SlideShare a Scribd company logo
ΟΛΟΚΛΗΡΩ΢Η ΣΩΝ ΕΞΙ΢Ω΢ΕΩΝ
ΚΙΝΗ΢Η΢.
ΚΙΝΗ΢Η ΢Ε ΜΙΑ ΔΙΑ΢ΣΑ΢Η.
(Η ΠΕΡΙΠΣΩ΢Η ΣΟΤ ΑΡΜΟΝΙΚΟΤ ΣΑΛΑΝΣΩΣΗ).
Για ένα σωματίδιο μάζας m, το οποίο κινείται σε μια διάσταση
υπό την επίδραση δύναμης ( )
F x , έχοντας ολική ενέργεια Ε (που
αποτελεί σταθερά της κίνησης), η διατήρηση της ενέργειας δίνει:
2
1
( )
2
E mx U x

(1)
΢τη σχέση (1), Ε είναι η ολική ενέργεια του σωματιδίου, ( )
U x
είναι η δυναμική του ενέργεια και x
 η ταχύτητά του. ( dx
x
dt
 ). Από τη
σχέση λοιπόν (1), έχουμε διαδοχικά:
2
1
( )
2
mx U x E
 ή
2
1
( ) ( )
2
dx
m U x E
dt
ή
2 2
( ) [ ( )]
dx
E U x
dt m
ή
2
[ ( )]
dx
E U x
dt m
ή
2 ( )
m dx
dt
E U x
(2)
΢την παραπάνω σχέση (2), η υπόριζη ποσότητα ( )
E U x
ισούται με την κινητική ενέργεια του σωματιδίου και πρόκειται
προφανώς για μη αρνητική ποσότητα.
Με ολοκλήρωση της σχέσης (2), παίρνουμε:
0
0
2 ( )
x
x
m dx
t t
E U x
(3)
΢τη σχέση (3), 0
x είναι η θέση του σωματιδίου τη χρονική
στιγμή 0
t . Εισάγοντας στη σχέση (3) τη συνάρτηση ( )
U x που μας
δίνει τη δυναμική ενέργεια στο εκάστοτε πρόβλημά μας και
ολοκληρώνοντας, βρίσκουμε τη συνάρτηση ( )
t x , η αντίστροφη της
οποίας ( ( )
x t ) αποτελέι την εξίσωση κίνησης του σώματος.
΢τη συνέχεια ας θεωρήσουμε την περίπτωση του αρμονικού
ταλαντωτή. Η δυναμική ενέργεια είναι:
2
1
( )
2
U x kx
(4)
΢τη σχέση (4) για την σταθερά k , έχουμε ότι: 0
k .
΢χήμα 1. Σο δυναμικό αρμονικού ταλαντωτή
΢το σχήμα (1) βλέπουμε τη γραφική παράσταση του δυναμικού
ενός αρμονικού ταλαντωτή, του οποίου η ολική ενέργεια (σταθερά
της κίνησης) είναι: 2
1
2
E ka . Η δύναμη που απορρέει από το
δυναμικό αυτό είναι:
2
( ) 1
ˆ ˆ ˆ
( )
2
dU x d
F i kx i kxi
dx dx
(5)
Σο ˆ
i είναι το μοναδιαίο διάνυσμα στο x-άξονα.
Όπως είναι γνωστό, στην περίπτωση αυτή η κίνηση του
σωματίδιου είναι περιοδική μεταξύ των (ακραίων) θέσεων a και a.
Εμείς όμως θα προσποιηθούμε ότι δεν το γνωρίζουμε και θα
προσπαθήσουμε να φτάσουμε στο συμπέρασμα αυτό, μέσω
ολοκλήρωσης της εξίσωσης κίνησης. Ξεκινάμε λοιπόν...
Από την διατήρηση της ενέργειας έχουμε:
2
1
( )
2
mx U x E
 ή
2 2 2
1 1 1
( )
2 2 2
dx
m kx ka
dt
ή
2 2 2
( ) ( )
dx k
a x
dt m
ή
2 2
( )
dx k
a x
dt m
ή
2 2
k dx
dt
m a x
(7)
Με ολοκλήρωση λοιπόν θα έχουμε:
2 2
k dx
dt
m a x
(8)
Όμως:
2 2
arcsin( )
dx x
a
a x
(9)
Πράγματι:
Αν θέσουμε: arcsin( )
x
y
a
, θα έχουμε: sin
x
y
a
και τότε:
2 2 2 2
2
1 1 1 1 1
cos 1 sin
1
dy
dx
dx a y a y x a x
a
dy a
Έτσι λοιπόν με τη βοήθεια της (9), η (8) μας δίνει:
arcsin( )
x k
t C
a m
(10)
΢τη συνέχεια για ευκολία ας περιορισθούμε στη λύση με το
πρόσημο + (στα ίδια συμπεράσματα καταλήγουμε και με επιλογή
του πρόσημου -). Προκειμένου να προσδιορίσουμε τ σταθερά C της
ολοκλήρωσης, ας θεωρήσουμε (αρχική συνθήκη) ότι τη χρονική
στιγμή 0
t το σώμα βρίσκεται στο a . Από την σχέση (10) λοιπόν
θα έχουμε:
arcsin( )
a
C
a
ή
arcsin(1)
2
C
(11)
Μέσω της σχέσης (11) λοιπόν, η (10) γράφεται:
arcsin( )
2
x k
t
a m
ή
sin( )
2
x k
t
a m
ή
sin( )
2
k
x a t
m
(12)
΢τη συνέχεια (κατά τα γνωστά) θέτοντας:
k
m
, η σχέση
(12) γράφεται:
sin( ) cos( )
2
x a t a t
(13)
Επίσης:
Από τη σχέση: arcsin( )
2
x k
t
a m
, έχουμε:
arcsin( )
2
k x
t
m a
(14)
Έτσι λοιπόν αν ονομάσουμε 1
t τη χρονική στιγμή που το σώμα
βρίσκται στη θέση a , θα είναι: 1 arcsin(1) 0
2 2 2
k
t
m
ή
1 0
t (όπως άλλωστε αναμένουμε, αφού αυτή ήταν η αρχική μας
συνθήκη).
Αν ονομάσουμε 2
t τη χρονική στιγμή που για πρώτη φορά το
σώμα έρχεται στη θέση a, θα είναι:
2
3
arcsin( ) arcsin( 1)
2 2 2 2
k a
t
m a
ή
2
m
t
k
Έτσι λοιπόν ο χρόνος που κάνει το σώμα για να πάει από το ένα
άκρο στο άλλο άκρο της τροχιάς του είναι:
2 1
m
t t t
k
(15)
Ο χρόνος όμως αυτός, αντιστοιχεί στο μισό της περιόδου. Έτσι
λοιπόν έχουμε:
2
T m
k
ή
2
m
T
k
(16)
Βρίσκουμε λοιπόν έτσι την (γνωστή μας) σχέση για την περίοδο
του αρμονικού ταλαντωτή.
ΑΤΓΟΤ΢ΣΟ΢ 2013
ΥΙΟΡΕΝΣΙΝΟ΢ ΓΙΑΝΝΗ΢

More Related Content

What's hot

Δυναμική σχέση ανάμεσα στην απλή αρμονική κίνηση και στην κυκλική κίνηση
Δυναμική σχέση ανάμεσα στην απλή αρμονική κίνηση και στην κυκλική κίνησηΔυναμική σχέση ανάμεσα στην απλή αρμονική κίνηση και στην κυκλική κίνηση
Δυναμική σχέση ανάμεσα στην απλή αρμονική κίνηση και στην κυκλική κίνησηJohn Fiorentinos
 
Μετασχηματισμός Lorentz
Μετασχηματισμός LorentzΜετασχηματισμός Lorentz
Μετασχηματισμός Lorentz
John Fiorentinos
 
Κίνηση με αντίσταση ανάλογη του τετραγώνου της ταχύτητας
Κίνηση με αντίσταση ανάλογη του τετραγώνου της ταχύτηταςΚίνηση με αντίσταση ανάλογη του τετραγώνου της ταχύτητας
Κίνηση με αντίσταση ανάλογη του τετραγώνου της ταχύτητας
John Fiorentinos
 
Nonlinear dynamics and chaos in neural networks course project
Nonlinear dynamics and chaos in neural networks course projectNonlinear dynamics and chaos in neural networks course project
Nonlinear dynamics and chaos in neural networks course project
Konstantinos Dragonas
 
Η εξίσωση του κύματος στις η+1 διαστάσεις
Η εξίσωση του κύματος στις η+1 διαστάσειςΗ εξίσωση του κύματος στις η+1 διαστάσεις
Η εξίσωση του κύματος στις η+1 διαστάσειςJohn Fiorentinos
 
Από τη Λαγκρανζιανή στις εξισώσεις κίνησης
Από τη Λαγκρανζιανή στις εξισώσεις κίνησηςΑπό τη Λαγκρανζιανή στις εξισώσεις κίνησης
Από τη Λαγκρανζιανή στις εξισώσεις κίνησηςJohn Fiorentinos
 
Η θεμελιώδης εξίσωση της κίνησης για την ολική στροφορμή νευτώνιου συστήματος...
Η θεμελιώδης εξίσωση της κίνησης για την ολική στροφορμή νευτώνιου συστήματος...Η θεμελιώδης εξίσωση της κίνησης για την ολική στροφορμή νευτώνιου συστήματος...
Η θεμελιώδης εξίσωση της κίνησης για την ολική στροφορμή νευτώνιου συστήματος...pkarkantz
 
Ελατήριο με δύο μάζες
Ελατήριο με δύο μάζεςΕλατήριο με δύο μάζες
Ελατήριο με δύο μάζεςJohn Fiorentinos
 
Ελατήριο ανάμεσα σε δύο μάζες
Ελατήριο ανάμεσα σε δύο μάζεςΕλατήριο ανάμεσα σε δύο μάζες
Ελατήριο ανάμεσα σε δύο μάζεςJohn Fiorentinos
 
Physics γ' λυκείου για λύση
Physics γ'  λυκείου για λύση  Physics γ'  λυκείου για λύση
Physics γ' λυκείου για λύση
Μαυρουδης Μακης
 
Rayleigh jeans
Rayleigh   jeansRayleigh   jeans
Rayleigh jeans
1physics4me
 
Planck
PlanckPlanck
Planck
1physics4me
 
23 - Mετρήσεις ενέργειας και g με το Multilog και τον Selab timer
23 - Mετρήσεις ενέργειας και g με το Multilog και τον Selab timer23 - Mετρήσεις ενέργειας και g με το Multilog και τον Selab timer
23 - Mετρήσεις ενέργειας και g με το Multilog και τον Selab timer
Stathis Gourzis
 
Απόδειξη Λήμματος (T. Kobos)
Απόδειξη Λήμματος (T. Kobos)Απόδειξη Λήμματος (T. Kobos)
Απόδειξη Λήμματος (T. Kobos)
Billonious
 
Αυθόρμητο σπάσιμο συμμετρίας και μηχανισμός Higgs
Αυθόρμητο σπάσιμο συμμετρίας και μηχανισμός HiggsΑυθόρμητο σπάσιμο συμμετρίας και μηχανισμός Higgs
Αυθόρμητο σπάσιμο συμμετρίας και μηχανισμός HiggsJohn Fiorentinos
 
ΒΟΗΘΗΜΑ ΦΥΣΙΚΗΣ ΚΑΤ. Γ΄ΛΥΚΕΙΟΥ
ΒΟΗΘΗΜΑ ΦΥΣΙΚΗΣ ΚΑΤ. Γ΄ΛΥΚΕΙΟΥΒΟΗΘΗΜΑ ΦΥΣΙΚΗΣ ΚΑΤ. Γ΄ΛΥΚΕΙΟΥ
ΒΟΗΘΗΜΑ ΦΥΣΙΚΗΣ ΚΑΤ. Γ΄ΛΥΚΕΙΟΥstavros louverdis
 
03 κρούσεις
03 κρούσεις03 κρούσεις
03 κρούσεις
sfoti
 
S.t.r. themata kai apantiseis 10-07 ΕΙΔΙΚΗ ΘΕΩΡΙΑ
S.t.r.   themata kai apantiseis 10-07 ΕΙΔΙΚΗ ΘΕΩΡΙΑS.t.r.   themata kai apantiseis 10-07 ΕΙΔΙΚΗ ΘΕΩΡΙΑ
S.t.r. themata kai apantiseis 10-07 ΕΙΔΙΚΗ ΘΕΩΡΙΑ
Christakis Papanastasiou
 

What's hot (20)

Δυναμική σχέση ανάμεσα στην απλή αρμονική κίνηση και στην κυκλική κίνηση
Δυναμική σχέση ανάμεσα στην απλή αρμονική κίνηση και στην κυκλική κίνησηΔυναμική σχέση ανάμεσα στην απλή αρμονική κίνηση και στην κυκλική κίνηση
Δυναμική σχέση ανάμεσα στην απλή αρμονική κίνηση και στην κυκλική κίνηση
 
Μετασχηματισμός Lorentz
Μετασχηματισμός LorentzΜετασχηματισμός Lorentz
Μετασχηματισμός Lorentz
 
Κίνηση με αντίσταση ανάλογη του τετραγώνου της ταχύτητας
Κίνηση με αντίσταση ανάλογη του τετραγώνου της ταχύτηταςΚίνηση με αντίσταση ανάλογη του τετραγώνου της ταχύτητας
Κίνηση με αντίσταση ανάλογη του τετραγώνου της ταχύτητας
 
Nonlinear dynamics and chaos in neural networks course project
Nonlinear dynamics and chaos in neural networks course projectNonlinear dynamics and chaos in neural networks course project
Nonlinear dynamics and chaos in neural networks course project
 
Η εξίσωση του κύματος στις η+1 διαστάσεις
Η εξίσωση του κύματος στις η+1 διαστάσειςΗ εξίσωση του κύματος στις η+1 διαστάσεις
Η εξίσωση του κύματος στις η+1 διαστάσεις
 
Από τη Λαγκρανζιανή στις εξισώσεις κίνησης
Από τη Λαγκρανζιανή στις εξισώσεις κίνησηςΑπό τη Λαγκρανζιανή στις εξισώσεις κίνησης
Από τη Λαγκρανζιανή στις εξισώσεις κίνησης
 
Η θεμελιώδης εξίσωση της κίνησης για την ολική στροφορμή νευτώνιου συστήματος...
Η θεμελιώδης εξίσωση της κίνησης για την ολική στροφορμή νευτώνιου συστήματος...Η θεμελιώδης εξίσωση της κίνησης για την ολική στροφορμή νευτώνιου συστήματος...
Η θεμελιώδης εξίσωση της κίνησης για την ολική στροφορμή νευτώνιου συστήματος...
 
Ελατήριο με δύο μάζες
Ελατήριο με δύο μάζεςΕλατήριο με δύο μάζες
Ελατήριο με δύο μάζες
 
Ελατήριο ανάμεσα σε δύο μάζες
Ελατήριο ανάμεσα σε δύο μάζεςΕλατήριο ανάμεσα σε δύο μάζες
Ελατήριο ανάμεσα σε δύο μάζες
 
Physics γ' λυκείου για λύση
Physics γ'  λυκείου για λύση  Physics γ'  λυκείου για λύση
Physics γ' λυκείου για λύση
 
Rayleigh jeans
Rayleigh   jeansRayleigh   jeans
Rayleigh jeans
 
Planck
PlanckPlanck
Planck
 
ορμή 13 11 2012_β
ορμή 13 11 2012_βορμή 13 11 2012_β
ορμή 13 11 2012_β
 
23 - Mετρήσεις ενέργειας και g με το Multilog και τον Selab timer
23 - Mετρήσεις ενέργειας και g με το Multilog και τον Selab timer23 - Mετρήσεις ενέργειας και g με το Multilog και τον Selab timer
23 - Mετρήσεις ενέργειας και g με το Multilog και τον Selab timer
 
Απόδειξη Λήμματος (T. Kobos)
Απόδειξη Λήμματος (T. Kobos)Απόδειξη Λήμματος (T. Kobos)
Απόδειξη Λήμματος (T. Kobos)
 
Αυθόρμητο σπάσιμο συμμετρίας και μηχανισμός Higgs
Αυθόρμητο σπάσιμο συμμετρίας και μηχανισμός HiggsΑυθόρμητο σπάσιμο συμμετρίας και μηχανισμός Higgs
Αυθόρμητο σπάσιμο συμμετρίας και μηχανισμός Higgs
 
ΒΟΗΘΗΜΑ ΦΥΣΙΚΗΣ ΚΑΤ. Γ΄ΛΥΚΕΙΟΥ
ΒΟΗΘΗΜΑ ΦΥΣΙΚΗΣ ΚΑΤ. Γ΄ΛΥΚΕΙΟΥΒΟΗΘΗΜΑ ΦΥΣΙΚΗΣ ΚΑΤ. Γ΄ΛΥΚΕΙΟΥ
ΒΟΗΘΗΜΑ ΦΥΣΙΚΗΣ ΚΑΤ. Γ΄ΛΥΚΕΙΟΥ
 
03 κρούσεις
03 κρούσεις03 κρούσεις
03 κρούσεις
 
S.t.r. themata kai apantiseis 10-07 ΕΙΔΙΚΗ ΘΕΩΡΙΑ
S.t.r.   themata kai apantiseis 10-07 ΕΙΔΙΚΗ ΘΕΩΡΙΑS.t.r.   themata kai apantiseis 10-07 ΕΙΔΙΚΗ ΘΕΩΡΙΑ
S.t.r. themata kai apantiseis 10-07 ΕΙΔΙΚΗ ΘΕΩΡΙΑ
 
ορμή 13 11 2012_α
ορμή 13 11 2012_αορμή 13 11 2012_α
ορμή 13 11 2012_α
 

Viewers also liked

Απλό εκκρεμές 2
Απλό  εκκρεμές 2Απλό  εκκρεμές 2
Απλό εκκρεμές 2
John Fiorentinos
 
Μονοδιάστατη ελαστική κρούση
Μονοδιάστατη ελαστική κρούσηΜονοδιάστατη ελαστική κρούση
Μονοδιάστατη ελαστική κρούσηJohn Fiorentinos
 
Μέγιστη ενέργεια πρωτονίων
Μέγιστη ενέργεια πρωτονίωνΜέγιστη ενέργεια πρωτονίων
Μέγιστη ενέργεια πρωτονίωνJohn Fiorentinos
 
Χρόνος «κατάρρευσης» του «κλασσικού» ατόμου
Χρόνος «κατάρρευσης» του «κλασσικού» ατόμουΧρόνος «κατάρρευσης» του «κλασσικού» ατόμου
Χρόνος «κατάρρευσης» του «κλασσικού» ατόμουJohn Fiorentinos
 
Φυσικής μικρή σύνοψη (I)
Φυσικής μικρή σύνοψη (I)Φυσικής μικρή σύνοψη (I)
Φυσικής μικρή σύνοψη (I)John Fiorentinos
 
Maxwell - Boltzmann
Maxwell - BoltzmannMaxwell - Boltzmann
Maxwell - Boltzmann
John Fiorentinos
 
Συχνότητα περιστροφής ηλεκτρονίου και συχνότητα εκπεμπομένου φωτονίου (Bohr)
Συχνότητα περιστροφής ηλεκτρονίου και συχνότητα εκπεμπομένου φωτονίου (Bohr)Συχνότητα περιστροφής ηλεκτρονίου και συχνότητα εκπεμπομένου φωτονίου (Bohr)
Συχνότητα περιστροφής ηλεκτρονίου και συχνότητα εκπεμπομένου φωτονίου (Bohr)John Fiorentinos
 
Τοπολογία (Μια μικρή εισαγωγή)
Τοπολογία (Μια μικρή εισαγωγή)Τοπολογία (Μια μικρή εισαγωγή)
Τοπολογία (Μια μικρή εισαγωγή)John Fiorentinos
 
Κίνηση σε μέσο με σταθερή αντίσταση
Κίνηση σε μέσο με σταθερή αντίστασηΚίνηση σε μέσο με σταθερή αντίσταση
Κίνηση σε μέσο με σταθερή αντίστασηJohn Fiorentinos
 
Απλό εκκρεμές με απόσβεση
Απλό εκκρεμές με απόσβεσηΑπλό εκκρεμές με απόσβεση
Απλό εκκρεμές με απόσβεση
John Fiorentinos
 
Μηδενικός στροβιλισμός και συντηρητικό πεδίο
Μηδενικός στροβιλισμός και συντηρητικό πεδίοΜηδενικός στροβιλισμός και συντηρητικό πεδίο
Μηδενικός στροβιλισμός και συντηρητικό πεδίο
John Fiorentinos
 
Η περίοδος του απλού εκκρεμούς
Η περίοδος του απλού εκκρεμούςΗ περίοδος του απλού εκκρεμούς
Η περίοδος του απλού εκκρεμούςJohn Fiorentinos
 
Ταλάντωση διατομικού μορίου
Ταλάντωση διατομικού μορίουΤαλάντωση διατομικού μορίου
Ταλάντωση διατομικού μορίου
John Fiorentinos
 
Πεδίο Higgs και μάζα
Πεδίο Higgs και μάζαΠεδίο Higgs και μάζα
Πεδίο Higgs και μάζαJohn Fiorentinos
 
Ένα Σύστημα με Δύο Βαθμούς Ελευθερίας
Ένα Σύστημα με Δύο Βαθμούς ΕλευθερίαςΈνα Σύστημα με Δύο Βαθμούς Ελευθερίας
Ένα Σύστημα με Δύο Βαθμούς Ελευθερίας
John Fiorentinos
 
μετασχηματισμοι βαθμιδας
μετασχηματισμοι βαθμιδαςμετασχηματισμοι βαθμιδας
μετασχηματισμοι βαθμιδας
John Fiorentinos
 

Viewers also liked (20)

Απλό εκκρεμές 2
Απλό  εκκρεμές 2Απλό  εκκρεμές 2
Απλό εκκρεμές 2
 
Μονοδιάστατη ελαστική κρούση
Μονοδιάστατη ελαστική κρούσηΜονοδιάστατη ελαστική κρούση
Μονοδιάστατη ελαστική κρούση
 
Μέγιστη ενέργεια πρωτονίων
Μέγιστη ενέργεια πρωτονίωνΜέγιστη ενέργεια πρωτονίων
Μέγιστη ενέργεια πρωτονίων
 
Χρόνος «κατάρρευσης» του «κλασσικού» ατόμου
Χρόνος «κατάρρευσης» του «κλασσικού» ατόμουΧρόνος «κατάρρευσης» του «κλασσικού» ατόμου
Χρόνος «κατάρρευσης» του «κλασσικού» ατόμου
 
Φυσικής μικρή σύνοψη (I)
Φυσικής μικρή σύνοψη (I)Φυσικής μικρή σύνοψη (I)
Φυσικής μικρή σύνοψη (I)
 
Maxwell - Boltzmann
Maxwell - BoltzmannMaxwell - Boltzmann
Maxwell - Boltzmann
 
Witten-Μorse
Witten-ΜorseWitten-Μorse
Witten-Μorse
 
Η εξίσωση Klein
Η εξίσωση KleinΗ εξίσωση Klein
Η εξίσωση Klein
 
Συχνότητα περιστροφής ηλεκτρονίου και συχνότητα εκπεμπομένου φωτονίου (Bohr)
Συχνότητα περιστροφής ηλεκτρονίου και συχνότητα εκπεμπομένου φωτονίου (Bohr)Συχνότητα περιστροφής ηλεκτρονίου και συχνότητα εκπεμπομένου φωτονίου (Bohr)
Συχνότητα περιστροφής ηλεκτρονίου και συχνότητα εκπεμπομένου φωτονίου (Bohr)
 
Googol
GoogolGoogol
Googol
 
10000000000000 ψηφία
10000000000000 ψηφία10000000000000 ψηφία
10000000000000 ψηφία
 
Τοπολογία (Μια μικρή εισαγωγή)
Τοπολογία (Μια μικρή εισαγωγή)Τοπολογία (Μια μικρή εισαγωγή)
Τοπολογία (Μια μικρή εισαγωγή)
 
Κίνηση σε μέσο με σταθερή αντίσταση
Κίνηση σε μέσο με σταθερή αντίστασηΚίνηση σε μέσο με σταθερή αντίσταση
Κίνηση σε μέσο με σταθερή αντίσταση
 
Απλό εκκρεμές με απόσβεση
Απλό εκκρεμές με απόσβεσηΑπλό εκκρεμές με απόσβεση
Απλό εκκρεμές με απόσβεση
 
Μηδενικός στροβιλισμός και συντηρητικό πεδίο
Μηδενικός στροβιλισμός και συντηρητικό πεδίοΜηδενικός στροβιλισμός και συντηρητικό πεδίο
Μηδενικός στροβιλισμός και συντηρητικό πεδίο
 
Η περίοδος του απλού εκκρεμούς
Η περίοδος του απλού εκκρεμούςΗ περίοδος του απλού εκκρεμούς
Η περίοδος του απλού εκκρεμούς
 
Ταλάντωση διατομικού μορίου
Ταλάντωση διατομικού μορίουΤαλάντωση διατομικού μορίου
Ταλάντωση διατομικού μορίου
 
Πεδίο Higgs και μάζα
Πεδίο Higgs και μάζαΠεδίο Higgs και μάζα
Πεδίο Higgs και μάζα
 
Ένα Σύστημα με Δύο Βαθμούς Ελευθερίας
Ένα Σύστημα με Δύο Βαθμούς ΕλευθερίαςΈνα Σύστημα με Δύο Βαθμούς Ελευθερίας
Ένα Σύστημα με Δύο Βαθμούς Ελευθερίας
 
μετασχηματισμοι βαθμιδας
μετασχηματισμοι βαθμιδαςμετασχηματισμοι βαθμιδας
μετασχηματισμοι βαθμιδας
 

More from John Fiorentinos

ΕΝΕΡΓΕΙΑ-ΕΡΓΟ-ΙΣΧΥΣ
ΕΝΕΡΓΕΙΑ-ΕΡΓΟ-ΙΣΧΥΣΕΝΕΡΓΕΙΑ-ΕΡΓΟ-ΙΣΧΥΣ
ΕΝΕΡΓΕΙΑ-ΕΡΓΟ-ΙΣΧΥΣ
John Fiorentinos
 
ΜΙΑ ΕΝΔΙΑΦΕΡΟΥΣΑ ΑΡΙΘΜΗΤΙΚΗ ΙΣΟΤΗΤΑ
ΜΙΑ ΕΝΔΙΑΦΕΡΟΥΣΑ ΑΡΙΘΜΗΤΙΚΗ ΙΣΟΤΗΤΑΜΙΑ ΕΝΔΙΑΦΕΡΟΥΣΑ ΑΡΙΘΜΗΤΙΚΗ ΙΣΟΤΗΤΑ
ΜΙΑ ΕΝΔΙΑΦΕΡΟΥΣΑ ΑΡΙΘΜΗΤΙΚΗ ΙΣΟΤΗΤΑ
John Fiorentinos
 
ΟΛΟΚΛΗΡΩΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ
ΟΛΟΚΛΗΡΩΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣΟΛΟΚΛΗΡΩΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ
ΟΛΟΚΛΗΡΩΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ
John Fiorentinos
 
ΠΑΡΟΥΣΙΑΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ
ΠΑΡΟΥΣΙΑΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥΠΑΡΟΥΣΙΑΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ
ΠΑΡΟΥΣΙΑΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ
John Fiorentinos
 
ΠΙΕΣΗ
ΠΙΕΣΗΠΙΕΣΗ
ΠΙΕΣΗ
John Fiorentinos
 
ΔΥΝΑΜΕΙΣ
ΔΥΝΑΜΕΙΣΔΥΝΑΜΕΙΣ
ΔΥΝΑΜΕΙΣ
John Fiorentinos
 
ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΝΕΟ)
ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΝΕΟ)ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΝΕΟ)
ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΝΕΟ)
John Fiorentinos
 
ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΑΝΑΝΕΩΜΕΝΟ)
ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΑΝΑΝΕΩΜΕΝΟ)ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΑΝΑΝΕΩΜΕΝΟ)
ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΑΝΑΝΕΩΜΕΝΟ)
John Fiorentinos
 
ΚΥΜΑΤΑ (ΝΕΟ)
ΚΥΜΑΤΑ (ΝΕΟ)ΚΥΜΑΤΑ (ΝΕΟ)
ΚΥΜΑΤΑ (ΝΕΟ)
John Fiorentinos
 
ΠΙΕΣΗ (ΜΕΡΟΣ Α)
ΠΙΕΣΗ (ΜΕΡΟΣ Α)ΠΙΕΣΗ (ΜΕΡΟΣ Α)
ΠΙΕΣΗ (ΜΕΡΟΣ Α)
John Fiorentinos
 
ΠΙΕΣΗ (ΜΕΡΟΣ Β)
ΠΙΕΣΗ (ΜΕΡΟΣ Β)ΠΙΕΣΗ (ΜΕΡΟΣ Β)
ΠΙΕΣΗ (ΜΕΡΟΣ Β)
John Fiorentinos
 
ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Α)
ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Α)ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Α)
ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Α)
John Fiorentinos
 
ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Β)
ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Β)ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Β)
ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Β)
John Fiorentinos
 
ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ
ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ
ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ
John Fiorentinos
 
ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ
ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ
ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ
John Fiorentinos
 
ΗΛΕΚΤΡΙΣΗ ΤΩΝ ΣΩΜΑΤΩΝ.
 ΗΛΕΚΤΡΙΣΗ ΤΩΝ ΣΩΜΑΤΩΝ. ΗΛΕΚΤΡΙΣΗ ΤΩΝ ΣΩΜΑΤΩΝ.
ΗΛΕΚΤΡΙΣΗ ΤΩΝ ΣΩΜΑΤΩΝ.
John Fiorentinos
 
Ο ΝΟΜΟΣ ΤΟΥ COULOMB
Ο ΝΟΜΟΣ ΤΟΥ COULOMBΟ ΝΟΜΟΣ ΤΟΥ COULOMB
Ο ΝΟΜΟΣ ΤΟΥ COULOMB
John Fiorentinos
 
ΤΑΛΑΝΤΩΣΕΙΣ
ΤΑΛΑΝΤΩΣΕΙΣΤΑΛΑΝΤΩΣΕΙΣ
ΤΑΛΑΝΤΩΣΕΙΣ
John Fiorentinos
 
ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ (ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ)
ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ (ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ)ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ (ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ)
ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ (ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ)
John Fiorentinos
 
ΥΠΕΡΒΟΛΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΥΠΕΡΒΟΛΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣΥΠΕΡΒΟΛΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΥΠΕΡΒΟΛΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
John Fiorentinos
 

More from John Fiorentinos (20)

ΕΝΕΡΓΕΙΑ-ΕΡΓΟ-ΙΣΧΥΣ
ΕΝΕΡΓΕΙΑ-ΕΡΓΟ-ΙΣΧΥΣΕΝΕΡΓΕΙΑ-ΕΡΓΟ-ΙΣΧΥΣ
ΕΝΕΡΓΕΙΑ-ΕΡΓΟ-ΙΣΧΥΣ
 
ΜΙΑ ΕΝΔΙΑΦΕΡΟΥΣΑ ΑΡΙΘΜΗΤΙΚΗ ΙΣΟΤΗΤΑ
ΜΙΑ ΕΝΔΙΑΦΕΡΟΥΣΑ ΑΡΙΘΜΗΤΙΚΗ ΙΣΟΤΗΤΑΜΙΑ ΕΝΔΙΑΦΕΡΟΥΣΑ ΑΡΙΘΜΗΤΙΚΗ ΙΣΟΤΗΤΑ
ΜΙΑ ΕΝΔΙΑΦΕΡΟΥΣΑ ΑΡΙΘΜΗΤΙΚΗ ΙΣΟΤΗΤΑ
 
ΟΛΟΚΛΗΡΩΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ
ΟΛΟΚΛΗΡΩΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣΟΛΟΚΛΗΡΩΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ
ΟΛΟΚΛΗΡΩΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ
 
ΠΑΡΟΥΣΙΑΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ
ΠΑΡΟΥΣΙΑΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥΠΑΡΟΥΣΙΑΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ
ΠΑΡΟΥΣΙΑΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ
 
ΠΙΕΣΗ
ΠΙΕΣΗΠΙΕΣΗ
ΠΙΕΣΗ
 
ΔΥΝΑΜΕΙΣ
ΔΥΝΑΜΕΙΣΔΥΝΑΜΕΙΣ
ΔΥΝΑΜΕΙΣ
 
ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΝΕΟ)
ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΝΕΟ)ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΝΕΟ)
ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΝΕΟ)
 
ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΑΝΑΝΕΩΜΕΝΟ)
ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΑΝΑΝΕΩΜΕΝΟ)ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΑΝΑΝΕΩΜΕΝΟ)
ΦΥΣΙΚΗΣ ΜΙΚΡΗ ΣΥΝΟΨΗ (ΑΝΑΝΕΩΜΕΝΟ)
 
ΚΥΜΑΤΑ (ΝΕΟ)
ΚΥΜΑΤΑ (ΝΕΟ)ΚΥΜΑΤΑ (ΝΕΟ)
ΚΥΜΑΤΑ (ΝΕΟ)
 
ΠΙΕΣΗ (ΜΕΡΟΣ Α)
ΠΙΕΣΗ (ΜΕΡΟΣ Α)ΠΙΕΣΗ (ΜΕΡΟΣ Α)
ΠΙΕΣΗ (ΜΕΡΟΣ Α)
 
ΠΙΕΣΗ (ΜΕΡΟΣ Β)
ΠΙΕΣΗ (ΜΕΡΟΣ Β)ΠΙΕΣΗ (ΜΕΡΟΣ Β)
ΠΙΕΣΗ (ΜΕΡΟΣ Β)
 
ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Α)
ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Α)ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Α)
ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Α)
 
ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Β)
ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Β)ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Β)
ΔΥΝΑΜΕΙΣ (ΜΕΡΟΣ Β)
 
ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ
ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ
ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ
 
ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ
ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ
ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ
 
ΗΛΕΚΤΡΙΣΗ ΤΩΝ ΣΩΜΑΤΩΝ.
 ΗΛΕΚΤΡΙΣΗ ΤΩΝ ΣΩΜΑΤΩΝ. ΗΛΕΚΤΡΙΣΗ ΤΩΝ ΣΩΜΑΤΩΝ.
ΗΛΕΚΤΡΙΣΗ ΤΩΝ ΣΩΜΑΤΩΝ.
 
Ο ΝΟΜΟΣ ΤΟΥ COULOMB
Ο ΝΟΜΟΣ ΤΟΥ COULOMBΟ ΝΟΜΟΣ ΤΟΥ COULOMB
Ο ΝΟΜΟΣ ΤΟΥ COULOMB
 
ΤΑΛΑΝΤΩΣΕΙΣ
ΤΑΛΑΝΤΩΣΕΙΣΤΑΛΑΝΤΩΣΕΙΣ
ΤΑΛΑΝΤΩΣΕΙΣ
 
ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ (ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ)
ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ (ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ)ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ (ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ)
ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ (ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ)
 
ΥΠΕΡΒΟΛΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΥΠΕΡΒΟΛΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣΥΠΕΡΒΟΛΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΥΠΕΡΒΟΛΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
 

Ολοκλήρωση των εξισώσεων κίνησης

  • 1. ΟΛΟΚΛΗΡΩ΢Η ΣΩΝ ΕΞΙ΢Ω΢ΕΩΝ ΚΙΝΗ΢Η΢. ΚΙΝΗ΢Η ΢Ε ΜΙΑ ΔΙΑ΢ΣΑ΢Η. (Η ΠΕΡΙΠΣΩ΢Η ΣΟΤ ΑΡΜΟΝΙΚΟΤ ΣΑΛΑΝΣΩΣΗ). Για ένα σωματίδιο μάζας m, το οποίο κινείται σε μια διάσταση υπό την επίδραση δύναμης ( ) F x , έχοντας ολική ενέργεια Ε (που αποτελεί σταθερά της κίνησης), η διατήρηση της ενέργειας δίνει: 2 1 ( ) 2 E mx U x  (1) ΢τη σχέση (1), Ε είναι η ολική ενέργεια του σωματιδίου, ( ) U x είναι η δυναμική του ενέργεια και x  η ταχύτητά του. ( dx x dt  ). Από τη σχέση λοιπόν (1), έχουμε διαδοχικά: 2 1 ( ) 2 mx U x E  ή 2 1 ( ) ( ) 2 dx m U x E dt ή 2 2 ( ) [ ( )] dx E U x dt m ή 2 [ ( )] dx E U x dt m ή
  • 2. 2 ( ) m dx dt E U x (2) ΢την παραπάνω σχέση (2), η υπόριζη ποσότητα ( ) E U x ισούται με την κινητική ενέργεια του σωματιδίου και πρόκειται προφανώς για μη αρνητική ποσότητα. Με ολοκλήρωση της σχέσης (2), παίρνουμε: 0 0 2 ( ) x x m dx t t E U x (3) ΢τη σχέση (3), 0 x είναι η θέση του σωματιδίου τη χρονική στιγμή 0 t . Εισάγοντας στη σχέση (3) τη συνάρτηση ( ) U x που μας δίνει τη δυναμική ενέργεια στο εκάστοτε πρόβλημά μας και ολοκληρώνοντας, βρίσκουμε τη συνάρτηση ( ) t x , η αντίστροφη της οποίας ( ( ) x t ) αποτελέι την εξίσωση κίνησης του σώματος. ΢τη συνέχεια ας θεωρήσουμε την περίπτωση του αρμονικού ταλαντωτή. Η δυναμική ενέργεια είναι: 2 1 ( ) 2 U x kx (4) ΢τη σχέση (4) για την σταθερά k , έχουμε ότι: 0 k .
  • 3. ΢χήμα 1. Σο δυναμικό αρμονικού ταλαντωτή ΢το σχήμα (1) βλέπουμε τη γραφική παράσταση του δυναμικού ενός αρμονικού ταλαντωτή, του οποίου η ολική ενέργεια (σταθερά της κίνησης) είναι: 2 1 2 E ka . Η δύναμη που απορρέει από το δυναμικό αυτό είναι: 2 ( ) 1 ˆ ˆ ˆ ( ) 2 dU x d F i kx i kxi dx dx (5) Σο ˆ i είναι το μοναδιαίο διάνυσμα στο x-άξονα. Όπως είναι γνωστό, στην περίπτωση αυτή η κίνηση του σωματίδιου είναι περιοδική μεταξύ των (ακραίων) θέσεων a και a. Εμείς όμως θα προσποιηθούμε ότι δεν το γνωρίζουμε και θα προσπαθήσουμε να φτάσουμε στο συμπέρασμα αυτό, μέσω ολοκλήρωσης της εξίσωσης κίνησης. Ξεκινάμε λοιπόν...
  • 4. Από την διατήρηση της ενέργειας έχουμε: 2 1 ( ) 2 mx U x E  ή 2 2 2 1 1 1 ( ) 2 2 2 dx m kx ka dt ή 2 2 2 ( ) ( ) dx k a x dt m ή 2 2 ( ) dx k a x dt m ή 2 2 k dx dt m a x (7) Με ολοκλήρωση λοιπόν θα έχουμε: 2 2 k dx dt m a x (8) Όμως: 2 2 arcsin( ) dx x a a x (9) Πράγματι: Αν θέσουμε: arcsin( ) x y a , θα έχουμε: sin x y a και τότε: 2 2 2 2 2 1 1 1 1 1 cos 1 sin 1 dy dx dx a y a y x a x a dy a Έτσι λοιπόν με τη βοήθεια της (9), η (8) μας δίνει:
  • 5. arcsin( ) x k t C a m (10) ΢τη συνέχεια για ευκολία ας περιορισθούμε στη λύση με το πρόσημο + (στα ίδια συμπεράσματα καταλήγουμε και με επιλογή του πρόσημου -). Προκειμένου να προσδιορίσουμε τ σταθερά C της ολοκλήρωσης, ας θεωρήσουμε (αρχική συνθήκη) ότι τη χρονική στιγμή 0 t το σώμα βρίσκεται στο a . Από την σχέση (10) λοιπόν θα έχουμε: arcsin( ) a C a ή arcsin(1) 2 C (11) Μέσω της σχέσης (11) λοιπόν, η (10) γράφεται: arcsin( ) 2 x k t a m ή sin( ) 2 x k t a m ή sin( ) 2 k x a t m (12) ΢τη συνέχεια (κατά τα γνωστά) θέτοντας: k m , η σχέση (12) γράφεται: sin( ) cos( ) 2 x a t a t (13)
  • 6. Επίσης: Από τη σχέση: arcsin( ) 2 x k t a m , έχουμε: arcsin( ) 2 k x t m a (14) Έτσι λοιπόν αν ονομάσουμε 1 t τη χρονική στιγμή που το σώμα βρίσκται στη θέση a , θα είναι: 1 arcsin(1) 0 2 2 2 k t m ή 1 0 t (όπως άλλωστε αναμένουμε, αφού αυτή ήταν η αρχική μας συνθήκη). Αν ονομάσουμε 2 t τη χρονική στιγμή που για πρώτη φορά το σώμα έρχεται στη θέση a, θα είναι: 2 3 arcsin( ) arcsin( 1) 2 2 2 2 k a t m a ή 2 m t k Έτσι λοιπόν ο χρόνος που κάνει το σώμα για να πάει από το ένα άκρο στο άλλο άκρο της τροχιάς του είναι: 2 1 m t t t k (15) Ο χρόνος όμως αυτός, αντιστοιχεί στο μισό της περιόδου. Έτσι λοιπόν έχουμε:
  • 7. 2 T m k ή 2 m T k (16) Βρίσκουμε λοιπόν έτσι την (γνωστή μας) σχέση για την περίοδο του αρμονικού ταλαντωτή. ΑΤΓΟΤ΢ΣΟ΢ 2013 ΥΙΟΡΕΝΣΙΝΟ΢ ΓΙΑΝΝΗ΢