Structural Analysis
Superposition
II
Eng. Khaled El-Aswany
Structural Analysis
Superposition
II
Eng. Khaled El-Aswany
(1.Introduction)
12 t 12 t
12 t
4 t
4 t
12t
32mt
S.F.D
B.M.D
8t
2 t/m
4 m
A B
4 m
2 t/m
4 m
A B
4 m
8t
4 m
A B
4 m
8 t
8t 4t
8 t 8 t
16mt
4 t 4 t
4 t 4 t
4 t
𝒘𝑳𝟐
𝟖
𝑷𝑳
𝟒
=
𝟖𝒙𝟖
𝟒
=16
16mt
2x8=16
Structural Analysis
Superposition
II
Eng. Khaled El-Aswany
(2.Rules)
S.F.D.
𝑷
𝟐
𝑷
𝟐
𝑷
𝟐
𝑷
𝟐
𝑷𝒃
𝑳
𝑷𝒃
𝑳
𝑷𝒂
𝑳
𝑷𝒂
𝑳
𝒘𝑳
𝟐
𝒘𝑳
𝟐
A B
a b
L
𝑷𝑳
𝟒
L
A B
w t/m
𝒘𝑳𝟐
𝟖
B.M.D
P t
𝑷𝒂𝒃
𝑳
P t
L/2
A B
L/2
𝑷
𝟐
𝑷
𝟐
𝒘𝒍
𝟐
𝒘𝒍
𝟐
𝑷𝒃
𝑳
𝑷𝒂
𝑳
wL
𝑷𝒂
B.M.D
b a
P 𝑷
P t
A B
P t
a
𝑷𝒂
a
L
A B
𝑷𝒂
L
L/2
A B
M
L/2
𝑴
𝟐
𝑴
𝟐
P t
P t
𝑴
𝑳
𝑴
𝑳
Structural Analysis
Superposition
II
Eng. Khaled El-Aswany
(3.Examples)
2 t/m
4 t
3 m
A
3 m
2 t/m
3 m
A
3 m
A B
6m 2m
2m
4 t
𝟔
𝟖
A B
8 mt
6m 2m
2m
2 t/m
4 t
A B
8 mt
6m 2m
2m
A B
6m 2m
2m
2 t/m
𝟖 𝟒
𝟖
𝟏𝟐
𝟐 𝟏
𝟑
4 t
3 m
A
3 m
𝟏𝟐
36
36
𝟗
=
A B
4m 2m
2m
8 t 4 t
A B
4m 2m
2m
8 t
A B
4m 2m
2m
4 t
A B
4m 2m
2m
8 t 4 t
A B
4m 2m
2m
4 t 4 t
A B
4m 2m
2m
4 t
𝟏𝟐 𝟔
𝟔
𝟖 𝟖
𝟐
𝟒
𝟏𝟒
𝟏𝟎
𝟐
Structural Analysis
Superposition
II
Eng. Khaled El-Aswany
(4.Frames)
4t
A D
B C
2m 2m
1m
2m
2m
6t
2t/m
8t
2m 2m
0
2m 2m
0
2t/m
𝑷𝑳
𝟒
=8
𝒘𝑳𝟐
𝟖
=4
3t
6t 𝟔
2m 2m
1
0
4t
2m
2m
4t
𝟏𝟔
𝟖
𝟏𝟔
𝟏𝟔
𝟖
𝟖
𝟏𝟔
𝟖
2m
2m
3t
3t
𝟏𝟐
𝟏𝟐
𝟏𝟐
𝟏𝟐
8mt
A D
B C
8m
3m
3m
2t
4t
2m
8mt
2t
4t
0
𝟖
𝟖
𝟖
4t
𝟐𝟒
𝟐𝟒
0
𝟒
𝟒
𝟒
𝟒
𝟒
𝟒
Structural Analysis
Three Moment Equation
II
Eng. Khaled El-Aswany
Structural Analysis
Three Moment Equation
II
(Introduction)
Eng. Khaled El-Aswany
2 t/m
6m
A B
6t
2m
C
2m
I1 I2
MA (
𝐋𝟏
𝐈
) + 2 MB (
𝐋𝟏
𝐈
+
𝐋𝟐
𝐈
) + MC (
𝐋𝟐
𝐈
) = -6 (
𝐑𝐛𝟏
𝐈
+
𝐑𝐛𝟐
𝐈
)
MA = MB = MC =
MA (
𝐋𝟏
𝐈𝟏
) + 2 MB (
𝐋𝟏
𝐈𝟏
+
𝐋𝟐
𝐈𝟐
) + MC (
𝐋𝟐
𝐈𝟐
) = -6 (
𝐑𝐛𝟏
𝐈𝟏
+
𝐑𝐛𝟐
𝐈𝟐
)
0 ?? 0
IF ( I ) is constant: 2 t/m
6m
A B
6t
2m
C
2m
I I
MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝐑𝐛𝟏 + 𝐑𝐛𝟐)
Structural Analysis
Three Moment Equation
II
(Elastic Reactions)
Eng. Khaled El-Aswany
2 t/m
6m
A B
6t
2m
C
2m
I1 I2
MA (
𝐋𝟏
𝐈
) + 2 MB (
𝐋𝟏
𝐈
+
𝐋𝟐
𝐈
) + MC (
𝐋𝟐
𝐈
) = -6 (
𝐑𝐛𝟏
𝐈
+
𝐑𝐛𝟐
𝐈
)
MA = MB = MC =
MA (
𝐋𝟏
𝐈𝟏
) + 2 MB (
𝐋𝟏
𝐈𝟏
+
𝐋𝟐
𝐈𝟐
) + MC (
𝐋𝟐
𝐈𝟐
) = -6 (
𝐑𝐛𝟏
𝐈𝟏
+
𝐑𝐛𝟐
𝐈𝟐
)
0 ?? 0
IF ( I ) is constant:
2 t/m
6m
A B
6t
2m
C
2m
I I
MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝐑𝐛𝟏 + 𝐑𝐛𝟐)
𝑀
6
(2𝑥‫البعيدة‬ + ‫)القريبة‬
A B
a b
L
𝑷𝑳
𝟒
L
A B
w t/m
𝒘𝑳𝟐
𝟖
B.M.D
P t
P t
L/2
A B
L/2
Elastic
Reactions
𝐴 =
1
2
𝑴𝑳
A=
2
3
𝑴𝑳 𝐴2 =
1
2
𝑴𝑏
𝟐
𝟑
b
𝟏
𝟑
b
𝟐
𝟑
a
𝟏
𝟑
a
𝐴1 =
1
2
𝑴𝑎
Pa
B.M.D
Elastic
Reactions
P t
a
A B
b
P t
a
Pa
A B
a b
L
M
𝑀𝑏
𝐿
𝑀𝑎
𝐿
𝐴2𝑥
2
3
𝑏
1
2
𝐴
1
2
𝐴
1
2
𝐴
1
2
𝐴
1
2
𝐴
1
2
𝐴
+𝐴1𝑥(𝑏 +
1
3
𝑎)
L
𝑀
6
(2𝑥‫البعيدة‬ + ‫)القريبة‬
𝐴1𝑥
2
3
𝑎 +𝐴2𝑥(𝑎 +
1
3
𝑏)
L
𝑷𝒂𝒃
𝑳
A=(
𝑏+𝐿
2
)𝑴
𝑀
𝐿
𝑀
𝐿
𝐴1
𝐴2
𝟐
𝟑
a
𝟏
𝟑
a 𝟐
𝟑
b
𝟏
𝟑
b
A2x
2
3
b A1x(b +
1
3
a)
L
𝐴2 − 𝐴1 − 𝑅1
𝑶𝑹 𝑶𝑹
Structural Analysis
Three Moment Equation
II
(Example1)
Eng. Khaled El-Aswany
𝟐
𝟑
𝑴𝑳 = 𝟑𝟔
6t
2m 2m
B C
2 t/m
6m
A B
𝒘𝑳𝟐
𝟖
=9
𝑷𝑳
𝟒
= 𝟔
6t
18 t
18 t 1
2
𝑴𝑳 = 12
6t
MA = 0
I 2I
2 t/m
6m
A B
6t
2m
C
2m
MB = MC =
?? 0
6t
2m 2m
B C
2 t/m
6m
A B
MA (
𝐋𝟏
𝐈𝟏
) + 2 MB (
𝐋𝟏
𝐈𝟏
+
𝐋𝟐
𝐈𝟐
) + MC (
𝐋𝟐
𝐈𝟐
) = -6 (
𝐑𝐛𝟏
𝐈𝟏
+
𝐑𝐛𝟐
𝐈𝟐
)
0 + 2 MB (
𝟔
𝟏
+
𝟒
𝟐
) + 0 = -6 (
𝟏𝟖
𝟏
+
𝟔
𝟐
)
16 MB = -126
MB = -7.875 mt
2x6-7.3125
=4.6875
𝟐𝒙𝟔𝒙𝟑 + 𝟕. 𝟖𝟕𝟓
𝟔
𝟔𝒙𝟐 + 𝟕. 𝟖𝟕𝟓 6-4.97
=1.03
7.875
7.875
S.F.D
B.M.D
7.3125
4.6875
4.97
4.97
1.03 1.03
7.875
2.06
S.F.D
B.M.D
4.97
4.97
1.03 1.03
7.875
2.06
7.875
= 7.3125
𝟒
= 𝟒. 𝟗𝟕
2x6
3m
Structural Analysis
Three Moment Equation
II
(Example 2)
Eng. Khaled El-Aswany
MA = MB = MC =
0 ?? ?? MD = 0
2 t/m
A B
9t
C
6t 6t
9mt
2m 2m 4m
4m 2m 1.5 3m
D
6t 6t
2 t/m
A
2m 4m 2m
B B
9t
C
2m 4m
𝐰𝐋𝟐
𝟖
=16
2
3
𝑴𝑳=85.33
Pa=12 Pa=12
(
4+8
2
)𝑥12=72
𝟗𝒙𝟐𝒙𝟒
𝟔
=12 𝟑
𝟔 𝟗
2.25
2m
1m
0.5
1m
42.67 42.67
36
36
20 16
C
9mt
1.5 3m
D
−2.25 −4.5
𝟐
𝟐
1 2
0 + 2 MB (8 + 6) + MC (6) = -6 (42.67+36 + 20)
28 MB + 6 MC = - 592
MB (6) +2 MC (6 + 4.5) + 0 = -6 (16- 2.25)
6 MB + 21 MC = - 82.5
1
2
MB = -21.625 mt
MC = 2.25 mt
6t 6t
2 t/m
A
2m 4m 2m
B B
9t
C
2m 4m
C
9mt
1.5 3m
D
21.625
21.625
2.25
2.25
16.7
11.3 10 1 1.5 1.5
1
10 10
21.625
2.25
1.75
16.7
1.3
11.3
7.3
6.7
12.7
18.6
7.775
1.5 1.5
4.5
4.5
Structural Analysis
Three Moment Equation
II
(Symmetry)
Eng. Khaled El-Aswany
A
W t/m
B C
L L L
D
L
E A
W t/m
B C
L L L
D
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑎=?? 𝑀𝑏=??
𝑀𝑒= 𝑀𝑎
𝑀𝑑= 𝑀𝑏
3 Unknowns 2 Unknowns
A
W t/m
B C
L L
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑎
2 Unknowns
A
W t/m
B
L
𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎
1 Unknown
𝑀𝑐= 𝑀𝑏 𝑀𝑑= 𝑀𝑎
A
W t/m
B
L L/2
F
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝐹=??
3 Unknowns
A
W t/m
B C
L L L
D
L
E
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑒= 𝑀𝑎
𝑀𝑑= 𝑀𝑏
3 Unknowns
A
W t/m
B C
L L
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑎
2 Unknowns
A
W t/m
B
L
𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎
1 Unknown
A
W t/m
B
L
𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎
L
0 0
𝒘𝑳𝟐
𝟖
𝒘𝑳𝟑
𝟏𝟐
𝒘𝑳𝟑
𝟐𝟒
𝒘𝑳𝟑
𝟐𝟒
W t/m
A B
A’ B’
A B
MA’ (L1) + 2 MA (L1 + L2) + MB (L2) = -6 (𝐑𝐚𝟏 + 𝐑𝐚𝟐)
0 + 2 MA (0 + L) + MA (L) = -6 ( 0 +
𝒘𝑳𝟑
𝟐𝟒
)
3 MA L = -
wL3
4
𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎
MA = -
wL2
12
0
0
MB =MA
wL2
12
wL2
12
wL2
12
wL2
12
wL2
12
A
W t/m
B C
L L L
D
𝑀𝑎=?? 𝑀𝑏=??
2 Unknowns
𝑀𝑐= 𝑀𝑏 𝑀𝑑= 𝑀𝑎
A
W t/m
B
L L/2
F
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝐹=??
3 Unknowns
W t/m
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 𝑀𝑎
0
A’
0
C D
L
B
L
D’
A
L
B C D
A
W t/m
W t/m
𝒘𝑳𝟐
𝟖
𝒘𝑳𝟑
𝟏𝟐
𝒘𝑳𝟑
𝟐𝟒
𝒘𝑳𝟑
𝟐𝟒
MA’ (L1) + 2 MA (L1 + L2) + MB (L2) = -6 (𝐑𝐚𝟏 + 𝐑𝐚𝟐)
0 + 2 MA (0 + L) + MB (L) = -6 ( 0 +
𝒘𝑳𝟑
𝟐𝟒
)
0
0
MC =MB
𝒘𝑳𝟐
𝟖
𝒘𝑳𝟑
𝟏𝟐
𝒘𝑳𝟑
𝟐𝟒
𝒘𝑳𝟑
𝟐𝟒
2 MA + MB = -
𝟏
4
wL2 → 𝟏
MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝐑𝐚𝟏 + 𝐑𝐚𝟐)
MA (L) + 2 MB (L+ L) + MB (L) = -6 (
𝒘𝑳𝟑
𝟐𝟒
+
𝒘𝑳𝟑
𝟐𝟒
)
MA + 5 MB = -
𝟏
2
wL2 → 𝟐
MA = -
wL2
12
MB = -
wL2
12
wL2
12
wL2
12
wL2
12
wL2
12
𝑀𝑎′=0 𝑀𝑑′=0
Structural Analysis
Three Moment Equation
II
(Settlement)
Eng. Khaled El-Aswany
2 cm
2 cm
1 cm
𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐= 0
A B C
𝑳𝟏 𝑳𝟐
𝑀𝑎=0 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑑=0
A B C D
𝑳𝟏 𝑳𝟐 𝑳𝟑
MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI (
∆𝐵−∆𝐴
L1
+
∆𝐵−∆𝐶
L2
)
MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI (
∆𝐵−∆𝐴
L1
+
∆𝐵−∆𝐶
L2
)
MB (L2) + 2 MC (L2 + L3) + MD (L3) = 6EI (
∆𝐶−∆𝐵
L2
+
∆𝐶−∆𝐷
L3
)
If I constant:
EI : Given
I I
If I variable: MA (
L1
I1
) + 2 MB (
L1
I1
+
L2
I2
) + MC (
L2
I2
) = 6EI (
∆𝐵−∆𝐴
L1
+
∆𝐵−∆𝐶
L2
)
2 Equations
𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑑= 0
2 cm
𝟔𝒎 𝟒𝒎 𝟔𝒎
A B C D
2 t/m 2 t/m
A B C D
𝟔𝒎 𝟒𝒎 𝟔𝒎
MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI (
∆𝐵−∆𝐴
L1
+
∆𝐵−∆𝐶
L2
)
MB (L2) + 2 MC (L2 + L3) + MD (L3) = 6EI (
∆𝐶−∆𝐵
L2
+
∆𝐶−∆𝐷
L3
)
EI = 5000 tm2
2 MB (6 + 4) + MC (4) = 6x5000 (
0.02
6
+
0.02
4
)
MB (4) + 2 MC (4 + 6) + MD (6) = 6x5000 (
0−0.02
4
+ 0)
20 MB + 4 MC = 250 → 1
4 MB + 20 MC = -150 → 2
MB = 14.58 mt
MC = -10.42 mt
𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 0
2 t/m
A B
𝟔𝒎
C
𝟒𝒎
B
𝒘𝑳𝟐
𝟖
= 𝟗
2
3
𝑴𝑳=36 18
18 0
MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝑅𝑏1+𝑅𝑏2)
2 MB (6 + 4) + MC (4) = -6 (18 + 0)
2 MB (6 + 4) + MB (4) = -6 (18 + 0)
MB = Mc = - 4.5 mt
MB (tot) = - 4.5 +14.58 = 10.08 mt
Mc (tot) = - 4.5 -10.42 = -14.92 mt
2 t/m
A B
𝟔𝒎
C
𝟒𝒎
B
2 t/m
A B
𝟔𝒎
10.08 14.92 14.92
10.08
4.32
7.68 6.25
6.25 8.49 3.51
10.08
14.92
𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑑= 0
2 cm
𝟔𝒎 𝟒𝒎 𝟔𝒎
A B C D
2 t/m 2 t/m
A B C D
𝟔𝒎 𝟒𝒎 𝟔𝒎
MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI (
∆𝐵−∆𝐴
L1
+
∆𝐵−∆𝐶
L2
)
MB (L2) + 2 MC (L2 + L3) + MD (L3) = 6EI (
∆𝐶−∆𝐵
L2
+
∆𝐶−∆𝐷
L3
)
EI = 5000 tm2
2 MB (6 + 4) + MC (4) = 6x5000 (
0.02
6
+
0.02
4
)
MB (4) + 2 MC (4 + 6) + MD (6) = 6x5000 (
0−0.02
4
+ 0)
20 MB + 4 MC = 250 → 1
4 MB + 20 MC = -150 → 2
MB = 14.58 mt
MC = -10.42 mt
𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 0
2 t/m
A B
𝟔𝒎
C
𝟒𝒎
B
𝒘𝑳𝟐
𝟖
= 𝟗
2
3
𝑴𝑳=36 18
18 0
MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝑅𝑏1+𝑅𝑏2)
2 MB (6 + 4) + MC (4) = -6 (18 + 0)
2 MB (6 + 4) + MB (4) = -6 (18 + 0)
MB = Mc = - 4.5 mt
MB (tot) = - 4.5 +14.58 = 10.08 mt
Mc (tot) = - 4.5 -10.42 = -14.92 mt
A B C D
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Beams)
(Once)
A
2 t/m
B
6t
2m
6m
MA
XA
YA YB
A
2 t/m
B
6t
2m
6m
12 mt
9 mt
A
2 t/m
B
6t
2m
6m
M.S.
A B
1 mt
Mo
1 mt
M1
δ10 + X δ11 = 0 X =
−δ10
δ11
δ10 = ʃ
𝑴𝑶
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍
δ11 = ʃ
𝑴𝟏
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍
9 mt
6m
1 mt
= Area x Yc
=
2
3
𝑥6𝑥9 x 0.5
Area
Yc
0.5x1=0.5
(Linear)
-
‫مستقيم‬ ‫خط‬
‫منكسر‬ ‫غير‬
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = Area x Yc
=
1
2
𝑥6𝑥8 x 3
Area
6m
6 mt
8 mt
Yc
0.5x6=3
(Linear)
-
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = Area x Yc
=
1
2
𝑥6𝑥8
6 mt
6m
8 mt
x 4
Area
Yc
𝟐
𝟑
𝐱𝟔 = 𝟒
+
𝟐
𝟑
𝑳
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = Area x Yc
=
1
2
𝑥3𝑥8
8 mt
6 mt
3m 3m
+
Area
Yc
𝟐
𝟑
𝑳
𝟏
𝟑
𝑳
𝟐
𝟑
𝐱𝟔 = 𝟒
x 4
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍
x 2
=
L
3
(𝐚𝐜 + 𝐛𝐝+
bc
2
+
ad
2
)
8
4
2
6
8m
8x6
=
8
3 ( + 4x2 +
𝟒𝒙𝟔
𝟐
+
𝟖𝒙𝟐
𝟐
)
8 mt
6 mt
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 =
6
3
( 8x6 + 0 + 0 + 0 )
A
2 t/m
B
6t
2m
6m
MA
XA
YA YB
A
2 t/m
B
6t
2m
6m
12 mt
9 mt
A
2 t/m
B
6t
2m
6m
M.S.
A B
1 mt
Mo
1 mt
M1
δ10 + X δ11 = 0
X =
−δ10
δ11
δ10 = ʃ
𝑴𝑶
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍
δ11 = ʃ
𝑴𝟏
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍
=
𝟏
𝑬𝑰
[-
𝟐
𝟑
x 6 x 9 x0.5 +
𝟔
𝟑
(
𝟏𝟐𝒙𝟏
𝟐
)] =
−𝟔
𝑬𝑰
=
𝟏
𝑬𝑰
[ 𝟔
𝟑
(1x1)] =
𝟐
𝑬𝑰
=
−( ൗ
−𝟔
EI)
ൗ
𝟐
EI
= 𝟑
A
2 t/m
B
6t
2m
6m
3
0
4.5 13.5
A
2 t/m
B
6t
2m
6m
12 mt
9 mt
M.S.
A B
1 mt
Mo
1 mt
M1
δ10 + X δ11 = 0
X =
−δ10
δ11
δ10
δ11
=
𝟏
𝑬𝑰
[-
𝟐
𝟑
x 6 x 9 x0.5 +
𝟔
𝟑
(
𝟏𝟐𝒙𝟏
𝟐
)] =
−𝟔
𝑬𝑰
=
𝟏
𝑬𝑰
[ 𝟔
𝟑
(1x1)] =
𝟐
𝑬𝑰
=
−( ൗ
−𝟔
EI)
ൗ
𝟐
EI
= 𝟑
A B
3
12
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Beams)
(Twice)
A
4 t/m
D
4t
2m 4m
2m
2m
4m
2m
6t 6t
B C
I I 2I
M.S
4 t/m
4t
6t 6t
A D
B
2m 4m
2m
2m
4m
2m
C
I I 2I
𝑀𝑜
12 12 4 8
𝑀1
1
𝑀2
1
1mt
1mt
δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0
δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0
δ10 = ʃ
𝑴𝑶
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[-(
4+8
2
)𝒙𝟏𝟐 x0.5 - 𝟎. 𝟓𝒙𝟒𝒙𝟒 x0.5] = −𝟒𝟎
EI
δ11 = ʃ
𝑴𝟏
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[ 8
3
𝒙(𝟏𝒙𝟏) = 4
EI
+
4
3
𝒙(𝟏𝒙𝟏) ]
δ12 = ʃ
𝑴𝟏
𝑴𝟐
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[4
3
x(
1X1
2
) ] =
൘
2
3
EI
δ02 = ʃ
𝑴𝑶
𝑴𝟐
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[ - 𝟎. 𝟓𝒙𝟒𝒙𝟒 -
𝟏
𝟐
x0.5 𝒙
2
3
𝒙𝟒𝒙𝟖 x0.5 ]=
൘
−2𝟖
3
EI
δ22 = ʃ
𝑴𝟐
𝑴𝟐
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[ 𝒙
4
3
𝒙(𝟏𝒙𝟏) ]
4
3
𝒙(𝟏𝒙𝟏) +
1
2 = 𝟐
EI
−40
EI
+
4
EI
𝑋1 +
൘
2
3
EI
𝑋2 = 0
−40+ 4 𝑋1 +
2
3 𝑋2 = 0
4 𝑋1 +
2
3
𝑋2 = 40
൘
−28
3
EI
+ 𝑋1
൘
2
3
EI
+ 𝑋2
2
EI
= 0
−28
3
+
2
3
𝑋1+2𝑋2 = 0
2
3
𝑋1 + 2 𝑋2 =
28
3
→ 1
→ 2
𝑿𝟏 = 9.76 mt
𝑿𝟐 = 𝟏. 𝟒𝟏 𝒎𝒕
A
4 t/m
D
4t
2m 4m
2m
2m
4m
2m
6t 6t
B C
I I 2I
M.S
4 t/m
4t
6t 6t
A D
B
2m 4m
2m
2m
4m
2m
C
I I 2I
𝑀𝑜
12 12 4 8
𝑀1
1
𝑀2
1
1mt
1mt
δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0
δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0
δ10 = ʃ
𝑴𝑶
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[-(
4+8
2
)𝒙𝟏𝟐 x0.5 - 𝟎. 𝟓𝒙𝟒𝒙𝟒 x0.5] = −𝟒𝟎
EI
δ11 = ʃ
𝑴𝟏
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[ 8
3
𝒙(𝟏𝒙𝟏) = 4
EI
+
4
3
𝒙(𝟏𝒙𝟏) ]
δ12 = ʃ
𝑴𝟏
𝑴𝟐
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[4
3
x(
1X1
2
) ] =
൘
2
3
EI
δ02 = ʃ
𝑴𝑶
𝑴𝟐
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[ - 𝟎. 𝟓𝒙𝟒𝒙𝟒 -
𝟏
𝟐
x0.5 𝒙
2
3
𝒙𝟒𝒙𝟖 x0.5 ]=
൘
−2𝟖
3
EI
δ22 = ʃ
𝑴𝟐
𝑴𝟐
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[ 𝒙
4
3
𝒙(𝟏𝒙𝟏) ]
4
3
𝒙(𝟏𝒙𝟏) +
1
2 = 𝟐
EI
4 𝑋1 +
2
3
𝑋2 = 40
2
3
𝑋1 + 2 𝑋2 =
28
3
→ 1
→ 2
9.76
1.41 𝑤𝑙2
8
=8
D
A B C
9.76+1.41
2
=5.58
𝑃𝐿
4
=4
1.58
1
4
𝑋9.76=2.44
3
4
𝑋9.76=7.32
12
9.56
12
4.68
𝑿𝟏 = 9.76 mt
𝑿𝟐 = 𝟏. 𝟒𝟏 𝒎𝒕
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Beams)
(Support movement)
δ10
𝑋1
δ11
δ10 + X1 δ11 = 0
δ10
𝑋1
δ11
δ10 + X1 δ11 = ±∆
Δ
1 𝑡
2 𝑐𝑚
3
X1 δ11 = −𝟎. 𝟎𝟐
δ11 =
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 =
𝟏
𝑬𝑰
(
𝟔
𝟑
( 3x3)x 2 ) =
𝟑𝟔
𝑬𝑰
X1 δ11 = ±∆
2.5𝑡 1.25 𝑡
1.25 𝑡
7.5
B.M.D.
Reactions
X1
36
𝐸𝐼
= −0.02
X1
36
4500
= −0.02
X1 = −2.5 𝑡
EI = 4500 m2t
1 𝑡
2 𝑐𝑚
3
EI = 4500 m2t
δ11 =
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 =
𝟏
𝑬𝑰
(
𝟔
𝟑
( 3x3)x 2 ) =
𝟑𝟔
𝑬𝑰
δ10 + X1 δ11 = ±∆
Reactions
−𝟐𝟕𝟎𝟎
𝑬𝑰
+ X1
36
𝐸𝐼
= −0.02
X1 = 72.5 𝑡
180
M.S.
M0
M1
δ10 =
𝟏
𝑬𝑰
(
−𝟐
𝟑
𝒙𝟔𝒙𝟏𝟖𝟎 x(
𝟓
𝟖
𝒙𝟑) x 2 ) =
−𝟐𝟕𝟎𝟎
𝑬𝑰
5
8
𝐿
3
8
𝐿
5
8
𝑥3
−𝟐𝟕𝟎𝟎
𝟒𝟓𝟎𝟎
+ X1
36
4500
= −0.02
72.5 𝑡 23.75𝑡
23.75𝑡
1 𝑡
2 𝑐𝑚
3
EI = 4500 m2t
δ11 =
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 =
𝟏
𝑬𝑰
(
𝟔
𝟑
( 3x3)x 2 ) =
𝟑𝟔
𝑬𝑰
δ10 + X1 δ11 = ±∆
B.M.D.
−𝟐𝟕𝟎𝟎
𝑬𝑰
+ X1
36
𝐸𝐼
= −0.02
X1 = 72.5 𝑡
180
M.S.
M0
M1
δ10 =
𝟏
𝑬𝑰
(
−𝟐
𝟑
𝒙𝟔𝒙𝟏𝟖𝟎 x(
𝟓
𝟖
𝒙𝟑) x 2 ) =
−𝟐𝟕𝟎𝟎
𝑬𝑰
5
8
𝐿
3
8
𝐿
5
8
𝑥3
−𝟐𝟕𝟎𝟎
𝟒𝟓𝟎𝟎
+ X1
36
4500
= −0.02
37.5
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Beams)
(Extra 1)
A
2 t/m
B
6t
2m 2m 2m 2m
6t
2m 2m 2m
8mt
2m
6t
4t 4t 8mt
C
1m
3I 2I
M.S.
9
8
8
4
4
𝟗
2mt
2
Mo
𝟗
1mt
1
M1
1
M2
δ11 = 1
𝐸𝐼
(
1
3
*
6
3
(1*1)) =
2
3𝐸𝐼
δ22 = 1
𝐸𝐼
(
1
3
*
6
3
(1*1)) =
2
𝐸𝐼
*
8
3
(1*1))
+(
1
2
δ12 = 1
𝐸𝐼
(
1
3
*
6
3
(
1∗1
2
)) =
1
3𝐸𝐼
δ1o = 1
𝐸𝐼
(
1
3
(-
2
3
x6x9x0.5 =
−34
3𝐸𝐼
0.5
-
2+6
2
x8x0.5)
δ2o = 1
𝐸𝐼
(
1
3
(-
2
3
x6x9x0.5-
2+6
2
x8x0.5)
+(
1
2
(
8
3
X
1𝑋2
2
+
6
3
x9x0.75
0.75
+
2
3
x(9x0.75+
9𝑋1
2
)
0.5
+
4
3
x(4x0.5+
4𝑋1
2
)
-
4
3
x(4x0.5)
0.25
-
2
3
x(9x0.25)
-
6
3
x(9x0.25+
9𝑋1
2
)) =
−17
3𝐸𝐼
δ10 + 𝒙𝟏 δ11 + 𝒙𝟐 δ12= 0
−𝟑𝟒
𝟑
+
𝟐
𝟑
𝒙𝟏 +
𝟏
𝟑
𝒙𝟐 = 0
𝟐 𝒙𝟏 + 𝒙𝟐 = 34
𝒙𝟏 + 6𝒙𝟐 = 17
𝒙𝟏= 17 𝒙𝟐 = 0
δ20 + 𝒙𝟏 δ21 + 𝒙𝟐 δ22= 0
1mt
1mt
A
2 t/m
B
6t
2m 2m 2m 2m
6t
2m 2m 2m
8mt
2m
6t
4t 4t 8mt
C
1m
3I 2I
M.S.
9
8
8
4
4
𝟗
2mt
2
Mo
𝟗
1mt
1
M1
1
M2
0.5
0.75 0.5
0.25
0
A 3I B
6t
2m 2m 2m 2m
6t
2m 2m 2m
8mt
2m
6t
4t 4t 8mt
C
1m
2I
2 t/m
A 3I
2m 2m 2m
4t 4t
2 t/m
17
8mt
B
6t
2m 2m 2m 2m
6t
2m
6t
C
1m
2I
8mt
0
𝟏𝟐. 𝟖𝟑 𝟕. 𝟏𝟕 𝟒. 𝟐𝟓
𝟒. 𝟐𝟓
17
4.66 10.34
8
2
2
6.5
3
5
8.5
1mt
1mt
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Frames)
(Once)
4t
A
2 t/m
D
B C
I
I
2I
4m
3m
3m
1.19
8
= 4 – 3 = 1
R = U – E
1.19
8
4t
2 t/m
A D
B C
I
I
2I
4m
3m
3m
M.S.
9
6
Mo
1
1t
4
4
M1
δ10
δ11
=
𝟏
𝑬𝑰
ʃ 𝑴𝟎𝑴𝟏𝒅𝒍
=
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍
=
𝟏
𝑬𝑰
[- x
𝟐
𝟑
x 6 x 9 x4
- =
−𝟏𝟎𝟖
𝑬𝑰
4 4
𝟏
𝟐
x
𝟏
𝟐
x 6 x 6 x4 ]
𝟏
𝟐
=
𝟏
𝑬𝑰
[
𝟒
𝟑
x (4x4)
+ =
𝟗𝟎.𝟔𝟕
𝑬𝑰
x 𝟒 x 6 x4 ]
𝟏
𝟐
x2
𝑿𝟏 =
− δ10
δ11
=
−( − 108/𝐸𝐼)
90.67/𝐸𝐼
= 1.19
𝑀𝑓 = 𝑀0 + 𝑋1 𝑀1
Mf
𝑀𝑓 = 0 + 1.19 x (-4) = -4.76
4.76 4.76
4.76
4.76
10.24
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Frames)
(Twice)
8t
A
2 t/m
D
B C
2I
3I
I
6m
3m
3m
2m
4t
3m
XA
YA
XD
YD
=5– 3 = 2
R = U – E
MA
8t
A
2 t/m
D
B C
2I
3I
I
6m
3m
3m
2m
4t
3m
M.S.
M0
12
9
16
12
M1
1t
1t
3
3
6
6
M2
1mt
0
δ10 =
𝟏
𝑬𝑰
[ x
3
3
x( 12 x 3)
+
=
𝟐𝟒𝟎
𝑬𝑰
𝟏
𝟐
6
3
x(16x6+12x3+
16x3
2
+
12x6
2
)
X4.5 ]
- 2
3
x6x9
δ11 =
𝟏
𝑬𝑰
[ x
3
3
x( 3 x 3)
+
=
𝟏𝟓𝟒.𝟓
𝑬𝑰
𝟏
𝟐
6
3
x(6x6+3x3+
6x3
2
𝐱𝟐)
+ x
6
3
x( 6 x 6) ]
𝟏
𝟑
δ12 =
𝟏
𝑬𝑰
[ x
1
2
x6x6
+ =
𝟐𝟏
𝑬𝑰
𝟏
𝟑
X 1
6
3
x(6x1+
3x1
2
) ]
1
1
1
δ20 =
𝟏
𝑬𝑰
[
=
𝟐𝟔
𝑬𝑰
6
3
x(16x1+12x0+
16x0
2
+
12x1
2
)
X0.5 ]
- 2
3
x6x9
δ22 =
𝟏
𝑬𝑰
[ x (𝟔𝒙𝟏)
=
𝟒
𝑬𝑰
𝟏
𝟑
+
6
3
x( 1x1) ]
x 𝟏
8t
A
2 t/m
D
B C
2I
3I
I
6m
3m
3m
2m
4t
3m
YA
XD
YD
=5– 3 = 2
R = U – E
8t
A
2 t/m
D
B C
2I
3I
I
6m
3m
3m
2m
4t
3m
M.S.
M0
12
9
16
12
M1
1t
1t
3
3
6
6
M2
1mt
0
δ10 =
𝟐𝟒𝟎
𝑬𝑰
δ11
=
𝟏𝟓𝟒.𝟓
𝑬𝑰
δ12
=
𝟐𝟏
𝑬𝑰
1
1
1
δ20 =
𝟐𝟔
𝑬𝑰
δ22
=
𝟒
𝑬𝑰
δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0
δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0
𝑿𝟏 = -2.34 mt
𝑿𝟐 = 𝟓. 𝟕𝟖 𝒎𝒕
154.5 𝑋1 + 21 𝑋2 = -240
21 𝑋1 + 4 𝑋2 = −26
→ 1
→ 2
MF
𝑀𝑓 = 𝑀0 + 𝑋1 𝑀1 + 𝑋2 𝑀2
𝑀𝑓 = 𝑀0 -2.34 𝑀1 + 5.78 𝑀2
𝑀𝑓 = (−16) -2.34 (−6) + 5.78 (−1) = -7.74
4.98
8.26
5.78
16
4.98
7.74
2.34
5.78
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Frames)
(Symmetry)
= 5 – 3 = 2
R = U – E
2 t/m
A
B
D
C
4m
4m
2 t/m
4m
0
8 8
8
= 6 – 3 = 3
R = U – E
2 t/m
A
B
D
C
8m
4m
= 5 – 3 = 2
R = U – E
2 t/m
A
B
4m
4m
2 t/m
A
B
4m
4m
M.S.
𝑀𝑜
16
4
16
16
𝑀1
1mt
1
1
1
1
𝑀2
1t
4
δ11 =
𝟏
𝑬𝑰
[4x1x1 + 4x1x1]=
𝟖
𝑬𝑰
δ22 =
𝟏
𝑬𝑰
[𝟒
𝟑
𝒙(𝟒𝒙𝟒)]=
𝟐𝟏.𝟑𝟑
𝑬𝑰
δ12 =
𝟏
𝑬𝑰
[−𝟏
𝟐
𝒙𝟒𝒙𝟒 𝒙𝟏]=
−𝟖
𝑬𝑰
δ20 =
𝟏
𝑬𝑰
[−𝟏
𝟐
𝒙𝟒𝒙𝟒 𝒙𝟏𝟔]=
−𝟏𝟐𝟖
𝑬𝑰
δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0
δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0
𝑿𝟏 = -7.47 mt
𝑿𝟐 = 𝟑. 𝟐 𝒎𝒕
8 𝑋1 - 8 𝑋2 = -85.33 → 1
-8 𝑋1 + 21.33 𝑋2 = 128 → 2
𝑀𝑓 = 𝑀0 + 𝑋1 𝑀1 + 𝑋2 𝑀2
𝑀𝑓2 = 16 -7.47 (1) + 3.2 (0) = 8.53
𝑀𝑓 = 𝑀0 -7.47 𝑀1 + 3.2 𝑀2
𝑀𝑓3 = 16 -7.47 (1) + 3.2 (-4) = -4.27
1
2
3 𝑀𝐹
δ10=
𝟏
𝑬𝑰
[(
1
2
x4 x 16) 𝐱𝟏 −
𝟐
𝟑
𝒙𝟒𝒙𝟒 𝒙𝟏 +𝟒𝒙𝟏𝟔 𝒙𝟏 ] =
𝟖𝟓.𝟑𝟑
𝑬𝑰
7.47
8.53
8.53
4.27
= 5 – 3 = 2
R = U – E
2 t/m
A
B
4m
4m
2 t/m
A
B
4m
4m
M.S.
𝑀𝑜
16
4
16
16
𝑀1
1mt
1
1
1
1
𝑀2
1t
4
δ11 =
𝟏
𝑬𝑰
[4x1x1 + 4x1x1]=
𝟖
𝑬𝑰
δ22 =
𝟏
𝑬𝑰
[𝟒
𝟑
𝒙(𝟒𝒙𝟒)]=
𝟐𝟏.𝟑𝟑
𝑬𝑰
δ12 =
𝟏
𝑬𝑰
[−𝟏
𝟐
𝒙𝟒𝒙𝟒 𝒙𝟏]=
−𝟖
𝑬𝑰
δ20 =
𝟏
𝑬𝑰
[−𝟏
𝟐
𝒙𝟒𝒙𝟒 𝒙𝟏𝟔]=
−𝟏𝟐𝟖
𝑬𝑰
δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0
δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0
𝑿𝟏 = -7.47 mt
𝑿𝟐 = 𝟑. 𝟐 𝒎𝒕
8 𝑋1 - 8 𝑋2 = -85.33 → 1
-8 𝑋1 + 21.33 𝑋2 = 128 → 2
𝑀𝐹
δ10=
𝟏
𝑬𝑰
[(
1
2
x4 x 16) 𝐱𝟏 −
𝟐
𝟑
𝒙𝟒𝒙𝟒 𝒙𝟏 +𝟒𝒙𝟏𝟔 𝒙𝟏 ] =
𝟖𝟓.𝟑𝟑
𝑬𝑰
7.47
8.53
8.53
4.27
8.53
8.53
4.27
1
Structural Fantasy
3
Using the consistent deformation method
Draw the B.M.D. for the shown frames.
2 t/m
A
B
D
C
3m 3m 3m 2m
2m
H
E
J
I
3m 3m 3m 2m
2m
4m
F G
8t 8t 4t
8t 8t
4t
6m
2 t/m
A
B
E
C D
4t 2t
2t
6m
3m 3m 3m
2m 3m 2m
4t
2 t/m
A
B
E
C
D
6t
6t
6m
3m 3m 3m
2m 3m 2m
3m
2
Exercise
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Frames)
(Support movement)
Draw B.M.D. due to the given loads
and right horizontal movement of
support A by 2 cm. EI = 20000 m2t.
6t
A
2 t/m
D
B C
4m
6m
0.92
YA
= 4 – 3 = 1
R = U – E
6.92
YD
6t
2 t/m
A D
B C
4m
6m
M.S.
Mo
24
24
9
M1
1t 1t
4
4
4
4
δ10 =
𝟏
𝑬𝑰
ʃ 𝑴𝟎𝑴𝟏𝒅𝒍
=
𝟏
𝑬𝑰
[
𝟒
𝟑
x (24x4) -
𝟐
𝟑
x 6 x 9 x4
+ =
𝟐𝟕𝟐
𝑬𝑰
𝟏
𝟐
x 6 x 24 x4 ]
δ11 =
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍
=
𝟏
𝑬𝑰
[
𝟒
𝟑
x (4x4) + =
𝟏𝟑𝟖.𝟔𝟕
𝑬𝑰
𝟒 x 6 x4 ]
x2
δ10 + X1 δ11 = 0.02
𝟐𝟕𝟐
𝟐𝟎𝟎𝟎𝟎
+ X1
138.67
20000
= 0.02
X1 = 0.92 𝑡
Mf
3.68 27.68
27.68
3.68
15.68
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
R = U - E
R = ( m + r ) - 2j
1 2 3 4
5 6 7 8 9 10 11
12 13
R = ( 13+ 3) - 2x8 = 0 (Determinate)
1 2 3 4
5 6 7 8 9 10 11
12 13
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
1 2 3 4
5 6
7
8 9 10 11
12 13
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
14
1 2 3 4
5 6
7
8 9 10 11
12 13
R = ( m + r ) - 2j
R = ( 14+ 4) - 2x8 = 2 (Twice indeterminate)
(External & Internal)
14
R = U - E
R = ( m + r ) - 2j
1 2 3 4
5 6 7 8 9 10 11
12 13
R = ( 13+ 3) - 2x8 = 0 (Determinate)
1 2 3 4
5 6 7 8 9 10 11
12 13
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
1 2 3 4
5 6
7
8 9 10 11
12 13
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
14
1 2 3 4
5 6
7
8 9 10 11
12 13
R = ( m + r ) - 2j
R = ( 14+ 4) - 2x8 = 2 (Twice indeterminate)
(External & Internal)
14
δ10 + 𝑿𝟏 δ11 = 0
A B
N0
6 6
A B
N1
1 1
δ10 =
𝟏
𝑬𝑨
ʃ 𝑵𝑶𝑵𝟏𝒅𝒍
4m
=
𝟏
𝑬𝑨
( -6 x 4 x 1
N0 N1
L
C D
C D
+ ……… + ...……)
N0 N1
L N0 N1
L
δ10 =
ΣNON1L
EA
δ11 =
ΣN1N1L
EA
Zero force members
2 members 3 members
P
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
(Example 1)
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
0
M.S.
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
M.S.
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
𝐹1
𝐹2
𝐹1sin 𝜃
𝐹1cos 𝜃
4
4
Σ𝐹𝑦 = 0
𝐹1sin 𝜃 + 6 = 0
𝐹1=
−6
sin θ
=
−6
0.6
= -10 t (𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑖𝑜𝑛)
No
Σ𝐹𝑥 = 0
𝐹1cos 𝜃 + 𝐹2 = 0
(𝑇𝑒𝑛𝑠𝑖𝑜𝑛)
−10 x0.8+ 𝐹2 = 0 𝐹2 = 8t
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
M.S.
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
10
8
8
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
M.S.
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
10
8
8
𝐹3
𝐹4 10cos𝜃
10sin𝜃
𝐹3 cos𝜃
𝐹3 sin𝜃
Σ𝐹𝑦 = 0
10sin 𝜃 - 4 - 𝐹3sin 𝜃 = 0
(𝑇𝑒𝑛𝑠𝑖𝑜𝑛)
Σ𝐹𝑥 = 0
𝐹3cos 𝜃 + 𝐹4 + 10cos 𝜃 = 0
(𝐶𝑜𝑚𝑝𝑒𝑟𝑠𝑖𝑜𝑛)
𝐹4 = -10.67t
𝐹3 = 3.33t
3.33cos 𝜃 + 𝐹4 + 10cos 𝜃 = 0
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
M.S.
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
10
8
8
3.33
10.67
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
M.S.
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
10
8
8
3.33
10.67
3.33
10.67
8
8
10
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
M.S.
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
8
8
3.33
3.33
8
8
4m 4m
4m 4m
3m
0
0
1t
1t
N1
10
10.67
10.67
10
1
1
1
1
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0 𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
-10
8
8
3.33
-10.67
3.33
−10.67
8
8
-10
4m 4m
4m 4m
3m
1t
1t
-1
-1
-1
-1
N1
Mem. L No N1 NoN1L N1N1L Nf
1 4 8 -1 -32 4 0
2 4 8 -1 -32 4 0
3 4 8 -1 -32 4 0
4 4 8 -1 -32 4 0
5 5 -10 0 0 0 -10
6 3 4 0 0 0 4
7 5 3.33 0 0 0 3.33
8 3 0 0 0 0 0
9 5 3.33 0 0 0 3.33
10 3 4 0 0 0 4
11 5 -10 0 0 0 -10
12 4 -10.67 0 0 0 -10.67
13 4 -10.67 0 0 0 -1067
-128 16
δ10 =
𝛴N
ON1L
EA
=
−128
EA
δ11 =
𝛴N1N1L
EA
=
16
EA
X1 =
−δ10
δ11
=
−(−128)/𝐸𝐴
16/EA
= 8t
Nf = N0 + X1 N1
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
(Example 2)
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No 0
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No 0
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4
10 6
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6
4
𝐹1
𝐹2
𝐹1sin 𝜃
𝐹1cos 𝜃
Σ𝐹𝑦 = 0
𝐹1sin 𝜃 -4 +10 = 0
𝐹1= -10 t (𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑖𝑜𝑛)
Σ𝐹𝑥 = 0
𝐹1cos 𝜃 + 𝐹2 = 0
(𝑇𝑒𝑛𝑠𝑖𝑜𝑛)
−10 x0.8+ 𝐹2 = 0 𝐹2 = 8t
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
10
8
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
10
8
8
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t
6t
4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
10
8
8
𝐹3
𝐹4 10cos𝜃
10sin𝜃
𝐹3 cos𝜃
𝐹3 sin𝜃
Σ𝐹𝑦 = 0
10sin 𝜃 - 6 - 𝐹3sin 𝜃 = 0
Σ𝐹𝑥 = 0
𝐹3cos 𝜃 + 𝐹4 + 10cos 𝜃 = 0
(𝐶𝑜𝑚𝑝𝑒𝑟𝑠𝑖𝑜𝑛)
𝐹4 = - 8t
𝐹3 = 0
0 + 𝐹4 + 10cos 𝜃 = 0
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
10
8
8
8
8
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
10
8
8
8
8
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t
6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10
6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
10
8
8
8
8
𝐹5
𝐹5 cos𝜃
𝐹5 sin𝜃
Σ𝐹𝑦 = 0
10 - 4 - 𝐹5sin 𝜃 = 0
Σ𝐹𝑥 = 0
𝐹5cos 𝜃 - 8 = 0
(𝑇𝑒𝑛𝑠𝑖𝑜𝑛)
𝐹5 = 10t
𝐹5 = 10t
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
-10 -6 -4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
-10
8
8
−8
−8
10
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
-10 -6 -4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
-10
8
8
−8
−8
10
3m
4m 4m
4m
0
N1
0
1t
1t
𝜃
-0.8
-0.6
𝜃
-0.8
-0.6
𝜃
1
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
-10 -6 -4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
-10
8
8
−8
−8
10
3m
4m 4m
4m
0
N1
0
𝜃
𝜃
𝜃
1
δ10 =
𝛴N
ON1L
EA
δ11 =
𝛴N
1N1L
EA
X1 =
−δ10
δ11
=
−(−2)/𝐸𝐴
16/EA
= 0.125t
δ10 + X1 δ11 = 0
=
1
EA
[
1t
1t
-0.8
-0.6
-0.8
-0.6
8x-0.8x4 -6x-0.6x3 +
1
2
x-8x-0.8x4]
=
−2
EA
=
1
EA
[ )0.8(2x4 +)0.6(2x3 x2+)1(2x5 x2
+
1
2
)0.8(2x4] =
16
EA
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
-10 -6 -4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
-10
8
8
−8
−8
10
3m
4m 4m
4m
0
N1
0
𝜃
𝜃
𝜃
1
1t
1t
-0.8
-0.6
-0.8
-0.6
Mem. L No N1 A
1 4 0 0 1
2 4 8 -0.8 1
3 4 8 0 1
4 3 -10 0 1
5 5 10 0 1
6 3 -6 -0.6 1
7 5 0 1 1
8 5 0 1 1
9 3 0 -0.6 1
10 5 -10 0 1
11 3 -4 0 1
12 4 -8 0 2
13 4 -8 -0.8 2
14 4 0 0 2
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
-10 -6 -4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
-10
8
8
−8
−8
10
3m
4m 4m
4m
0
N1
0
𝜃
𝜃
𝜃
1
1t
1t
-0.8
-0.6
-0.8
-0.6
Mem. L No N1 A
𝑁𝑜𝑁1𝐿
𝑨
𝑁𝟏𝑁1𝐿
𝑨
Nf
1 4 0 0 1 0 0 0
2 4 8 -0.8 1 -25.6 2.56 7.9
3 4 8 0 1 0 0 8
4 3 -10 0 1 0 0 -10
5 5 10 0 1 0 0 10
6 3 -6 -0.6 1 10.8 1.08 -6.075
7 5 0 1 1 0 5 0.125
8 5 0 1 1 0 5 0.125
9 3 0 -0.6 1 0 1.08 -0.075
10 5 -10 0 1 0 0 -10
11 3 -4 0 1 0 0 -4
12 4 -8 0 2 0 0 -8
13 4 -8 -0.8 2 12.8 1.28 -8.1
14 4 0 0 2 0 0 0
-2 16
δ10 =
−2
EA
δ11 =
16
EA
X1 = 0.125t
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
(Example 3)
B
3m
4t 6t 4t
1 2
3 4 5
6 7
10
R = ( m + r ) - 2j
R = ( 10+ 4) - 2x6 = 2
(Twice indeterminate)
8
9
3m
3m
A A
3m
3m
3m
4t 6t 4t
B
7𝑡
7𝑡
0
No
-7
-7 -6 45°
-3
-3
A
3m
3m
3m
B
N1
1𝑡
0
0
1𝑡
-1
-1 A
3m
3m
3m
B
N2
1𝑡
1𝑡
0 0
0
−1
2
−1
2
−1
2
−1
2
1𝑡
δ10 + X1 δ11 + X2 δ12 = 0
δ20 + X1 δ21 + X2 δ22 = 0
δ10 = 0
δ20 =
51.94
EA
δ11 =
6
EA
δ22 =
14.49
EA
δ12 =
2.12
EA
X1 = 1.34 𝑡
X2 = −3.78 𝑡
Nf = N0 + X1 N1 + X2 N2
Nf = N0 + 1.34 N1 -3.78 N2
6 X1 + 2.12 X2 = 0 → 1
2.12 X1 + 14.49 X2 = -51.94 → 2
Mem. L No N1 N2 NoN1L NoN2L N1N1L N2N2L N1N2L Nf
1 3 0 -1 0 0 0 3 0 0 -1.34
2 3 0 -1 −1
/ 2
0 0 3 1.5 𝟑/ 𝟐 1.34
3 3 -7 0 0 0 0 0 0 0 -7
4 3 2 3 2 0 0 0 0 0 0 0 4.24
5 3 -6 0 −1
/ 2
0 𝟏𝟖/ 𝟐 0 1.5 0 -3.33
6 3 2 0 0 1 0 0 0 𝟑 𝟐 0 -3.78
7 3 2 3 2 0 1 0 𝟏𝟖 0 𝟑 𝟐 0 0.46
8 3 -7 0 −1
/ 2
0 𝟐𝟏/ 𝟐 0 1.5 0 -4.33
9 3 -3 0 0 0 0 0 0 0 -3
51.94
0 6 14.49 2.12
1
Structural Fantasy
3
2
8t
6m
A
B
𝑭𝟏 𝑭𝟐
𝑭𝟖 𝑭𝟗
𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕
6m
6m
8t
[𝒀𝑨 = 𝟖𝒕, 𝑭𝟖 = 𝟏𝟔 𝒕]
[𝑭𝟏 = −𝟒. 𝟖𝟏𝒕, 𝑭𝟏𝟎 = 𝟑. 𝟗𝟖 𝒕]
3t
4m
A
B
𝑭𝟏 𝑭𝟐
𝑭𝟖 𝑭𝟗
𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕
4m
3m
3m
𝑭𝟏𝟎
C
[𝑿𝑨 = 𝟒. 𝟐𝟓𝒕, 𝑭𝟔 = −𝟒. 𝟓 𝒕]
A
𝑭𝟏
𝑭𝟖
𝑭𝟏𝟔 𝑭𝟏𝟕
𝑭𝟐
𝑭𝟓
𝑭𝟗
𝑭𝟔
3m 3m
8t
4A
𝑭𝟏𝟖 𝑭𝟏𝟗
B
𝑭𝟑 𝑭𝟒
𝑭𝟕
𝑭𝟏𝟎 𝑭𝟏𝟏 𝑭𝟏𝟐 𝑭𝟏𝟑 𝑭𝟏𝟒 𝑭𝟏𝟓
3m
3m
8t
4t 4t 4t
3m 3m
[𝑭𝟏 = 𝟒. 𝟖𝟓𝒕, 𝑭𝟔 = −𝟓. 𝟎𝟓 𝒕]
2m
A B
𝑭𝟏
𝑭𝟐
𝑭𝟖
𝑭𝟔 𝑭𝟕
4m
10t
𝑭𝟑 𝑭𝟒 𝑭𝟓
1.5m
1.5m
4
Using the consistent deformation method
Find the forces in all members.
Exercise
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
(Support
movement)
No load Effect
Support movements
Temperature Effects
Fabrication Errors
Support movements
A
w t/m
B
No movement:
w t/m
A
B
A B
δ10
1t
δ11
δ10 + X δ11 = 0
A
w t/m
B
Movement:
A
w t/m
B
A B
δ10
X
δ11
δ10 + X δ11 = ±∆
∆
Determine the internal forces in members for the shown truss
due to the external loads and settlement of 2 cm at support B.
3m
4m 4m
4t
A B C
3m
4m 4m
A B C
3m
4m 4m
4t
A B C
M.S.
δ10 + X δ11 = 𝟎. 𝟎𝟐
𝑬𝑨
+ X
𝑬𝑨
= 𝟎. 𝟎𝟐
EA = 10000 t
Answer
X
4t
4t 4t
4m 4m
4m 4m
6t
6t
0 𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
3m
4
4
No -10
8
8
3.33
-10.67
3.33
−10.67
8
8
-10
4m 4m
4m 4m
3m
1t
1t
-1
-1
-1
-1
N1
Mem. L No N1 NoN1L N1N1L
1 4 8 -1 -32 4
2 4 8 -1 -32 4
3 4 8 -1 -32 4
4 4 8 -1 -32 4
5 5 -10 0 0 0
6 3 4 0 0 0
7 5 3.33 0 0 0
8 3 0 0 0 0
9 5 3.33 0 0 0
10 3 4 0 0 0
11 5 -10 0 0 0
12 4 -10.67 0 0 0
13 4 -10.67 0 0 0
-128 16
δ10 =
𝛴N
ON1L
EA
=
−128
EA
δ11 =
𝛴N1N1L
=
16
X1 =
−δ10
δ11
=
−(−128)/𝐸𝐴
16/EA
= 8t
Nf = N0 + X1 N1
Determine the internal forces in members for the shown truss due to
the external loads and right horizontal movement of 2 cm at support B.
EA = 10000 t
3m
A B
4t
4t 4t
4m 4m
4m 4m
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
(Temperature)
Loads
δ10 + X1 δ11 = 0
Temperature
Temperature Effects
No load Effect
Loads & Temperature
8t
δ1t + X1 δ11 = 0 δ1t + δ10 + X1 δ11 = 0
Loads: δ10 + X1 δ11 = 0
Temp.: δ1t + 𝑿𝟏
′
δ11 = 0
Total: Xtot = X1 +𝑿𝟏
′
δ1t = Σ𝜶. ∆𝒕. 𝑵𝟏. 𝑳
δ1t = 𝜶. ∆𝒕. Σ𝑵𝟏. 𝑳
OR
δ10 + X1 δ11 + X2 δ12 = 0
δ20 + X1 δ21 + X2 δ22 = 0
δ1t + X1 δ11 + X2 δ12 = 0
δ2t + X1 δ21 + X2 δ22 = 0
δ1t + δ10 +X1 δ11 + X2 δ12 = 0
δ2t + δ20 +X1 δ21 + X2 δ22 = 0
8t
10t 10t
δ1t = Σ𝜶. ∆𝒕. 𝑵𝟏. 𝑳
δ2t = Σ𝜶. ∆𝒕. 𝑵𝟐. 𝑳
10−5
Rise (+)
Drop (−)
Tension (+)
compression (−)
ONCE
TWICE
𝜃
-1.67
Determine the internal forces in
members for the shown truss
due to the external loads and
rise of temperature 100oC.
𝛼 = 1𝑥10−5
/𝑜𝐶
8m
B
6t
6t
6m
A
Example 1
EA = 45000 t
R = ( m + r ) - 2j
R = ( 5+ 4) - 2x4= 1
(Once indeterminate)
6𝑥8 − 𝑌𝑏𝑥6 = 0
𝑌𝑏 = 8𝑡
Ʃ𝑀𝐴 = 0
𝜃
𝑆𝑖𝑛𝜃 =
8
10
𝑐𝑜𝑠𝜃 =
6
10
6m
8m
10m
8m
B
6t
6t
6m
A
6t
8t
2t
𝜃
𝜃
𝜃 𝜃
-8
-6
-6
10
No
8m
6m
N1
B
A
0
0
1t
1t
𝜃
𝜃
1.33
-1.67
1.33
1
𝜃
𝐹1 𝐹2 𝐹3
𝐹4
𝐹5
Mem. L No N1 NoN1L N1N1L N1L Nf
1 8 -6 1.333 -64 14.22 10.67 3.21
2 10 10 -1.667 -166.7 27.78 -16.67 -1.52
3 10 0 -1.667 0 27.78 -16.67 -11.52
4 8 -8 1.333 -85.33 14.22 10.67 1.21
5 6 -6 1 -36 6 6 0.91
-352 90 -6
Due to loads
δ10 + X1 δ11 = 0
δ1t + X1
’ δ11 = 0
X1 = 3.91 t
δ1t = 𝛼. ∆𝑡. 𝛴𝑁1. 𝐿
Due to temperature
δ1t = 1𝑥10−5
𝑥100𝑥 − 6 = −0.006
X1
’ = 3t
-0.006 + X1
’ 𝟗𝟎
𝟒𝟓𝟎𝟎𝟎
= 0
Xtot = X1 +𝑿𝟏
′
= 𝟔. 𝟗𝟏𝒕
Total
Nf = N0 + Xtot N1
B
3m
4t 6t 4t
1 2
3 4 5
6 7
10
R = ( m + r ) - 2j
R = ( 10+ 4) - 2x6 = 2
(Twice indeterminate)
8
9
3m
3m
A
A
3m
3m
3m
4t 6t 4t
B
7𝑡
7𝑡
0
No
-7
-7 -6 45°
-3
-3
1𝑡
A
3m
3m
3m
B
N1 0
0
1𝑡
-1
-1 A
3m
3m
3m
B
N2
1𝑡
1𝑡
0 0
0
−1
2
−1
2
−1
2
−1
2
1𝑡
δ1t + 𝑋1
′
δ11 + 𝑋2
′
δ12 = 0
δ2t + 𝑋1
′
δ21 + 𝑋2
′
δ22 = 0
δ10 = 0
δ20 =
51.94
EA
δ11 =
6
EA
δ22 =
14.49
EA
δ12 =
2.12
EA
X1 = 1.34 𝑡
X2 = −3.78 𝑡
Nf = N0 + X1t N1 + X2t N2
Nf = N0 + 1.34 N1 -3.78 N2
6
45000
𝑋1
′
+
2.12
45000
𝑋2
′
= 0.003
2.12 𝑋2
′
+ 14.49 𝑋2
′
= 0
Determine the internal forces in
members for the shown truss due
to the external loads and rise of
temperature 50oC.
𝛼 = 1𝑥10−5
/𝑜𝐶
Example 2
EA = 45000 t
Due to loads
Due to temperature
X1t = X1 +𝑿𝟏
′
= 𝟐𝟓. 𝟎𝟒𝒕
Total
δ1t = 𝛼. ∆𝑡. 𝛴𝑁1. 𝐿
δ1t = 1𝑥10−5𝑥50𝑥(−1𝑥3𝑥2) = −0.003
δ2t = 1𝑥10−5
𝑥50𝑥
−1
2
𝑥3𝑥4 + 1𝑥3 2𝑥2 = 0
X2t = X2 +𝑿𝟐
′
= −𝟕. 𝟐𝟓𝒕
𝑋1
′
= 23.7 𝑡
𝑋2
′
= −3.47𝑡
Mem. Nf
1 -25.04
2 -19.9
3 -7
4 4.24
5 -0.87
6 -7.25
7 -3
8 -1.87
9 -3
10 2.12
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
(Fabrication error)
Loads
δ10 + X1 δ11 = 0
Fabricated
Fabrication errors
No load Effect
Loads & fabrication
8t
δ1f + X1 δ11 = 0 δ1f + δ10 + X1 δ11 = 0
Loads: δ10 + X1 δ11 = 0
fabrication: δ1f + 𝑿𝟏
′
δ11 = 0
Total: Xtot = X1 +𝑿𝟏
′
δ1f = Σ∆. 𝑵𝟏
OR
δ10 + X1 δ11 + X2 δ12 = 0
δ20 + X1 δ21 + X2 δ22 = 0
δ1f + X1 δ11 + X2 δ12 = 0
δ2f + X1 δ21 + X2 δ22 = 0
δ1f + δ10 +X1 δ11 + X2 δ12 = 0
δ2f + δ20 +X1 δ21 + X2 δ22 = 0
10t
Long (+)
short (−)
Tension (+)
compression (−)
ONCE
TWICE
δ1f = Σ∆. 𝑵𝟏
δ2f = Σ∆. 𝑵𝟐
8t
10t
Determine the internal forces
in members for the shown
truss due to the external loads
and fabrication error in
members F3 by (+0.5cm) and
F5 by (-1cm)..
8m
B
6t
6t
6m
A
Example 1
EA = 45000 t
R = ( m + r ) - 2j
R = ( 5+ 4) - 2x4= 1
(Once indeterminate)
𝐹1 𝐹2 𝐹3
𝐹4
𝐹5
8m
B
6t
6t
6m
A
6t
8t
2t
𝜃
𝜃
𝜃 𝜃
-8
-6
-6
10
No
𝜃
-1.67
8m
6m
N1
B
A
0
0
1t
1t
𝜃
𝜃
1.33
-1.67
1.33
1
𝜃
-352 90
Due to loads
δ10 + X1 δ11 = 0
X1 = 3.91 t
Due to Fabrication
δ1f + X1
’ δ11 = 0
X1
’ = 9.2t
-0.018 + X1
’ 𝟗𝟎
𝟒𝟓𝟎𝟎𝟎
= 0
Xtot = X1 +𝑿𝟏
′
= 𝟏𝟑. 𝟏𝒕
Total
Nf = N0 + Xtot N1
Mem. L No N1 NoN1L N1N1L Δ ΔN1 Nf
1 8 -6 1.333 -64 14.22 0 0 11.47
2 10 10 -1.667 -166.7 27.78 0 0 -11.8
3 10 0 -1.667 0 27.78 0.005 -0.008 -21.8
4 8 -8 1.333 -85.33 14.22 0 0 9.47
5 6 -6 1 -36 6 -0.01 -0.01 7.1
-0.018
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Introduction)
C
3 t/m
2I I
6m
A B
6t
2m 2m
Degree of Freedom
C
A B
Rotation (𝛼) OR (𝜃) Translation (∆)
𝛼 = 0
𝛼 ≠ 0
𝛼 = 0
∆𝑥 = 0
∆𝑦 = 0
𝛼 = 
∆𝑥 = 0
∆𝑦 = 0
𝛼 = 
∆𝑥 = 
∆𝑦 = 0
∆= 0
Beams:
[ Except settlement cases]
C
3 t/m
2I I
6m
A B
6t
2m 2m
3 t/m
6m
A B C
6t
2m 2m
B
Fixed End Moment
Rotation Moment
Sway Moment
L
A B C
L
B
L
A B C
L
B
4EI
L
αA +
2EI
L
αB
4EI
L
αB +
2EI
L
αA
𝑀𝐴𝐵
𝐹
−
6EI
L2
∆
𝑀𝐵𝐴
𝐹
MAB = MAB
F +
2EI
L
(2αA+ αB -3
∆
L
)
MAB = MAB
F +
4EI
L
αA +
2EI
L
αB −
6EI
L2 ∆
αA
αB
−
6EI
L2
∆
‫الساعة‬ ‫عقارب‬ ‫مع‬
𝑀𝐵𝐶
𝐹
𝑀𝐶𝐵
𝐹
αB
αC
4EI
L
αB +
2EI
L
αC
4EI
L
αC +
2EI
L
αB
∆
−
6EI
L2
∆ −
6EI
L2
∆
∆
Ψ
𝐾
Slope Deflection Equations:
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MBC = MBC
F +
2EI
L
(2αB+ αC -3 Ψ )
MCB = MCB
F +
2EI
L
(2αC+ αB -3 Ψ )
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Fixed End Moment)
w t/m
L
A B
B
Pt
L/2 L/2
A
−
𝑤𝐿2
12
𝑤𝐿2
12
𝑤𝐿2
12
𝑤𝐿2
12
𝑃𝐿
8
𝑃𝐿
8
−
𝑃𝐿
8
𝑃𝐿
8
−
Pa(L−a)
L
Pa(L−a)
L
Pa(L−a)
L
Pa(L−a)
L
L
A B
Pt Pt
a
a b
−
2
9
PL
2
9
PL
2
9
PL 2
9
PL
L
A B
Pt Pt
a a a
−
Pa𝑏2
𝐿2
Pb𝑎2
𝐿2
Pa𝑏2
𝐿2
P𝑏𝑎2
𝐿2
L
A B
Pt
a b
−
𝑤𝑙2
20
𝑤𝑙2
30
𝑤𝑙2
30
L
A B
w t/m
w𝑙2
20
Mb(2a−b)
L2
Ma(2b−a)
L2
L
A B
M
a b
−
Mb(2a−b)
L2
−
Ma(2b−a)
L2
L
A B
M
a b
6x4(2x1−4)
52
6x1(2x4−1)
52
5m
A B
6mt
1m 4m
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Example 1)
C
3 t/m
2I I
6m
A B
6t
2m 2m
3 t/m
6m
A B C
6t
2m 2m
B
𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = 0
−9 9 −3 3
𝑀𝐴𝐵
𝐹
= -9 mt, 𝑀𝐵𝐴
𝐹
= 9 mt
𝑀𝐵𝐶
𝐹
= -3 mt, 𝑀𝐶𝐵
𝐹
= 3 mt
1) Unknowns
𝛼𝐵
2) Fixed End Moment
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶
2𝑥2𝐸𝐼
6
:
2𝑥𝐸𝐼
4
2 ∶ 1.5
2𝐸𝐼
𝐿 𝐴𝐵
:
2𝐸𝐼
𝐿 𝐵𝐶
2
6
∶
1
4
× 6
× 2
4 ∶ 3
4) Slope deflection equations
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MBC = MBC
F +
2EI
L
(2αB+ αC -3 Ψ )
MCB = MCB
F +
2EI
L
(2αC+ αB -3 Ψ )
= −9 + 4 ( 0 + αB - 0 )
= 9 + 4 ( 2αB + 0 - 0 )
= −3 + 3 ( 2αB + 0 - 0 )
= 3 + 3 ( 0 + αB - 0 )
= −9 + 4αB
= 9 + 8αB
= −3 + 6αB
= 3 + 3αB
5) Compatibility eq.
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0
9 + 8αB +−3 + 6αB = 0
αB = −0.4286
𝑀𝐴𝐵 = -10.71
𝑀𝐵𝐴 = 5.57
𝑀𝐵𝐶 = -5.57
𝑀𝐶𝐵 = 1.71
6) Moment values
3 t/m
6m
A B C
6t
2m 2m
B
10.71 5.57 5.57 1.71
Reactions
8.16
9.86 3.96 2.04
F.E.M.
10.71
5.57
1.71
5.57+1.71
2
= 3.64
2.36
B.M.D. 𝑤𝐿2
8
𝑃𝐿
4
=6
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Example 2)
3 t/m
6m
A B C
6t
2m 2m
B
𝛼𝐴 = 0 𝛼𝐵 = ??
−9 9 −3 3
𝑀𝐴𝐵
𝐹
= -9 mt, 𝑀𝐵𝐴
𝐹
= 9 mt
𝑀𝐵𝐶
𝐹
= -3 mt, 𝑀𝐶𝐵
𝐹
= 3 mt
1) Unknowns
2) Fixed End Moment
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶
2𝑥2𝐸𝐼
6
:
2𝑥𝐸𝐼
4
2 ∶ 1.5
2𝐸𝐼
𝐿 𝐴𝐵
:
2𝐸𝐼
𝐿 𝐵𝐶
2
6
∶
1
4
× 6
× 2
4 ∶ 3
4) Slope deflection equations
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MBC = MBC
F +
2EI
L
(2αB+ αC -3 Ψ )
MCB = MCB
F +
2EI
L
(2αC+ αB -3 Ψ )
= −9 + 4 ( 0 + αB - 0 )
= 9 + 4 ( 2αB + 0 - 0 )
= −3 + 3 ( 2αB + 0 - 0 )
= 3 + 3 ( 0 + αB - 0 )
= −9 + 4αB
= 9 + 8αB
= −3 + 6αB + 3αC
= 3 + 3αB + 6αC
5) Compatibility eq.
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0
9 + 8αB −3 + 6αB+3αC = 0
αB = −0.36
αC = −0.32
𝑀𝐴𝐵 = -10.44
𝑀𝐵𝐴 = 6.12
𝑀𝐵𝐶 = -6.12
𝑀𝐶𝐵 = 0
6) Moment values
3 t/m
6m
A B
10.44 6.12 6.12
Reactions
F.E.M.
𝛼𝐶 = ??
C
3 t/m
2I I
6m
A B
6t
2m 2m
𝛼𝐵 , 𝛼𝐶
𝑀𝐶𝐵 = 0
3 + 3αB+6αC = 0
3αB+6αC = -3 → 2
14αB +3αC = -6 → 1
C
6t
2m 2m
B
8.28
9.72 4.53 1.47
10.44
6.12
6.12
2
=
3.06
2.94
B.M.D. 𝑃𝐿
4
=6
𝑤𝐿2
8
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Modified)
3 t/m
6m
A B
Fixed End Moment
Rotation Moment
Sway Moment
L
A B
L
A B C
L
B
4EI
L
αA +
2EI
L
αB
4EI
L
αB +
2EI
L
αA
𝑀𝐴𝐵
𝐹
−
6EI
L2
∆
𝑀𝐵𝐴
𝐹
MBC =𝑀𝐵𝐶
𝐹′
+
3EI
L
(αB −
∆
L
)
MBC = 𝑀𝐵𝐶
𝐹′
+
3EI
L
αB −
3EI
L2 ∆
αA
αB
−
6EI
L2
∆
‫الساعة‬ ‫عقارب‬ ‫مع‬
𝑀𝐵𝐶
𝐹′
3EI
L
αB
∆
−
3EI
L2
∆
∆
Ψ
𝐾
Slope Deflection Equations:
MAB =𝑀𝐴𝐵
𝐹
+
2EI
L
(2αA+ αB -3 Ψ )
MBA = 𝑀𝐵𝐴
𝐹
+
2EI
L
(2αB+ αA -3 Ψ )
MBC = 𝑀𝐵𝐶
𝐹′
+
3EI
L
(αB - Ψ )
C
3 t/m
2I I
6m
A B
6t
2m 2m
C
6t
2m 2m
B
αB
C
L
B
𝑀𝐴 = ?? 𝑀𝐶 = 0
𝑀𝐵 = ??
w t/m
L
A B
−
𝑤𝐿2
12
𝑤𝐿2
12
L
A B
𝑀𝐴𝐵
𝐹
𝑀𝐵𝐴
𝐹
𝑀𝐴𝐵
𝐹′
L
A B
𝑀𝐴𝐵
𝐹 𝑀𝐵𝐴
𝐹
= − 0.5
𝑀𝐴𝐵
𝐹′
L
A B
w t/m
= −1.5
wL2
12
B
Pt
L/2 L/2
A
−
𝑃𝐿
8
𝑃𝐿
8
𝑀𝐴𝐵
𝐹′
−
𝑃𝐿
8
= 𝑥 1.5
B
Pt
L/2 L/2
A
−
Pa𝑏2
𝐿2
Pb𝑎2
𝐿2
L
A B
Pt
a b
L
A B
Pt
a b
𝑀𝐴𝐵
𝐹′
−
Pa𝑏2
𝐿2
Pb𝑎2
𝐿2
= − 0.5
𝑀𝐴𝐵
𝐹′
=
L
A B
4EI
L
αA +
2EI
L
αB
4EI
L
αB +
2EI
L
αA
αA
αB
3EI
L
αA
𝑀𝐴𝐵
𝐹′
= − 0.5
L
A B
−
6EI
L2
∆ (−
6EI
L2 ∆)
−
6EI
L2
∆ −
6EI
L2
∆
∆
L
A B
L
A B
w t/m
L
A B
−
𝑤𝐿2
12
𝑤𝐿2
12
L
A B
𝑀𝐴𝐵
𝐹
𝑀𝐵𝐴
𝐹
𝑀𝐴𝐵
𝐹′
L
A B
𝑀𝐴𝐵
𝐹 𝑀𝐵𝐴
𝐹
= − 0.5
𝑀𝐴𝐵
𝐹′
L
A B
w t/m
= −1.5
wL2
12
B
Pt
L/2 L/2
A
−
𝑃𝐿
8
𝑃𝐿
8
𝑀𝐴𝐵
𝐹′
−
𝑃𝐿
8
= 𝑥 1.5
B
Pt
L/2 L/2
A
−
Pa𝑏2
𝐿2
Pb𝑎2
𝐿2
L
A B
Pt
a b
L
A B
Pt
a b
𝑀𝐴𝐵
𝐹′
−
Pa𝑏2
𝐿2
Pb𝑎2
𝐿2
= − 0.5
6m
A B
2 t/m 6t
2m
12
−6 6 -12
6m
A B
2 t/m 6t
2m
𝑀𝐴𝐵
𝐹′
= −6 6 -12
− 0.5 ( + ) = -3
B
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Modified)
(Redo Example 2)
𝑀𝐴𝐵
𝐹
= -9 mt, 𝑀𝐵𝐴
𝐹
= 9 mt
𝑀𝐵𝐶
𝐹
= -4.5 mt
1) Unknowns
2) Fixed End Moment
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶
4 ∶
9
2
2𝐸𝐼
𝐿 𝐴𝐵
:
3𝐸𝐼
𝐿 𝐵𝐶
2𝑥2
6
∶
3𝑥1
4
𝛼𝐵
3 t/m
6m
A B C
6t
2m 2m
B
𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = ??
−9 9 −4.5
F.E.M.
C
3 t/m
2I I
6m
A B
6t
2m 2m
𝑀𝐶 = 0
𝑀𝐴 = ?? 𝑀𝐵 = ??
:
8 ∶ 9
4) Slope deflection equations
= −9 + 8 ( 0 + αB - 0 )
= 9 + 8 ( 2αB + 0 - 0 )
= −4.5 + 9 ( αB - 0)
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MBC = 𝑀𝐵𝐶
𝐹′
+
3EI
L
(αB - Ψ )
= −9 + 8αB
= 9 + 16αB
= −4.5 + 9αB
5) Compatibility eq.
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0
9 + 16αB −4.5 + 9αB = 0
αB = −0.18
𝑀𝐴𝐵 = -10.44
𝑀𝐵𝐴 = 6.12
𝑀𝐵𝐶 = -6.12
6) Moment values
6.12
3 t/m
6m
A B
10.44 6.12
Reactions C
6t
2m 2m
B
8.28
9.72 4.53 1.47
10.44
6.12
6.12
2 =
3.06
2.94
B.M.D. 𝑃𝐿
4
=6
𝑤𝐿2
8
𝑀𝐴𝐵
𝐹
= -9 mt, 𝑀𝐵𝐴
𝐹
= 9 mt
𝑀𝐵𝐶
𝐹
= -4.5 mt
1) Unknowns
2) Fixed End Moment
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶
4 ∶
9
2
2𝐸𝐼
𝐿 𝐴𝐵
:
3𝐸𝐼
𝐿 𝐵𝐶
2𝑥2
6
∶
3𝑥1
4
𝛼𝐵
3 t/m
6m
A B C
6t
2m 2m
B
𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = ??
−9 9 −4.5
F.E.M.
C
3 t/m
2I I
6m
A B
6t
2m 2m
𝑀𝐶 = 0
𝑀𝐴 = ?? 𝑀𝐵 = ??
:
8 ∶ 9
4) Slope deflection equations
= −9 + 8 ( 0 + αB - 0 )
= 9 + 8 ( 2αB + 0 - 0 )
= −4.5 + 9 ( αB - 0)
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MBC = 𝑀𝐵𝐶
𝐹′
+
3EI
L
(αB - Ψ )
= −9 + 8αB
= 9 + 16αB
= −4.5 + 9αB
5) Compatibility eq.
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0
9 + 16αB −4.5 + 9αB = 0
αB = −0.18
𝑀𝐴𝐵 = -10.44
𝑀𝐵𝐴 = 6.12
𝑀𝐵𝐶 = -6.12
6) Moment values
6.12
3 t/m
6m
A B
10.44 6.12
Reactions C
6t
2m 2m
B
8.28
9.72 4.53 1.47
10.44
6.12
6.12
2 =
3.06
2.94
B.M.D. 𝑃𝐿
4
=6
𝑤𝐿2
8
Type
Equation
D.O.F αA, αB , Ψ αA, Ψ
Stiffness 2EI
L
3EI
L
F.E.M.
𝑀𝐴𝐵
𝐹′
= 𝑀𝐴𝐵
𝐹
-
1
2
𝑀𝐵𝐴
𝐹
Summary
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MAB = 𝑀𝐴𝐵
𝐹′
+
3EI
L
(αA - Ψ )
A B B
A
B
A
𝑀𝐴𝐵
𝐹′
A B
𝑀𝐴𝐵
𝐹
𝑀𝐵𝐴
𝐹
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Example 3)
𝑀𝐴𝐵
𝐹
= -9 mt, 𝑀𝐵𝐴
𝐹
= 9 mt
𝑀𝐵𝐶
𝐹
= -3 mt, 𝑀𝐶𝐵
𝐹
= 3 mt
1) Unknowns
2) Fixed End Moment
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶
2𝑥2𝐸𝐼
6
:
2𝑥𝐸𝐼
4
2 ∶ 1.5
2𝐸𝐼
𝐿 𝐴𝐵
:
2𝐸𝐼
𝐿 𝐵𝐶
2
6
∶
1
4
× 6
× 2
4 ∶ 3
4) Slope deflection equations
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MBC = MBC
F +
2EI
L
(2αB+ αC -3 Ψ )
MCB = MCB
F +
2EI
L
(2αC+ αB -3 Ψ )
= −9 + 4 ( 0 + αB - 0 )
= 9 + 4 ( 2αB + 0 - 0 )
= −3 + 3 ( 2αB + 0 - 0 )
= 3 + 3 ( 0 + αB - 0 )
= −9 + 4αB
= 9 + 8αB
= −3 + 6αB + 3αC
= 3 + 3αB + 6αC
5) Compatibility eq.
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0
9 + 8αB −3 + 6αB+3αC = 0
αB = −0.84
αC = 1.92
𝑀𝐴𝐵 = -12.36
𝑀𝐵𝐴 = 2.28
𝑀𝐵𝐶 = -2.28
𝑀𝐶𝐵 = 12
6) Moment values
12.36 2.28 2.28
Reactions
𝛼𝐵 , 𝛼𝐶
𝑀𝐶𝐵 + 𝑀𝐶𝐷 = 0
3 + 3αB+6αC −12 = 0
3αB+6αC = 9 → 2
14αB +3αC = -6 → 1
𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = ??
C
3 t/m
2I I
6m
A B
6t
2m 2m
6t
2m
D
3 t/m
6m
A B C
6t
2m 2m
B
−9 9 −3 3
12
−12
F.E.M.
ΣMc = 0
3 t/m
6m
A B C
6t
2m 2m
B
12 6t
2m
C D
12
6t
2m
C D
7.32
10.68 0.57 5.43
12.36
2.28
1.14
B.M.D. 𝑤𝐿2
8
6
12
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Example 4)
A
9t
2m
4m
2m
6t
B
1) Unknowns
𝛼𝐵 , 𝛼𝐶
2) Fixed End Moment 𝛼𝐴 = ?? 𝛼𝐵 = ?? 𝛼𝐶 = ??
C
3 t/m
B
8m
D
3I 2I
2m
2m
2m
6t
6t
2m
4m
A I
9t
2m
6t
I
3 t/m
D
C
8m
𝛼𝑑 = ??
𝑀𝐴 = 12 𝑀𝐵 = ?? 𝑀𝐶 = ?? 𝑀𝑑 = 0
−24
4 6t
6t
C
B
2m
2m
2m
3 t/m
17
−17
𝑀𝐵𝐴
𝐹′
= 4 mt
𝑀𝐵𝐶
𝐹
= -17 mt, 𝑀𝐶𝐵
𝐹
= 17 mt
𝑀𝐶𝐷
𝐹′
= -24 mt
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐶𝐷
3𝐸𝐼
𝐿 𝐴𝐵
:
2𝐸𝐼
𝐿 𝐵𝐶
:
3𝐸𝐼
𝐿 𝐶𝐷
× 4
:
:
3𝑥1
6
2𝑥3
6
3𝑥2
8
:
:
1
2
1
3
4
:
:
2 4 3
:
:
4) Slope deflection equations
= 4 + 2 ( αB - 0 )
= −17 + 4 ( 2αB + αC - 0) )
= 17 + 4 ( 2αC + αB - 0)
= −24 + 3 (αC - 0 )
MBC = 𝑀𝐵𝐶
𝐹
+
2EI
L
(2αB+ αC -3 Ψ )
MCB = 𝑀𝐶𝐵
𝐹
+
2EI
L
(2αC+ αB -3 Ψ )
MCD = 𝑀𝐶𝐷
𝐹′
+
3EI
L
(αC - Ψ)
MBA = 𝑀𝐵𝐴
𝐹′
+
3EI
L
(αB - Ψ)
= 4 + 2αB
= −17 + 8αB + 4αC
= 17 + 4αB + 8αC
= −24 + 3αC
5) Compatibility eq.
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0
αB = 1.2234
αC = 0.1915
𝑀𝐶𝐵 + 𝑀𝐶𝐷 = 0
4αB+11αC = 7 → 2
10αB +4αC = 13 → 1
ΣMc = 0
6) Moment Values
MBC = −6.45 𝑚𝑡
MCB = 23.43 𝑚𝑡
MCD = −23.43 𝑚𝑡
MBA = 6.45 𝑚𝑡
A
9t
2m
4m
2m
6t
B
3 t/m
D
C
8m
6.45 6t
6t
C
B
2m
2m
2m
3 t/m
23.43
6.45 23.43
Reactions
17.83
12.17
5.075
9.925 14.93 9.07
12.28
6.23
11.89
3.7
6.45
23.43
12
B.M.D.
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Frames)
(Sway or without sway)
Delete
✓
Can translate ?
X
Symmetry ?
Ψ
Ψ
Frame
Without Sway
Symmetry No translation
With Sway
Δ Δ
Without Sway With Sway
Delete
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Frames)
(Without Sway)
Delete
C
1.5 t/m
6I
I
A B
6t
3m
2m
4I
1.5I 4t
6t
F
E
D
3m
4m
1) Unknowns
𝛼𝐵 , 𝛼𝐶
12m 8m
Delete
1) Unknowns
𝛼𝐵 , 𝛼𝐶
2) Fixed End Moment I
3m
1.5I 4t
6t
E
D
3m
4m
12m 8m 2m
C
1.5 t/m
6I
A B
6t
4I F
C
B
1.5 t/m
-12
8
18
-18 -8
2m
-4.5
B C
-5.33
2.67
𝑀𝐴𝐵
𝐹
= -18 mt, 𝑀𝐵𝐴
𝐹
= 18 mt
𝑀𝐵𝐶
𝐹
= -8 mt, 𝑀𝐶𝐵
𝐹
= 8 mt
𝑀𝐵𝐷
𝐹
= -5.33 mt, 𝑀𝐷𝐵
𝐹
= 2.67 mt
ഥ
𝑀𝐶𝐸
𝐹
= -4.5 mt
Delete
I
3m
1.5I 4t
6t
E
D
3m
4m
12m 8m 2m
C
1.5 t/m
6I
A B
6t
4I F
C
B
1.5 t/m
-12
8
18
-18 -8
2m
-4.5
B C
-5.33
2.67
1) Unknowns
𝛼𝐵 , 𝛼𝐶
2) Fixed End Moment
𝑀𝐴𝐵
𝐹
= -18 mt, 𝑀𝐵𝐴
𝐹
= 18 mt
𝑀𝐵𝐶
𝐹
= -8 mt, 𝑀𝐶𝐵
𝐹
= 8 mt
𝑀𝐵𝐷
𝐹
= -5.33 mt, 𝑀𝐷𝐵
𝐹
= 2.67 mt
ഥ
𝑀𝐶𝐸
𝐹
= -4.5 mt
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐷 ∶ 𝐾𝐶𝐸
2𝑋6
12
:
2𝑋4
8
:
2𝑋1.5
6
:
3𝑋1
6
1 ∶ 1 ∶
1
2
:
1
2
2 ∶ 2 ∶ 1 : 1
Delete
I
3m
1.5I 4t
6t
E
D
3m
4m
12m 8m 2m
C
1.5 t/m
6I
A B
6t
4I F
C
B
1.5 t/m
-12
8
18
-18 -8
2m
-4.5
B C
-5.33
2.67
1) Unknowns
𝛼𝐵 , 𝛼𝐶
2) Fixed End Moment
𝑀𝐴𝐵
𝐹
= -18 mt, 𝑀𝐵𝐴
𝐹
= 18 mt
𝑀𝐵𝐶
𝐹
= -8 mt, 𝑀𝐶𝐵
𝐹
= 8 mt
𝑀𝐵𝐷
𝐹
= -5.33 mt, 𝑀𝐷𝐵
𝐹
= 2.67 mt
ഥ
𝑀𝐶𝐸
𝐹
= -4.5 mt
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐷 ∶ 𝐾𝐶𝐸
2𝑋6
12
:
2𝑋4
8
:
2𝑋1.5
6
:
3𝑋1
6
1 ∶ 1 ∶
1
2
:
1
2
2 ∶ 2 ∶ 1 : 1
4) Slope Deflection Equation
𝑀𝐴𝐵 = -18 + 2 (2𝛼𝐴 + 𝛼𝐵)
𝑀𝐵𝐴 = 18 + 2 (2𝛼𝐵 + 𝛼𝐴)
𝑀𝐵𝐶 = -8 + 2 (2𝛼𝐵 + 𝛼𝐶)
𝑀𝐶𝐵 = 8 + 2 (2𝛼𝐶 + 𝛼𝐵)
𝑀𝐵𝐷 = -5.33 + (2𝛼𝐵 + 𝛼𝐷)
𝑀𝐷𝐵 = 2.67 + (2𝛼𝐷 + 𝛼𝐵)
𝑀𝐶𝐸 = -4.5 + (𝛼𝐶)
= -18 + 2 𝛼𝐵
= 18 + 4𝛼𝐵
= -8 + 4𝛼𝐵 + 2𝛼𝐶
= 8 + 4𝛼𝐶 + 2𝛼𝐵
= -5.33 + 2𝛼𝐵
= 2.67 + 𝛼𝐵
= -4.5 + 𝛼𝐶
Delete
1) Unknowns
𝛼𝐵 , 𝛼𝐶
2) Fixed End Moment
𝑀𝐴𝐵
𝐹
= -18 mt, 𝑀𝐵𝐴
𝐹
= 18 mt
𝑀𝐵𝐶
𝐹
= -8 mt, 𝑀𝐶𝐵
𝐹
= 8 mt
𝑀𝐵𝐷
𝐹
= -5.33 mt, 𝑀𝐷𝐵
𝐹
= 2.67 mt
ഥ
𝑀𝐶𝐸
𝐹
= -4.5 mt
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐷 ∶ 𝐾𝐶𝐸
2𝑋6
12
:
2𝑋4
8
:
2𝑋1.5
6
:
3𝑋1
6
1 ∶ 1 ∶
1
2
:
1
2
2 ∶ 2 ∶ 1 : 1
4) Slope Deflection Equation
𝑀𝐴𝐵 = -18 + 2 (2𝛼𝐴 + 𝛼𝐵)
𝑀𝐵𝐴 = 18 + 2 (2𝛼𝐵 + 𝛼𝐴)
𝑀𝐵𝐶 = -8 + 2 (2𝛼𝐵 + 𝛼𝐶)
𝑀𝐶𝐵 = 8 + 2 (2𝛼𝐶 + 𝛼𝐵)
𝑀𝐵𝐷 = -5.33 + (2𝛼𝐵 + 𝛼𝐷)
𝑀𝐷𝐵 = 2.67 + (2𝛼𝐷 + 𝛼𝐵)
𝑀𝐶𝐸 = -4.5 + (𝛼𝐶)
= -18 + 2 𝛼𝐵
= 18 + 4𝛼𝐵
= -8 + 4𝛼𝐵 + 2𝛼𝐶
= 8 + 4𝛼𝐶 + 2𝛼𝐵
= -5.33 + 2𝛼𝐵
= 2.67 + 𝛼𝐵
= -4.5 + 𝛼𝐶
I
3m
1.5I 4t
6t
E
D
3m
4m
12m 8m 2m
C
1.5 t/m
6I
A B
6t
4I F
C
B
1.5 t/m
-12
8
18
-18 -8
2m
-4.5
B C
-5.33
2.67
5) Comp. equations
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 + 𝑀𝐵𝐷 = 0
ΣMc = 0
𝑀𝐶𝐵 + 𝑀𝐶𝐸 + 𝑀𝐶𝐹 = 0
10𝛼𝐵 + 2𝛼𝐶 = -4.67
2𝛼𝐵 + 5𝛼𝐶 = 8.5
𝛼𝐵 = -0.87717
𝛼𝐶 = 2.05087
𝑀𝐴𝐵 = -19.75
𝑀𝐵𝐴 = 14.49
𝑀𝐵𝐶 = -7.4
𝑀𝐶𝐵 = 14.45
𝑀𝐵𝐷 = -7.09
𝑀𝐷𝐵 = 1.80
𝑀𝐶𝐸 = -2.45
6) Moments
-12
12
14.45
14.49
19.75 7.4
2.45
7.09
1.80
3m
4t
6t
E
D
3m
4m
12m 8m 2m
C
1.5 t/m
A B
6t
F
C
B
1.5 t/m
2mB C
9.44 8.56 5.12 6.88 6
1.12
4.88 2.4
1.6
19.75
14.49
7.4
14.4512
1.8
7.09
2.7
2.45
4.8
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Frames)
(Without Sway)
(Symmetry)
Delete 1) Unknowns
𝛼𝐵 , 𝛼𝐶 , 𝛼𝐷 , 𝛼𝐸
2) Fixed End Moment
𝛼𝐷 = - 𝛼𝐶 𝛼𝐸 = - 𝛼𝐵
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐸 ∶ 𝐾𝐶𝐷
6 ∶ 2 ∶ 2.5 : 3.75
C
3 t/m
A
B
5m
8m
2I
2I
F
E
D
5m
6 t/m
2I
I I
3I
B E
B E
C D
8m
5m
32
16
-32
-16
5m
4) Slope Deflection Equations
𝑀𝐵𝐴 = 0 + 6 (𝛼𝐵)
𝑀𝐵𝐶 = 0 + 2 (2𝛼𝐵 + 𝛼𝐶)
𝑀𝐶𝐵 = 0 + 2 (2𝛼𝐶 + 𝛼𝐵)
𝑀𝐵𝐸 = -16 + 2.5(2𝛼𝐵 + 𝛼𝐸)
𝑀𝐶𝐷 = -32 + 3.75(2𝛼𝑐 + 𝛼𝐷)
= 6𝛼𝐵
= 4𝛼𝐵 + 2𝛼𝐶
= 4𝛼𝐶 + 2𝛼𝐵
= -16 + 2.5(2𝛼𝐵 - 𝛼𝐵)
= -32 + 3.75(2𝛼𝑐 - 𝛼𝑐)
= -16 + 2.5𝛼𝐵
= -32 + 3.75𝛼𝑐
5) Compatibility Equations
ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 + 𝑀𝐵𝐸 = 0
ΣMc = 0 𝑀𝐶𝐵 + 𝑀𝐶𝐷 = 0
12.5𝛼𝐵 + 2𝛼𝐶 = 16
2𝛼𝐵 + 7.75𝛼𝐶 = 32
𝛼𝐵 = 0.664603
𝛼𝐶 = 3.962315
6) Moment values
𝑀𝐵𝐴 = 3.88
𝑀𝐵𝐶 = 10.51
𝑀𝐶𝐵 = 17.14
𝑀𝐵𝐸 = -14.38
𝑀𝐶𝐷 = -17.14
C
3 t/m
A
B
5m
8m
2I
2I
F
E
D
5m
𝜶𝑩 =??
𝜶𝑪 =??
6 t/m
2I
I I
3I
𝜶𝑬 =??
𝜶𝑫 =??
C
A
B
F
E
D
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Frames)
(With Sway)
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Introduction)
Introduction
1- Fixed End Moment
2- Distribution Moment
(Distribution Factor)
3- Carry over
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-6
-9
Carry
over
Carry
over
D.M.
D.M.
Fixed end moment
Distribution Factor Carry over
w t/m
L
𝑤𝐿2
12
−
𝑤𝐿2
12
𝑃𝐿
8
−
𝑃𝐿
8
−
𝑃𝑎𝑏2
𝐿2
𝑃𝑏𝑎2
𝐿2
L/2
Pt
L/2
𝑤𝐿2
30
−
𝑤𝐿2
20
𝑃𝑎(𝐿 − 𝑎)
𝐿
−
𝑃𝑎(𝐿 − 𝑎)
𝐿
L
𝑀𝑎(2𝑏 − 𝑎)
𝐿2
𝑀𝑏(2𝑎 − 𝑏)
𝐿2
w t/m
L
−
𝑤𝐿2
12
𝒙𝟏. 𝟓
−
𝑃𝐿
8
𝒙𝟏. 𝟓
−
𝑃𝑎𝑏2
𝐿2
L/2
Pt
L/2
a
Pt
b
L
L
Pt Pt
a a
b
M
a b
L
Pt
a b
L
− 𝟎. 𝟓 𝐱
𝑷𝒃𝒂𝟐
𝑳𝟐
Fixed end moment
Distribution Factor
Carry over
D.F. for Joint B
KBA : KBC
C
3 t/m
6m
A B
6t
2m 2m
6t
4m
2m
D
3I 2I I
3 t/m
6m
A 3I B C
B
6t
2m 2m
2I
6t
4m
2m
D
I
C
D.F. for Joint C
KCB : KCD
KBA + KBC KBA + KBC KCB + KCD KCB + KCD
Fixed end moment
Distribution Factor
Carry over
Joint B
KBA : KBC
C
3 t/m
6m
A B
6t
2m 2m
6t
4m
2m
D
3I 2I I
3 t/m
6m
A 3I B C
B
6t
2m 2m
2I
6t
4m
2m
D
I
C
Joint C
KCB : KCD
4𝑥𝐸𝑥3
6
:
4𝑥𝐸𝑥2
4
4𝑥𝐸𝑥2
4
:
4𝑥𝐸𝑥1
6
1
2
:
1
2
1
2
:
1
6
6 : 2
𝟑
𝟒
:
𝟏
𝟒
3 : 1
1
2
1
2
+
1
2
:
1
2
1
2
+
1
2
𝟏
𝟐
:
𝟏
𝟐
L
L
K =
𝑰
𝑳
K =
𝑰
𝑳
𝒙
𝟑
𝟒
C
3 t/m
6m
A B
6t
2m 2m
3 t/m
6m
D
3I 2I 3I
K =
𝑰
𝑳
𝒙
𝟏
𝟐
L
𝑲𝑨𝑩=
𝑰
𝑳
𝑲𝑩𝑪=
𝑰
𝑳
𝒙
𝟏
𝟐
Example for Symmetry Beam:
(Symmetry)
Fixed end moment Distribution Factor
Carry over
L
A B
L
B C
D.M. D.M.
𝟏
𝟐
D.M. 𝟎
x
𝟏
𝟐
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Example 1)
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-9
FEM
1- Fixed End Moment
−
𝑤𝐿2
12
=
𝑤𝐿2
12
=
PL
8
=
-
PL
8
=
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-9
3
9 -3
-9
FEM
A B C
𝟐/𝟓 𝟑/𝟓
D.M.
-6
-2.4
D.F.
FEM
1
-
‫نجمع‬
2
-
‫االشارة‬ ‫نغير‬
3
-
‫في‬ ‫نضرب‬
‫التوزيع‬ ‫نسب‬
Joint B
KBA : KBC
1
6
:
1
4
4 : 6
2 : 3
2
5
:
3
5
I
L
:
I
L
Distribution factors:
2- Distribution Moment
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-9
3
9 -3
-9
FEM
A B C
𝟐/𝟓 𝟑/𝟓
D.M.
-6
-2.4 -3.6
D.F.
1
-
‫نجمع‬
2
-
‫االشارة‬ ‫نغير‬
3
-
‫في‬ ‫نضرب‬
‫التوزيع‬ ‫نسب‬
FEM
Joint B
KBA : KBC
1
6
:
1
4
4 : 6
2 : 3
2
5
:
3
5
I
L
:
I
L
Distribution factors:
2- Distribution Moment
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-9
3
9 -3
-9
FEM
A B C
𝟐/𝟓 𝟑/𝟓
D.M. -2.4 -3.6
C.O. -1.2 -1.8
D.F.
Joint B
KBA : KBC
1
6
:
1
4
4 : 6
2 : 3
2
5
:
3
5
I
L
:
I
L
Distribution factors:
FEM
3- Carry Over
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-9
3
9 -3
-9
FEM
A B C
𝟐/𝟓 𝟑/𝟓
D.M. -2.4 -3.6
C.O. -1.2 -1.8
F.M. -10.2 6.6 -6.6 1.2
D.F.
A 6m
3 t/m
B B
6t
2m 2m
C
10.2 6.6 6.6 1.2
‫سالب‬
(
‫الساعة‬ ‫عقارب‬ ‫عكس‬
)
‫موجب‬
(
‫الساعة‬ ‫عقارب‬ ‫مع‬
)
Joint B
KBA : KBC
1
6
:
1
4
4 : 6
2 : 3
2
5
:
3
5
I
L
:
I
L
Distribution factors:
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-9
3
9 -3
-9
FEM
A B C
𝟐/𝟓 𝟑/𝟓
D.M. -2.4 -3.6
C.O. -1.2 -1.8
F.M. -10.2 6.6 -6.6 1.2
D.F.
A 6m
3 t/m
B B
6t
2m 2m
C
10.2 6.6 6.6 1.2
= 8.4
9.6
=4.35
1.65
C
A B
10.2
6.6
1.2
2.1
3x6x3 + 6.6 -10.2
6
6x2+6.6-1.2
4
FEM
Joint B
KBA : KBC
1
6
:
1
4
4 : 6
2 : 3
2
5
:
3
5
I
L
:
I
L
Distribution factors:
B.M.D.
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Example 2)
A
6m
3 t/m
B
9 -4.5
-9
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
0
9 -4.5
-9
FEM
𝟖/𝟏𝟕 9/𝟏𝟕
D.F.
A B C
Joint B
KBA : KBC
1
6
:
3
16
16 : 18
8 : 9
8
17
:
9
17
1
6
:
1
4
𝑥
3
4
D.M. -2.12 -2.38
C.O. -1.06
F.M. -10.06 6.88 -6.88 0
A 6m
3 t/m
B
10.06 6.88 6.88
B
6t
2m 2m
C
9.53 8.47 1.28
4.72
C
A B
10.06
6.88
2.56
B.M.D.
Distribution factors:
I
L
:
I
L
𝑥
3
4
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Example 3)
C
2 t/m
A B
8t 1t
6m
2m 2m 2m
I 2I
A
8t
2m 2m
I B C
2 t/m
B
1t
6m 2m
2I
−4 4
1t
2m
C
2 t/m
B
6m
6
−6 −2
−0.5 ( )= -8
FEM
−6 −2
6
C
2 t/m
A B
8t 1t
6m
2m 2m 2m
I 2I
A
8t
2m 2m
I B C
2 t/m
B
1t
6m 2m
2I
−4 4
C
2 t/m
B
6m 2m
C
B
1t
6m 2m
−9
2
1
1
−8
FEM
C
2 t/m
A B
8t 1t
6m
2m 2m 2m
I 2I
A
8t
2m 2m
I B C
2 t/m
B
1t
6m 2m
2I
−4 4 −8
4 -8
-4
FEM
𝟎. 𝟓 0.5
D.M.
D.F.
A B C
Joint B
KBA : KBC
1
4
:
1
4
1 : 1
1
2
:
1
2
1
4
:
2
6 𝑥
3
4
I
L
:
I
L
𝑥
3
4
2 2
C.O. 1
F.M. -3 6 -6
3 6 6
3.25 4.75 6.33
6.67
B.M.D.
A
8t
2m 2m
B C
2 t/m
B
1t
6m 2m
3.5
C
A B
3
6
2
Distribution factors:
FEM
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Example 4)
C
3 t/m
10m
A B
8t
7.5m 7.5m 10m
D
I 2I I
3 t/m
10m
A I B C
B
8t
7.5m 7.5m
2I D
I
C
10m
25
−25 −15 15 0 0
Joint B
KBA : KBC
Joint C
KCB : KCD
𝐼
𝐿
:
𝐼
𝐿
1
10
:
2
15
15 : 20
𝟑
𝟕
:
𝟒
𝟕 25 −15 15 0 0
−25
15
35
:
20
35
𝐼
𝐿
:
𝐼
𝐿
2
15
:
1
10
20 : 15
𝟒
𝟕
:
𝟑
𝟕
20
35
:
15
35
3/7 4/7 4/7 3/7
−5.714 −8.55 −6.45
A B C D
FEM
D.M.1
D.F.
C.O.1
−4.286
D.M.2 2.443 1.629 1.229
1.832
-2.143 -4.275 -2.857 -3.225
C.O.2 0.916 0.814 1.221 0.614
D.M.3 −0.465
−0.349 −0.525
−0.696
C.O.3 -0.174 -0.348 -0.233 -0.263
D.M.4 0.199
0.149 0.133
C.O.4 0.075 0.066 0.099 0.05
0.1
D.M.5 −0.038
−0.028 -0.057 -0.043
F.M. -26.33 -22.32 5.69 -2.82
-5.69
22.32
22.32
26.33 5.69 2.82
3 t/m
10m
A B
8t
7.5m
B C
7.5m 10m
C D
5.69
22.32
0.851 0.851
5.11 2.89
15.4 14.6
C
A B
B.M.D.
26.33
22.32
5.69
2.82
𝑤𝑙2
8
26.33 + 22.32
2
13.175
=37.5
=24.32
𝑃𝐿
4
22.32 + 5.69
2
16
=30
=14
Distribution factors:
Reactions
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Example 5 - Symmetry)
C
1 t/m
4m
A B
12m
D
9 mt
2m 4m
2m
9 mt
A B
9 mt
4m 2m
C
B
12m
1 t/m
C D
9 mt
4m
2m
−3 0
FEM
−12 12 0 3
0 -12
-3
FEM
0.8 0.2
D.F.
A B C
D.M. 9.6 2.4
Joint B
KBA : KBC
1
6
:
1
24
24 : 6
4
5
:
1
5
1
6
:
1
12
𝑥
1
2
I
L
:
I
L
𝑥
1
2
4 : 1
C.O. 4.8
F.M. 1.8 9.6 -9.6
A B
9 mt
4m 2m
C
B
12m
1 t/m
1.8 9.6 9.6 9.6
0.4
0.4 6 6
8.8
0.2
1.8
8.8
0.2
1.8
C
A B
9.6
9.6
8.4
B.M.D.
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Example 6)
3 t/m
D
C
8m
-16 16
C
3 t/m
B
8m
D
3I 2I
2m
2m
2m
6t
6t
3m
3m
A I
8t
2m
6t
I
3
3m
3m
A
8t
2m
6t
B
FEM
𝑃𝐿
8
𝑥1.5 = 9
3m
3m
A
8t
2m
B
6t
6t
C
B
2m
2m
2m
−6
3m
3m
A
2m
6t
B
12
6
6t
6t
C
B
−17 17
2m
2m
2m
3 t/m
C
B
2m
2m
2m
3 t/m
𝑤𝐿2
12
= 9
−
𝑤𝐿2
12
= -9
−
𝑃𝑎(𝐿−𝑎)
𝐿
= -8
𝑃𝑎(𝐿−𝑎)
𝐿
= 8
3 t/m
6t
6t
C
3 t/m
B
8m
D
3I 2I
C
B 3I D
2I
C
8m
3 −17 17 -16 16
Joint B Joint C
KCB : KCD
𝐼
𝐿
𝑥
3
4
:
𝐼
𝐿
3 -17 17 -16 16
𝐼
𝐿
:
𝐼
𝐿
1
2
:
1
4
2
𝟎. 𝟐 𝟎. 𝟖 2/𝟑 1/𝟑
11.2 -0.667 -0.333
A B C D
FEM
D.M.1
D.F.
C.O.1
2.8
D.M.2 0.267 -3.733 -1.867
0.667
-0.333 5.6 -0.167
C.O.2 -1.867 0.133 -0.933
D.M.3 1.493
0.373 -0.044
-0.089
C.O.3 -0.044 -0.747 -0.022
D.M.4 0.036
0.009 -0.498
C.O.4 -0.249 0.018 -0.124
-0.249
D.M.5 0.199
0.05 -0.012 -0.006
F.M. -6.3 18.499 14.75
-18.499
6.3
C
A B
B.M.D.
12
6.3
18.5
14.75
2.85
13.64
Distribution factors:
2m
2m
2m
6t
6t
3m
3m
A I
8t
2m
6t
I
2m
2m
2m
3 t/m
3m
3m
A I
8t
2m
6t
I B
3
6
:
2
8
:
4
1
:
2
𝟏
𝟑
:
𝟐
𝟑
KBA : KBC
1
6
𝑥
3
4
:
3
6
1
8
:
1
2
8
:
2
4
:
1
𝟒
𝟓
:
𝟏
𝟓
6.3 18.5 14.75
18.5
6.3
12.47 11.53
12.97 17.03
3.05
8m
C D
3 t/m
6t
B C
2m
3 t/m
6t
2m
2m
3m
8t
A B
3m
2m
6t
9.56
7.375
Reactions
D
FEM
10.95
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Settlement)
D
I
C
10m
1 cm
Determinate structures
Indeterminate structures
−12 −12
−3𝐸𝐼∆
𝐿2
∆
∆
∆
C
3 t/m
10m
A B
8t
7.5m 7.5m 10m
D
I 2I I
2 cm 1 cm
EI = 10000 m2t
3 t/m
10m
A I B
2 cm
C
B
8t
7.5m 7.5m
2I
2 cm 1 cm
10m
A B
2 cm
I
−6𝐸𝐼∆
𝐿2
−6𝐸𝐼∆
𝐿2 3 t/m
10m
A I B
25
−25
13
−37
C
B
8t
7.5m 7.5m
2I
C
B
15m
2I
2 cm
1 cm
Δ
5.33
15
−15
5.33
20.33
−9.67 3
36.18
14.93
5.79
19.64
11.95
D
I
C
10m
1 cm
C
3 t/m
10m
A B
8t
7.5m 7.5m 10m
D
I 2I I
2 cm 1 cm
EI = 10000 m2t
3 t/m
10m
A I B
2 cm
C
B
8t
7.5m 7.5m
2I
2 cm 1 cm
13
−37 20.33
−9.67 3
Joint B
KBA : KBC
Joint C
KCB : KCD
𝐼
𝐿
:
𝐼
𝐿
1
10
:
2
15
15 : 20
𝟑
𝟕
:
𝟒
𝟕
15
35
:
20
35
𝐼
𝐿
:
𝐼
𝐿
𝑥
3
4
2
15
:
1
10
𝑥
3
4
80 : 45
𝟎. 𝟔𝟒 : 𝟎. 𝟑𝟔
80
125
:
45
125
13 −9.67 20.33 3 0
−37
3/7 4/7 𝟎. 𝟔𝟒 𝟎. 𝟑𝟔
−1.903 −14.93 −8.399
A B C D
FEM
D.M.1
D.F.
C.O.1
−1.428
D.M.2 4.266 0.609 0.342
3.199
-0.714 -7.466 -0.951
C.O.2 1.6 0.304 2.133
D.M.3 −0.174
−0.13 −0.768
−1.365
C.O.3 -0.065 -0.682 -0.087
D.M.4 0.39
0.292 0.056 0.031
F.M. -36.18 -14.93 5.79 0
-5.79
14.93
C
A B D
B.M.D.
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Frames)
(Example 1)
5t
1.5 t/m
B C
2I 4m
4m
5t
A
1.5 t/m
D
B C
I
I
2I
5m
4m
4m
−13 13
A D
I
I C
B
5m
0
0
5m
0 0
0 -13
0
FEM
8/13 5/13
D.F.
A B C D
D.M.
Joint B
KBA : KBC
1
5
:
1
8
8 : 5
8
13
:
5
13
1
5
:
2
8
𝑥
1
2
I
L
:
I
L 𝑥
1
2
Distribution Factors
8 5
C.O. 4
F.M. 4 8 -8
5t
1.5 t/m
B C
4m
4m
8
4 4
8
8
8
2.4
A
B
5
m
2.4
8.5 8.5
2.4
C
D
5
m
2.4
8
4 4
8
8
8
B.M.D.
14
𝑤𝑙2
8
+
𝑃𝐿
4
= 22
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Frames)
(Example 2)
4t
A
3 t/m
B C
8m
−16 16
4t
A
3 t/m
B
C
3m
8m
3m
B
−4.5
3m 3m
16 -4.5
-16
FEM
0.5 0.5
D.F.
A B C
D.M. -5.75 -5.75
C.O. -2.875
F.M. -18.875 10.25 -10.25
Joint B
KBA : KBC
1
8
:
1
8
1 : 1
𝟎. 𝟓 : 𝟎. 𝟓
1
8
:
1
6 𝑥
3
4
I
L
:
I
L
𝑥
3
4
Distribution Factors
:
A
3 t/m
B
8m
18.875 10.25
10.25
13.08 10.92
B
4t
C
3m
3m
3.71 A B
C
10.25
10.25
18.875
0.29
0.875
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Frames)
(Example 3)
A
3 t/m
B
8m
−16 16
4t
C
B
−4.5
3t
B
−6
3m 3m
16 -4.5
-16
FEM
0.5 0.5
D.F.
A B C
D.M.
Joint B
KBA : KBC
1
8
:
1
8
1 : 1
𝟎. 𝟓 : 𝟎. 𝟓
1
8
:
1
6 𝑥
3
4
I
L
:
I
L
𝑥
3
4
:
-6
4t
A
3 t/m
B
C
3m
8m 2m
3m
3t
0
-2.75 -2.75
C.O. -1.375
F.M. -17.375 13.25 -6 -7.25 0
A
3 t/m
B
8m
17.375 13.25
7.25
B
4t
C
3m
3m
A B
C
7.25
13.25
17.375
2.375
3t
2m
B
6
6
𝑝𝑙
4
B.M.D.
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Frames)
(Example 4)
I
3m
4t
E
DB
3m
12m
2m
1.5 t/m
6I
A B
C
-12
-4.5
BD
C
-5.33
2.67
A B
-18 18
C
-5.33 -8 8
8m
C
4I
B
1.5 t/m
-8 8
E
-12 -4.5 0
D
18
-18
6t
2.67
C
1.5 t/m
6I
I
A B
6t
3m
12m 8m 2m
4I
1.5I 4t
6t
F
E
D
3m
4m
FEM
D.F.
Joint B
KBA : KBD : KBC
I
L
:
Distribution Factors
: :
I
L
I
L
:
6
12
: 1.5
6
4
8
:
6 : 3 6
:
0.4 : 0.2 0.4
:
Joint C
KCB : KCE
:
I
L
: I
L x
3
4
4
8
: 1
6
x
3
4
4
8
: 1
8
4 : 1
0.8 : 0.2
0.4 0.2 0.4 0.8 0.2
I
3m
4t
E
DB
3m
12m
2m
1.5 t/m
6I
A B
C
-12
-4.5
BD
C
-5.33
2.67
A B
-18 18
C
-5.33 -8 8
8m
C
4I
B
1.5 t/m
-8 8
E
-12 -4.5 0
D
18
-18
6t
2.67
FEM
D.F.
Joint B
KBA : KBD : KBC
I
L
:
Distribution Factors
: :
I
L
I
L
:
6
12
: 1.5
6
4
8
:
6 : 3 6
:
0.4 : 0.2 0.4
:
Joint C
KCB : KCE
:
I
L
: I
L x
3
4
4
8
: 1
6
x
3
4
4
8
: 1
8
4 : 1
0.8 : 0.2
0.4 0.2 0.4 0.8 0.2
C
1.5 t/m
6I
I
A B
6t
3m
12m 8m 2m
4I
1.5I
4t
6t
F
E
D
3m
4m
D.M.1 -1.867 -0.933 6.8 1.7
C.O.1 -0.933 -0.467
3.4 -0.933
D.M.2
C.O.2
-1.36 -0.68 -1.36 0.747 0.187
0.373 -0.68
-0.68 -0.34
D.M.3
C.O.3
-0.149 -0.075 -0.149
0.272
0.544
-0.075
0.136
-0.075 -0.037
D.M.4 -0.109 -0.054 -0.109 0.06 0.015
F.M. -19.69 14.52 -7.08 -7.44 14.46 -12 -2.46 0 1.82
12m
1.5 t/m
A B
19.69 14.52
8m
1.5 t/m
B C
7.44 14.46
6t
D
4m
2m B
1.82
7.08 2.46
6t
E
C
3m
3m
2m
C
6t
12 14.52
19.69
7.44
14.46
12
1.82
7.08
2.7
2.46
4.8
B.M.D.
-1.867

structural analysis 2.pdf

  • 1.
  • 2.
  • 3.
    12 t 12t 12 t 4 t 4 t 12t 32mt S.F.D B.M.D 8t 2 t/m 4 m A B 4 m 2 t/m 4 m A B 4 m 8t 4 m A B 4 m 8 t 8t 4t 8 t 8 t 16mt 4 t 4 t 4 t 4 t 4 t 𝒘𝑳𝟐 𝟖 𝑷𝑳 𝟒 = 𝟖𝒙𝟖 𝟒 =16 16mt 2x8=16
  • 4.
  • 5.
    S.F.D. 𝑷 𝟐 𝑷 𝟐 𝑷 𝟐 𝑷 𝟐 𝑷𝒃 𝑳 𝑷𝒃 𝑳 𝑷𝒂 𝑳 𝑷𝒂 𝑳 𝒘𝑳 𝟐 𝒘𝑳 𝟐 A B a b L 𝑷𝑳 𝟒 L AB w t/m 𝒘𝑳𝟐 𝟖 B.M.D P t 𝑷𝒂𝒃 𝑳 P t L/2 A B L/2 𝑷 𝟐 𝑷 𝟐 𝒘𝒍 𝟐 𝒘𝒍 𝟐 𝑷𝒃 𝑳 𝑷𝒂 𝑳 wL 𝑷𝒂 B.M.D b a P 𝑷 P t A B P t a 𝑷𝒂 a L A B 𝑷𝒂 L L/2 A B M L/2 𝑴 𝟐 𝑴 𝟐 P t P t 𝑴 𝑳 𝑴 𝑳
  • 6.
  • 7.
    2 t/m 4 t 3m A 3 m 2 t/m 3 m A 3 m A B 6m 2m 2m 4 t 𝟔 𝟖 A B 8 mt 6m 2m 2m 2 t/m 4 t A B 8 mt 6m 2m 2m A B 6m 2m 2m 2 t/m 𝟖 𝟒 𝟖 𝟏𝟐 𝟐 𝟏 𝟑 4 t 3 m A 3 m 𝟏𝟐 36 36 𝟗 =
  • 8.
    A B 4m 2m 2m 8t 4 t A B 4m 2m 2m 8 t A B 4m 2m 2m 4 t A B 4m 2m 2m 8 t 4 t A B 4m 2m 2m 4 t 4 t A B 4m 2m 2m 4 t 𝟏𝟐 𝟔 𝟔 𝟖 𝟖 𝟐 𝟒 𝟏𝟒 𝟏𝟎 𝟐
  • 9.
  • 10.
    4t A D B C 2m2m 1m 2m 2m 6t 2t/m 8t 2m 2m 0 2m 2m 0 2t/m 𝑷𝑳 𝟒 =8 𝒘𝑳𝟐 𝟖 =4 3t 6t 𝟔 2m 2m 1 0 4t 2m 2m 4t 𝟏𝟔 𝟖 𝟏𝟔 𝟏𝟔 𝟖 𝟖 𝟏𝟔 𝟖 2m 2m 3t 3t 𝟏𝟐 𝟏𝟐 𝟏𝟐 𝟏𝟐
  • 11.
  • 12.
    Structural Analysis Three MomentEquation II Eng. Khaled El-Aswany
  • 13.
    Structural Analysis Three MomentEquation II (Introduction) Eng. Khaled El-Aswany
  • 14.
    2 t/m 6m A B 6t 2m C 2m I1I2 MA ( 𝐋𝟏 𝐈 ) + 2 MB ( 𝐋𝟏 𝐈 + 𝐋𝟐 𝐈 ) + MC ( 𝐋𝟐 𝐈 ) = -6 ( 𝐑𝐛𝟏 𝐈 + 𝐑𝐛𝟐 𝐈 ) MA = MB = MC = MA ( 𝐋𝟏 𝐈𝟏 ) + 2 MB ( 𝐋𝟏 𝐈𝟏 + 𝐋𝟐 𝐈𝟐 ) + MC ( 𝐋𝟐 𝐈𝟐 ) = -6 ( 𝐑𝐛𝟏 𝐈𝟏 + 𝐑𝐛𝟐 𝐈𝟐 ) 0 ?? 0 IF ( I ) is constant: 2 t/m 6m A B 6t 2m C 2m I I MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝐑𝐛𝟏 + 𝐑𝐛𝟐)
  • 15.
    Structural Analysis Three MomentEquation II (Elastic Reactions) Eng. Khaled El-Aswany
  • 16.
    2 t/m 6m A B 6t 2m C 2m I1I2 MA ( 𝐋𝟏 𝐈 ) + 2 MB ( 𝐋𝟏 𝐈 + 𝐋𝟐 𝐈 ) + MC ( 𝐋𝟐 𝐈 ) = -6 ( 𝐑𝐛𝟏 𝐈 + 𝐑𝐛𝟐 𝐈 ) MA = MB = MC = MA ( 𝐋𝟏 𝐈𝟏 ) + 2 MB ( 𝐋𝟏 𝐈𝟏 + 𝐋𝟐 𝐈𝟐 ) + MC ( 𝐋𝟐 𝐈𝟐 ) = -6 ( 𝐑𝐛𝟏 𝐈𝟏 + 𝐑𝐛𝟐 𝐈𝟐 ) 0 ?? 0 IF ( I ) is constant: 2 t/m 6m A B 6t 2m C 2m I I MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝐑𝐛𝟏 + 𝐑𝐛𝟐) 𝑀 6 (2𝑥‫البعيدة‬ + ‫)القريبة‬ A B a b L 𝑷𝑳 𝟒 L A B w t/m 𝒘𝑳𝟐 𝟖 B.M.D P t P t L/2 A B L/2 Elastic Reactions 𝐴 = 1 2 𝑴𝑳 A= 2 3 𝑴𝑳 𝐴2 = 1 2 𝑴𝑏 𝟐 𝟑 b 𝟏 𝟑 b 𝟐 𝟑 a 𝟏 𝟑 a 𝐴1 = 1 2 𝑴𝑎 Pa B.M.D Elastic Reactions P t a A B b P t a Pa A B a b L M 𝑀𝑏 𝐿 𝑀𝑎 𝐿 𝐴2𝑥 2 3 𝑏 1 2 𝐴 1 2 𝐴 1 2 𝐴 1 2 𝐴 1 2 𝐴 1 2 𝐴 +𝐴1𝑥(𝑏 + 1 3 𝑎) L 𝑀 6 (2𝑥‫البعيدة‬ + ‫)القريبة‬ 𝐴1𝑥 2 3 𝑎 +𝐴2𝑥(𝑎 + 1 3 𝑏) L 𝑷𝒂𝒃 𝑳 A=( 𝑏+𝐿 2 )𝑴 𝑀 𝐿 𝑀 𝐿 𝐴1 𝐴2 𝟐 𝟑 a 𝟏 𝟑 a 𝟐 𝟑 b 𝟏 𝟑 b A2x 2 3 b A1x(b + 1 3 a) L 𝐴2 − 𝐴1 − 𝑅1 𝑶𝑹 𝑶𝑹
  • 17.
    Structural Analysis Three MomentEquation II (Example1) Eng. Khaled El-Aswany
  • 18.
    𝟐 𝟑 𝑴𝑳 = 𝟑𝟔 6t 2m2m B C 2 t/m 6m A B 𝒘𝑳𝟐 𝟖 =9 𝑷𝑳 𝟒 = 𝟔 6t 18 t 18 t 1 2 𝑴𝑳 = 12 6t MA = 0 I 2I 2 t/m 6m A B 6t 2m C 2m MB = MC = ?? 0 6t 2m 2m B C 2 t/m 6m A B MA ( 𝐋𝟏 𝐈𝟏 ) + 2 MB ( 𝐋𝟏 𝐈𝟏 + 𝐋𝟐 𝐈𝟐 ) + MC ( 𝐋𝟐 𝐈𝟐 ) = -6 ( 𝐑𝐛𝟏 𝐈𝟏 + 𝐑𝐛𝟐 𝐈𝟐 ) 0 + 2 MB ( 𝟔 𝟏 + 𝟒 𝟐 ) + 0 = -6 ( 𝟏𝟖 𝟏 + 𝟔 𝟐 ) 16 MB = -126 MB = -7.875 mt 2x6-7.3125 =4.6875 𝟐𝒙𝟔𝒙𝟑 + 𝟕. 𝟖𝟕𝟓 𝟔 𝟔𝒙𝟐 + 𝟕. 𝟖𝟕𝟓 6-4.97 =1.03 7.875 7.875 S.F.D B.M.D 7.3125 4.6875 4.97 4.97 1.03 1.03 7.875 2.06 S.F.D B.M.D 4.97 4.97 1.03 1.03 7.875 2.06 7.875 = 7.3125 𝟒 = 𝟒. 𝟗𝟕 2x6 3m
  • 19.
    Structural Analysis Three MomentEquation II (Example 2) Eng. Khaled El-Aswany
  • 20.
    MA = MB= MC = 0 ?? ?? MD = 0 2 t/m A B 9t C 6t 6t 9mt 2m 2m 4m 4m 2m 1.5 3m D 6t 6t 2 t/m A 2m 4m 2m B B 9t C 2m 4m 𝐰𝐋𝟐 𝟖 =16 2 3 𝑴𝑳=85.33 Pa=12 Pa=12 ( 4+8 2 )𝑥12=72 𝟗𝒙𝟐𝒙𝟒 𝟔 =12 𝟑 𝟔 𝟗 2.25 2m 1m 0.5 1m 42.67 42.67 36 36 20 16 C 9mt 1.5 3m D −2.25 −4.5 𝟐 𝟐 1 2 0 + 2 MB (8 + 6) + MC (6) = -6 (42.67+36 + 20) 28 MB + 6 MC = - 592 MB (6) +2 MC (6 + 4.5) + 0 = -6 (16- 2.25) 6 MB + 21 MC = - 82.5 1 2 MB = -21.625 mt MC = 2.25 mt 6t 6t 2 t/m A 2m 4m 2m B B 9t C 2m 4m C 9mt 1.5 3m D 21.625 21.625 2.25 2.25 16.7 11.3 10 1 1.5 1.5 1 10 10 21.625 2.25 1.75 16.7 1.3 11.3 7.3 6.7 12.7 18.6 7.775 1.5 1.5 4.5 4.5
  • 21.
    Structural Analysis Three MomentEquation II (Symmetry) Eng. Khaled El-Aswany
  • 22.
    A W t/m B C LL L D L E A W t/m B C L L L D 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑒= 𝑀𝑎 𝑀𝑑= 𝑀𝑏 3 Unknowns 2 Unknowns A W t/m B C L L 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑎 2 Unknowns A W t/m B L 𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎 1 Unknown 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 𝑀𝑎 A W t/m B L L/2 F 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝐹=?? 3 Unknowns
  • 23.
    A W t/m B C LL L D L E 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑒= 𝑀𝑎 𝑀𝑑= 𝑀𝑏 3 Unknowns A W t/m B C L L 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑎 2 Unknowns A W t/m B L 𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎 1 Unknown A W t/m B L 𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎 L 0 0 𝒘𝑳𝟐 𝟖 𝒘𝑳𝟑 𝟏𝟐 𝒘𝑳𝟑 𝟐𝟒 𝒘𝑳𝟑 𝟐𝟒 W t/m A B A’ B’ A B MA’ (L1) + 2 MA (L1 + L2) + MB (L2) = -6 (𝐑𝐚𝟏 + 𝐑𝐚𝟐) 0 + 2 MA (0 + L) + MA (L) = -6 ( 0 + 𝒘𝑳𝟑 𝟐𝟒 ) 3 MA L = - wL3 4 𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎 MA = - wL2 12 0 0 MB =MA wL2 12 wL2 12 wL2 12 wL2 12 wL2 12
  • 24.
    A W t/m B C LL L D 𝑀𝑎=?? 𝑀𝑏=?? 2 Unknowns 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 𝑀𝑎 A W t/m B L L/2 F 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝐹=?? 3 Unknowns W t/m 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 𝑀𝑎 0 A’ 0 C D L B L D’ A L B C D A W t/m W t/m 𝒘𝑳𝟐 𝟖 𝒘𝑳𝟑 𝟏𝟐 𝒘𝑳𝟑 𝟐𝟒 𝒘𝑳𝟑 𝟐𝟒 MA’ (L1) + 2 MA (L1 + L2) + MB (L2) = -6 (𝐑𝐚𝟏 + 𝐑𝐚𝟐) 0 + 2 MA (0 + L) + MB (L) = -6 ( 0 + 𝒘𝑳𝟑 𝟐𝟒 ) 0 0 MC =MB 𝒘𝑳𝟐 𝟖 𝒘𝑳𝟑 𝟏𝟐 𝒘𝑳𝟑 𝟐𝟒 𝒘𝑳𝟑 𝟐𝟒 2 MA + MB = - 𝟏 4 wL2 → 𝟏 MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝐑𝐚𝟏 + 𝐑𝐚𝟐) MA (L) + 2 MB (L+ L) + MB (L) = -6 ( 𝒘𝑳𝟑 𝟐𝟒 + 𝒘𝑳𝟑 𝟐𝟒 ) MA + 5 MB = - 𝟏 2 wL2 → 𝟐 MA = - wL2 12 MB = - wL2 12 wL2 12 wL2 12 wL2 12 wL2 12 𝑀𝑎′=0 𝑀𝑑′=0
  • 25.
    Structural Analysis Three MomentEquation II (Settlement) Eng. Khaled El-Aswany
  • 26.
    2 cm 2 cm 1cm 𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐= 0 A B C 𝑳𝟏 𝑳𝟐 𝑀𝑎=0 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑑=0 A B C D 𝑳𝟏 𝑳𝟐 𝑳𝟑 MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI ( ∆𝐵−∆𝐴 L1 + ∆𝐵−∆𝐶 L2 ) MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI ( ∆𝐵−∆𝐴 L1 + ∆𝐵−∆𝐶 L2 ) MB (L2) + 2 MC (L2 + L3) + MD (L3) = 6EI ( ∆𝐶−∆𝐵 L2 + ∆𝐶−∆𝐷 L3 ) If I constant: EI : Given I I If I variable: MA ( L1 I1 ) + 2 MB ( L1 I1 + L2 I2 ) + MC ( L2 I2 ) = 6EI ( ∆𝐵−∆𝐴 L1 + ∆𝐵−∆𝐶 L2 ) 2 Equations
  • 27.
    𝑀𝑎= 0 𝑀𝑏=??𝑀𝑐=?? 𝑀𝑑= 0 2 cm 𝟔𝒎 𝟒𝒎 𝟔𝒎 A B C D 2 t/m 2 t/m A B C D 𝟔𝒎 𝟒𝒎 𝟔𝒎 MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI ( ∆𝐵−∆𝐴 L1 + ∆𝐵−∆𝐶 L2 ) MB (L2) + 2 MC (L2 + L3) + MD (L3) = 6EI ( ∆𝐶−∆𝐵 L2 + ∆𝐶−∆𝐷 L3 ) EI = 5000 tm2 2 MB (6 + 4) + MC (4) = 6x5000 ( 0.02 6 + 0.02 4 ) MB (4) + 2 MC (4 + 6) + MD (6) = 6x5000 ( 0−0.02 4 + 0) 20 MB + 4 MC = 250 → 1 4 MB + 20 MC = -150 → 2 MB = 14.58 mt MC = -10.42 mt 𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 0 2 t/m A B 𝟔𝒎 C 𝟒𝒎 B 𝒘𝑳𝟐 𝟖 = 𝟗 2 3 𝑴𝑳=36 18 18 0 MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝑅𝑏1+𝑅𝑏2) 2 MB (6 + 4) + MC (4) = -6 (18 + 0) 2 MB (6 + 4) + MB (4) = -6 (18 + 0) MB = Mc = - 4.5 mt MB (tot) = - 4.5 +14.58 = 10.08 mt Mc (tot) = - 4.5 -10.42 = -14.92 mt 2 t/m A B 𝟔𝒎 C 𝟒𝒎 B 2 t/m A B 𝟔𝒎 10.08 14.92 14.92 10.08 4.32 7.68 6.25 6.25 8.49 3.51
  • 28.
    10.08 14.92 𝑀𝑎= 0 𝑀𝑏=??𝑀𝑐=?? 𝑀𝑑= 0 2 cm 𝟔𝒎 𝟒𝒎 𝟔𝒎 A B C D 2 t/m 2 t/m A B C D 𝟔𝒎 𝟒𝒎 𝟔𝒎 MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI ( ∆𝐵−∆𝐴 L1 + ∆𝐵−∆𝐶 L2 ) MB (L2) + 2 MC (L2 + L3) + MD (L3) = 6EI ( ∆𝐶−∆𝐵 L2 + ∆𝐶−∆𝐷 L3 ) EI = 5000 tm2 2 MB (6 + 4) + MC (4) = 6x5000 ( 0.02 6 + 0.02 4 ) MB (4) + 2 MC (4 + 6) + MD (6) = 6x5000 ( 0−0.02 4 + 0) 20 MB + 4 MC = 250 → 1 4 MB + 20 MC = -150 → 2 MB = 14.58 mt MC = -10.42 mt 𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 0 2 t/m A B 𝟔𝒎 C 𝟒𝒎 B 𝒘𝑳𝟐 𝟖 = 𝟗 2 3 𝑴𝑳=36 18 18 0 MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝑅𝑏1+𝑅𝑏2) 2 MB (6 + 4) + MC (4) = -6 (18 + 0) 2 MB (6 + 4) + MB (4) = -6 (18 + 0) MB = Mc = - 4.5 mt MB (tot) = - 4.5 +14.58 = 10.08 mt Mc (tot) = - 4.5 -10.42 = -14.92 mt A B C D
  • 29.
  • 30.
  • 31.
    A 2 t/m B 6t 2m 6m MA XA YA YB A 2t/m B 6t 2m 6m 12 mt 9 mt A 2 t/m B 6t 2m 6m M.S. A B 1 mt Mo 1 mt M1 δ10 + X δ11 = 0 X = −δ10 δ11 δ10 = ʃ 𝑴𝑶 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 δ11 = ʃ 𝑴𝟏 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 9 mt 6m 1 mt = Area x Yc = 2 3 𝑥6𝑥9 x 0.5 Area Yc 0.5x1=0.5 (Linear) - ‫مستقيم‬ ‫خط‬ ‫منكسر‬ ‫غير‬ ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = Area x Yc = 1 2 𝑥6𝑥8 x 3 Area 6m 6 mt 8 mt Yc 0.5x6=3 (Linear) - ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = Area x Yc = 1 2 𝑥6𝑥8 6 mt 6m 8 mt x 4 Area Yc 𝟐 𝟑 𝐱𝟔 = 𝟒 + 𝟐 𝟑 𝑳 ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = Area x Yc = 1 2 𝑥3𝑥8 8 mt 6 mt 3m 3m + Area Yc 𝟐 𝟑 𝑳 𝟏 𝟑 𝑳 𝟐 𝟑 𝐱𝟔 = 𝟒 x 4 ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 x 2 = L 3 (𝐚𝐜 + 𝐛𝐝+ bc 2 + ad 2 ) 8 4 2 6 8m 8x6 = 8 3 ( + 4x2 + 𝟒𝒙𝟔 𝟐 + 𝟖𝒙𝟐 𝟐 ) 8 mt 6 mt ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = 6 3 ( 8x6 + 0 + 0 + 0 )
  • 32.
    A 2 t/m B 6t 2m 6m MA XA YA YB A 2t/m B 6t 2m 6m 12 mt 9 mt A 2 t/m B 6t 2m 6m M.S. A B 1 mt Mo 1 mt M1 δ10 + X δ11 = 0 X = −δ10 δ11 δ10 = ʃ 𝑴𝑶 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 δ11 = ʃ 𝑴𝟏 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 [- 𝟐 𝟑 x 6 x 9 x0.5 + 𝟔 𝟑 ( 𝟏𝟐𝒙𝟏 𝟐 )] = −𝟔 𝑬𝑰 = 𝟏 𝑬𝑰 [ 𝟔 𝟑 (1x1)] = 𝟐 𝑬𝑰 = −( ൗ −𝟔 EI) ൗ 𝟐 EI = 𝟑
  • 33.
    A 2 t/m B 6t 2m 6m 3 0 4.5 13.5 A 2t/m B 6t 2m 6m 12 mt 9 mt M.S. A B 1 mt Mo 1 mt M1 δ10 + X δ11 = 0 X = −δ10 δ11 δ10 δ11 = 𝟏 𝑬𝑰 [- 𝟐 𝟑 x 6 x 9 x0.5 + 𝟔 𝟑 ( 𝟏𝟐𝒙𝟏 𝟐 )] = −𝟔 𝑬𝑰 = 𝟏 𝑬𝑰 [ 𝟔 𝟑 (1x1)] = 𝟐 𝑬𝑰 = −( ൗ −𝟔 EI) ൗ 𝟐 EI = 𝟑 A B 3 12
  • 34.
  • 35.
    A 4 t/m D 4t 2m 4m 2m 2m 4m 2m 6t6t B C I I 2I M.S 4 t/m 4t 6t 6t A D B 2m 4m 2m 2m 4m 2m C I I 2I 𝑀𝑜 12 12 4 8 𝑀1 1 𝑀2 1 1mt 1mt δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0 δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0 δ10 = ʃ 𝑴𝑶 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [-( 4+8 2 )𝒙𝟏𝟐 x0.5 - 𝟎. 𝟓𝒙𝟒𝒙𝟒 x0.5] = −𝟒𝟎 EI δ11 = ʃ 𝑴𝟏 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [ 8 3 𝒙(𝟏𝒙𝟏) = 4 EI + 4 3 𝒙(𝟏𝒙𝟏) ] δ12 = ʃ 𝑴𝟏 𝑴𝟐 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [4 3 x( 1X1 2 ) ] = ൘ 2 3 EI δ02 = ʃ 𝑴𝑶 𝑴𝟐 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [ - 𝟎. 𝟓𝒙𝟒𝒙𝟒 - 𝟏 𝟐 x0.5 𝒙 2 3 𝒙𝟒𝒙𝟖 x0.5 ]= ൘ −2𝟖 3 EI δ22 = ʃ 𝑴𝟐 𝑴𝟐 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [ 𝒙 4 3 𝒙(𝟏𝒙𝟏) ] 4 3 𝒙(𝟏𝒙𝟏) + 1 2 = 𝟐 EI −40 EI + 4 EI 𝑋1 + ൘ 2 3 EI 𝑋2 = 0 −40+ 4 𝑋1 + 2 3 𝑋2 = 0 4 𝑋1 + 2 3 𝑋2 = 40 ൘ −28 3 EI + 𝑋1 ൘ 2 3 EI + 𝑋2 2 EI = 0 −28 3 + 2 3 𝑋1+2𝑋2 = 0 2 3 𝑋1 + 2 𝑋2 = 28 3 → 1 → 2 𝑿𝟏 = 9.76 mt 𝑿𝟐 = 𝟏. 𝟒𝟏 𝒎𝒕
  • 36.
    A 4 t/m D 4t 2m 4m 2m 2m 4m 2m 6t6t B C I I 2I M.S 4 t/m 4t 6t 6t A D B 2m 4m 2m 2m 4m 2m C I I 2I 𝑀𝑜 12 12 4 8 𝑀1 1 𝑀2 1 1mt 1mt δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0 δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0 δ10 = ʃ 𝑴𝑶 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [-( 4+8 2 )𝒙𝟏𝟐 x0.5 - 𝟎. 𝟓𝒙𝟒𝒙𝟒 x0.5] = −𝟒𝟎 EI δ11 = ʃ 𝑴𝟏 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [ 8 3 𝒙(𝟏𝒙𝟏) = 4 EI + 4 3 𝒙(𝟏𝒙𝟏) ] δ12 = ʃ 𝑴𝟏 𝑴𝟐 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [4 3 x( 1X1 2 ) ] = ൘ 2 3 EI δ02 = ʃ 𝑴𝑶 𝑴𝟐 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [ - 𝟎. 𝟓𝒙𝟒𝒙𝟒 - 𝟏 𝟐 x0.5 𝒙 2 3 𝒙𝟒𝒙𝟖 x0.5 ]= ൘ −2𝟖 3 EI δ22 = ʃ 𝑴𝟐 𝑴𝟐 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [ 𝒙 4 3 𝒙(𝟏𝒙𝟏) ] 4 3 𝒙(𝟏𝒙𝟏) + 1 2 = 𝟐 EI 4 𝑋1 + 2 3 𝑋2 = 40 2 3 𝑋1 + 2 𝑋2 = 28 3 → 1 → 2 9.76 1.41 𝑤𝑙2 8 =8 D A B C 9.76+1.41 2 =5.58 𝑃𝐿 4 =4 1.58 1 4 𝑋9.76=2.44 3 4 𝑋9.76=7.32 12 9.56 12 4.68 𝑿𝟏 = 9.76 mt 𝑿𝟐 = 𝟏. 𝟒𝟏 𝒎𝒕
  • 37.
    Structural Analysis Consistent Deformations II Eng.Khaled El-Aswany (Beams) (Support movement)
  • 38.
    δ10 𝑋1 δ11 δ10 + X1δ11 = 0 δ10 𝑋1 δ11 δ10 + X1 δ11 = ±∆ Δ
  • 39.
    1 𝑡 2 𝑐𝑚 3 X1δ11 = −𝟎. 𝟎𝟐 δ11 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 ( 𝟔 𝟑 ( 3x3)x 2 ) = 𝟑𝟔 𝑬𝑰 X1 δ11 = ±∆ 2.5𝑡 1.25 𝑡 1.25 𝑡 7.5 B.M.D. Reactions X1 36 𝐸𝐼 = −0.02 X1 36 4500 = −0.02 X1 = −2.5 𝑡 EI = 4500 m2t
  • 40.
    1 𝑡 2 𝑐𝑚 3 EI= 4500 m2t δ11 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 ( 𝟔 𝟑 ( 3x3)x 2 ) = 𝟑𝟔 𝑬𝑰 δ10 + X1 δ11 = ±∆ Reactions −𝟐𝟕𝟎𝟎 𝑬𝑰 + X1 36 𝐸𝐼 = −0.02 X1 = 72.5 𝑡 180 M.S. M0 M1 δ10 = 𝟏 𝑬𝑰 ( −𝟐 𝟑 𝒙𝟔𝒙𝟏𝟖𝟎 x( 𝟓 𝟖 𝒙𝟑) x 2 ) = −𝟐𝟕𝟎𝟎 𝑬𝑰 5 8 𝐿 3 8 𝐿 5 8 𝑥3 −𝟐𝟕𝟎𝟎 𝟒𝟓𝟎𝟎 + X1 36 4500 = −0.02 72.5 𝑡 23.75𝑡 23.75𝑡
  • 41.
    1 𝑡 2 𝑐𝑚 3 EI= 4500 m2t δ11 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 ( 𝟔 𝟑 ( 3x3)x 2 ) = 𝟑𝟔 𝑬𝑰 δ10 + X1 δ11 = ±∆ B.M.D. −𝟐𝟕𝟎𝟎 𝑬𝑰 + X1 36 𝐸𝐼 = −0.02 X1 = 72.5 𝑡 180 M.S. M0 M1 δ10 = 𝟏 𝑬𝑰 ( −𝟐 𝟑 𝒙𝟔𝒙𝟏𝟖𝟎 x( 𝟓 𝟖 𝒙𝟑) x 2 ) = −𝟐𝟕𝟎𝟎 𝑬𝑰 5 8 𝐿 3 8 𝐿 5 8 𝑥3 −𝟐𝟕𝟎𝟎 𝟒𝟓𝟎𝟎 + X1 36 4500 = −0.02 37.5
  • 42.
    Structural Analysis Consistent Deformations II Eng.Khaled El-Aswany (Beams) (Extra 1)
  • 43.
    A 2 t/m B 6t 2m 2m2m 2m 6t 2m 2m 2m 8mt 2m 6t 4t 4t 8mt C 1m 3I 2I M.S. 9 8 8 4 4 𝟗 2mt 2 Mo 𝟗 1mt 1 M1 1 M2 δ11 = 1 𝐸𝐼 ( 1 3 * 6 3 (1*1)) = 2 3𝐸𝐼 δ22 = 1 𝐸𝐼 ( 1 3 * 6 3 (1*1)) = 2 𝐸𝐼 * 8 3 (1*1)) +( 1 2 δ12 = 1 𝐸𝐼 ( 1 3 * 6 3 ( 1∗1 2 )) = 1 3𝐸𝐼 δ1o = 1 𝐸𝐼 ( 1 3 (- 2 3 x6x9x0.5 = −34 3𝐸𝐼 0.5 - 2+6 2 x8x0.5) δ2o = 1 𝐸𝐼 ( 1 3 (- 2 3 x6x9x0.5- 2+6 2 x8x0.5) +( 1 2 ( 8 3 X 1𝑋2 2 + 6 3 x9x0.75 0.75 + 2 3 x(9x0.75+ 9𝑋1 2 ) 0.5 + 4 3 x(4x0.5+ 4𝑋1 2 ) - 4 3 x(4x0.5) 0.25 - 2 3 x(9x0.25) - 6 3 x(9x0.25+ 9𝑋1 2 )) = −17 3𝐸𝐼 δ10 + 𝒙𝟏 δ11 + 𝒙𝟐 δ12= 0 −𝟑𝟒 𝟑 + 𝟐 𝟑 𝒙𝟏 + 𝟏 𝟑 𝒙𝟐 = 0 𝟐 𝒙𝟏 + 𝒙𝟐 = 34 𝒙𝟏 + 6𝒙𝟐 = 17 𝒙𝟏= 17 𝒙𝟐 = 0 δ20 + 𝒙𝟏 δ21 + 𝒙𝟐 δ22= 0 1mt 1mt
  • 44.
    A 2 t/m B 6t 2m 2m2m 2m 6t 2m 2m 2m 8mt 2m 6t 4t 4t 8mt C 1m 3I 2I M.S. 9 8 8 4 4 𝟗 2mt 2 Mo 𝟗 1mt 1 M1 1 M2 0.5 0.75 0.5 0.25 0 A 3I B 6t 2m 2m 2m 2m 6t 2m 2m 2m 8mt 2m 6t 4t 4t 8mt C 1m 2I 2 t/m A 3I 2m 2m 2m 4t 4t 2 t/m 17 8mt B 6t 2m 2m 2m 2m 6t 2m 6t C 1m 2I 8mt 0 𝟏𝟐. 𝟖𝟑 𝟕. 𝟏𝟕 𝟒. 𝟐𝟓 𝟒. 𝟐𝟓 17 4.66 10.34 8 2 2 6.5 3 5 8.5 1mt 1mt
  • 45.
  • 46.
    4t A 2 t/m D B C I I 2I 4m 3m 3m 1.19 8 =4 – 3 = 1 R = U – E 1.19 8 4t 2 t/m A D B C I I 2I 4m 3m 3m M.S. 9 6 Mo 1 1t 4 4 M1 δ10 δ11 = 𝟏 𝑬𝑰 ʃ 𝑴𝟎𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 [- x 𝟐 𝟑 x 6 x 9 x4 - = −𝟏𝟎𝟖 𝑬𝑰 4 4 𝟏 𝟐 x 𝟏 𝟐 x 6 x 6 x4 ] 𝟏 𝟐 = 𝟏 𝑬𝑰 [ 𝟒 𝟑 x (4x4) + = 𝟗𝟎.𝟔𝟕 𝑬𝑰 x 𝟒 x 6 x4 ] 𝟏 𝟐 x2 𝑿𝟏 = − δ10 δ11 = −( − 108/𝐸𝐼) 90.67/𝐸𝐼 = 1.19 𝑀𝑓 = 𝑀0 + 𝑋1 𝑀1 Mf 𝑀𝑓 = 0 + 1.19 x (-4) = -4.76 4.76 4.76 4.76 4.76 10.24
  • 47.
    Structural Analysis Consistent Deformations II Eng.Khaled El-Aswany (Frames) (Twice)
  • 48.
    8t A 2 t/m D B C 2I 3I I 6m 3m 3m 2m 4t 3m XA YA XD YD =5–3 = 2 R = U – E MA 8t A 2 t/m D B C 2I 3I I 6m 3m 3m 2m 4t 3m M.S. M0 12 9 16 12 M1 1t 1t 3 3 6 6 M2 1mt 0 δ10 = 𝟏 𝑬𝑰 [ x 3 3 x( 12 x 3) + = 𝟐𝟒𝟎 𝑬𝑰 𝟏 𝟐 6 3 x(16x6+12x3+ 16x3 2 + 12x6 2 ) X4.5 ] - 2 3 x6x9 δ11 = 𝟏 𝑬𝑰 [ x 3 3 x( 3 x 3) + = 𝟏𝟓𝟒.𝟓 𝑬𝑰 𝟏 𝟐 6 3 x(6x6+3x3+ 6x3 2 𝐱𝟐) + x 6 3 x( 6 x 6) ] 𝟏 𝟑 δ12 = 𝟏 𝑬𝑰 [ x 1 2 x6x6 + = 𝟐𝟏 𝑬𝑰 𝟏 𝟑 X 1 6 3 x(6x1+ 3x1 2 ) ] 1 1 1 δ20 = 𝟏 𝑬𝑰 [ = 𝟐𝟔 𝑬𝑰 6 3 x(16x1+12x0+ 16x0 2 + 12x1 2 ) X0.5 ] - 2 3 x6x9 δ22 = 𝟏 𝑬𝑰 [ x (𝟔𝒙𝟏) = 𝟒 𝑬𝑰 𝟏 𝟑 + 6 3 x( 1x1) ] x 𝟏
  • 49.
    8t A 2 t/m D B C 2I 3I I 6m 3m 3m 2m 4t 3m YA XD YD =5–3 = 2 R = U – E 8t A 2 t/m D B C 2I 3I I 6m 3m 3m 2m 4t 3m M.S. M0 12 9 16 12 M1 1t 1t 3 3 6 6 M2 1mt 0 δ10 = 𝟐𝟒𝟎 𝑬𝑰 δ11 = 𝟏𝟓𝟒.𝟓 𝑬𝑰 δ12 = 𝟐𝟏 𝑬𝑰 1 1 1 δ20 = 𝟐𝟔 𝑬𝑰 δ22 = 𝟒 𝑬𝑰 δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0 δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0 𝑿𝟏 = -2.34 mt 𝑿𝟐 = 𝟓. 𝟕𝟖 𝒎𝒕 154.5 𝑋1 + 21 𝑋2 = -240 21 𝑋1 + 4 𝑋2 = −26 → 1 → 2 MF 𝑀𝑓 = 𝑀0 + 𝑋1 𝑀1 + 𝑋2 𝑀2 𝑀𝑓 = 𝑀0 -2.34 𝑀1 + 5.78 𝑀2 𝑀𝑓 = (−16) -2.34 (−6) + 5.78 (−1) = -7.74 4.98 8.26 5.78 16 4.98 7.74 2.34 5.78
  • 50.
    Structural Analysis Consistent Deformations II Eng.Khaled El-Aswany (Frames) (Symmetry)
  • 51.
    = 5 –3 = 2 R = U – E 2 t/m A B D C 4m 4m 2 t/m 4m 0 8 8 8 = 6 – 3 = 3 R = U – E 2 t/m A B D C 8m 4m
  • 52.
    = 5 –3 = 2 R = U – E 2 t/m A B 4m 4m 2 t/m A B 4m 4m M.S. 𝑀𝑜 16 4 16 16 𝑀1 1mt 1 1 1 1 𝑀2 1t 4 δ11 = 𝟏 𝑬𝑰 [4x1x1 + 4x1x1]= 𝟖 𝑬𝑰 δ22 = 𝟏 𝑬𝑰 [𝟒 𝟑 𝒙(𝟒𝒙𝟒)]= 𝟐𝟏.𝟑𝟑 𝑬𝑰 δ12 = 𝟏 𝑬𝑰 [−𝟏 𝟐 𝒙𝟒𝒙𝟒 𝒙𝟏]= −𝟖 𝑬𝑰 δ20 = 𝟏 𝑬𝑰 [−𝟏 𝟐 𝒙𝟒𝒙𝟒 𝒙𝟏𝟔]= −𝟏𝟐𝟖 𝑬𝑰 δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0 δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0 𝑿𝟏 = -7.47 mt 𝑿𝟐 = 𝟑. 𝟐 𝒎𝒕 8 𝑋1 - 8 𝑋2 = -85.33 → 1 -8 𝑋1 + 21.33 𝑋2 = 128 → 2 𝑀𝑓 = 𝑀0 + 𝑋1 𝑀1 + 𝑋2 𝑀2 𝑀𝑓2 = 16 -7.47 (1) + 3.2 (0) = 8.53 𝑀𝑓 = 𝑀0 -7.47 𝑀1 + 3.2 𝑀2 𝑀𝑓3 = 16 -7.47 (1) + 3.2 (-4) = -4.27 1 2 3 𝑀𝐹 δ10= 𝟏 𝑬𝑰 [( 1 2 x4 x 16) 𝐱𝟏 − 𝟐 𝟑 𝒙𝟒𝒙𝟒 𝒙𝟏 +𝟒𝒙𝟏𝟔 𝒙𝟏 ] = 𝟖𝟓.𝟑𝟑 𝑬𝑰 7.47 8.53 8.53 4.27
  • 53.
    = 5 –3 = 2 R = U – E 2 t/m A B 4m 4m 2 t/m A B 4m 4m M.S. 𝑀𝑜 16 4 16 16 𝑀1 1mt 1 1 1 1 𝑀2 1t 4 δ11 = 𝟏 𝑬𝑰 [4x1x1 + 4x1x1]= 𝟖 𝑬𝑰 δ22 = 𝟏 𝑬𝑰 [𝟒 𝟑 𝒙(𝟒𝒙𝟒)]= 𝟐𝟏.𝟑𝟑 𝑬𝑰 δ12 = 𝟏 𝑬𝑰 [−𝟏 𝟐 𝒙𝟒𝒙𝟒 𝒙𝟏]= −𝟖 𝑬𝑰 δ20 = 𝟏 𝑬𝑰 [−𝟏 𝟐 𝒙𝟒𝒙𝟒 𝒙𝟏𝟔]= −𝟏𝟐𝟖 𝑬𝑰 δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0 δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0 𝑿𝟏 = -7.47 mt 𝑿𝟐 = 𝟑. 𝟐 𝒎𝒕 8 𝑋1 - 8 𝑋2 = -85.33 → 1 -8 𝑋1 + 21.33 𝑋2 = 128 → 2 𝑀𝐹 δ10= 𝟏 𝑬𝑰 [( 1 2 x4 x 16) 𝐱𝟏 − 𝟐 𝟑 𝒙𝟒𝒙𝟒 𝒙𝟏 +𝟒𝒙𝟏𝟔 𝒙𝟏 ] = 𝟖𝟓.𝟑𝟑 𝑬𝑰 7.47 8.53 8.53 4.27 8.53 8.53 4.27
  • 54.
    1 Structural Fantasy 3 Using theconsistent deformation method Draw the B.M.D. for the shown frames. 2 t/m A B D C 3m 3m 3m 2m 2m H E J I 3m 3m 3m 2m 2m 4m F G 8t 8t 4t 8t 8t 4t 6m 2 t/m A B E C D 4t 2t 2t 6m 3m 3m 3m 2m 3m 2m 4t 2 t/m A B E C D 6t 6t 6m 3m 3m 3m 2m 3m 2m 3m 2 Exercise
  • 55.
    Structural Analysis Consistent Deformations II Eng.Khaled El-Aswany (Frames) (Support movement)
  • 56.
    Draw B.M.D. dueto the given loads and right horizontal movement of support A by 2 cm. EI = 20000 m2t. 6t A 2 t/m D B C 4m 6m 0.92 YA = 4 – 3 = 1 R = U – E 6.92 YD 6t 2 t/m A D B C 4m 6m M.S. Mo 24 24 9 M1 1t 1t 4 4 4 4 δ10 = 𝟏 𝑬𝑰 ʃ 𝑴𝟎𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 [ 𝟒 𝟑 x (24x4) - 𝟐 𝟑 x 6 x 9 x4 + = 𝟐𝟕𝟐 𝑬𝑰 𝟏 𝟐 x 6 x 24 x4 ] δ11 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 [ 𝟒 𝟑 x (4x4) + = 𝟏𝟑𝟖.𝟔𝟕 𝑬𝑰 𝟒 x 6 x4 ] x2 δ10 + X1 δ11 = 0.02 𝟐𝟕𝟐 𝟐𝟎𝟎𝟎𝟎 + X1 138.67 20000 = 0.02 X1 = 0.92 𝑡 Mf 3.68 27.68 27.68 3.68 15.68
  • 57.
  • 58.
    R = U- E R = ( m + r ) - 2j 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( 13+ 3) - 2x8 = 0 (Determinate) 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) 14 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( m + r ) - 2j R = ( 14+ 4) - 2x8 = 2 (Twice indeterminate) (External & Internal) 14
  • 59.
    R = U- E R = ( m + r ) - 2j 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( 13+ 3) - 2x8 = 0 (Determinate) 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) 14 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( m + r ) - 2j R = ( 14+ 4) - 2x8 = 2 (Twice indeterminate) (External & Internal) 14 δ10 + 𝑿𝟏 δ11 = 0 A B N0 6 6 A B N1 1 1 δ10 = 𝟏 𝑬𝑨 ʃ 𝑵𝑶𝑵𝟏𝒅𝒍 4m = 𝟏 𝑬𝑨 ( -6 x 4 x 1 N0 N1 L C D C D + ……… + ...……) N0 N1 L N0 N1 L δ10 = ΣNON1L EA δ11 = ΣN1N1L EA Zero force members 2 members 3 members P
  • 60.
    Structural Analysis Consistent Deformations II Eng.Khaled El-Aswany (Trusses) (Example 1)
  • 61.
    R = (m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 0 M.S.
  • 62.
    R = (m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 M.S. 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No
  • 63.
    R = (m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 𝐹1 𝐹2 𝐹1sin 𝜃 𝐹1cos 𝜃 4 4 Σ𝐹𝑦 = 0 𝐹1sin 𝜃 + 6 = 0 𝐹1= −6 sin θ = −6 0.6 = -10 t (𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑖𝑜𝑛) No Σ𝐹𝑥 = 0 𝐹1cos 𝜃 + 𝐹2 = 0 (𝑇𝑒𝑛𝑠𝑖𝑜𝑛) −10 x0.8+ 𝐹2 = 0 𝐹2 = 8t
  • 64.
    R = (m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 M.S. 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No 10 8 8
  • 65.
    R = (m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 M.S. 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No 10 8 8 𝐹3 𝐹4 10cos𝜃 10sin𝜃 𝐹3 cos𝜃 𝐹3 sin𝜃 Σ𝐹𝑦 = 0 10sin 𝜃 - 4 - 𝐹3sin 𝜃 = 0 (𝑇𝑒𝑛𝑠𝑖𝑜𝑛) Σ𝐹𝑥 = 0 𝐹3cos 𝜃 + 𝐹4 + 10cos 𝜃 = 0 (𝐶𝑜𝑚𝑝𝑒𝑟𝑠𝑖𝑜𝑛) 𝐹4 = -10.67t 𝐹3 = 3.33t 3.33cos 𝜃 + 𝐹4 + 10cos 𝜃 = 0
  • 66.
    R = (m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 M.S. 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No 10 8 8 3.33 10.67
  • 67.
    R = (m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 M.S. 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No 10 8 8 3.33 10.67 3.33 10.67 8 8 10
  • 68.
    R = (m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 M.S. 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No 8 8 3.33 3.33 8 8 4m 4m 4m 4m 3m 0 0 1t 1t N1 10 10.67 10.67 10 1 1 1 1
  • 69.
    R = (m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No -10 8 8 3.33 -10.67 3.33 −10.67 8 8 -10 4m 4m 4m 4m 3m 1t 1t -1 -1 -1 -1 N1 Mem. L No N1 NoN1L N1N1L Nf 1 4 8 -1 -32 4 0 2 4 8 -1 -32 4 0 3 4 8 -1 -32 4 0 4 4 8 -1 -32 4 0 5 5 -10 0 0 0 -10 6 3 4 0 0 0 4 7 5 3.33 0 0 0 3.33 8 3 0 0 0 0 0 9 5 3.33 0 0 0 3.33 10 3 4 0 0 0 4 11 5 -10 0 0 0 -10 12 4 -10.67 0 0 0 -10.67 13 4 -10.67 0 0 0 -1067 -128 16 δ10 = 𝛴N ON1L EA = −128 EA δ11 = 𝛴N1N1L EA = 16 EA X1 = −δ10 δ11 = −(−128)/𝐸𝐴 16/EA = 8t Nf = N0 + X1 N1
  • 70.
    Structural Analysis Consistent Deformations II Eng.Khaled El-Aswany (Trusses) (Example 2)
  • 71.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 0 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃
  • 72.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 0 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4 10 6 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6
  • 73.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6
  • 74.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝐹1 𝐹2 𝐹1sin 𝜃 𝐹1cos 𝜃 Σ𝐹𝑦 = 0 𝐹1sin 𝜃 -4 +10 = 0 𝐹1= -10 t (𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑖𝑜𝑛) Σ𝐹𝑥 = 0 𝐹1cos 𝜃 + 𝐹2 = 0 (𝑇𝑒𝑛𝑠𝑖𝑜𝑛) −10 x0.8+ 𝐹2 = 0 𝐹2 = 8t 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6
  • 75.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 10 8
  • 76.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 10 8 8
  • 77.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 10 8 8 𝐹3 𝐹4 10cos𝜃 10sin𝜃 𝐹3 cos𝜃 𝐹3 sin𝜃 Σ𝐹𝑦 = 0 10sin 𝜃 - 6 - 𝐹3sin 𝜃 = 0 Σ𝐹𝑥 = 0 𝐹3cos 𝜃 + 𝐹4 + 10cos 𝜃 = 0 (𝐶𝑜𝑚𝑝𝑒𝑟𝑠𝑖𝑜𝑛) 𝐹4 = - 8t 𝐹3 = 0 0 + 𝐹4 + 10cos 𝜃 = 0
  • 78.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 10 8 8 8 8
  • 79.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 10 8 8 8 8
  • 80.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 10 8 8 8 8 𝐹5 𝐹5 cos𝜃 𝐹5 sin𝜃 Σ𝐹𝑦 = 0 10 - 4 - 𝐹5sin 𝜃 = 0 Σ𝐹𝑥 = 0 𝐹5cos 𝜃 - 8 = 0 (𝑇𝑒𝑛𝑠𝑖𝑜𝑛) 𝐹5 = 10t 𝐹5 = 10t
  • 81.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 -10 -6 -4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 -10 8 8 −8 −8 10
  • 82.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 -10 -6 -4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 -10 8 8 −8 −8 10 3m 4m 4m 4m 0 N1 0 1t 1t 𝜃 -0.8 -0.6 𝜃 -0.8 -0.6 𝜃 1
  • 83.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 -10 -6 -4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 -10 8 8 −8 −8 10 3m 4m 4m 4m 0 N1 0 𝜃 𝜃 𝜃 1 δ10 = 𝛴N ON1L EA δ11 = 𝛴N 1N1L EA X1 = −δ10 δ11 = −(−2)/𝐸𝐴 16/EA = 0.125t δ10 + X1 δ11 = 0 = 1 EA [ 1t 1t -0.8 -0.6 -0.8 -0.6 8x-0.8x4 -6x-0.6x3 + 1 2 x-8x-0.8x4] = −2 EA = 1 EA [ )0.8(2x4 +)0.6(2x3 x2+)1(2x5 x2 + 1 2 )0.8(2x4] = 16 EA
  • 84.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 -10 -6 -4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 -10 8 8 −8 −8 10 3m 4m 4m 4m 0 N1 0 𝜃 𝜃 𝜃 1 1t 1t -0.8 -0.6 -0.8 -0.6 Mem. L No N1 A 1 4 0 0 1 2 4 8 -0.8 1 3 4 8 0 1 4 3 -10 0 1 5 5 10 0 1 6 3 -6 -0.6 1 7 5 0 1 1 8 5 0 1 1 9 3 0 -0.6 1 10 5 -10 0 1 11 3 -4 0 1 12 4 -8 0 2 13 4 -8 -0.8 2 14 4 0 0 2
  • 85.
    R = (m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 -10 -6 -4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 -10 8 8 −8 −8 10 3m 4m 4m 4m 0 N1 0 𝜃 𝜃 𝜃 1 1t 1t -0.8 -0.6 -0.8 -0.6 Mem. L No N1 A 𝑁𝑜𝑁1𝐿 𝑨 𝑁𝟏𝑁1𝐿 𝑨 Nf 1 4 0 0 1 0 0 0 2 4 8 -0.8 1 -25.6 2.56 7.9 3 4 8 0 1 0 0 8 4 3 -10 0 1 0 0 -10 5 5 10 0 1 0 0 10 6 3 -6 -0.6 1 10.8 1.08 -6.075 7 5 0 1 1 0 5 0.125 8 5 0 1 1 0 5 0.125 9 3 0 -0.6 1 0 1.08 -0.075 10 5 -10 0 1 0 0 -10 11 3 -4 0 1 0 0 -4 12 4 -8 0 2 0 0 -8 13 4 -8 -0.8 2 12.8 1.28 -8.1 14 4 0 0 2 0 0 0 -2 16 δ10 = −2 EA δ11 = 16 EA X1 = 0.125t
  • 86.
    Structural Analysis Consistent Deformations II Eng.Khaled El-Aswany (Trusses) (Example 3)
  • 87.
    B 3m 4t 6t 4t 12 3 4 5 6 7 10 R = ( m + r ) - 2j R = ( 10+ 4) - 2x6 = 2 (Twice indeterminate) 8 9 3m 3m A A 3m 3m 3m 4t 6t 4t B 7𝑡 7𝑡 0 No -7 -7 -6 45° -3 -3 A 3m 3m 3m B N1 1𝑡 0 0 1𝑡 -1 -1 A 3m 3m 3m B N2 1𝑡 1𝑡 0 0 0 −1 2 −1 2 −1 2 −1 2 1𝑡 δ10 + X1 δ11 + X2 δ12 = 0 δ20 + X1 δ21 + X2 δ22 = 0 δ10 = 0 δ20 = 51.94 EA δ11 = 6 EA δ22 = 14.49 EA δ12 = 2.12 EA X1 = 1.34 𝑡 X2 = −3.78 𝑡 Nf = N0 + X1 N1 + X2 N2 Nf = N0 + 1.34 N1 -3.78 N2 6 X1 + 2.12 X2 = 0 → 1 2.12 X1 + 14.49 X2 = -51.94 → 2 Mem. L No N1 N2 NoN1L NoN2L N1N1L N2N2L N1N2L Nf 1 3 0 -1 0 0 0 3 0 0 -1.34 2 3 0 -1 −1 / 2 0 0 3 1.5 𝟑/ 𝟐 1.34 3 3 -7 0 0 0 0 0 0 0 -7 4 3 2 3 2 0 0 0 0 0 0 0 4.24 5 3 -6 0 −1 / 2 0 𝟏𝟖/ 𝟐 0 1.5 0 -3.33 6 3 2 0 0 1 0 0 0 𝟑 𝟐 0 -3.78 7 3 2 3 2 0 1 0 𝟏𝟖 0 𝟑 𝟐 0 0.46 8 3 -7 0 −1 / 2 0 𝟐𝟏/ 𝟐 0 1.5 0 -4.33 9 3 -3 0 0 0 0 0 0 0 -3 51.94 0 6 14.49 2.12
  • 88.
    1 Structural Fantasy 3 2 8t 6m A B 𝑭𝟏 𝑭𝟐 𝑭𝟖𝑭𝟗 𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕 6m 6m 8t [𝒀𝑨 = 𝟖𝒕, 𝑭𝟖 = 𝟏𝟔 𝒕] [𝑭𝟏 = −𝟒. 𝟖𝟏𝒕, 𝑭𝟏𝟎 = 𝟑. 𝟗𝟖 𝒕] 3t 4m A B 𝑭𝟏 𝑭𝟐 𝑭𝟖 𝑭𝟗 𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕 4m 3m 3m 𝑭𝟏𝟎 C [𝑿𝑨 = 𝟒. 𝟐𝟓𝒕, 𝑭𝟔 = −𝟒. 𝟓 𝒕] A 𝑭𝟏 𝑭𝟖 𝑭𝟏𝟔 𝑭𝟏𝟕 𝑭𝟐 𝑭𝟓 𝑭𝟗 𝑭𝟔 3m 3m 8t 4A 𝑭𝟏𝟖 𝑭𝟏𝟗 B 𝑭𝟑 𝑭𝟒 𝑭𝟕 𝑭𝟏𝟎 𝑭𝟏𝟏 𝑭𝟏𝟐 𝑭𝟏𝟑 𝑭𝟏𝟒 𝑭𝟏𝟓 3m 3m 8t 4t 4t 4t 3m 3m [𝑭𝟏 = 𝟒. 𝟖𝟓𝒕, 𝑭𝟔 = −𝟓. 𝟎𝟓 𝒕] 2m A B 𝑭𝟏 𝑭𝟐 𝑭𝟖 𝑭𝟔 𝑭𝟕 4m 10t 𝑭𝟑 𝑭𝟒 𝑭𝟓 1.5m 1.5m 4 Using the consistent deformation method Find the forces in all members. Exercise
  • 89.
    Structural Analysis Consistent Deformations II Eng.Khaled El-Aswany (Trusses) (Support movement)
  • 90.
    No load Effect Supportmovements Temperature Effects Fabrication Errors
  • 91.
    Support movements A w t/m B Nomovement: w t/m A B A B δ10 1t δ11 δ10 + X δ11 = 0 A w t/m B Movement: A w t/m B A B δ10 X δ11 δ10 + X δ11 = ±∆ ∆ Determine the internal forces in members for the shown truss due to the external loads and settlement of 2 cm at support B. 3m 4m 4m 4t A B C 3m 4m 4m A B C 3m 4m 4m 4t A B C M.S. δ10 + X δ11 = 𝟎. 𝟎𝟐 𝑬𝑨 + X 𝑬𝑨 = 𝟎. 𝟎𝟐 EA = 10000 t Answer X
  • 92.
    4t 4t 4t 4m 4m 4m4m 6t 6t 0 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 3m 4 4 No -10 8 8 3.33 -10.67 3.33 −10.67 8 8 -10 4m 4m 4m 4m 3m 1t 1t -1 -1 -1 -1 N1 Mem. L No N1 NoN1L N1N1L 1 4 8 -1 -32 4 2 4 8 -1 -32 4 3 4 8 -1 -32 4 4 4 8 -1 -32 4 5 5 -10 0 0 0 6 3 4 0 0 0 7 5 3.33 0 0 0 8 3 0 0 0 0 9 5 3.33 0 0 0 10 3 4 0 0 0 11 5 -10 0 0 0 12 4 -10.67 0 0 0 13 4 -10.67 0 0 0 -128 16 δ10 = 𝛴N ON1L EA = −128 EA δ11 = 𝛴N1N1L = 16 X1 = −δ10 δ11 = −(−128)/𝐸𝐴 16/EA = 8t Nf = N0 + X1 N1 Determine the internal forces in members for the shown truss due to the external loads and right horizontal movement of 2 cm at support B. EA = 10000 t 3m A B 4t 4t 4t 4m 4m 4m 4m
  • 93.
    Structural Analysis Consistent Deformations II Eng.Khaled El-Aswany (Trusses) (Temperature)
  • 94.
    Loads δ10 + X1δ11 = 0 Temperature Temperature Effects No load Effect Loads & Temperature 8t δ1t + X1 δ11 = 0 δ1t + δ10 + X1 δ11 = 0 Loads: δ10 + X1 δ11 = 0 Temp.: δ1t + 𝑿𝟏 ′ δ11 = 0 Total: Xtot = X1 +𝑿𝟏 ′ δ1t = Σ𝜶. ∆𝒕. 𝑵𝟏. 𝑳 δ1t = 𝜶. ∆𝒕. Σ𝑵𝟏. 𝑳 OR δ10 + X1 δ11 + X2 δ12 = 0 δ20 + X1 δ21 + X2 δ22 = 0 δ1t + X1 δ11 + X2 δ12 = 0 δ2t + X1 δ21 + X2 δ22 = 0 δ1t + δ10 +X1 δ11 + X2 δ12 = 0 δ2t + δ20 +X1 δ21 + X2 δ22 = 0 8t 10t 10t δ1t = Σ𝜶. ∆𝒕. 𝑵𝟏. 𝑳 δ2t = Σ𝜶. ∆𝒕. 𝑵𝟐. 𝑳 10−5 Rise (+) Drop (−) Tension (+) compression (−) ONCE TWICE
  • 95.
    𝜃 -1.67 Determine the internalforces in members for the shown truss due to the external loads and rise of temperature 100oC. 𝛼 = 1𝑥10−5 /𝑜𝐶 8m B 6t 6t 6m A Example 1 EA = 45000 t R = ( m + r ) - 2j R = ( 5+ 4) - 2x4= 1 (Once indeterminate) 6𝑥8 − 𝑌𝑏𝑥6 = 0 𝑌𝑏 = 8𝑡 Ʃ𝑀𝐴 = 0 𝜃 𝑆𝑖𝑛𝜃 = 8 10 𝑐𝑜𝑠𝜃 = 6 10 6m 8m 10m 8m B 6t 6t 6m A 6t 8t 2t 𝜃 𝜃 𝜃 𝜃 -8 -6 -6 10 No 8m 6m N1 B A 0 0 1t 1t 𝜃 𝜃 1.33 -1.67 1.33 1 𝜃 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 Mem. L No N1 NoN1L N1N1L N1L Nf 1 8 -6 1.333 -64 14.22 10.67 3.21 2 10 10 -1.667 -166.7 27.78 -16.67 -1.52 3 10 0 -1.667 0 27.78 -16.67 -11.52 4 8 -8 1.333 -85.33 14.22 10.67 1.21 5 6 -6 1 -36 6 6 0.91 -352 90 -6 Due to loads δ10 + X1 δ11 = 0 δ1t + X1 ’ δ11 = 0 X1 = 3.91 t δ1t = 𝛼. ∆𝑡. 𝛴𝑁1. 𝐿 Due to temperature δ1t = 1𝑥10−5 𝑥100𝑥 − 6 = −0.006 X1 ’ = 3t -0.006 + X1 ’ 𝟗𝟎 𝟒𝟓𝟎𝟎𝟎 = 0 Xtot = X1 +𝑿𝟏 ′ = 𝟔. 𝟗𝟏𝒕 Total Nf = N0 + Xtot N1
  • 96.
    B 3m 4t 6t 4t 12 3 4 5 6 7 10 R = ( m + r ) - 2j R = ( 10+ 4) - 2x6 = 2 (Twice indeterminate) 8 9 3m 3m A A 3m 3m 3m 4t 6t 4t B 7𝑡 7𝑡 0 No -7 -7 -6 45° -3 -3 1𝑡 A 3m 3m 3m B N1 0 0 1𝑡 -1 -1 A 3m 3m 3m B N2 1𝑡 1𝑡 0 0 0 −1 2 −1 2 −1 2 −1 2 1𝑡 δ1t + 𝑋1 ′ δ11 + 𝑋2 ′ δ12 = 0 δ2t + 𝑋1 ′ δ21 + 𝑋2 ′ δ22 = 0 δ10 = 0 δ20 = 51.94 EA δ11 = 6 EA δ22 = 14.49 EA δ12 = 2.12 EA X1 = 1.34 𝑡 X2 = −3.78 𝑡 Nf = N0 + X1t N1 + X2t N2 Nf = N0 + 1.34 N1 -3.78 N2 6 45000 𝑋1 ′ + 2.12 45000 𝑋2 ′ = 0.003 2.12 𝑋2 ′ + 14.49 𝑋2 ′ = 0 Determine the internal forces in members for the shown truss due to the external loads and rise of temperature 50oC. 𝛼 = 1𝑥10−5 /𝑜𝐶 Example 2 EA = 45000 t Due to loads Due to temperature X1t = X1 +𝑿𝟏 ′ = 𝟐𝟓. 𝟎𝟒𝒕 Total δ1t = 𝛼. ∆𝑡. 𝛴𝑁1. 𝐿 δ1t = 1𝑥10−5𝑥50𝑥(−1𝑥3𝑥2) = −0.003 δ2t = 1𝑥10−5 𝑥50𝑥 −1 2 𝑥3𝑥4 + 1𝑥3 2𝑥2 = 0 X2t = X2 +𝑿𝟐 ′ = −𝟕. 𝟐𝟓𝒕 𝑋1 ′ = 23.7 𝑡 𝑋2 ′ = −3.47𝑡 Mem. Nf 1 -25.04 2 -19.9 3 -7 4 4.24 5 -0.87 6 -7.25 7 -3 8 -1.87 9 -3 10 2.12
  • 97.
    Structural Analysis Consistent Deformations II Eng.Khaled El-Aswany (Trusses) (Fabrication error)
  • 98.
    Loads δ10 + X1δ11 = 0 Fabricated Fabrication errors No load Effect Loads & fabrication 8t δ1f + X1 δ11 = 0 δ1f + δ10 + X1 δ11 = 0 Loads: δ10 + X1 δ11 = 0 fabrication: δ1f + 𝑿𝟏 ′ δ11 = 0 Total: Xtot = X1 +𝑿𝟏 ′ δ1f = Σ∆. 𝑵𝟏 OR δ10 + X1 δ11 + X2 δ12 = 0 δ20 + X1 δ21 + X2 δ22 = 0 δ1f + X1 δ11 + X2 δ12 = 0 δ2f + X1 δ21 + X2 δ22 = 0 δ1f + δ10 +X1 δ11 + X2 δ12 = 0 δ2f + δ20 +X1 δ21 + X2 δ22 = 0 10t Long (+) short (−) Tension (+) compression (−) ONCE TWICE δ1f = Σ∆. 𝑵𝟏 δ2f = Σ∆. 𝑵𝟐 8t 10t
  • 99.
    Determine the internalforces in members for the shown truss due to the external loads and fabrication error in members F3 by (+0.5cm) and F5 by (-1cm).. 8m B 6t 6t 6m A Example 1 EA = 45000 t R = ( m + r ) - 2j R = ( 5+ 4) - 2x4= 1 (Once indeterminate) 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 8m B 6t 6t 6m A 6t 8t 2t 𝜃 𝜃 𝜃 𝜃 -8 -6 -6 10 No 𝜃 -1.67 8m 6m N1 B A 0 0 1t 1t 𝜃 𝜃 1.33 -1.67 1.33 1 𝜃 -352 90 Due to loads δ10 + X1 δ11 = 0 X1 = 3.91 t Due to Fabrication δ1f + X1 ’ δ11 = 0 X1 ’ = 9.2t -0.018 + X1 ’ 𝟗𝟎 𝟒𝟓𝟎𝟎𝟎 = 0 Xtot = X1 +𝑿𝟏 ′ = 𝟏𝟑. 𝟏𝒕 Total Nf = N0 + Xtot N1 Mem. L No N1 NoN1L N1N1L Δ ΔN1 Nf 1 8 -6 1.333 -64 14.22 0 0 11.47 2 10 10 -1.667 -166.7 27.78 0 0 -11.8 3 10 0 -1.667 0 27.78 0.005 -0.008 -21.8 4 8 -8 1.333 -85.33 14.22 0 0 9.47 5 6 -6 1 -36 6 -0.01 -0.01 7.1 -0.018
  • 100.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany
  • 101.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany (Introduction)
  • 102.
    C 3 t/m 2I I 6m AB 6t 2m 2m Degree of Freedom C A B Rotation (𝛼) OR (𝜃) Translation (∆) 𝛼 = 0 𝛼 ≠ 0 𝛼 = 0 ∆𝑥 = 0 ∆𝑦 = 0 𝛼 =  ∆𝑥 = 0 ∆𝑦 = 0 𝛼 =  ∆𝑥 =  ∆𝑦 = 0 ∆= 0 Beams: [ Except settlement cases]
  • 103.
    C 3 t/m 2I I 6m AB 6t 2m 2m 3 t/m 6m A B C 6t 2m 2m B Fixed End Moment Rotation Moment Sway Moment L A B C L B L A B C L B 4EI L αA + 2EI L αB 4EI L αB + 2EI L αA 𝑀𝐴𝐵 𝐹 − 6EI L2 ∆ 𝑀𝐵𝐴 𝐹 MAB = MAB F + 2EI L (2αA+ αB -3 ∆ L ) MAB = MAB F + 4EI L αA + 2EI L αB − 6EI L2 ∆ αA αB − 6EI L2 ∆ ‫الساعة‬ ‫عقارب‬ ‫مع‬ 𝑀𝐵𝐶 𝐹 𝑀𝐶𝐵 𝐹 αB αC 4EI L αB + 2EI L αC 4EI L αC + 2EI L αB ∆ − 6EI L2 ∆ − 6EI L2 ∆ ∆ Ψ 𝐾 Slope Deflection Equations: MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MBC = MBC F + 2EI L (2αB+ αC -3 Ψ ) MCB = MCB F + 2EI L (2αC+ αB -3 Ψ )
  • 104.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany (Fixed End Moment)
  • 105.
    w t/m L A B B Pt L/2L/2 A − 𝑤𝐿2 12 𝑤𝐿2 12 𝑤𝐿2 12 𝑤𝐿2 12 𝑃𝐿 8 𝑃𝐿 8 − 𝑃𝐿 8 𝑃𝐿 8 − Pa(L−a) L Pa(L−a) L Pa(L−a) L Pa(L−a) L L A B Pt Pt a a b − 2 9 PL 2 9 PL 2 9 PL 2 9 PL L A B Pt Pt a a a − Pa𝑏2 𝐿2 Pb𝑎2 𝐿2 Pa𝑏2 𝐿2 P𝑏𝑎2 𝐿2 L A B Pt a b − 𝑤𝑙2 20 𝑤𝑙2 30 𝑤𝑙2 30 L A B w t/m w𝑙2 20 Mb(2a−b) L2 Ma(2b−a) L2 L A B M a b − Mb(2a−b) L2 − Ma(2b−a) L2 L A B M a b 6x4(2x1−4) 52 6x1(2x4−1) 52 5m A B 6mt 1m 4m
  • 106.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany (Example 1)
  • 107.
    C 3 t/m 2I I 6m AB 6t 2m 2m 3 t/m 6m A B C 6t 2m 2m B 𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = 0 −9 9 −3 3 𝑀𝐴𝐵 𝐹 = -9 mt, 𝑀𝐵𝐴 𝐹 = 9 mt 𝑀𝐵𝐶 𝐹 = -3 mt, 𝑀𝐶𝐵 𝐹 = 3 mt 1) Unknowns 𝛼𝐵 2) Fixed End Moment 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 2𝑥2𝐸𝐼 6 : 2𝑥𝐸𝐼 4 2 ∶ 1.5 2𝐸𝐼 𝐿 𝐴𝐵 : 2𝐸𝐼 𝐿 𝐵𝐶 2 6 ∶ 1 4 × 6 × 2 4 ∶ 3 4) Slope deflection equations MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MBC = MBC F + 2EI L (2αB+ αC -3 Ψ ) MCB = MCB F + 2EI L (2αC+ αB -3 Ψ ) = −9 + 4 ( 0 + αB - 0 ) = 9 + 4 ( 2αB + 0 - 0 ) = −3 + 3 ( 2αB + 0 - 0 ) = 3 + 3 ( 0 + αB - 0 ) = −9 + 4αB = 9 + 8αB = −3 + 6αB = 3 + 3αB 5) Compatibility eq. ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0 9 + 8αB +−3 + 6αB = 0 αB = −0.4286 𝑀𝐴𝐵 = -10.71 𝑀𝐵𝐴 = 5.57 𝑀𝐵𝐶 = -5.57 𝑀𝐶𝐵 = 1.71 6) Moment values 3 t/m 6m A B C 6t 2m 2m B 10.71 5.57 5.57 1.71 Reactions 8.16 9.86 3.96 2.04 F.E.M. 10.71 5.57 1.71 5.57+1.71 2 = 3.64 2.36 B.M.D. 𝑤𝐿2 8 𝑃𝐿 4 =6
  • 108.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany (Example 2)
  • 109.
    3 t/m 6m A BC 6t 2m 2m B 𝛼𝐴 = 0 𝛼𝐵 = ?? −9 9 −3 3 𝑀𝐴𝐵 𝐹 = -9 mt, 𝑀𝐵𝐴 𝐹 = 9 mt 𝑀𝐵𝐶 𝐹 = -3 mt, 𝑀𝐶𝐵 𝐹 = 3 mt 1) Unknowns 2) Fixed End Moment 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 2𝑥2𝐸𝐼 6 : 2𝑥𝐸𝐼 4 2 ∶ 1.5 2𝐸𝐼 𝐿 𝐴𝐵 : 2𝐸𝐼 𝐿 𝐵𝐶 2 6 ∶ 1 4 × 6 × 2 4 ∶ 3 4) Slope deflection equations MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MBC = MBC F + 2EI L (2αB+ αC -3 Ψ ) MCB = MCB F + 2EI L (2αC+ αB -3 Ψ ) = −9 + 4 ( 0 + αB - 0 ) = 9 + 4 ( 2αB + 0 - 0 ) = −3 + 3 ( 2αB + 0 - 0 ) = 3 + 3 ( 0 + αB - 0 ) = −9 + 4αB = 9 + 8αB = −3 + 6αB + 3αC = 3 + 3αB + 6αC 5) Compatibility eq. ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0 9 + 8αB −3 + 6αB+3αC = 0 αB = −0.36 αC = −0.32 𝑀𝐴𝐵 = -10.44 𝑀𝐵𝐴 = 6.12 𝑀𝐵𝐶 = -6.12 𝑀𝐶𝐵 = 0 6) Moment values 3 t/m 6m A B 10.44 6.12 6.12 Reactions F.E.M. 𝛼𝐶 = ?? C 3 t/m 2I I 6m A B 6t 2m 2m 𝛼𝐵 , 𝛼𝐶 𝑀𝐶𝐵 = 0 3 + 3αB+6αC = 0 3αB+6αC = -3 → 2 14αB +3αC = -6 → 1 C 6t 2m 2m B 8.28 9.72 4.53 1.47 10.44 6.12 6.12 2 = 3.06 2.94 B.M.D. 𝑃𝐿 4 =6 𝑤𝐿2 8
  • 110.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany (Modified)
  • 111.
    3 t/m 6m A B FixedEnd Moment Rotation Moment Sway Moment L A B L A B C L B 4EI L αA + 2EI L αB 4EI L αB + 2EI L αA 𝑀𝐴𝐵 𝐹 − 6EI L2 ∆ 𝑀𝐵𝐴 𝐹 MBC =𝑀𝐵𝐶 𝐹′ + 3EI L (αB − ∆ L ) MBC = 𝑀𝐵𝐶 𝐹′ + 3EI L αB − 3EI L2 ∆ αA αB − 6EI L2 ∆ ‫الساعة‬ ‫عقارب‬ ‫مع‬ 𝑀𝐵𝐶 𝐹′ 3EI L αB ∆ − 3EI L2 ∆ ∆ Ψ 𝐾 Slope Deflection Equations: MAB =𝑀𝐴𝐵 𝐹 + 2EI L (2αA+ αB -3 Ψ ) MBA = 𝑀𝐵𝐴 𝐹 + 2EI L (2αB+ αA -3 Ψ ) MBC = 𝑀𝐵𝐶 𝐹′ + 3EI L (αB - Ψ ) C 3 t/m 2I I 6m A B 6t 2m 2m C 6t 2m 2m B αB C L B 𝑀𝐴 = ?? 𝑀𝐶 = 0 𝑀𝐵 = ??
  • 112.
    w t/m L A B − 𝑤𝐿2 12 𝑤𝐿2 12 L AB 𝑀𝐴𝐵 𝐹 𝑀𝐵𝐴 𝐹 𝑀𝐴𝐵 𝐹′ L A B 𝑀𝐴𝐵 𝐹 𝑀𝐵𝐴 𝐹 = − 0.5 𝑀𝐴𝐵 𝐹′ L A B w t/m = −1.5 wL2 12 B Pt L/2 L/2 A − 𝑃𝐿 8 𝑃𝐿 8 𝑀𝐴𝐵 𝐹′ − 𝑃𝐿 8 = 𝑥 1.5 B Pt L/2 L/2 A − Pa𝑏2 𝐿2 Pb𝑎2 𝐿2 L A B Pt a b L A B Pt a b 𝑀𝐴𝐵 𝐹′ − Pa𝑏2 𝐿2 Pb𝑎2 𝐿2 = − 0.5 𝑀𝐴𝐵 𝐹′ = L A B 4EI L αA + 2EI L αB 4EI L αB + 2EI L αA αA αB 3EI L αA 𝑀𝐴𝐵 𝐹′ = − 0.5 L A B − 6EI L2 ∆ (− 6EI L2 ∆) − 6EI L2 ∆ − 6EI L2 ∆ ∆ L A B L A B
  • 113.
    w t/m L A B − 𝑤𝐿2 12 𝑤𝐿2 12 L AB 𝑀𝐴𝐵 𝐹 𝑀𝐵𝐴 𝐹 𝑀𝐴𝐵 𝐹′ L A B 𝑀𝐴𝐵 𝐹 𝑀𝐵𝐴 𝐹 = − 0.5 𝑀𝐴𝐵 𝐹′ L A B w t/m = −1.5 wL2 12 B Pt L/2 L/2 A − 𝑃𝐿 8 𝑃𝐿 8 𝑀𝐴𝐵 𝐹′ − 𝑃𝐿 8 = 𝑥 1.5 B Pt L/2 L/2 A − Pa𝑏2 𝐿2 Pb𝑎2 𝐿2 L A B Pt a b L A B Pt a b 𝑀𝐴𝐵 𝐹′ − Pa𝑏2 𝐿2 Pb𝑎2 𝐿2 = − 0.5 6m A B 2 t/m 6t 2m 12 −6 6 -12 6m A B 2 t/m 6t 2m 𝑀𝐴𝐵 𝐹′ = −6 6 -12 − 0.5 ( + ) = -3 B
  • 114.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany (Modified) (Redo Example 2)
  • 115.
    𝑀𝐴𝐵 𝐹 = -9 mt,𝑀𝐵𝐴 𝐹 = 9 mt 𝑀𝐵𝐶 𝐹 = -4.5 mt 1) Unknowns 2) Fixed End Moment 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 4 ∶ 9 2 2𝐸𝐼 𝐿 𝐴𝐵 : 3𝐸𝐼 𝐿 𝐵𝐶 2𝑥2 6 ∶ 3𝑥1 4 𝛼𝐵 3 t/m 6m A B C 6t 2m 2m B 𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = ?? −9 9 −4.5 F.E.M. C 3 t/m 2I I 6m A B 6t 2m 2m 𝑀𝐶 = 0 𝑀𝐴 = ?? 𝑀𝐵 = ?? : 8 ∶ 9 4) Slope deflection equations = −9 + 8 ( 0 + αB - 0 ) = 9 + 8 ( 2αB + 0 - 0 ) = −4.5 + 9 ( αB - 0) MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MBC = 𝑀𝐵𝐶 𝐹′ + 3EI L (αB - Ψ ) = −9 + 8αB = 9 + 16αB = −4.5 + 9αB 5) Compatibility eq. ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0 9 + 16αB −4.5 + 9αB = 0 αB = −0.18 𝑀𝐴𝐵 = -10.44 𝑀𝐵𝐴 = 6.12 𝑀𝐵𝐶 = -6.12 6) Moment values 6.12 3 t/m 6m A B 10.44 6.12 Reactions C 6t 2m 2m B 8.28 9.72 4.53 1.47 10.44 6.12 6.12 2 = 3.06 2.94 B.M.D. 𝑃𝐿 4 =6 𝑤𝐿2 8
  • 116.
    𝑀𝐴𝐵 𝐹 = -9 mt,𝑀𝐵𝐴 𝐹 = 9 mt 𝑀𝐵𝐶 𝐹 = -4.5 mt 1) Unknowns 2) Fixed End Moment 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 4 ∶ 9 2 2𝐸𝐼 𝐿 𝐴𝐵 : 3𝐸𝐼 𝐿 𝐵𝐶 2𝑥2 6 ∶ 3𝑥1 4 𝛼𝐵 3 t/m 6m A B C 6t 2m 2m B 𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = ?? −9 9 −4.5 F.E.M. C 3 t/m 2I I 6m A B 6t 2m 2m 𝑀𝐶 = 0 𝑀𝐴 = ?? 𝑀𝐵 = ?? : 8 ∶ 9 4) Slope deflection equations = −9 + 8 ( 0 + αB - 0 ) = 9 + 8 ( 2αB + 0 - 0 ) = −4.5 + 9 ( αB - 0) MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MBC = 𝑀𝐵𝐶 𝐹′ + 3EI L (αB - Ψ ) = −9 + 8αB = 9 + 16αB = −4.5 + 9αB 5) Compatibility eq. ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0 9 + 16αB −4.5 + 9αB = 0 αB = −0.18 𝑀𝐴𝐵 = -10.44 𝑀𝐵𝐴 = 6.12 𝑀𝐵𝐶 = -6.12 6) Moment values 6.12 3 t/m 6m A B 10.44 6.12 Reactions C 6t 2m 2m B 8.28 9.72 4.53 1.47 10.44 6.12 6.12 2 = 3.06 2.94 B.M.D. 𝑃𝐿 4 =6 𝑤𝐿2 8 Type Equation D.O.F αA, αB , Ψ αA, Ψ Stiffness 2EI L 3EI L F.E.M. 𝑀𝐴𝐵 𝐹′ = 𝑀𝐴𝐵 𝐹 - 1 2 𝑀𝐵𝐴 𝐹 Summary MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MAB = 𝑀𝐴𝐵 𝐹′ + 3EI L (αA - Ψ ) A B B A B A 𝑀𝐴𝐵 𝐹′ A B 𝑀𝐴𝐵 𝐹 𝑀𝐵𝐴 𝐹
  • 117.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany (Example 3)
  • 118.
    𝑀𝐴𝐵 𝐹 = -9 mt,𝑀𝐵𝐴 𝐹 = 9 mt 𝑀𝐵𝐶 𝐹 = -3 mt, 𝑀𝐶𝐵 𝐹 = 3 mt 1) Unknowns 2) Fixed End Moment 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 2𝑥2𝐸𝐼 6 : 2𝑥𝐸𝐼 4 2 ∶ 1.5 2𝐸𝐼 𝐿 𝐴𝐵 : 2𝐸𝐼 𝐿 𝐵𝐶 2 6 ∶ 1 4 × 6 × 2 4 ∶ 3 4) Slope deflection equations MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MBC = MBC F + 2EI L (2αB+ αC -3 Ψ ) MCB = MCB F + 2EI L (2αC+ αB -3 Ψ ) = −9 + 4 ( 0 + αB - 0 ) = 9 + 4 ( 2αB + 0 - 0 ) = −3 + 3 ( 2αB + 0 - 0 ) = 3 + 3 ( 0 + αB - 0 ) = −9 + 4αB = 9 + 8αB = −3 + 6αB + 3αC = 3 + 3αB + 6αC 5) Compatibility eq. ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0 9 + 8αB −3 + 6αB+3αC = 0 αB = −0.84 αC = 1.92 𝑀𝐴𝐵 = -12.36 𝑀𝐵𝐴 = 2.28 𝑀𝐵𝐶 = -2.28 𝑀𝐶𝐵 = 12 6) Moment values 12.36 2.28 2.28 Reactions 𝛼𝐵 , 𝛼𝐶 𝑀𝐶𝐵 + 𝑀𝐶𝐷 = 0 3 + 3αB+6αC −12 = 0 3αB+6αC = 9 → 2 14αB +3αC = -6 → 1 𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = ?? C 3 t/m 2I I 6m A B 6t 2m 2m 6t 2m D 3 t/m 6m A B C 6t 2m 2m B −9 9 −3 3 12 −12 F.E.M. ΣMc = 0 3 t/m 6m A B C 6t 2m 2m B 12 6t 2m C D 12 6t 2m C D 7.32 10.68 0.57 5.43 12.36 2.28 1.14 B.M.D. 𝑤𝐿2 8 6 12
  • 119.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany (Example 4)
  • 120.
    A 9t 2m 4m 2m 6t B 1) Unknowns 𝛼𝐵 ,𝛼𝐶 2) Fixed End Moment 𝛼𝐴 = ?? 𝛼𝐵 = ?? 𝛼𝐶 = ?? C 3 t/m B 8m D 3I 2I 2m 2m 2m 6t 6t 2m 4m A I 9t 2m 6t I 3 t/m D C 8m 𝛼𝑑 = ?? 𝑀𝐴 = 12 𝑀𝐵 = ?? 𝑀𝐶 = ?? 𝑀𝑑 = 0 −24 4 6t 6t C B 2m 2m 2m 3 t/m 17 −17 𝑀𝐵𝐴 𝐹′ = 4 mt 𝑀𝐵𝐶 𝐹 = -17 mt, 𝑀𝐶𝐵 𝐹 = 17 mt 𝑀𝐶𝐷 𝐹′ = -24 mt 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐶𝐷 3𝐸𝐼 𝐿 𝐴𝐵 : 2𝐸𝐼 𝐿 𝐵𝐶 : 3𝐸𝐼 𝐿 𝐶𝐷 × 4 : : 3𝑥1 6 2𝑥3 6 3𝑥2 8 : : 1 2 1 3 4 : : 2 4 3 : : 4) Slope deflection equations = 4 + 2 ( αB - 0 ) = −17 + 4 ( 2αB + αC - 0) ) = 17 + 4 ( 2αC + αB - 0) = −24 + 3 (αC - 0 ) MBC = 𝑀𝐵𝐶 𝐹 + 2EI L (2αB+ αC -3 Ψ ) MCB = 𝑀𝐶𝐵 𝐹 + 2EI L (2αC+ αB -3 Ψ ) MCD = 𝑀𝐶𝐷 𝐹′ + 3EI L (αC - Ψ) MBA = 𝑀𝐵𝐴 𝐹′ + 3EI L (αB - Ψ) = 4 + 2αB = −17 + 8αB + 4αC = 17 + 4αB + 8αC = −24 + 3αC 5) Compatibility eq. ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0 αB = 1.2234 αC = 0.1915 𝑀𝐶𝐵 + 𝑀𝐶𝐷 = 0 4αB+11αC = 7 → 2 10αB +4αC = 13 → 1 ΣMc = 0 6) Moment Values MBC = −6.45 𝑚𝑡 MCB = 23.43 𝑚𝑡 MCD = −23.43 𝑚𝑡 MBA = 6.45 𝑚𝑡 A 9t 2m 4m 2m 6t B 3 t/m D C 8m 6.45 6t 6t C B 2m 2m 2m 3 t/m 23.43 6.45 23.43 Reactions 17.83 12.17 5.075 9.925 14.93 9.07 12.28 6.23 11.89 3.7 6.45 23.43 12 B.M.D.
  • 121.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany (Frames) (Sway or without sway)
  • 122.
    Delete ✓ Can translate ? X Symmetry? Ψ Ψ Frame Without Sway Symmetry No translation With Sway Δ Δ
  • 123.
    Without Sway WithSway Delete
  • 124.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany (Frames) (Without Sway)
  • 125.
    Delete C 1.5 t/m 6I I A B 6t 3m 2m 4I 1.5I4t 6t F E D 3m 4m 1) Unknowns 𝛼𝐵 , 𝛼𝐶 12m 8m
  • 126.
    Delete 1) Unknowns 𝛼𝐵 ,𝛼𝐶 2) Fixed End Moment I 3m 1.5I 4t 6t E D 3m 4m 12m 8m 2m C 1.5 t/m 6I A B 6t 4I F C B 1.5 t/m -12 8 18 -18 -8 2m -4.5 B C -5.33 2.67 𝑀𝐴𝐵 𝐹 = -18 mt, 𝑀𝐵𝐴 𝐹 = 18 mt 𝑀𝐵𝐶 𝐹 = -8 mt, 𝑀𝐶𝐵 𝐹 = 8 mt 𝑀𝐵𝐷 𝐹 = -5.33 mt, 𝑀𝐷𝐵 𝐹 = 2.67 mt ഥ 𝑀𝐶𝐸 𝐹 = -4.5 mt
  • 127.
    Delete I 3m 1.5I 4t 6t E D 3m 4m 12m 8m2m C 1.5 t/m 6I A B 6t 4I F C B 1.5 t/m -12 8 18 -18 -8 2m -4.5 B C -5.33 2.67 1) Unknowns 𝛼𝐵 , 𝛼𝐶 2) Fixed End Moment 𝑀𝐴𝐵 𝐹 = -18 mt, 𝑀𝐵𝐴 𝐹 = 18 mt 𝑀𝐵𝐶 𝐹 = -8 mt, 𝑀𝐶𝐵 𝐹 = 8 mt 𝑀𝐵𝐷 𝐹 = -5.33 mt, 𝑀𝐷𝐵 𝐹 = 2.67 mt ഥ 𝑀𝐶𝐸 𝐹 = -4.5 mt 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐷 ∶ 𝐾𝐶𝐸 2𝑋6 12 : 2𝑋4 8 : 2𝑋1.5 6 : 3𝑋1 6 1 ∶ 1 ∶ 1 2 : 1 2 2 ∶ 2 ∶ 1 : 1
  • 128.
    Delete I 3m 1.5I 4t 6t E D 3m 4m 12m 8m2m C 1.5 t/m 6I A B 6t 4I F C B 1.5 t/m -12 8 18 -18 -8 2m -4.5 B C -5.33 2.67 1) Unknowns 𝛼𝐵 , 𝛼𝐶 2) Fixed End Moment 𝑀𝐴𝐵 𝐹 = -18 mt, 𝑀𝐵𝐴 𝐹 = 18 mt 𝑀𝐵𝐶 𝐹 = -8 mt, 𝑀𝐶𝐵 𝐹 = 8 mt 𝑀𝐵𝐷 𝐹 = -5.33 mt, 𝑀𝐷𝐵 𝐹 = 2.67 mt ഥ 𝑀𝐶𝐸 𝐹 = -4.5 mt 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐷 ∶ 𝐾𝐶𝐸 2𝑋6 12 : 2𝑋4 8 : 2𝑋1.5 6 : 3𝑋1 6 1 ∶ 1 ∶ 1 2 : 1 2 2 ∶ 2 ∶ 1 : 1 4) Slope Deflection Equation 𝑀𝐴𝐵 = -18 + 2 (2𝛼𝐴 + 𝛼𝐵) 𝑀𝐵𝐴 = 18 + 2 (2𝛼𝐵 + 𝛼𝐴) 𝑀𝐵𝐶 = -8 + 2 (2𝛼𝐵 + 𝛼𝐶) 𝑀𝐶𝐵 = 8 + 2 (2𝛼𝐶 + 𝛼𝐵) 𝑀𝐵𝐷 = -5.33 + (2𝛼𝐵 + 𝛼𝐷) 𝑀𝐷𝐵 = 2.67 + (2𝛼𝐷 + 𝛼𝐵) 𝑀𝐶𝐸 = -4.5 + (𝛼𝐶) = -18 + 2 𝛼𝐵 = 18 + 4𝛼𝐵 = -8 + 4𝛼𝐵 + 2𝛼𝐶 = 8 + 4𝛼𝐶 + 2𝛼𝐵 = -5.33 + 2𝛼𝐵 = 2.67 + 𝛼𝐵 = -4.5 + 𝛼𝐶
  • 129.
    Delete 1) Unknowns 𝛼𝐵 ,𝛼𝐶 2) Fixed End Moment 𝑀𝐴𝐵 𝐹 = -18 mt, 𝑀𝐵𝐴 𝐹 = 18 mt 𝑀𝐵𝐶 𝐹 = -8 mt, 𝑀𝐶𝐵 𝐹 = 8 mt 𝑀𝐵𝐷 𝐹 = -5.33 mt, 𝑀𝐷𝐵 𝐹 = 2.67 mt ഥ 𝑀𝐶𝐸 𝐹 = -4.5 mt 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐷 ∶ 𝐾𝐶𝐸 2𝑋6 12 : 2𝑋4 8 : 2𝑋1.5 6 : 3𝑋1 6 1 ∶ 1 ∶ 1 2 : 1 2 2 ∶ 2 ∶ 1 : 1 4) Slope Deflection Equation 𝑀𝐴𝐵 = -18 + 2 (2𝛼𝐴 + 𝛼𝐵) 𝑀𝐵𝐴 = 18 + 2 (2𝛼𝐵 + 𝛼𝐴) 𝑀𝐵𝐶 = -8 + 2 (2𝛼𝐵 + 𝛼𝐶) 𝑀𝐶𝐵 = 8 + 2 (2𝛼𝐶 + 𝛼𝐵) 𝑀𝐵𝐷 = -5.33 + (2𝛼𝐵 + 𝛼𝐷) 𝑀𝐷𝐵 = 2.67 + (2𝛼𝐷 + 𝛼𝐵) 𝑀𝐶𝐸 = -4.5 + (𝛼𝐶) = -18 + 2 𝛼𝐵 = 18 + 4𝛼𝐵 = -8 + 4𝛼𝐵 + 2𝛼𝐶 = 8 + 4𝛼𝐶 + 2𝛼𝐵 = -5.33 + 2𝛼𝐵 = 2.67 + 𝛼𝐵 = -4.5 + 𝛼𝐶 I 3m 1.5I 4t 6t E D 3m 4m 12m 8m 2m C 1.5 t/m 6I A B 6t 4I F C B 1.5 t/m -12 8 18 -18 -8 2m -4.5 B C -5.33 2.67 5) Comp. equations ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 + 𝑀𝐵𝐷 = 0 ΣMc = 0 𝑀𝐶𝐵 + 𝑀𝐶𝐸 + 𝑀𝐶𝐹 = 0 10𝛼𝐵 + 2𝛼𝐶 = -4.67 2𝛼𝐵 + 5𝛼𝐶 = 8.5 𝛼𝐵 = -0.87717 𝛼𝐶 = 2.05087 𝑀𝐴𝐵 = -19.75 𝑀𝐵𝐴 = 14.49 𝑀𝐵𝐶 = -7.4 𝑀𝐶𝐵 = 14.45 𝑀𝐵𝐷 = -7.09 𝑀𝐷𝐵 = 1.80 𝑀𝐶𝐸 = -2.45 6) Moments -12 12 14.45 14.49 19.75 7.4 2.45 7.09 1.80 3m 4t 6t E D 3m 4m 12m 8m 2m C 1.5 t/m A B 6t F C B 1.5 t/m 2mB C 9.44 8.56 5.12 6.88 6 1.12 4.88 2.4 1.6 19.75 14.49 7.4 14.4512 1.8 7.09 2.7 2.45 4.8
  • 130.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany (Frames) (Without Sway) (Symmetry)
  • 131.
    Delete 1) Unknowns 𝛼𝐵, 𝛼𝐶 , 𝛼𝐷 , 𝛼𝐸 2) Fixed End Moment 𝛼𝐷 = - 𝛼𝐶 𝛼𝐸 = - 𝛼𝐵 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐸 ∶ 𝐾𝐶𝐷 6 ∶ 2 ∶ 2.5 : 3.75 C 3 t/m A B 5m 8m 2I 2I F E D 5m 6 t/m 2I I I 3I B E B E C D 8m 5m 32 16 -32 -16 5m 4) Slope Deflection Equations 𝑀𝐵𝐴 = 0 + 6 (𝛼𝐵) 𝑀𝐵𝐶 = 0 + 2 (2𝛼𝐵 + 𝛼𝐶) 𝑀𝐶𝐵 = 0 + 2 (2𝛼𝐶 + 𝛼𝐵) 𝑀𝐵𝐸 = -16 + 2.5(2𝛼𝐵 + 𝛼𝐸) 𝑀𝐶𝐷 = -32 + 3.75(2𝛼𝑐 + 𝛼𝐷) = 6𝛼𝐵 = 4𝛼𝐵 + 2𝛼𝐶 = 4𝛼𝐶 + 2𝛼𝐵 = -16 + 2.5(2𝛼𝐵 - 𝛼𝐵) = -32 + 3.75(2𝛼𝑐 - 𝛼𝑐) = -16 + 2.5𝛼𝐵 = -32 + 3.75𝛼𝑐 5) Compatibility Equations ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 + 𝑀𝐵𝐸 = 0 ΣMc = 0 𝑀𝐶𝐵 + 𝑀𝐶𝐷 = 0 12.5𝛼𝐵 + 2𝛼𝐶 = 16 2𝛼𝐵 + 7.75𝛼𝐶 = 32 𝛼𝐵 = 0.664603 𝛼𝐶 = 3.962315 6) Moment values 𝑀𝐵𝐴 = 3.88 𝑀𝐵𝐶 = 10.51 𝑀𝐶𝐵 = 17.14 𝑀𝐵𝐸 = -14.38 𝑀𝐶𝐷 = -17.14 C 3 t/m A B 5m 8m 2I 2I F E D 5m 𝜶𝑩 =?? 𝜶𝑪 =?? 6 t/m 2I I I 3I 𝜶𝑬 =?? 𝜶𝑫 =?? C A B F E D
  • 132.
    Structural Analysis Slope deflectionMethod II Eng. Khaled El-Aswany (Frames) (With Sway)
  • 139.
  • 140.
    Structural Analysis Moment Distribution II Eng.Khaled El-Aswany (Introduction)
  • 141.
    Introduction 1- Fixed EndMoment 2- Distribution Moment (Distribution Factor) 3- Carry over C 3 t/m 6m A B 6t 2m 2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -6 -9 Carry over Carry over D.M. D.M.
  • 142.
    Fixed end moment DistributionFactor Carry over w t/m L 𝑤𝐿2 12 − 𝑤𝐿2 12 𝑃𝐿 8 − 𝑃𝐿 8 − 𝑃𝑎𝑏2 𝐿2 𝑃𝑏𝑎2 𝐿2 L/2 Pt L/2 𝑤𝐿2 30 − 𝑤𝐿2 20 𝑃𝑎(𝐿 − 𝑎) 𝐿 − 𝑃𝑎(𝐿 − 𝑎) 𝐿 L 𝑀𝑎(2𝑏 − 𝑎) 𝐿2 𝑀𝑏(2𝑎 − 𝑏) 𝐿2 w t/m L − 𝑤𝐿2 12 𝒙𝟏. 𝟓 − 𝑃𝐿 8 𝒙𝟏. 𝟓 − 𝑃𝑎𝑏2 𝐿2 L/2 Pt L/2 a Pt b L L Pt Pt a a b M a b L Pt a b L − 𝟎. 𝟓 𝐱 𝑷𝒃𝒂𝟐 𝑳𝟐
  • 143.
    Fixed end moment DistributionFactor Carry over D.F. for Joint B KBA : KBC C 3 t/m 6m A B 6t 2m 2m 6t 4m 2m D 3I 2I I 3 t/m 6m A 3I B C B 6t 2m 2m 2I 6t 4m 2m D I C D.F. for Joint C KCB : KCD KBA + KBC KBA + KBC KCB + KCD KCB + KCD
  • 144.
    Fixed end moment DistributionFactor Carry over Joint B KBA : KBC C 3 t/m 6m A B 6t 2m 2m 6t 4m 2m D 3I 2I I 3 t/m 6m A 3I B C B 6t 2m 2m 2I 6t 4m 2m D I C Joint C KCB : KCD 4𝑥𝐸𝑥3 6 : 4𝑥𝐸𝑥2 4 4𝑥𝐸𝑥2 4 : 4𝑥𝐸𝑥1 6 1 2 : 1 2 1 2 : 1 6 6 : 2 𝟑 𝟒 : 𝟏 𝟒 3 : 1 1 2 1 2 + 1 2 : 1 2 1 2 + 1 2 𝟏 𝟐 : 𝟏 𝟐 L L K = 𝑰 𝑳 K = 𝑰 𝑳 𝒙 𝟑 𝟒 C 3 t/m 6m A B 6t 2m 2m 3 t/m 6m D 3I 2I 3I K = 𝑰 𝑳 𝒙 𝟏 𝟐 L 𝑲𝑨𝑩= 𝑰 𝑳 𝑲𝑩𝑪= 𝑰 𝑳 𝒙 𝟏 𝟐 Example for Symmetry Beam: (Symmetry)
  • 145.
    Fixed end momentDistribution Factor Carry over L A B L B C D.M. D.M. 𝟏 𝟐 D.M. 𝟎 x 𝟏 𝟐
  • 146.
    Structural Analysis Moment Distribution II Eng.Khaled El-Aswany (Beams) (Example 1)
  • 147.
    C 3 t/m 6m A B 6t 2m2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -9 FEM 1- Fixed End Moment − 𝑤𝐿2 12 = 𝑤𝐿2 12 = PL 8 = - PL 8 =
  • 148.
    C 3 t/m 6m A B 6t 2m2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -9 3 9 -3 -9 FEM A B C 𝟐/𝟓 𝟑/𝟓 D.M. -6 -2.4 D.F. FEM 1 - ‫نجمع‬ 2 - ‫االشارة‬ ‫نغير‬ 3 - ‫في‬ ‫نضرب‬ ‫التوزيع‬ ‫نسب‬ Joint B KBA : KBC 1 6 : 1 4 4 : 6 2 : 3 2 5 : 3 5 I L : I L Distribution factors: 2- Distribution Moment
  • 149.
    C 3 t/m 6m A B 6t 2m2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -9 3 9 -3 -9 FEM A B C 𝟐/𝟓 𝟑/𝟓 D.M. -6 -2.4 -3.6 D.F. 1 - ‫نجمع‬ 2 - ‫االشارة‬ ‫نغير‬ 3 - ‫في‬ ‫نضرب‬ ‫التوزيع‬ ‫نسب‬ FEM Joint B KBA : KBC 1 6 : 1 4 4 : 6 2 : 3 2 5 : 3 5 I L : I L Distribution factors: 2- Distribution Moment
  • 150.
    C 3 t/m 6m A B 6t 2m2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -9 3 9 -3 -9 FEM A B C 𝟐/𝟓 𝟑/𝟓 D.M. -2.4 -3.6 C.O. -1.2 -1.8 D.F. Joint B KBA : KBC 1 6 : 1 4 4 : 6 2 : 3 2 5 : 3 5 I L : I L Distribution factors: FEM 3- Carry Over
  • 151.
    C 3 t/m 6m A B 6t 2m2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -9 3 9 -3 -9 FEM A B C 𝟐/𝟓 𝟑/𝟓 D.M. -2.4 -3.6 C.O. -1.2 -1.8 F.M. -10.2 6.6 -6.6 1.2 D.F. A 6m 3 t/m B B 6t 2m 2m C 10.2 6.6 6.6 1.2 ‫سالب‬ ( ‫الساعة‬ ‫عقارب‬ ‫عكس‬ ) ‫موجب‬ ( ‫الساعة‬ ‫عقارب‬ ‫مع‬ ) Joint B KBA : KBC 1 6 : 1 4 4 : 6 2 : 3 2 5 : 3 5 I L : I L Distribution factors:
  • 152.
    C 3 t/m 6m A B 6t 2m2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -9 3 9 -3 -9 FEM A B C 𝟐/𝟓 𝟑/𝟓 D.M. -2.4 -3.6 C.O. -1.2 -1.8 F.M. -10.2 6.6 -6.6 1.2 D.F. A 6m 3 t/m B B 6t 2m 2m C 10.2 6.6 6.6 1.2 = 8.4 9.6 =4.35 1.65 C A B 10.2 6.6 1.2 2.1 3x6x3 + 6.6 -10.2 6 6x2+6.6-1.2 4 FEM Joint B KBA : KBC 1 6 : 1 4 4 : 6 2 : 3 2 5 : 3 5 I L : I L Distribution factors: B.M.D.
  • 153.
    Structural Analysis Moment Distribution II Eng.Khaled El-Aswany (Beams) (Example 2)
  • 154.
    A 6m 3 t/m B 9 -4.5 -9 C 3t/m 6m A B 6t 2m 2m B 6t 2m 2m C 0 9 -4.5 -9 FEM 𝟖/𝟏𝟕 9/𝟏𝟕 D.F. A B C Joint B KBA : KBC 1 6 : 3 16 16 : 18 8 : 9 8 17 : 9 17 1 6 : 1 4 𝑥 3 4 D.M. -2.12 -2.38 C.O. -1.06 F.M. -10.06 6.88 -6.88 0 A 6m 3 t/m B 10.06 6.88 6.88 B 6t 2m 2m C 9.53 8.47 1.28 4.72 C A B 10.06 6.88 2.56 B.M.D. Distribution factors: I L : I L 𝑥 3 4
  • 155.
    Structural Analysis Moment Distribution II Eng.Khaled El-Aswany (Beams) (Example 3)
  • 156.
    C 2 t/m A B 8t1t 6m 2m 2m 2m I 2I A 8t 2m 2m I B C 2 t/m B 1t 6m 2m 2I −4 4 1t 2m C 2 t/m B 6m 6 −6 −2 −0.5 ( )= -8 FEM −6 −2 6
  • 157.
    C 2 t/m A B 8t1t 6m 2m 2m 2m I 2I A 8t 2m 2m I B C 2 t/m B 1t 6m 2m 2I −4 4 C 2 t/m B 6m 2m C B 1t 6m 2m −9 2 1 1 −8 FEM
  • 158.
    C 2 t/m A B 8t1t 6m 2m 2m 2m I 2I A 8t 2m 2m I B C 2 t/m B 1t 6m 2m 2I −4 4 −8 4 -8 -4 FEM 𝟎. 𝟓 0.5 D.M. D.F. A B C Joint B KBA : KBC 1 4 : 1 4 1 : 1 1 2 : 1 2 1 4 : 2 6 𝑥 3 4 I L : I L 𝑥 3 4 2 2 C.O. 1 F.M. -3 6 -6 3 6 6 3.25 4.75 6.33 6.67 B.M.D. A 8t 2m 2m B C 2 t/m B 1t 6m 2m 3.5 C A B 3 6 2 Distribution factors: FEM
  • 159.
    Structural Analysis Moment Distribution II Eng.Khaled El-Aswany (Beams) (Example 4)
  • 160.
    C 3 t/m 10m A B 8t 7.5m7.5m 10m D I 2I I 3 t/m 10m A I B C B 8t 7.5m 7.5m 2I D I C 10m 25 −25 −15 15 0 0 Joint B KBA : KBC Joint C KCB : KCD 𝐼 𝐿 : 𝐼 𝐿 1 10 : 2 15 15 : 20 𝟑 𝟕 : 𝟒 𝟕 25 −15 15 0 0 −25 15 35 : 20 35 𝐼 𝐿 : 𝐼 𝐿 2 15 : 1 10 20 : 15 𝟒 𝟕 : 𝟑 𝟕 20 35 : 15 35 3/7 4/7 4/7 3/7 −5.714 −8.55 −6.45 A B C D FEM D.M.1 D.F. C.O.1 −4.286 D.M.2 2.443 1.629 1.229 1.832 -2.143 -4.275 -2.857 -3.225 C.O.2 0.916 0.814 1.221 0.614 D.M.3 −0.465 −0.349 −0.525 −0.696 C.O.3 -0.174 -0.348 -0.233 -0.263 D.M.4 0.199 0.149 0.133 C.O.4 0.075 0.066 0.099 0.05 0.1 D.M.5 −0.038 −0.028 -0.057 -0.043 F.M. -26.33 -22.32 5.69 -2.82 -5.69 22.32 22.32 26.33 5.69 2.82 3 t/m 10m A B 8t 7.5m B C 7.5m 10m C D 5.69 22.32 0.851 0.851 5.11 2.89 15.4 14.6 C A B B.M.D. 26.33 22.32 5.69 2.82 𝑤𝑙2 8 26.33 + 22.32 2 13.175 =37.5 =24.32 𝑃𝐿 4 22.32 + 5.69 2 16 =30 =14 Distribution factors: Reactions
  • 161.
    Structural Analysis Moment Distribution II Eng.Khaled El-Aswany (Beams) (Example 5 - Symmetry)
  • 162.
    C 1 t/m 4m A B 12m D 9mt 2m 4m 2m 9 mt A B 9 mt 4m 2m C B 12m 1 t/m C D 9 mt 4m 2m −3 0 FEM −12 12 0 3 0 -12 -3 FEM 0.8 0.2 D.F. A B C D.M. 9.6 2.4 Joint B KBA : KBC 1 6 : 1 24 24 : 6 4 5 : 1 5 1 6 : 1 12 𝑥 1 2 I L : I L 𝑥 1 2 4 : 1 C.O. 4.8 F.M. 1.8 9.6 -9.6 A B 9 mt 4m 2m C B 12m 1 t/m 1.8 9.6 9.6 9.6 0.4 0.4 6 6 8.8 0.2 1.8 8.8 0.2 1.8 C A B 9.6 9.6 8.4 B.M.D.
  • 163.
    Structural Analysis Moment Distribution II Eng.Khaled El-Aswany (Beams) (Example 6)
  • 164.
    3 t/m D C 8m -16 16 C 3t/m B 8m D 3I 2I 2m 2m 2m 6t 6t 3m 3m A I 8t 2m 6t I 3 3m 3m A 8t 2m 6t B FEM 𝑃𝐿 8 𝑥1.5 = 9 3m 3m A 8t 2m B 6t 6t C B 2m 2m 2m −6 3m 3m A 2m 6t B 12 6 6t 6t C B −17 17 2m 2m 2m 3 t/m C B 2m 2m 2m 3 t/m 𝑤𝐿2 12 = 9 − 𝑤𝐿2 12 = -9 − 𝑃𝑎(𝐿−𝑎) 𝐿 = -8 𝑃𝑎(𝐿−𝑎) 𝐿 = 8
  • 165.
    3 t/m 6t 6t C 3 t/m B 8m D 3I2I C B 3I D 2I C 8m 3 −17 17 -16 16 Joint B Joint C KCB : KCD 𝐼 𝐿 𝑥 3 4 : 𝐼 𝐿 3 -17 17 -16 16 𝐼 𝐿 : 𝐼 𝐿 1 2 : 1 4 2 𝟎. 𝟐 𝟎. 𝟖 2/𝟑 1/𝟑 11.2 -0.667 -0.333 A B C D FEM D.M.1 D.F. C.O.1 2.8 D.M.2 0.267 -3.733 -1.867 0.667 -0.333 5.6 -0.167 C.O.2 -1.867 0.133 -0.933 D.M.3 1.493 0.373 -0.044 -0.089 C.O.3 -0.044 -0.747 -0.022 D.M.4 0.036 0.009 -0.498 C.O.4 -0.249 0.018 -0.124 -0.249 D.M.5 0.199 0.05 -0.012 -0.006 F.M. -6.3 18.499 14.75 -18.499 6.3 C A B B.M.D. 12 6.3 18.5 14.75 2.85 13.64 Distribution factors: 2m 2m 2m 6t 6t 3m 3m A I 8t 2m 6t I 2m 2m 2m 3 t/m 3m 3m A I 8t 2m 6t I B 3 6 : 2 8 : 4 1 : 2 𝟏 𝟑 : 𝟐 𝟑 KBA : KBC 1 6 𝑥 3 4 : 3 6 1 8 : 1 2 8 : 2 4 : 1 𝟒 𝟓 : 𝟏 𝟓 6.3 18.5 14.75 18.5 6.3 12.47 11.53 12.97 17.03 3.05 8m C D 3 t/m 6t B C 2m 3 t/m 6t 2m 2m 3m 8t A B 3m 2m 6t 9.56 7.375 Reactions D FEM 10.95
  • 166.
    Structural Analysis Moment Distribution II Eng.Khaled El-Aswany (Beams) (Settlement)
  • 167.
    D I C 10m 1 cm Determinate structures Indeterminatestructures −12 −12 −3𝐸𝐼∆ 𝐿2 ∆ ∆ ∆ C 3 t/m 10m A B 8t 7.5m 7.5m 10m D I 2I I 2 cm 1 cm EI = 10000 m2t 3 t/m 10m A I B 2 cm C B 8t 7.5m 7.5m 2I 2 cm 1 cm 10m A B 2 cm I −6𝐸𝐼∆ 𝐿2 −6𝐸𝐼∆ 𝐿2 3 t/m 10m A I B 25 −25 13 −37 C B 8t 7.5m 7.5m 2I C B 15m 2I 2 cm 1 cm Δ 5.33 15 −15 5.33 20.33 −9.67 3
  • 168.
    36.18 14.93 5.79 19.64 11.95 D I C 10m 1 cm C 3 t/m 10m AB 8t 7.5m 7.5m 10m D I 2I I 2 cm 1 cm EI = 10000 m2t 3 t/m 10m A I B 2 cm C B 8t 7.5m 7.5m 2I 2 cm 1 cm 13 −37 20.33 −9.67 3 Joint B KBA : KBC Joint C KCB : KCD 𝐼 𝐿 : 𝐼 𝐿 1 10 : 2 15 15 : 20 𝟑 𝟕 : 𝟒 𝟕 15 35 : 20 35 𝐼 𝐿 : 𝐼 𝐿 𝑥 3 4 2 15 : 1 10 𝑥 3 4 80 : 45 𝟎. 𝟔𝟒 : 𝟎. 𝟑𝟔 80 125 : 45 125 13 −9.67 20.33 3 0 −37 3/7 4/7 𝟎. 𝟔𝟒 𝟎. 𝟑𝟔 −1.903 −14.93 −8.399 A B C D FEM D.M.1 D.F. C.O.1 −1.428 D.M.2 4.266 0.609 0.342 3.199 -0.714 -7.466 -0.951 C.O.2 1.6 0.304 2.133 D.M.3 −0.174 −0.13 −0.768 −1.365 C.O.3 -0.065 -0.682 -0.087 D.M.4 0.39 0.292 0.056 0.031 F.M. -36.18 -14.93 5.79 0 -5.79 14.93 C A B D B.M.D.
  • 169.
    Structural Analysis Moment Distribution II Eng.Khaled El-Aswany (Frames) (Example 1)
  • 170.
    5t 1.5 t/m B C 2I4m 4m 5t A 1.5 t/m D B C I I 2I 5m 4m 4m −13 13 A D I I C B 5m 0 0 5m 0 0 0 -13 0 FEM 8/13 5/13 D.F. A B C D D.M. Joint B KBA : KBC 1 5 : 1 8 8 : 5 8 13 : 5 13 1 5 : 2 8 𝑥 1 2 I L : I L 𝑥 1 2 Distribution Factors 8 5 C.O. 4 F.M. 4 8 -8 5t 1.5 t/m B C 4m 4m 8 4 4 8 8 8 2.4 A B 5 m 2.4 8.5 8.5 2.4 C D 5 m 2.4 8 4 4 8 8 8 B.M.D. 14 𝑤𝑙2 8 + 𝑃𝐿 4 = 22
  • 171.
    Structural Analysis Moment Distribution II Eng.Khaled El-Aswany (Frames) (Example 2)
  • 172.
    4t A 3 t/m B C 8m −1616 4t A 3 t/m B C 3m 8m 3m B −4.5 3m 3m 16 -4.5 -16 FEM 0.5 0.5 D.F. A B C D.M. -5.75 -5.75 C.O. -2.875 F.M. -18.875 10.25 -10.25 Joint B KBA : KBC 1 8 : 1 8 1 : 1 𝟎. 𝟓 : 𝟎. 𝟓 1 8 : 1 6 𝑥 3 4 I L : I L 𝑥 3 4 Distribution Factors : A 3 t/m B 8m 18.875 10.25 10.25 13.08 10.92 B 4t C 3m 3m 3.71 A B C 10.25 10.25 18.875 0.29 0.875
  • 173.
    Structural Analysis Moment Distribution II Eng.Khaled El-Aswany (Frames) (Example 3)
  • 174.
    A 3 t/m B 8m −16 16 4t C B −4.5 3t B −6 3m3m 16 -4.5 -16 FEM 0.5 0.5 D.F. A B C D.M. Joint B KBA : KBC 1 8 : 1 8 1 : 1 𝟎. 𝟓 : 𝟎. 𝟓 1 8 : 1 6 𝑥 3 4 I L : I L 𝑥 3 4 : -6 4t A 3 t/m B C 3m 8m 2m 3m 3t 0 -2.75 -2.75 C.O. -1.375 F.M. -17.375 13.25 -6 -7.25 0 A 3 t/m B 8m 17.375 13.25 7.25 B 4t C 3m 3m A B C 7.25 13.25 17.375 2.375 3t 2m B 6 6 𝑝𝑙 4 B.M.D.
  • 175.
    Structural Analysis Moment Distribution II Eng.Khaled El-Aswany (Frames) (Example 4)
  • 176.
    I 3m 4t E DB 3m 12m 2m 1.5 t/m 6I A B C -12 -4.5 BD C -5.33 2.67 AB -18 18 C -5.33 -8 8 8m C 4I B 1.5 t/m -8 8 E -12 -4.5 0 D 18 -18 6t 2.67 C 1.5 t/m 6I I A B 6t 3m 12m 8m 2m 4I 1.5I 4t 6t F E D 3m 4m FEM D.F. Joint B KBA : KBD : KBC I L : Distribution Factors : : I L I L : 6 12 : 1.5 6 4 8 : 6 : 3 6 : 0.4 : 0.2 0.4 : Joint C KCB : KCE : I L : I L x 3 4 4 8 : 1 6 x 3 4 4 8 : 1 8 4 : 1 0.8 : 0.2 0.4 0.2 0.4 0.8 0.2
  • 177.
    I 3m 4t E DB 3m 12m 2m 1.5 t/m 6I A B C -12 -4.5 BD C -5.33 2.67 AB -18 18 C -5.33 -8 8 8m C 4I B 1.5 t/m -8 8 E -12 -4.5 0 D 18 -18 6t 2.67 FEM D.F. Joint B KBA : KBD : KBC I L : Distribution Factors : : I L I L : 6 12 : 1.5 6 4 8 : 6 : 3 6 : 0.4 : 0.2 0.4 : Joint C KCB : KCE : I L : I L x 3 4 4 8 : 1 6 x 3 4 4 8 : 1 8 4 : 1 0.8 : 0.2 0.4 0.2 0.4 0.8 0.2 C 1.5 t/m 6I I A B 6t 3m 12m 8m 2m 4I 1.5I 4t 6t F E D 3m 4m D.M.1 -1.867 -0.933 6.8 1.7 C.O.1 -0.933 -0.467 3.4 -0.933 D.M.2 C.O.2 -1.36 -0.68 -1.36 0.747 0.187 0.373 -0.68 -0.68 -0.34 D.M.3 C.O.3 -0.149 -0.075 -0.149 0.272 0.544 -0.075 0.136 -0.075 -0.037 D.M.4 -0.109 -0.054 -0.109 0.06 0.015 F.M. -19.69 14.52 -7.08 -7.44 14.46 -12 -2.46 0 1.82 12m 1.5 t/m A B 19.69 14.52 8m 1.5 t/m B C 7.44 14.46 6t D 4m 2m B 1.82 7.08 2.46 6t E C 3m 3m 2m C 6t 12 14.52 19.69 7.44 14.46 12 1.82 7.08 2.7 2.46 4.8 B.M.D. -1.867