REMOTE SENSING
Thursday, 29 November 2017
J.Mwaura
RS APPLICATIONS & SEMINAR
Linear Contrast Stretching
0-255 in an 8-bit system
• 𝐷𝑁𝑠𝑡 = 255 × (𝐷𝑁 𝑖𝑛−𝐷𝑁 𝑚𝑖𝑛)
(𝐷𝑁 𝑚𝑎𝑥−𝐷𝑁 𝑚𝑖𝑛)
DN values range from 60-158
• 0-59 and 159-255 are not utilized
Histogram-equalized
Stretching
• Lets stretch values in the range [75-150]
– 𝐷𝑁𝑠𝑡 = 255 𝑗=0
𝑘
(
𝑛 𝑗
𝑁
)
• 𝐷𝑁𝑠𝑡 = 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝐷𝑁 𝑣𝑎𝑙𝑢𝑒
• 𝑛𝑗 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝐷𝑁 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑡ℎ𝑒
𝑗 𝑡ℎ 𝑟𝑎𝑛𝑔𝑒, 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒
• 𝑘 = 𝑚𝑎𝑥. 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑁 𝑟𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒
• 𝑁 = 𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒
Calculate Slope for
Band and Radiance
Metadata:
• LMAX_BAND6 = 15.303
• LMIN_BAND6 = 1.238
• 𝑆𝑙𝑜𝑝𝑒 =
(𝑙𝑚𝑎𝑥−𝑙𝑚𝑖𝑛)
𝑚𝑎𝑥
• 𝑆𝑙𝑜𝑝𝑒 𝐵6 =
15.303−1.238
255
• = 0.0551
• 𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 = 𝑠𝑙𝑜𝑝𝑒 × 𝐷𝑁 + 𝑙𝑚𝑖𝑛
• 𝑅 𝐵6 = 0.0551 × 𝐷𝑁 𝐵6 − 1.238
»e.g. DN = 69
• 0.0551 × 69 − 1.238 = 2.5639
Calculate Temperature
(at-sensor/TOA)
• Using Planck's Black Body Radiation Law
–𝑇 =
𝑘2
ln
𝑘1
𝑅
+1
,
𝑘 = 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,
𝑅 = 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑏𝑎𝑛𝑑 = 2.5639
»𝑘1 = 666.09
»𝑘2 = 1282.71
• 𝑇𝐵6 =
1282.71
ln
666.09
2.5639
+1
= 195.54
• Calculating Surface Temperature
𝑇𝑠 =
𝑇𝐵
1 + λ ∗
𝑇𝐵
𝜌
∗ log 𝜀
– 𝑇𝐵 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝜀 = 𝑙𝑎𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦
– λ = 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ, 𝜌 = ℎ 𝑝𝑙𝑎𝑛𝑐𝑘′ 𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝑐
𝜎 𝑏𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
• LSE (ε) can be extracted by using NDVI considering
three different cases
• Bare soil
• Vegetation
• Mixture of bare soil and vegetation
Land Surface
Emissity (LSE)
• For Band 6 of Landsat TM
• 𝜀 = 0.004 × 𝑝𝑣 + 0.986
• 𝑝𝑣 is the proportion of vegetation which is
given by
• 𝑝𝑣 = {
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼 𝑚𝑖𝑛
(𝑁𝐷𝑉𝐼 𝑚𝑎𝑥−𝑁𝐷𝑉𝐼 𝑚𝑖𝑛)
}2
Land Surface
Temperature (LST)
• Parameters
»𝑇𝐵6 = 195.54
»𝜌 = 14380
»𝜀 = 1.2345
»𝜆 = 11.5 µm
– 𝑇𝑠 =
195.54
1+ 11.5×
195.54
14380
×log 1.2345
= 192.780
𝑐
Energy Interactions
Irradiance at-TOA?(1)
−6.70
𝐸 𝑅 = 𝐸 𝑇 × cos ∝
𝑇. 𝐶𝑎𝑛𝑐𝑒𝑟
𝐸𝑄𝑈𝐴𝑇𝑂𝑅
𝑇. 𝐶𝑎𝑝𝑟𝑖𝑐𝑜𝑛
𝑑 = 0.996
𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒
𝐸 𝑇 =
𝐸𝑡
𝑑2
−23.30
?
Irradiance at-TOA?(2)
Sky
irradiance
(𝐼𝑠 = 12𝑢𝑛𝑖𝑡𝑠)
Path radiance
(𝑅 𝑝 = 2𝑢𝑛𝑖𝑡𝑠)
Pixel
irradiance
𝐼 𝑝 = 6𝑢𝑛𝑖𝑡𝑠
Sensor
𝐺𝑎𝑖𝑛 = 0.89,
𝑑𝑎𝑟𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = −19
reflectance (𝜌 = 0.62)
Incident
irradiance (𝐸𝑖)
𝐓. 𝐎. 𝐀
Atmosphere
(t = 0.79)
Sky radiance
(𝑅 𝑠 = 14𝑢𝑛𝑖𝑡𝑠)
@𝐬𝐞𝐧𝐬𝐨𝐫
@𝐩𝐢𝐱𝐞𝐥
Irradiance at-TOA?(3)
1. 𝐸𝑡 =
258+19
0.89
= 311.24 𝑢𝑛𝑖𝑡𝑠
2. 𝐸𝑟 = 311.24 × cos(6.7) = 309.11 𝑢𝑛𝑖𝑡𝑠
 at Sensor Radiance
3. At pixel:
• 𝐼𝑠 = 0.79 × 12 = 9.48𝑢𝑛𝑖𝑡𝑠
• 𝐼 𝑝 = 0.79 × 6 = 4.74 𝑢𝑛𝑖𝑡𝑠
Irradiance at-TOA?(4)
4. Reflected at pixel:
• 𝐼𝑠 = 0.62 × 9.84 = 5.88𝑢𝑛𝑖𝑡𝑠
• 𝐼𝑠 = 0.62 × 4.74 = 2.94𝑢𝑛𝑖𝑡𝑠
5. At TOA (@sensor):
• 𝐼𝑠 = 0.79 × 5.88 = 4.65𝑢𝑛𝑖𝑡𝑠
• 𝐼 𝑝 = 0.79 × 2.94 = 2.32𝑢𝑛𝑖𝑡𝑠
• 𝑅 𝑝 = 0.79 × 2 = 1.58𝑢𝑛𝑖𝑡𝑠
• 𝑅 𝑠 = 0.79 × 14 = 11.06𝑢𝑛𝑖𝑡𝑠
6. Total = 19.61𝑢𝑛𝑖𝑡𝑠
Irradiance at-TOA?(5)
7. Reflected at pixel:
• 0.79 𝐸𝑟 + 19.61 = 309.11𝑢𝑛𝑖𝑡𝑠
• 𝐸𝑟 =
309.11−19.61
0.79
= 366.46𝑢𝑛𝑖𝑡𝑠
8. At TOA (@sun):
• 𝐸𝑖 =
366.46
0.62
= 591.06𝑢𝑛𝑖𝑡𝑠
• 𝐸𝑖@𝑡𝑜𝑎 =
591.06
0.79
= 748.17𝑢𝑛𝑖𝑡𝑠
• 𝐸𝑖@𝑡𝑜𝑎 =
748.17
0.9962 = 754.20𝑢𝑛𝑖𝑡𝑠
That’s it
Thanks…

Remote Sensing

  • 1.
    REMOTE SENSING Thursday, 29November 2017 J.Mwaura RS APPLICATIONS & SEMINAR
  • 2.
    Linear Contrast Stretching 0-255in an 8-bit system • 𝐷𝑁𝑠𝑡 = 255 × (𝐷𝑁 𝑖𝑛−𝐷𝑁 𝑚𝑖𝑛) (𝐷𝑁 𝑚𝑎𝑥−𝐷𝑁 𝑚𝑖𝑛) DN values range from 60-158 • 0-59 and 159-255 are not utilized
  • 3.
    Histogram-equalized Stretching • Lets stretchvalues in the range [75-150] – 𝐷𝑁𝑠𝑡 = 255 𝑗=0 𝑘 ( 𝑛 𝑗 𝑁 ) • 𝐷𝑁𝑠𝑡 = 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝐷𝑁 𝑣𝑎𝑙𝑢𝑒 • 𝑛𝑗 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝐷𝑁 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑗 𝑡ℎ 𝑟𝑎𝑛𝑔𝑒, 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 • 𝑘 = 𝑚𝑎𝑥. 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑁 𝑟𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 • 𝑁 = 𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒
  • 4.
    Calculate Slope for Bandand Radiance Metadata: • LMAX_BAND6 = 15.303 • LMIN_BAND6 = 1.238 • 𝑆𝑙𝑜𝑝𝑒 = (𝑙𝑚𝑎𝑥−𝑙𝑚𝑖𝑛) 𝑚𝑎𝑥 • 𝑆𝑙𝑜𝑝𝑒 𝐵6 = 15.303−1.238 255 • = 0.0551 • 𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 = 𝑠𝑙𝑜𝑝𝑒 × 𝐷𝑁 + 𝑙𝑚𝑖𝑛 • 𝑅 𝐵6 = 0.0551 × 𝐷𝑁 𝐵6 − 1.238 »e.g. DN = 69 • 0.0551 × 69 − 1.238 = 2.5639
  • 5.
    Calculate Temperature (at-sensor/TOA) • UsingPlanck's Black Body Radiation Law –𝑇 = 𝑘2 ln 𝑘1 𝑅 +1 , 𝑘 = 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑅 = 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑏𝑎𝑛𝑑 = 2.5639 »𝑘1 = 666.09 »𝑘2 = 1282.71 • 𝑇𝐵6 = 1282.71 ln 666.09 2.5639 +1 = 195.54
  • 6.
    • Calculating SurfaceTemperature 𝑇𝑠 = 𝑇𝐵 1 + λ ∗ 𝑇𝐵 𝜌 ∗ log 𝜀 – 𝑇𝐵 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝜀 = 𝑙𝑎𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 – λ = 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ, 𝜌 = ℎ 𝑝𝑙𝑎𝑛𝑐𝑘′ 𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝑐 𝜎 𝑏𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 • LSE (ε) can be extracted by using NDVI considering three different cases • Bare soil • Vegetation • Mixture of bare soil and vegetation
  • 7.
    Land Surface Emissity (LSE) •For Band 6 of Landsat TM • 𝜀 = 0.004 × 𝑝𝑣 + 0.986 • 𝑝𝑣 is the proportion of vegetation which is given by • 𝑝𝑣 = { 𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼 𝑚𝑖𝑛 (𝑁𝐷𝑉𝐼 𝑚𝑎𝑥−𝑁𝐷𝑉𝐼 𝑚𝑖𝑛) }2
  • 8.
    Land Surface Temperature (LST) •Parameters »𝑇𝐵6 = 195.54 »𝜌 = 14380 »𝜀 = 1.2345 »𝜆 = 11.5 µm – 𝑇𝑠 = 195.54 1+ 11.5× 195.54 14380 ×log 1.2345 = 192.780 𝑐
  • 9.
  • 10.
    Irradiance at-TOA?(1) −6.70 𝐸 𝑅= 𝐸 𝑇 × cos ∝ 𝑇. 𝐶𝑎𝑛𝑐𝑒𝑟 𝐸𝑄𝑈𝐴𝑇𝑂𝑅 𝑇. 𝐶𝑎𝑝𝑟𝑖𝑐𝑜𝑛 𝑑 = 0.996 𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝐸 𝑇 = 𝐸𝑡 𝑑2 −23.30 ?
  • 11.
    Irradiance at-TOA?(2) Sky irradiance (𝐼𝑠 =12𝑢𝑛𝑖𝑡𝑠) Path radiance (𝑅 𝑝 = 2𝑢𝑛𝑖𝑡𝑠) Pixel irradiance 𝐼 𝑝 = 6𝑢𝑛𝑖𝑡𝑠 Sensor 𝐺𝑎𝑖𝑛 = 0.89, 𝑑𝑎𝑟𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = −19 reflectance (𝜌 = 0.62) Incident irradiance (𝐸𝑖) 𝐓. 𝐎. 𝐀 Atmosphere (t = 0.79) Sky radiance (𝑅 𝑠 = 14𝑢𝑛𝑖𝑡𝑠) @𝐬𝐞𝐧𝐬𝐨𝐫 @𝐩𝐢𝐱𝐞𝐥
  • 12.
    Irradiance at-TOA?(3) 1. 𝐸𝑡= 258+19 0.89 = 311.24 𝑢𝑛𝑖𝑡𝑠 2. 𝐸𝑟 = 311.24 × cos(6.7) = 309.11 𝑢𝑛𝑖𝑡𝑠  at Sensor Radiance 3. At pixel: • 𝐼𝑠 = 0.79 × 12 = 9.48𝑢𝑛𝑖𝑡𝑠 • 𝐼 𝑝 = 0.79 × 6 = 4.74 𝑢𝑛𝑖𝑡𝑠
  • 13.
    Irradiance at-TOA?(4) 4. Reflectedat pixel: • 𝐼𝑠 = 0.62 × 9.84 = 5.88𝑢𝑛𝑖𝑡𝑠 • 𝐼𝑠 = 0.62 × 4.74 = 2.94𝑢𝑛𝑖𝑡𝑠 5. At TOA (@sensor): • 𝐼𝑠 = 0.79 × 5.88 = 4.65𝑢𝑛𝑖𝑡𝑠 • 𝐼 𝑝 = 0.79 × 2.94 = 2.32𝑢𝑛𝑖𝑡𝑠 • 𝑅 𝑝 = 0.79 × 2 = 1.58𝑢𝑛𝑖𝑡𝑠 • 𝑅 𝑠 = 0.79 × 14 = 11.06𝑢𝑛𝑖𝑡𝑠 6. Total = 19.61𝑢𝑛𝑖𝑡𝑠
  • 14.
    Irradiance at-TOA?(5) 7. Reflectedat pixel: • 0.79 𝐸𝑟 + 19.61 = 309.11𝑢𝑛𝑖𝑡𝑠 • 𝐸𝑟 = 309.11−19.61 0.79 = 366.46𝑢𝑛𝑖𝑡𝑠 8. At TOA (@sun): • 𝐸𝑖 = 366.46 0.62 = 591.06𝑢𝑛𝑖𝑡𝑠 • 𝐸𝑖@𝑡𝑜𝑎 = 591.06 0.79 = 748.17𝑢𝑛𝑖𝑡𝑠 • 𝐸𝑖@𝑡𝑜𝑎 = 748.17 0.9962 = 754.20𝑢𝑛𝑖𝑡𝑠
  • 15.