Singular Value Decomposition (SVD)
Isaac Amornortey Yowetu
December 31, 2021
Example 2
Find the matrices U Σ and V for the matrix
A =




2 1
1 0
0 1




2/13
Finding the Singular Values
Solution
A =




2 1
1 0
0 1



 AT
=
"
2 1 0
1 0 1
#
AT
A =
"
5 2
2 2
#
3/13
Characteristics Polynomial
det(AT
A) =
5 − λ 2
2 2 − λ

Singular Value Decompostion (SVD): Worked example 2

  • 1.
    Singular Value Decomposition(SVD) Isaac Amornortey Yowetu December 31, 2021
  • 2.
    Example 2 Find thematrices U Σ and V for the matrix A =     2 1 1 0 0 1     2/13
  • 3.
    Finding the SingularValues Solution A =     2 1 1 0 0 1     AT = " 2 1 0 1 0 1 # AT A = " 5 2 2 2 # 3/13
  • 4.
  • 9.
    5 − λ2 2 2 − λ
  • 14.
    (1) P(AT A) = (5− λ)(2 − λ) − 4 (2) = λ2 − 7λ + 6 (3) = (λ − 6)(λ − 1) (4) Eigenvalues λ1 = σ2 1 = 6 (5) λ2 = σ2 2 = 1 (6) 4/13
  • 15.
    Singular Values σ1 = p λ1= √ 6 (7) σ2 = p λ2 = 1 (8) Singular Values Decompostion of A Σ =     √ 6 0 0 1 0 0     5/13
  • 16.
    Constructing Matrix V A= UΣV T (9) AT A = (UΣV T )T UΣV T (10) = V ΣT UT UΣV T (11) = V Σ2 V T (12) = VDV T (13) AT A = " 5 2 2 2 # (14) 6/13
  • 17.
    Constructing Matrix VCont’d When λ = 6 " 5 − λ 2 2 2 − λ # = " −1 2 2 −4 # (15) By row reduction form, we have: " −1 2 2 −4 # => " −1 2 0 0 # (16) Forming equations with some variables: −x + 2y = 0 (17) Our eigenvector becomes: (2, 1)t 7/13
  • 18.
    Constructing Matrix VCont’d When λ = 1 " 5 − λ 2 2 2 − λ # = " 4 2 2 1 # (18) By row reduction form, we have: " 2 1 4 2 # => " 2 1 0 0 # (19) Forming equations with some variables: 2x + y = 0 (20) Our eigenvector becomes: (1, −2)t 8/13
  • 19.
    Let Z bethe egigenvectors of the various eigenvalues. Z = " 2 1 1 −2 # We normalized each column of Z to get V V = " 2 √ 5 5 √ 5 5 √ 5 5 −2 √ 5 5 # 9/13
  • 20.
    Constructing U matrix A= UΣV T (21) U = {u1, u2} (22) u1 = 1 s1 Av1 (23) u2 = 1 s2 Av2 (24) 10/13
  • 21.
    Constructing U matrix u1= 1 √ 6     2 1 1 0 0 1     " 2 √ 5 5 √ 5 5 # =     √ 30 6 √ 30 15 √ 30 30     (25) u2 =     2 1 1 0 0 1     " √ 5 5 −2 √ 5 5 # =     0 √ 5 5 −2 √ 5 5     (26) 11/13
  • 22.
    Find the remainingeigenvector AT X = 0 (27) " 2 1 0 1 0 1 #     x y z     = " 0 0 # (28) Forming equations with the variables: 2x + y = 0 (29) x + z = 0 (30) Our eigenvector becomes: (1, −2, −1)t 12/13
  • 23.
    Singular Value Decomposition U=     √ 30 6 0 √ 6 6 √ 30 15 √ 5 5 − √ 6 3 √ 30 30 −2 √ 5 5 − √ 6 6     (31) A =     √ 30 6 0 √ 6 6 √ 30 15 √ 5 5 − √ 6 3 √ 30 30 −2 √ 5 5 − √ 6 6         √ 6 0 0 1 0 0     " 2 √ 5 5 √ 5 5 √ 5 5 −2 √ 5 5 # (32) 13/13