SlideShare a Scribd company logo
1 of 136
Download to read offline
Section 4-9
Roots and Zeros
Essential Questions
β€’ How do you determine the number and type
of roots for a polynomial equation?

β€’ How do you find the zeros of a polynomial
function?
Fundamental Theorem of
Algebra
Fundamental Theorem of
Algebra
Every polynomial with degree greater than zero
has at least one root in the set of complex
numbers.
Example 1
Solve each equation. State the number and type of
roots.
a. x 2
+ 2x βˆ’ 48 = 0
Example 1
Solve each equation. State the number and type of
roots.
a. x 2
+ 2x βˆ’ 48 = 0
(x + 8)(x βˆ’ 6) = 0
Example 1
Solve each equation. State the number and type of
roots.
a. x 2
+ 2x βˆ’ 48 = 0
(x + 8)(x βˆ’ 6) = 0
(x + 8) = 0
Example 1
Solve each equation. State the number and type of
roots.
a. x 2
+ 2x βˆ’ 48 = 0
(x + 8)(x βˆ’ 6) = 0
(x + 8) = 0 (x βˆ’ 6) = 0
Example 1
Solve each equation. State the number and type of
roots.
a. x 2
+ 2x βˆ’ 48 = 0
(x + 8)(x βˆ’ 6) = 0
(x + 8) = 0 (x βˆ’ 6) = 0
x = βˆ’8
Example 1
Solve each equation. State the number and type of
roots.
a. x 2
+ 2x βˆ’ 48 = 0
(x + 8)(x βˆ’ 6) = 0
(x + 8) = 0 (x βˆ’ 6) = 0
x = βˆ’8 x = 6
Example 1
Solve each equation. State the number and type of
roots.
a. x 2
+ 2x βˆ’ 48 = 0
(x + 8)(x βˆ’ 6) = 0
(x + 8) = 0 (x βˆ’ 6) = 0
x = βˆ’8 x = 6
There are two real roots.
Example 1
Solve each equation. State the number and type of
roots.
b. y 4
βˆ’ 256 = 0
Example 1
Solve each equation. State the number and type of
roots.
b. y 4
βˆ’ 256 = 0
(y 2
+16)(y 2
βˆ’16) = 0
Example 1
Solve each equation. State the number and type of
roots.
b. y 4
βˆ’ 256 = 0
(y 2
+16)(y 2
βˆ’16) = 0
(y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0
Example 1
Solve each equation. State the number and type of
roots.
b. y 4
βˆ’ 256 = 0
(y 2
+16)(y 2
βˆ’16) = 0
(y + 4i ) = 0
(y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0
Example 1
Solve each equation. State the number and type of
roots.
b. y 4
βˆ’ 256 = 0
(y 2
+16)(y 2
βˆ’16) = 0
(y + 4i ) = 0
(y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0
(y βˆ’ 4i ) = 0
Example 1
Solve each equation. State the number and type of
roots.
b. y 4
βˆ’ 256 = 0
(y 2
+16)(y 2
βˆ’16) = 0
(y + 4i ) = 0
(y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0
(y βˆ’ 4i ) = 0 (y + 4) = 0
Example 1
Solve each equation. State the number and type of
roots.
b. y 4
βˆ’ 256 = 0
(y 2
+16)(y 2
βˆ’16) = 0
(y + 4i ) = 0
(y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0
(y βˆ’ 4i ) = 0 (y + 4) = 0 (y βˆ’ 4) = 0
Example 1
Solve each equation. State the number and type of
roots.
b. y 4
βˆ’ 256 = 0
(y 2
+16)(y 2
βˆ’16) = 0
(y + 4i ) = 0
(y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0
(y βˆ’ 4i ) = 0 (y + 4) = 0 (y βˆ’ 4) = 0
y = βˆ’4i
Example 1
Solve each equation. State the number and type of
roots.
b. y 4
βˆ’ 256 = 0
(y 2
+16)(y 2
βˆ’16) = 0
(y + 4i ) = 0
(y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0
(y βˆ’ 4i ) = 0 (y + 4) = 0 (y βˆ’ 4) = 0
y = βˆ’4i y = 4i
Example 1
Solve each equation. State the number and type of
roots.
b. y 4
βˆ’ 256 = 0
(y 2
+16)(y 2
βˆ’16) = 0
(y + 4i ) = 0
(y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0
(y βˆ’ 4i ) = 0 (y + 4) = 0 (y βˆ’ 4) = 0
y = βˆ’4i y = 4i y = βˆ’4
Example 1
Solve each equation. State the number and type of
roots.
b. y 4
βˆ’ 256 = 0
(y 2
+16)(y 2
βˆ’16) = 0
(y + 4i ) = 0
(y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0
(y βˆ’ 4i ) = 0 (y + 4) = 0 (y βˆ’ 4) = 0
y = βˆ’4i y = 4i y = βˆ’4 y = 4
Example 1
Solve each equation. State the number and type of
roots.
b. y 4
βˆ’ 256 = 0
(y 2
+16)(y 2
βˆ’16) = 0
(y + 4i ) = 0
There are two imaginary root and two real roots.
(y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0
(y βˆ’ 4i ) = 0 (y + 4) = 0 (y βˆ’ 4) = 0
y = βˆ’4i y = 4i y = βˆ’4 y = 4
Corollary to the Fundamental
Theorem of Algebra
Corollary to the Fundamental
Theorem of Algebra
A polynomial equation of degree n has exactly n
roots in the set of complex numbers, including
double roots.
Descartes’ Rule of Signs
Let be a polynomial
function with real coefficients. Then:
P(x ) = anxn
+...+ a1x + a0
Descartes’ Rule of Signs
Let be a polynomial
function with real coefficients. Then:
P(x ) = anxn
+...+ a1x + a0
β€’ The number of positive real zeros of P(x) is
the same as the number of changes in sign of
the coefficients of the terms, or is less than
this by an even number
Descartes’ Rule of Signs
Let be a polynomial
function with real coefficients. Then:
P(x ) = anxn
+...+ a1x + a0
β€’ The number of positive real zeros of P(x) is
the same as the number of changes in sign of
the coefficients of the terms, or is less than
this by an even number
β€’ The number of negative real zeros of P(x) is
the same as the number of changes in sign of
the coefficients of the terms of P(βˆ’x), or is
less than this by an even number
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
Yes
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
Yes
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
Yes Yes
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
Yes Yes
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
Yes Yes No
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
Yes Yes No
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
Yes Yes No No
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
Yes Yes No No
There are two sign changes, so there are either 2 or 0
positive zeros
Example 2
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
p(βˆ’x ) = βˆ’(βˆ’x )6
+ 4(βˆ’x )3
βˆ’ 2(βˆ’x )2
βˆ’ (βˆ’x )βˆ’1
Example 2
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
p(βˆ’x ) = βˆ’(βˆ’x )6
+ 4(βˆ’x )3
βˆ’ 2(βˆ’x )2
βˆ’ (βˆ’x )βˆ’1
p(βˆ’x ) = βˆ’x 6
βˆ’ 4x 3
βˆ’ 2x 2
+ x βˆ’1
Example 2
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
p(βˆ’x ) = βˆ’(βˆ’x )6
+ 4(βˆ’x )3
βˆ’ 2(βˆ’x )2
βˆ’ (βˆ’x )βˆ’1
p(βˆ’x ) = βˆ’x 6
βˆ’ 4x 3
βˆ’ 2x 2
+ x βˆ’1
Example 2
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
p(βˆ’x ) = βˆ’(βˆ’x )6
+ 4(βˆ’x )3
βˆ’ 2(βˆ’x )2
βˆ’ (βˆ’x )βˆ’1
No
p(βˆ’x ) = βˆ’x 6
βˆ’ 4x 3
βˆ’ 2x 2
+ x βˆ’1
Example 2
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
p(βˆ’x ) = βˆ’(βˆ’x )6
+ 4(βˆ’x )3
βˆ’ 2(βˆ’x )2
βˆ’ (βˆ’x )βˆ’1
No
p(βˆ’x ) = βˆ’x 6
βˆ’ 4x 3
βˆ’ 2x 2
+ x βˆ’1
Example 2
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
p(βˆ’x ) = βˆ’(βˆ’x )6
+ 4(βˆ’x )3
βˆ’ 2(βˆ’x )2
βˆ’ (βˆ’x )βˆ’1
No No
p(βˆ’x ) = βˆ’x 6
βˆ’ 4x 3
βˆ’ 2x 2
+ x βˆ’1
Example 2
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
p(βˆ’x ) = βˆ’(βˆ’x )6
+ 4(βˆ’x )3
βˆ’ 2(βˆ’x )2
βˆ’ (βˆ’x )βˆ’1
No No
p(βˆ’x ) = βˆ’x 6
βˆ’ 4x 3
βˆ’ 2x 2
+ x βˆ’1
Example 2
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
p(βˆ’x ) = βˆ’(βˆ’x )6
+ 4(βˆ’x )3
βˆ’ 2(βˆ’x )2
βˆ’ (βˆ’x )βˆ’1
No No Yes
p(βˆ’x ) = βˆ’x 6
βˆ’ 4x 3
βˆ’ 2x 2
+ x βˆ’1
Example 2
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
p(βˆ’x ) = βˆ’(βˆ’x )6
+ 4(βˆ’x )3
βˆ’ 2(βˆ’x )2
βˆ’ (βˆ’x )βˆ’1
No No Yes
p(βˆ’x ) = βˆ’x 6
βˆ’ 4x 3
βˆ’ 2x 2
+ x βˆ’1
Example 2
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
p(βˆ’x ) = βˆ’(βˆ’x )6
+ 4(βˆ’x )3
βˆ’ 2(βˆ’x )2
βˆ’ (βˆ’x )βˆ’1
No No Yes Yes
p(βˆ’x ) = βˆ’x 6
βˆ’ 4x 3
βˆ’ 2x 2
+ x βˆ’1
Example 2
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
There are two sign changes, so there are either 2 or 0
negative zeros
p(βˆ’x ) = βˆ’(βˆ’x )6
+ 4(βˆ’x )3
βˆ’ 2(βˆ’x )2
βˆ’ (βˆ’x )βˆ’1
No No Yes Yes
p(βˆ’x ) = βˆ’x 6
βˆ’ 4x 3
βˆ’ 2x 2
+ x βˆ’1
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
2
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
2 0
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
2 0 4
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
2 0 4 6
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
2 0 4 6
0
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
2 0 4 6
0 2
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
2 0 4 6
0 2 4
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
2 0 4 6
0 2 4 6
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
2 0 4 6
0 2 4 6
0
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
2 0 4 6
0 2 4 6
0 0
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
2 0 4 6
0 2 4 6
0 0 6
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 2 2 6
2 0 4 6
0 2 4 6
0 0 6 6
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
There are either 2 or 0 real positive roots.
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
There are either 2 or 0 real positive roots.
There are either 2 or 0 real negative roots.
Example 2
p(x ) = βˆ’x 6
+ 4x 3
βˆ’ 2x 2
βˆ’ x βˆ’1
State the possible number of positive real zeros,
negative real zeros, and imaginary zeros of
There are either 2 or 0 real positive roots.
There are either 2 or 0 real negative roots.
There are either 6, 4, or 2 real negative roots.
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes No
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes No
There are either 2 or 0 real positive zeros
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes No
There are either 2 or 0 real positive zeros
f (βˆ’x ) = (βˆ’x )3
βˆ’ (βˆ’x )2
+ 2(βˆ’x )+ 4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes No
There are either 2 or 0 real positive zeros
f (βˆ’x ) = (βˆ’x )3
βˆ’ (βˆ’x )2
+ 2(βˆ’x )+ 4
f (βˆ’x ) = βˆ’x 3
βˆ’ x 2
βˆ’ 2x + 4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes No
There are either 2 or 0 real positive zeros
f (βˆ’x ) = (βˆ’x )3
βˆ’ (βˆ’x )2
+ 2(βˆ’x )+ 4
f (βˆ’x ) = βˆ’x 3
βˆ’ x 2
βˆ’ 2x + 4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes No
There are either 2 or 0 real positive zeros
f (βˆ’x ) = (βˆ’x )3
βˆ’ (βˆ’x )2
+ 2(βˆ’x )+ 4
No
f (βˆ’x ) = βˆ’x 3
βˆ’ x 2
βˆ’ 2x + 4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes No
There are either 2 or 0 real positive zeros
f (βˆ’x ) = (βˆ’x )3
βˆ’ (βˆ’x )2
+ 2(βˆ’x )+ 4
No
f (βˆ’x ) = βˆ’x 3
βˆ’ x 2
βˆ’ 2x + 4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes No
There are either 2 or 0 real positive zeros
f (βˆ’x ) = (βˆ’x )3
βˆ’ (βˆ’x )2
+ 2(βˆ’x )+ 4
No No
f (βˆ’x ) = βˆ’x 3
βˆ’ x 2
βˆ’ 2x + 4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes No
There are either 2 or 0 real positive zeros
f (βˆ’x ) = (βˆ’x )3
βˆ’ (βˆ’x )2
+ 2(βˆ’x )+ 4
No No
f (βˆ’x ) = βˆ’x 3
βˆ’ x 2
βˆ’ 2x + 4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes No
There are either 2 or 0 real positive zeros
f (βˆ’x ) = (βˆ’x )3
βˆ’ (βˆ’x )2
+ 2(βˆ’x )+ 4
No No Yes
f (βˆ’x ) = βˆ’x 3
βˆ’ x 2
βˆ’ 2x + 4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Yes Yes No
There are either 2 or 0 real positive zeros
f (βˆ’x ) = (βˆ’x )3
βˆ’ (βˆ’x )2
+ 2(βˆ’x )+ 4
No No Yes
There is 1 real negative zero
f (βˆ’x ) = βˆ’x 3
βˆ’ x 2
βˆ’ 2x + 4
Example 3
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 1
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 1 0
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 1 0 3
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 1 0 3
0
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 1 0 3
0 1
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 1 0 3
0 1 2
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
+ zeros βˆ’ zeros
imaginary

zeros
total

zeros
2 1 0 3
0 1 2 3
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
First zero: x = βˆ’1
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
First zero: x = βˆ’1
1 βˆ’1 2 4βˆ’1
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
First zero: x = βˆ’1
1 βˆ’1 2 4βˆ’1
1
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
First zero: x = βˆ’1
1 βˆ’1 2 4βˆ’1
1
βˆ’1
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
First zero: x = βˆ’1
1 βˆ’1 2 4βˆ’1
1
βˆ’1
βˆ’2
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
First zero: x = βˆ’1
1 βˆ’1 2 4βˆ’1
1
βˆ’1
βˆ’2
2
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
First zero: x = βˆ’1
1 βˆ’1 2 4βˆ’1
1
βˆ’1
βˆ’2
2
4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
First zero: x = βˆ’1
1 βˆ’1 2 4βˆ’1
1
βˆ’1
βˆ’2
2
4
βˆ’4
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
First zero: x = βˆ’1
1 βˆ’1 2 4βˆ’1
1
βˆ’1
βˆ’2
2
4
βˆ’4
0
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
First zero: x = βˆ’1
1 βˆ’1 2 4βˆ’1
1
βˆ’1
βˆ’2
2
4
βˆ’4
0
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Not factorable, so find a root with the calculator.
First zero: x = βˆ’1
1 βˆ’1 2 4βˆ’1
1
βˆ’1
βˆ’2
2
4
βˆ’4
0
(x +1)(x 2
βˆ’ 2x + 4)
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Since we have one negative root, the other roots are
imaginary.
(x +1)(x 2
βˆ’ 2x + 4)
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Since we have one negative root, the other roots are
imaginary.
(x +1)(x 2
βˆ’ 2x + 4)
x =
βˆ’b Β± b2
βˆ’ 4ac
2a
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Since we have one negative root, the other roots are
imaginary.
(x +1)(x 2
βˆ’ 2x + 4)
x =
βˆ’b Β± b2
βˆ’ 4ac
2a
x =
2 Β± (βˆ’2)2
βˆ’ 4(1)(4)
2(1)
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Since we have one negative root, the other roots are
imaginary.
(x +1)(x 2
βˆ’ 2x + 4)
x =
βˆ’b Β± b2
βˆ’ 4ac
2a
x =
2 Β± (βˆ’2)2
βˆ’ 4(1)(4)
2(1)
x =
2 Β± 4 βˆ’16
2
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Since we have one negative root, the other roots are
imaginary.
(x +1)(x 2
βˆ’ 2x + 4)
x =
βˆ’b Β± b2
βˆ’ 4ac
2a
x =
2 Β± (βˆ’2)2
βˆ’ 4(1)(4)
2(1)
x =
2 Β± 4 βˆ’16
2
x =
2 Β± βˆ’12
2
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Since we have one negative root, the other roots are
imaginary.
(x +1)(x 2
βˆ’ 2x + 4)
x =
βˆ’b Β± b2
βˆ’ 4ac
2a
x =
2 Β± (βˆ’2)2
βˆ’ 4(1)(4)
2(1)
x =
2 Β± 4 βˆ’16
2
x =
2 Β± βˆ’12
2
x =
2 Β± 2i 3
2
Example 3
Find all of the zeros of
f (x ) = x 3
βˆ’ x 2
+ 2x + 4
Since we have one negative root, the other roots are
imaginary.
(x +1)(x 2
βˆ’ 2x + 4)
x =
βˆ’b Β± b2
βˆ’ 4ac
2a
x =
2 Β± (βˆ’2)2
βˆ’ 4(1)(4)
2(1)
x =
2 Β± 4 βˆ’16
2
x =
2 Β± βˆ’12
2
x =
2 Β± 2i 3
2
x = 1Β± i 3
Complex Conjugates
Theorem
Complex Conjugates
Theorem
Let a and b be real numbers and b β‰  0. If a + bi
is a zero of a polynomial with real coefficients,
then a βˆ’ bi is also a zero of the function.
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
x = 4
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
x = 4 x = 4 βˆ’ i
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
x = 4 x = 4 + ix = 4 βˆ’ i
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
x = 4 x = 4 + ix = 4 βˆ’ i
(x βˆ’ 4) = 0
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
x = 4 x = 4 + ix = 4 βˆ’ i
(x βˆ’ 4) = 0 [x βˆ’ (4 βˆ’ i )] = 0
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
x = 4 x = 4 + ix = 4 βˆ’ i
(x βˆ’ 4) = 0 [x βˆ’ (4 βˆ’ i )] = 0 [x βˆ’ (4 + i )] = 0
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
x = 4 x = 4 + ix = 4 βˆ’ i
(x βˆ’ 4) = 0 [x βˆ’ (4 βˆ’ i )] = 0 [x βˆ’ (4 + i )] = 0
(x βˆ’ 4)[x βˆ’ (4 βˆ’ i )][x βˆ’ (4 + i )] = 0
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
x = 4 x = 4 + ix = 4 βˆ’ i
(x βˆ’ 4) = 0 [x βˆ’ (4 βˆ’ i )] = 0 [x βˆ’ (4 + i )] = 0
(x βˆ’ 4)[x βˆ’ (4 βˆ’ i )][x βˆ’ (4 + i )] = 0
(x βˆ’ 4)[(x βˆ’ 4)+ i )][(x βˆ’ 4)βˆ’ i )] = 0
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
x = 4 x = 4 + ix = 4 βˆ’ i
(x βˆ’ 4) = 0 [x βˆ’ (4 βˆ’ i )] = 0 [x βˆ’ (4 + i )] = 0
(x βˆ’ 4)[x βˆ’ (4 βˆ’ i )][x βˆ’ (4 + i )] = 0
(x βˆ’ 4)[(x βˆ’ 4)+ i )][(x βˆ’ 4)βˆ’ i )] = 0
(x βˆ’ 4)[(x βˆ’ 4)2
βˆ’ i 2
)] = 0
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
x = 4 x = 4 + ix = 4 βˆ’ i
(x βˆ’ 4) = 0 [x βˆ’ (4 βˆ’ i )] = 0 [x βˆ’ (4 + i )] = 0
(x βˆ’ 4)[x βˆ’ (4 βˆ’ i )][x βˆ’ (4 + i )] = 0
(x βˆ’ 4)[(x βˆ’ 4)+ i )][(x βˆ’ 4)βˆ’ i )] = 0
(x βˆ’ 4)[(x βˆ’ 4)2
βˆ’ i 2
)] = 0
(x βˆ’ 4)[x 2
βˆ’ 8x +16 βˆ’ (βˆ’1)] = 0
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
(x βˆ’ 4)[x 2
βˆ’ 8x +16 βˆ’ (βˆ’1)] = 0
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
(x βˆ’ 4)[x 2
βˆ’ 8x +16 βˆ’ (βˆ’1)] = 0
(x βˆ’ 4)(x 2
βˆ’ 8x +17) = 0
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
(x βˆ’ 4)[x 2
βˆ’ 8x +16 βˆ’ (βˆ’1)] = 0
(x βˆ’ 4)(x 2
βˆ’ 8x +17) = 0
x 3
βˆ’ 8x 2
+17x βˆ’ 4x 2
+ 32x βˆ’ 68 = 0
Example 4
4 βˆ’ i
Write a polynomial function of least degree with integer
coefficients, the zeros of which include 4 and .
(x βˆ’ 4)[x 2
βˆ’ 8x +16 βˆ’ (βˆ’1)] = 0
(x βˆ’ 4)(x 2
βˆ’ 8x +17) = 0
x 3
βˆ’ 8x 2
+17x βˆ’ 4x 2
+ 32x βˆ’ 68 = 0
x 3
βˆ’12x 2
+ 49x βˆ’ 68 = 0

More Related Content

What's hot

Algebra 2 Section 3-4
Algebra 2 Section 3-4Algebra 2 Section 3-4
Algebra 2 Section 3-4Jimbo Lamb
Β 
11.3
11.311.3
11.3nglaze10
Β 
Yr.12 Transition Workshop 2012-2013
Yr.12 Transition Workshop 2012-2013Yr.12 Transition Workshop 2012-2013
Yr.12 Transition Workshop 2012-2013rdk.rdk
Β 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths projectRITURAJ DAS
Β 
Jacob's and Vlad's D.E.V. Project - 2012
Jacob's and Vlad's D.E.V. Project - 2012Jacob's and Vlad's D.E.V. Project - 2012
Jacob's and Vlad's D.E.V. Project - 2012Jacob_Evenson
Β 
Complex numbers
Complex numbersComplex numbers
Complex numbersmstf mstf
Β 
4 1 radicals and pythagorean theorem
4 1 radicals and pythagorean theorem4 1 radicals and pythagorean theorem
4 1 radicals and pythagorean theoremmath123b
Β 
5 2factoring trinomial i
5 2factoring trinomial i5 2factoring trinomial i
5 2factoring trinomial imath123a
Β 
Algebra 2 Section 1-8
Algebra 2 Section 1-8Algebra 2 Section 1-8
Algebra 2 Section 1-8Jimbo Lamb
Β 
1.2 algebraic expressions
1.2 algebraic expressions1.2 algebraic expressions
1.2 algebraic expressionsmath260
Β 
Matematika diskrit: fungsi pembangkit part 3
Matematika diskrit: fungsi pembangkit part 3Matematika diskrit: fungsi pembangkit part 3
Matematika diskrit: fungsi pembangkit part 3radar radius
Β 
Jackson d.e.v.
Jackson d.e.v.Jackson d.e.v.
Jackson d.e.v.Dougfield32
Β 
Finding zeros of a quadratic function
Finding zeros of a quadratic functionFinding zeros of a quadratic function
Finding zeros of a quadratic functionAaron James Lico
Β 
Factorising Quadratics
Factorising QuadraticsFactorising Quadratics
Factorising QuadraticsMr C
Β 
Algebra 2 Section 1-6
Algebra 2 Section 1-6Algebra 2 Section 1-6
Algebra 2 Section 1-6Jimbo Lamb
Β 
Dirty quant-shortcut-workshop-handout-inequalities-functions-graphs-coordinat...
Dirty quant-shortcut-workshop-handout-inequalities-functions-graphs-coordinat...Dirty quant-shortcut-workshop-handout-inequalities-functions-graphs-coordinat...
Dirty quant-shortcut-workshop-handout-inequalities-functions-graphs-coordinat...Nish Kala Devi
Β 
55 inequalities and comparative statements
55 inequalities and comparative statements55 inequalities and comparative statements
55 inequalities and comparative statementsalg1testreview
Β 

What's hot (19)

Pre algebra lesson 8-3
Pre algebra lesson 8-3Pre algebra lesson 8-3
Pre algebra lesson 8-3
Β 
Algebra 2 Section 3-4
Algebra 2 Section 3-4Algebra 2 Section 3-4
Algebra 2 Section 3-4
Β 
11.3
11.311.3
11.3
Β 
Yr.12 Transition Workshop 2012-2013
Yr.12 Transition Workshop 2012-2013Yr.12 Transition Workshop 2012-2013
Yr.12 Transition Workshop 2012-2013
Β 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths project
Β 
Jacob's and Vlad's D.E.V. Project - 2012
Jacob's and Vlad's D.E.V. Project - 2012Jacob's and Vlad's D.E.V. Project - 2012
Jacob's and Vlad's D.E.V. Project - 2012
Β 
Complex numbers
Complex numbersComplex numbers
Complex numbers
Β 
4 1 radicals and pythagorean theorem
4 1 radicals and pythagorean theorem4 1 radicals and pythagorean theorem
4 1 radicals and pythagorean theorem
Β 
5 2factoring trinomial i
5 2factoring trinomial i5 2factoring trinomial i
5 2factoring trinomial i
Β 
Algebra 2 Section 1-8
Algebra 2 Section 1-8Algebra 2 Section 1-8
Algebra 2 Section 1-8
Β 
1.2 algebraic expressions
1.2 algebraic expressions1.2 algebraic expressions
1.2 algebraic expressions
Β 
Matematika diskrit: fungsi pembangkit part 3
Matematika diskrit: fungsi pembangkit part 3Matematika diskrit: fungsi pembangkit part 3
Matematika diskrit: fungsi pembangkit part 3
Β 
Jackson d.e.v.
Jackson d.e.v.Jackson d.e.v.
Jackson d.e.v.
Β 
Finding zeros of a quadratic function
Finding zeros of a quadratic functionFinding zeros of a quadratic function
Finding zeros of a quadratic function
Β 
Factorising Quadratics
Factorising QuadraticsFactorising Quadratics
Factorising Quadratics
Β 
Algebra 2 Section 1-6
Algebra 2 Section 1-6Algebra 2 Section 1-6
Algebra 2 Section 1-6
Β 
Ca8e Ppt 5 6
Ca8e Ppt 5 6Ca8e Ppt 5 6
Ca8e Ppt 5 6
Β 
Dirty quant-shortcut-workshop-handout-inequalities-functions-graphs-coordinat...
Dirty quant-shortcut-workshop-handout-inequalities-functions-graphs-coordinat...Dirty quant-shortcut-workshop-handout-inequalities-functions-graphs-coordinat...
Dirty quant-shortcut-workshop-handout-inequalities-functions-graphs-coordinat...
Β 
55 inequalities and comparative statements
55 inequalities and comparative statements55 inequalities and comparative statements
55 inequalities and comparative statements
Β 

Similar to Algebra 2 Section 4-9

Rational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of SignsRational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of Signsswartzje
Β 
5.7 Interactive Classroom Roots and Zeros.ppt
5.7 Interactive Classroom Roots and Zeros.ppt5.7 Interactive Classroom Roots and Zeros.ppt
5.7 Interactive Classroom Roots and Zeros.pptAARow1
Β 
Quadratic Equation and discriminant
Quadratic Equation and discriminantQuadratic Equation and discriminant
Quadratic Equation and discriminantswartzje
Β 
Study materialfor class 10 Mathematics
Study materialfor class 10  MathematicsStudy materialfor class 10  Mathematics
Study materialfor class 10 MathematicsMD. G R Ahmed
Β 
Bonus math project
Bonus math projectBonus math project
Bonus math projectKenton Hemsing
Β 
3.2 factoring polynomials
3.2   factoring polynomials3.2   factoring polynomials
3.2 factoring polynomialsNuch Pawida
Β 
Obj. 6 pythagorean theorem (1)
Obj. 6 pythagorean theorem (1)Obj. 6 pythagorean theorem (1)
Obj. 6 pythagorean theorem (1)smiller5
Β 
DISCRIMINANT.ppt
DISCRIMINANT.pptDISCRIMINANT.ppt
DISCRIMINANT.pptNelsonNelson56
Β 
Quadratic eq and discriminant
Quadratic eq and discriminantQuadratic eq and discriminant
Quadratic eq and discriminantswartzje
Β 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1jennytuazon01630
Β 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functionsdionesioable
Β 
Polyomials x
Polyomials xPolyomials x
Polyomials xVansh Gulati
Β 
Polynomials
PolynomialsPolynomials
Polynomialskvs iffco
Β 
AA Section 5-3
AA Section 5-3AA Section 5-3
AA Section 5-3Jimbo Lamb
Β 

Similar to Algebra 2 Section 4-9 (20)

Rational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of SignsRational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of Signs
Β 
5.7 Interactive Classroom Roots and Zeros.ppt
5.7 Interactive Classroom Roots and Zeros.ppt5.7 Interactive Classroom Roots and Zeros.ppt
5.7 Interactive Classroom Roots and Zeros.ppt
Β 
Quadratic Equation and discriminant
Quadratic Equation and discriminantQuadratic Equation and discriminant
Quadratic Equation and discriminant
Β 
Study materialfor class 10 Mathematics
Study materialfor class 10  MathematicsStudy materialfor class 10  Mathematics
Study materialfor class 10 Mathematics
Β 
Bonus math project
Bonus math projectBonus math project
Bonus math project
Β 
3.2 factoring polynomials
3.2   factoring polynomials3.2   factoring polynomials
3.2 factoring polynomials
Β 
Em01 ba
Em01 baEm01 ba
Em01 ba
Β 
Obj. 6 pythagorean theorem (1)
Obj. 6 pythagorean theorem (1)Obj. 6 pythagorean theorem (1)
Obj. 6 pythagorean theorem (1)
Β 
DISCRIMINANT.ppt
DISCRIMINANT.pptDISCRIMINANT.ppt
DISCRIMINANT.ppt
Β 
Algebra
AlgebraAlgebra
Algebra
Β 
Quadratic eq and discriminant
Quadratic eq and discriminantQuadratic eq and discriminant
Quadratic eq and discriminant
Β 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
Β 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functions
Β 
Annie
AnnieAnnie
Annie
Β 
Alg2 lesson 7-5
Alg2 lesson 7-5Alg2 lesson 7-5
Alg2 lesson 7-5
Β 
Chapter 1
Chapter 1Chapter 1
Chapter 1
Β 
Polyomials x
Polyomials xPolyomials x
Polyomials x
Β 
X and y intercept
X and y interceptX and y intercept
X and y intercept
Β 
Polynomials
PolynomialsPolynomials
Polynomials
Β 
AA Section 5-3
AA Section 5-3AA Section 5-3
AA Section 5-3
Β 

More from Jimbo Lamb

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5Jimbo Lamb
Β 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4Jimbo Lamb
Β 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3Jimbo Lamb
Β 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2Jimbo Lamb
Β 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2Jimbo Lamb
Β 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1Jimbo Lamb
Β 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3Jimbo Lamb
Β 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2Jimbo Lamb
Β 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1Jimbo Lamb
Β 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8Jimbo Lamb
Β 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6Jimbo Lamb
Β 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6Jimbo Lamb
Β 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5Jimbo Lamb
Β 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4Jimbo Lamb
Β 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3Jimbo Lamb
Β 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2Jimbo Lamb
Β 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1Jimbo Lamb
Β 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5Jimbo Lamb
Β 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4Jimbo Lamb
Β 
Algebra 2 Section 4-2
Algebra 2 Section 4-2Algebra 2 Section 4-2
Algebra 2 Section 4-2Jimbo Lamb
Β 

More from Jimbo Lamb (20)

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5
Β 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4
Β 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3
Β 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
Β 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
Β 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1
Β 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3
Β 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2
Β 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1
Β 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8
Β 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6
Β 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6
Β 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5
Β 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4
Β 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3
Β 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2
Β 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1
Β 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5
Β 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4
Β 
Algebra 2 Section 4-2
Algebra 2 Section 4-2Algebra 2 Section 4-2
Algebra 2 Section 4-2
Β 

Recently uploaded

Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
Β 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
Β 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
Β 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
Β 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
Β 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
Β 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
Β 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
Β 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
Β 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
Β 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
Β 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
Β 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
Β 

Recently uploaded (20)

OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
Β 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
Β 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Β 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
Β 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
Β 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
Β 
Model Call Girl in Bikash Puri Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Bikash Puri  Delhi reach out to us at πŸ”9953056974πŸ”Model Call Girl in Bikash Puri  Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Bikash Puri Delhi reach out to us at πŸ”9953056974πŸ”
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
Β 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
Β 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
Β 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
Β 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
Β 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
Β 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
Β 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
Β 
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Β 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
Β 

Algebra 2 Section 4-9

  • 2. Essential Questions β€’ How do you determine the number and type of roots for a polynomial equation? β€’ How do you find the zeros of a polynomial function?
  • 4. Fundamental Theorem of Algebra Every polynomial with degree greater than zero has at least one root in the set of complex numbers.
  • 5. Example 1 Solve each equation. State the number and type of roots. a. x 2 + 2x βˆ’ 48 = 0
  • 6. Example 1 Solve each equation. State the number and type of roots. a. x 2 + 2x βˆ’ 48 = 0 (x + 8)(x βˆ’ 6) = 0
  • 7. Example 1 Solve each equation. State the number and type of roots. a. x 2 + 2x βˆ’ 48 = 0 (x + 8)(x βˆ’ 6) = 0 (x + 8) = 0
  • 8. Example 1 Solve each equation. State the number and type of roots. a. x 2 + 2x βˆ’ 48 = 0 (x + 8)(x βˆ’ 6) = 0 (x + 8) = 0 (x βˆ’ 6) = 0
  • 9. Example 1 Solve each equation. State the number and type of roots. a. x 2 + 2x βˆ’ 48 = 0 (x + 8)(x βˆ’ 6) = 0 (x + 8) = 0 (x βˆ’ 6) = 0 x = βˆ’8
  • 10. Example 1 Solve each equation. State the number and type of roots. a. x 2 + 2x βˆ’ 48 = 0 (x + 8)(x βˆ’ 6) = 0 (x + 8) = 0 (x βˆ’ 6) = 0 x = βˆ’8 x = 6
  • 11. Example 1 Solve each equation. State the number and type of roots. a. x 2 + 2x βˆ’ 48 = 0 (x + 8)(x βˆ’ 6) = 0 (x + 8) = 0 (x βˆ’ 6) = 0 x = βˆ’8 x = 6 There are two real roots.
  • 12. Example 1 Solve each equation. State the number and type of roots. b. y 4 βˆ’ 256 = 0
  • 13. Example 1 Solve each equation. State the number and type of roots. b. y 4 βˆ’ 256 = 0 (y 2 +16)(y 2 βˆ’16) = 0
  • 14. Example 1 Solve each equation. State the number and type of roots. b. y 4 βˆ’ 256 = 0 (y 2 +16)(y 2 βˆ’16) = 0 (y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0
  • 15. Example 1 Solve each equation. State the number and type of roots. b. y 4 βˆ’ 256 = 0 (y 2 +16)(y 2 βˆ’16) = 0 (y + 4i ) = 0 (y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0
  • 16. Example 1 Solve each equation. State the number and type of roots. b. y 4 βˆ’ 256 = 0 (y 2 +16)(y 2 βˆ’16) = 0 (y + 4i ) = 0 (y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0 (y βˆ’ 4i ) = 0
  • 17. Example 1 Solve each equation. State the number and type of roots. b. y 4 βˆ’ 256 = 0 (y 2 +16)(y 2 βˆ’16) = 0 (y + 4i ) = 0 (y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0 (y βˆ’ 4i ) = 0 (y + 4) = 0
  • 18. Example 1 Solve each equation. State the number and type of roots. b. y 4 βˆ’ 256 = 0 (y 2 +16)(y 2 βˆ’16) = 0 (y + 4i ) = 0 (y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0 (y βˆ’ 4i ) = 0 (y + 4) = 0 (y βˆ’ 4) = 0
  • 19. Example 1 Solve each equation. State the number and type of roots. b. y 4 βˆ’ 256 = 0 (y 2 +16)(y 2 βˆ’16) = 0 (y + 4i ) = 0 (y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0 (y βˆ’ 4i ) = 0 (y + 4) = 0 (y βˆ’ 4) = 0 y = βˆ’4i
  • 20. Example 1 Solve each equation. State the number and type of roots. b. y 4 βˆ’ 256 = 0 (y 2 +16)(y 2 βˆ’16) = 0 (y + 4i ) = 0 (y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0 (y βˆ’ 4i ) = 0 (y + 4) = 0 (y βˆ’ 4) = 0 y = βˆ’4i y = 4i
  • 21. Example 1 Solve each equation. State the number and type of roots. b. y 4 βˆ’ 256 = 0 (y 2 +16)(y 2 βˆ’16) = 0 (y + 4i ) = 0 (y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0 (y βˆ’ 4i ) = 0 (y + 4) = 0 (y βˆ’ 4) = 0 y = βˆ’4i y = 4i y = βˆ’4
  • 22. Example 1 Solve each equation. State the number and type of roots. b. y 4 βˆ’ 256 = 0 (y 2 +16)(y 2 βˆ’16) = 0 (y + 4i ) = 0 (y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0 (y βˆ’ 4i ) = 0 (y + 4) = 0 (y βˆ’ 4) = 0 y = βˆ’4i y = 4i y = βˆ’4 y = 4
  • 23. Example 1 Solve each equation. State the number and type of roots. b. y 4 βˆ’ 256 = 0 (y 2 +16)(y 2 βˆ’16) = 0 (y + 4i ) = 0 There are two imaginary root and two real roots. (y + 4i )(y βˆ’ 4i )(y + 4)(y βˆ’ 4) = 0 (y βˆ’ 4i ) = 0 (y + 4) = 0 (y βˆ’ 4) = 0 y = βˆ’4i y = 4i y = βˆ’4 y = 4
  • 24. Corollary to the Fundamental Theorem of Algebra
  • 25. Corollary to the Fundamental Theorem of Algebra A polynomial equation of degree n has exactly n roots in the set of complex numbers, including double roots.
  • 26. Descartes’ Rule of Signs Let be a polynomial function with real coefficients. Then: P(x ) = anxn +...+ a1x + a0
  • 27. Descartes’ Rule of Signs Let be a polynomial function with real coefficients. Then: P(x ) = anxn +...+ a1x + a0 β€’ The number of positive real zeros of P(x) is the same as the number of changes in sign of the coefficients of the terms, or is less than this by an even number
  • 28. Descartes’ Rule of Signs Let be a polynomial function with real coefficients. Then: P(x ) = anxn +...+ a1x + a0 β€’ The number of positive real zeros of P(x) is the same as the number of changes in sign of the coefficients of the terms, or is less than this by an even number β€’ The number of negative real zeros of P(x) is the same as the number of changes in sign of the coefficients of the terms of P(βˆ’x), or is less than this by an even number
  • 29. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of
  • 30. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of
  • 31. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of Yes
  • 32. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of Yes
  • 33. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of Yes Yes
  • 34. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of Yes Yes
  • 35. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of Yes Yes No
  • 36. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of Yes Yes No
  • 37. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of Yes Yes No No
  • 38. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of Yes Yes No No There are two sign changes, so there are either 2 or 0 positive zeros
  • 39. Example 2 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of p(βˆ’x ) = βˆ’(βˆ’x )6 + 4(βˆ’x )3 βˆ’ 2(βˆ’x )2 βˆ’ (βˆ’x )βˆ’1
  • 40. Example 2 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of p(βˆ’x ) = βˆ’(βˆ’x )6 + 4(βˆ’x )3 βˆ’ 2(βˆ’x )2 βˆ’ (βˆ’x )βˆ’1 p(βˆ’x ) = βˆ’x 6 βˆ’ 4x 3 βˆ’ 2x 2 + x βˆ’1
  • 41. Example 2 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of p(βˆ’x ) = βˆ’(βˆ’x )6 + 4(βˆ’x )3 βˆ’ 2(βˆ’x )2 βˆ’ (βˆ’x )βˆ’1 p(βˆ’x ) = βˆ’x 6 βˆ’ 4x 3 βˆ’ 2x 2 + x βˆ’1
  • 42. Example 2 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of p(βˆ’x ) = βˆ’(βˆ’x )6 + 4(βˆ’x )3 βˆ’ 2(βˆ’x )2 βˆ’ (βˆ’x )βˆ’1 No p(βˆ’x ) = βˆ’x 6 βˆ’ 4x 3 βˆ’ 2x 2 + x βˆ’1
  • 43. Example 2 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of p(βˆ’x ) = βˆ’(βˆ’x )6 + 4(βˆ’x )3 βˆ’ 2(βˆ’x )2 βˆ’ (βˆ’x )βˆ’1 No p(βˆ’x ) = βˆ’x 6 βˆ’ 4x 3 βˆ’ 2x 2 + x βˆ’1
  • 44. Example 2 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of p(βˆ’x ) = βˆ’(βˆ’x )6 + 4(βˆ’x )3 βˆ’ 2(βˆ’x )2 βˆ’ (βˆ’x )βˆ’1 No No p(βˆ’x ) = βˆ’x 6 βˆ’ 4x 3 βˆ’ 2x 2 + x βˆ’1
  • 45. Example 2 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of p(βˆ’x ) = βˆ’(βˆ’x )6 + 4(βˆ’x )3 βˆ’ 2(βˆ’x )2 βˆ’ (βˆ’x )βˆ’1 No No p(βˆ’x ) = βˆ’x 6 βˆ’ 4x 3 βˆ’ 2x 2 + x βˆ’1
  • 46. Example 2 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of p(βˆ’x ) = βˆ’(βˆ’x )6 + 4(βˆ’x )3 βˆ’ 2(βˆ’x )2 βˆ’ (βˆ’x )βˆ’1 No No Yes p(βˆ’x ) = βˆ’x 6 βˆ’ 4x 3 βˆ’ 2x 2 + x βˆ’1
  • 47. Example 2 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of p(βˆ’x ) = βˆ’(βˆ’x )6 + 4(βˆ’x )3 βˆ’ 2(βˆ’x )2 βˆ’ (βˆ’x )βˆ’1 No No Yes p(βˆ’x ) = βˆ’x 6 βˆ’ 4x 3 βˆ’ 2x 2 + x βˆ’1
  • 48. Example 2 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of p(βˆ’x ) = βˆ’(βˆ’x )6 + 4(βˆ’x )3 βˆ’ 2(βˆ’x )2 βˆ’ (βˆ’x )βˆ’1 No No Yes Yes p(βˆ’x ) = βˆ’x 6 βˆ’ 4x 3 βˆ’ 2x 2 + x βˆ’1
  • 49. Example 2 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of There are two sign changes, so there are either 2 or 0 negative zeros p(βˆ’x ) = βˆ’(βˆ’x )6 + 4(βˆ’x )3 βˆ’ 2(βˆ’x )2 βˆ’ (βˆ’x )βˆ’1 No No Yes Yes p(βˆ’x ) = βˆ’x 6 βˆ’ 4x 3 βˆ’ 2x 2 + x βˆ’1
  • 50. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of
  • 51. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros
  • 52. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2
  • 53. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2
  • 54. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2
  • 55. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6
  • 56. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6 2
  • 57. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6 2 0
  • 58. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6 2 0 4
  • 59. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6 2 0 4 6
  • 60. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6 2 0 4 6 0
  • 61. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6 2 0 4 6 0 2
  • 62. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6 2 0 4 6 0 2 4
  • 63. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6 2 0 4 6 0 2 4 6
  • 64. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6 2 0 4 6 0 2 4 6 0
  • 65. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6 2 0 4 6 0 2 4 6 0 0
  • 66. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6 2 0 4 6 0 2 4 6 0 0 6
  • 67. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of + zeros βˆ’ zeros imaginary zeros total zeros 2 2 2 6 2 0 4 6 0 2 4 6 0 0 6 6
  • 68. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of
  • 69. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of There are either 2 or 0 real positive roots.
  • 70. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of There are either 2 or 0 real positive roots. There are either 2 or 0 real negative roots.
  • 71. Example 2 p(x ) = βˆ’x 6 + 4x 3 βˆ’ 2x 2 βˆ’ x βˆ’1 State the possible number of positive real zeros, negative real zeros, and imaginary zeros of There are either 2 or 0 real positive roots. There are either 2 or 0 real negative roots. There are either 6, 4, or 2 real negative roots.
  • 72. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 73. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 74. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes
  • 75. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes
  • 76. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes
  • 77. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes
  • 78. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes No
  • 79. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes No There are either 2 or 0 real positive zeros
  • 80. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes No There are either 2 or 0 real positive zeros f (βˆ’x ) = (βˆ’x )3 βˆ’ (βˆ’x )2 + 2(βˆ’x )+ 4
  • 81. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes No There are either 2 or 0 real positive zeros f (βˆ’x ) = (βˆ’x )3 βˆ’ (βˆ’x )2 + 2(βˆ’x )+ 4 f (βˆ’x ) = βˆ’x 3 βˆ’ x 2 βˆ’ 2x + 4
  • 82. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes No There are either 2 or 0 real positive zeros f (βˆ’x ) = (βˆ’x )3 βˆ’ (βˆ’x )2 + 2(βˆ’x )+ 4 f (βˆ’x ) = βˆ’x 3 βˆ’ x 2 βˆ’ 2x + 4
  • 83. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes No There are either 2 or 0 real positive zeros f (βˆ’x ) = (βˆ’x )3 βˆ’ (βˆ’x )2 + 2(βˆ’x )+ 4 No f (βˆ’x ) = βˆ’x 3 βˆ’ x 2 βˆ’ 2x + 4
  • 84. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes No There are either 2 or 0 real positive zeros f (βˆ’x ) = (βˆ’x )3 βˆ’ (βˆ’x )2 + 2(βˆ’x )+ 4 No f (βˆ’x ) = βˆ’x 3 βˆ’ x 2 βˆ’ 2x + 4
  • 85. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes No There are either 2 or 0 real positive zeros f (βˆ’x ) = (βˆ’x )3 βˆ’ (βˆ’x )2 + 2(βˆ’x )+ 4 No No f (βˆ’x ) = βˆ’x 3 βˆ’ x 2 βˆ’ 2x + 4
  • 86. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes No There are either 2 or 0 real positive zeros f (βˆ’x ) = (βˆ’x )3 βˆ’ (βˆ’x )2 + 2(βˆ’x )+ 4 No No f (βˆ’x ) = βˆ’x 3 βˆ’ x 2 βˆ’ 2x + 4
  • 87. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes No There are either 2 or 0 real positive zeros f (βˆ’x ) = (βˆ’x )3 βˆ’ (βˆ’x )2 + 2(βˆ’x )+ 4 No No Yes f (βˆ’x ) = βˆ’x 3 βˆ’ x 2 βˆ’ 2x + 4
  • 88. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Yes Yes No There are either 2 or 0 real positive zeros f (βˆ’x ) = (βˆ’x )3 βˆ’ (βˆ’x )2 + 2(βˆ’x )+ 4 No No Yes There is 1 real negative zero f (βˆ’x ) = βˆ’x 3 βˆ’ x 2 βˆ’ 2x + 4
  • 89. Example 3 f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 90. Example 3 + zeros βˆ’ zeros imaginary zeros total zeros f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 91. Example 3 + zeros βˆ’ zeros imaginary zeros total zeros 2 f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 92. Example 3 + zeros βˆ’ zeros imaginary zeros total zeros 2 1 f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 93. Example 3 + zeros βˆ’ zeros imaginary zeros total zeros 2 1 0 f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 94. Example 3 + zeros βˆ’ zeros imaginary zeros total zeros 2 1 0 3 f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 95. Example 3 + zeros βˆ’ zeros imaginary zeros total zeros 2 1 0 3 0 f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 96. Example 3 + zeros βˆ’ zeros imaginary zeros total zeros 2 1 0 3 0 1 f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 97. Example 3 + zeros βˆ’ zeros imaginary zeros total zeros 2 1 0 3 0 1 2 f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 98. Example 3 + zeros βˆ’ zeros imaginary zeros total zeros 2 1 0 3 0 1 2 3 f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 99. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4
  • 100. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator.
  • 101. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator.
  • 102. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator. First zero: x = βˆ’1
  • 103. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator. First zero: x = βˆ’1 1 βˆ’1 2 4βˆ’1
  • 104. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator. First zero: x = βˆ’1 1 βˆ’1 2 4βˆ’1 1
  • 105. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator. First zero: x = βˆ’1 1 βˆ’1 2 4βˆ’1 1 βˆ’1
  • 106. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator. First zero: x = βˆ’1 1 βˆ’1 2 4βˆ’1 1 βˆ’1 βˆ’2
  • 107. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator. First zero: x = βˆ’1 1 βˆ’1 2 4βˆ’1 1 βˆ’1 βˆ’2 2
  • 108. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator. First zero: x = βˆ’1 1 βˆ’1 2 4βˆ’1 1 βˆ’1 βˆ’2 2 4
  • 109. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator. First zero: x = βˆ’1 1 βˆ’1 2 4βˆ’1 1 βˆ’1 βˆ’2 2 4 βˆ’4
  • 110. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator. First zero: x = βˆ’1 1 βˆ’1 2 4βˆ’1 1 βˆ’1 βˆ’2 2 4 βˆ’4 0
  • 111. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator. First zero: x = βˆ’1 1 βˆ’1 2 4βˆ’1 1 βˆ’1 βˆ’2 2 4 βˆ’4 0
  • 112. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Not factorable, so find a root with the calculator. First zero: x = βˆ’1 1 βˆ’1 2 4βˆ’1 1 βˆ’1 βˆ’2 2 4 βˆ’4 0 (x +1)(x 2 βˆ’ 2x + 4)
  • 113. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Since we have one negative root, the other roots are imaginary. (x +1)(x 2 βˆ’ 2x + 4)
  • 114. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Since we have one negative root, the other roots are imaginary. (x +1)(x 2 βˆ’ 2x + 4) x = βˆ’b Β± b2 βˆ’ 4ac 2a
  • 115. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Since we have one negative root, the other roots are imaginary. (x +1)(x 2 βˆ’ 2x + 4) x = βˆ’b Β± b2 βˆ’ 4ac 2a x = 2 Β± (βˆ’2)2 βˆ’ 4(1)(4) 2(1)
  • 116. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Since we have one negative root, the other roots are imaginary. (x +1)(x 2 βˆ’ 2x + 4) x = βˆ’b Β± b2 βˆ’ 4ac 2a x = 2 Β± (βˆ’2)2 βˆ’ 4(1)(4) 2(1) x = 2 Β± 4 βˆ’16 2
  • 117. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Since we have one negative root, the other roots are imaginary. (x +1)(x 2 βˆ’ 2x + 4) x = βˆ’b Β± b2 βˆ’ 4ac 2a x = 2 Β± (βˆ’2)2 βˆ’ 4(1)(4) 2(1) x = 2 Β± 4 βˆ’16 2 x = 2 Β± βˆ’12 2
  • 118. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Since we have one negative root, the other roots are imaginary. (x +1)(x 2 βˆ’ 2x + 4) x = βˆ’b Β± b2 βˆ’ 4ac 2a x = 2 Β± (βˆ’2)2 βˆ’ 4(1)(4) 2(1) x = 2 Β± 4 βˆ’16 2 x = 2 Β± βˆ’12 2 x = 2 Β± 2i 3 2
  • 119. Example 3 Find all of the zeros of f (x ) = x 3 βˆ’ x 2 + 2x + 4 Since we have one negative root, the other roots are imaginary. (x +1)(x 2 βˆ’ 2x + 4) x = βˆ’b Β± b2 βˆ’ 4ac 2a x = 2 Β± (βˆ’2)2 βˆ’ 4(1)(4) 2(1) x = 2 Β± 4 βˆ’16 2 x = 2 Β± βˆ’12 2 x = 2 Β± 2i 3 2 x = 1Β± i 3
  • 121. Complex Conjugates Theorem Let a and b be real numbers and b β‰  0. If a + bi is a zero of a polynomial with real coefficients, then a βˆ’ bi is also a zero of the function.
  • 122. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and .
  • 123. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . x = 4
  • 124. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . x = 4 x = 4 βˆ’ i
  • 125. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . x = 4 x = 4 + ix = 4 βˆ’ i
  • 126. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . x = 4 x = 4 + ix = 4 βˆ’ i (x βˆ’ 4) = 0
  • 127. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . x = 4 x = 4 + ix = 4 βˆ’ i (x βˆ’ 4) = 0 [x βˆ’ (4 βˆ’ i )] = 0
  • 128. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . x = 4 x = 4 + ix = 4 βˆ’ i (x βˆ’ 4) = 0 [x βˆ’ (4 βˆ’ i )] = 0 [x βˆ’ (4 + i )] = 0
  • 129. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . x = 4 x = 4 + ix = 4 βˆ’ i (x βˆ’ 4) = 0 [x βˆ’ (4 βˆ’ i )] = 0 [x βˆ’ (4 + i )] = 0 (x βˆ’ 4)[x βˆ’ (4 βˆ’ i )][x βˆ’ (4 + i )] = 0
  • 130. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . x = 4 x = 4 + ix = 4 βˆ’ i (x βˆ’ 4) = 0 [x βˆ’ (4 βˆ’ i )] = 0 [x βˆ’ (4 + i )] = 0 (x βˆ’ 4)[x βˆ’ (4 βˆ’ i )][x βˆ’ (4 + i )] = 0 (x βˆ’ 4)[(x βˆ’ 4)+ i )][(x βˆ’ 4)βˆ’ i )] = 0
  • 131. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . x = 4 x = 4 + ix = 4 βˆ’ i (x βˆ’ 4) = 0 [x βˆ’ (4 βˆ’ i )] = 0 [x βˆ’ (4 + i )] = 0 (x βˆ’ 4)[x βˆ’ (4 βˆ’ i )][x βˆ’ (4 + i )] = 0 (x βˆ’ 4)[(x βˆ’ 4)+ i )][(x βˆ’ 4)βˆ’ i )] = 0 (x βˆ’ 4)[(x βˆ’ 4)2 βˆ’ i 2 )] = 0
  • 132. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . x = 4 x = 4 + ix = 4 βˆ’ i (x βˆ’ 4) = 0 [x βˆ’ (4 βˆ’ i )] = 0 [x βˆ’ (4 + i )] = 0 (x βˆ’ 4)[x βˆ’ (4 βˆ’ i )][x βˆ’ (4 + i )] = 0 (x βˆ’ 4)[(x βˆ’ 4)+ i )][(x βˆ’ 4)βˆ’ i )] = 0 (x βˆ’ 4)[(x βˆ’ 4)2 βˆ’ i 2 )] = 0 (x βˆ’ 4)[x 2 βˆ’ 8x +16 βˆ’ (βˆ’1)] = 0
  • 133. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . (x βˆ’ 4)[x 2 βˆ’ 8x +16 βˆ’ (βˆ’1)] = 0
  • 134. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . (x βˆ’ 4)[x 2 βˆ’ 8x +16 βˆ’ (βˆ’1)] = 0 (x βˆ’ 4)(x 2 βˆ’ 8x +17) = 0
  • 135. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . (x βˆ’ 4)[x 2 βˆ’ 8x +16 βˆ’ (βˆ’1)] = 0 (x βˆ’ 4)(x 2 βˆ’ 8x +17) = 0 x 3 βˆ’ 8x 2 +17x βˆ’ 4x 2 + 32x βˆ’ 68 = 0
  • 136. Example 4 4 βˆ’ i Write a polynomial function of least degree with integer coefficients, the zeros of which include 4 and . (x βˆ’ 4)[x 2 βˆ’ 8x +16 βˆ’ (βˆ’1)] = 0 (x βˆ’ 4)(x 2 βˆ’ 8x +17) = 0 x 3 βˆ’ 8x 2 +17x βˆ’ 4x 2 + 32x βˆ’ 68 = 0 x 3 βˆ’12x 2 + 49x βˆ’ 68 = 0