STUDY OF NDVI, LAND SURFACE
TEMPERATURE USING LANDSAT (TM) DATA
Course: Introduction to RS & DIP
Mirza Muhammad Waqar
Contact:
mirza.waqar@ist.edu.pk
+92-21-34650765-79 EXT:2257
RG610
Landsat TM(07-03-2010)
LMAX_BAND1 = 193.000
LMIN_BAND1 = -1.520
LMAX_BAND2 = 365.000
LMIN_BAND2 = -2.840
LMAX_BAND3 = 264.000
LMIN_BAND3 = -1.170
LMAX_BAND4 = 221.000
LMIN_BAND4 = -1.510
LMAX_BAND5 = 30.200
LMIN_BAND5 = -0.370
LMAX_BAND6 = 15.303
LMIN_BAND6 = 1.238
LMAX_BAND7 = 16.500
LMIN_BAND7 = -0.150
Slope= (LMAX-LMIN)/(Max Gray)
Slope(B6)= (15.303-1.238)/(255)= 0.0551
Slope(B3)= (264+1.170)/(255)= 1.0398
Slope(B4)= (221+1.51)/(255)= 0.8725
Calculating Slope for Band= 3, 4 and 6
Radiance= Slope*DN + LMIN
LMAX_BAND1 = 193.000
LMIN_BAND1 = -1.520
LMAX_BAND2 = 365.000
LMIN_BAND2 = -2.840
LMAX_BAND3 = 264.000
LMIN_BAND3 = -1.170
LMAX_BAND4 = 221.000
LMIN_BAND4 = -1.510
LMAX_BAND5 = 30.200
LMIN_BAND5 = -0.370
LMAX_BAND6 = 15.303
LMIN_BAND6 = 1.238
LMAX_BAND7 = 16.500
LMIN_BAND7 = -0.150
R(3)= 1.0398 *B3-1.170
R(4)= 0.8725*B4-1.510
R(6)= 0.0551*B6-1.238
Calculating Radiance for Band= 3, 4 and 6
Radiance for Band 6
Calculating Radiance for Band= 3, 4 and 6
Calculating Brightness Temperature using
Planck's Black Body Radiation Law
TB = K2/Log{(K1/R6)+1)}
Where:
K1 = Calibration constant 1 (666.09 watt/m2
* ster * µm)
K2 = Calibration constant 2 (1282.71 K)
Surface Temperature= TB /{1+(λ *BT/ρ*logε)}
TB= Brightness Temperature
λ = Wavelength of emitted radiance (11.5 µm)
ρ = h x c/σ =1.438 x 10-2
mK (σ=Boltzmann constant=1.38 x 10-23
J/K,
h=Planck’s constant=6.626 x 10-34
Js, c=velocity of light=2.998 x 108
m/s)
ε = Land surface emissivity
Calculating Surface Temperature
Calculating Land surface emissivity (LSE)- ε
 LSE (ε) can be extracted by using NDVI considering
three different cases
 Bare ground
 Fully vegetated and
 Mixture of bare soil and vegetation
 For Band 6 of Landsat TM
 ε = 0.004*Pv + 0.986
 Pv is the proportion of vegetation which is given by
 Pv = [(NDVI-NDVImin)/(NDVImax-NDVImin)]2
NDVI = [Ref(B4)-Ref (B3)}/{Ref (B4)+Ref(B3)}
Pv
Calculating Pv
Pv = [(NDVI-NDVImin)/(NDVImax-NDVImin)]2
LSE
ε = 0.004*Pv + 0.986
Calculating ε
Logε
Calculating ε
Surface Temperature= TB /{1+(λ *BT/ρ) *logε}
λ = Wavelength of emitted radiance (11.5 µm)
ρ = h x c/σ =1.438 x 10-2
mK (σ=Boltzmann constant=1.38 x 10-23
J/K,
h=Planck’s constant=6.626 x 10-34
Js, c=velocity of light=2.998 x 108
m/s)
Calculating Surface Temperature
Land Surface Temperature (LST)

Study of-ndvi-land-surface-temperature-using-landsat-tm-data

  • 1.
    STUDY OF NDVI,LAND SURFACE TEMPERATURE USING LANDSAT (TM) DATA Course: Introduction to RS & DIP Mirza Muhammad Waqar Contact: mirza.waqar@ist.edu.pk +92-21-34650765-79 EXT:2257 RG610
  • 2.
  • 3.
    LMAX_BAND1 = 193.000 LMIN_BAND1= -1.520 LMAX_BAND2 = 365.000 LMIN_BAND2 = -2.840 LMAX_BAND3 = 264.000 LMIN_BAND3 = -1.170 LMAX_BAND4 = 221.000 LMIN_BAND4 = -1.510 LMAX_BAND5 = 30.200 LMIN_BAND5 = -0.370 LMAX_BAND6 = 15.303 LMIN_BAND6 = 1.238 LMAX_BAND7 = 16.500 LMIN_BAND7 = -0.150 Slope= (LMAX-LMIN)/(Max Gray) Slope(B6)= (15.303-1.238)/(255)= 0.0551 Slope(B3)= (264+1.170)/(255)= 1.0398 Slope(B4)= (221+1.51)/(255)= 0.8725 Calculating Slope for Band= 3, 4 and 6
  • 4.
    Radiance= Slope*DN +LMIN LMAX_BAND1 = 193.000 LMIN_BAND1 = -1.520 LMAX_BAND2 = 365.000 LMIN_BAND2 = -2.840 LMAX_BAND3 = 264.000 LMIN_BAND3 = -1.170 LMAX_BAND4 = 221.000 LMIN_BAND4 = -1.510 LMAX_BAND5 = 30.200 LMIN_BAND5 = -0.370 LMAX_BAND6 = 15.303 LMIN_BAND6 = 1.238 LMAX_BAND7 = 16.500 LMIN_BAND7 = -0.150 R(3)= 1.0398 *B3-1.170 R(4)= 0.8725*B4-1.510 R(6)= 0.0551*B6-1.238 Calculating Radiance for Band= 3, 4 and 6
  • 5.
    Radiance for Band6 Calculating Radiance for Band= 3, 4 and 6
  • 6.
    Calculating Brightness Temperatureusing Planck's Black Body Radiation Law TB = K2/Log{(K1/R6)+1)} Where: K1 = Calibration constant 1 (666.09 watt/m2 * ster * µm) K2 = Calibration constant 2 (1282.71 K)
  • 7.
    Surface Temperature= TB/{1+(λ *BT/ρ*logε)} TB= Brightness Temperature λ = Wavelength of emitted radiance (11.5 µm) ρ = h x c/σ =1.438 x 10-2 mK (σ=Boltzmann constant=1.38 x 10-23 J/K, h=Planck’s constant=6.626 x 10-34 Js, c=velocity of light=2.998 x 108 m/s) ε = Land surface emissivity Calculating Surface Temperature
  • 8.
    Calculating Land surfaceemissivity (LSE)- ε  LSE (ε) can be extracted by using NDVI considering three different cases  Bare ground  Fully vegetated and  Mixture of bare soil and vegetation  For Band 6 of Landsat TM  ε = 0.004*Pv + 0.986  Pv is the proportion of vegetation which is given by  Pv = [(NDVI-NDVImin)/(NDVImax-NDVImin)]2
  • 9.
    NDVI = [Ref(B4)-Ref(B3)}/{Ref (B4)+Ref(B3)} Pv Calculating Pv
  • 10.
  • 11.
    LSE ε = 0.004*Pv+ 0.986 Calculating ε
  • 12.
  • 13.
    Surface Temperature= TB/{1+(λ *BT/ρ) *logε} λ = Wavelength of emitted radiance (11.5 µm) ρ = h x c/σ =1.438 x 10-2 mK (σ=Boltzmann constant=1.38 x 10-23 J/K, h=Planck’s constant=6.626 x 10-34 Js, c=velocity of light=2.998 x 108 m/s) Calculating Surface Temperature
  • 14.