  (Solutions).pdf
Calculo Thomas (Solutions).pdf
 
AA Section 8-7
AA Section 8-7AA Section 8-7
AA Section 8-7
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at Infinity
 
Em04 il
Em04 ilEm04 il
Em04 il
 
AA Section 7-2/7-3
AA Section 7-2/7-3AA Section 7-2/7-3
AA Section 7-2/7-3
 
AA Section 5-3
AA Section 5-3AA Section 5-3
AA Section 5-3
 
Polinomials division
Polinomials divisionPolinomials division
Polinomials division
 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6
 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressions
 
Implicit Differentiation, Part 2
Implicit Differentiation, Part 2Implicit Differentiation, Part 2
Implicit Differentiation, Part 2
 

More from Jimbo Lamb

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5Jimbo Lamb
 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4Jimbo Lamb
 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3Jimbo Lamb
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2Jimbo Lamb
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2Jimbo Lamb
 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1Jimbo Lamb
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3Jimbo Lamb
 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2Jimbo Lamb
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1Jimbo Lamb
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9Jimbo Lamb
 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8Jimbo Lamb
 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6Jimbo Lamb
 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5Jimbo Lamb
 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4Jimbo Lamb
 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3Jimbo Lamb
 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2Jimbo Lamb
 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1Jimbo Lamb
 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5Jimbo Lamb
 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4Jimbo Lamb
 
Algebra 2 Section 4-2
Algebra 2 Section 4-2Algebra 2 Section 4-2
Algebra 2 Section 4-2Jimbo Lamb
 

More from Jimbo Lamb (20)

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5
 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4
 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3
 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9
 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8
 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6
 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5
 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4
 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3
 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2
 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1
 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5
 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4
 
Algebra 2 Section 4-2
Algebra 2 Section 4-2Algebra 2 Section 4-2
Algebra 2 Section 4-2
 

Recently uploaded

The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 

Recently uploaded (20)

The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 

Synthetic Division

  • 1. Extra Section Synthetic Division Fo r us e w it h li nea r fact ors
  • 2. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2
  • 3. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 x − 3 3x + 2x − x + 3 3 2
  • 4. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 2 3x x − 3 3x + 2x − x + 3 3 2
  • 5. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 2 3x x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2
  • 6. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 2 3x x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2
  • 7. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2
  • 8. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2
  • 9. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2 32x + 3
  • 10. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x +32 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2 32x + 3
  • 11. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x +32 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2 32x + 3 −(32x − 96)
  • 12. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x +32 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2 32x + 3 −(32x − 96) 99
  • 13. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x +32 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 3x + 11x + 32, R : 99 2 11x − x 2 −(11x − 33x) 2 32x + 3 −(32x − 96) 99
  • 15. Rational Roots Theorem Let p be all factors of the leading coefficient and q be all factors of the constant in any polynomial. Then p/q gives all possible roots of the polynomial.
  • 17. Synthetic Division Another way to divide polynomials, without the use of variables
  • 18. Synthetic Division Another way to divide polynomials, without the use of variables Only works if you’re dividing by a linear factor
  • 19. Synthetic Division Another way to divide polynomials, without the use of variables Only works if you’re dividing by a linear factor Allows for us to test whether a possible root is an actual zero
  • 20. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2
  • 21. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5
  • 22. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5
  • 23. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4
  • 24. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4
  • 25. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4
  • 26. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 4
  • 27. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 4 4
  • 28. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 4 4 1
  • 29. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 4 4 1
  • 30. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 4 4 1 1
  • 31. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 4 4 1 1
  • 32. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 4 4 1 1 2
  • 33. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 4 4 1 1 2
  • 34. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 4 4 1 1 2 2
  • 35. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 2 4 4 1 1 2 2
  • 36. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 2 4 4 1 1 2 2 7
  • 37. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 2 4 4 1 1 2 2 7
  • 38. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 2 4 4 1 1 2 2 7 4x + 4x + x + x + 2x + 2, R : 7 5 4 3 2
  • 39. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2
  • 40. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4
  • 41. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5
  • 42. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 4
  • 43. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 4
  • 44. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 4 -2
  • 45. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 5 −2 4 -2
  • 46. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 5 −2 27 4 -2 − 2
  • 47. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 135 5 −2 − 8 27 4 -2 − 2
  • 48. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 135 5 −2 − 8 27 95 4 -2 − 2 − 8
  • 49. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 135 5 −2 − 8 27 95 4 -2 − 2 − 8 27 95 4x − 2x − 2 2 ,R:− 8
  • 50. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2
  • 51. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3
  • 52. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6
  • 53. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 6
  • 54. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 6
  • 55. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 6 -12
  • 56. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 -12
  • 57. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 -12 9
  • 58. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 6 -12 9
  • 59. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 6 -12 9 0
  • 60. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 6 -12 9 0 6x − 12x + 9, R : 0 2
  • 63. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b
  • 64. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b Replace b with these two values
  • 65. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b Replace b with these two values Group first 2 and last 2 terms
  • 66. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b Replace b with these two values Group first 2 and last 2 terms Factor out the GCF of each
  • 67. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b Replace b with these two values Group first 2 and last 2 terms Factor out the GCF of each Factors: (Stuff inside)(Stuff outside)
  • 68. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2
  • 69. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6
  • 70. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12
  • 71. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3)
  • 72. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3) 2x + 4x − 3x − 6 2
  • 73. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2
  • 74. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2)
  • 75. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 76. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 77. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 78. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 4x − 16x − 3x + 12 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 79. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 4x − 16x − 3x + 12 2 (2x + 4x) + (−3x − 6) 2 (4x − 16x) + (−3x + 12) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 80. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 4x − 16x − 3x + 12 2 (2x + 4x) + (−3x − 6) 2 (4x − 16x) + (−3x + 12) 2 2x(x + 2) − 3(x + 2) 4x(x − 4) − 3(x − 4) (x + 2)(2x − 3)
  • 81. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 4x − 16x − 3x + 12 2 (2x + 4x) + (−3x − 6) 2 (4x − 16x) + (−3x + 12) 2 2x(x + 2) − 3(x + 2) 4x(x − 4) − 3(x − 4) (x + 2)(2x − 3) (x − 4)(4x − 3)